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Abstract Distributing data collections by fragmenting them is an effective way of
improving the scalability of a database system. While the distribution of relational
data is well understood, the unique characteristics of the XML data and query model
present challenges that require different distribution techniques. In this paper, we
show how XML data can be fragmented horizontally and vertically. Based on this, we
propose solutions to two of the problems encountered in distributed query processing
and optimization on XML data, namely localization and pruning. Localization takes
a fragmentation-unaware query plan and converts it to a distributed query plan that
can be executed at the sites that hold XML data fragments in a distributed system.
We then show how the resulting distributed query plan can be pruned so that only
those sites are accessed that can contribute to the query result. We demonstrate that
our techniques can be integrated into a real-life XML database system and that they
significantly improve the performance of distributed queryexecution.

Keywords Distributed· XML · Localization· Pruning

1 Introduction

Over the past decade, XML has become a commonly used format for storing and ex-
changing data in a wide variety of systems. Due to this widespread use, the problem
of effectively and efficiently managing XML collections hasattracted significant at-
tention in both the research community and in commercial products. One can claim
that techniques for the management and querying of XML data residing on a single
system are now well understood. However, because these techniques are inherently
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based on centralized execution on a single machine, their scalability is limited when
faced with large collections (or single, large documents) and heavy query workloads.

In relational database systems, these scalability challenges have been success-
fully addressed by partitioning data collections and processing queries in parallel in
a distributed system [1]. Our work is focused on similarly exploiting distribution in
the context of XML database systems. While there are some similarities between the
way relational database systems can be distributed and the opportunities for distribut-
ing XML database systems, the significant differences in both data and query models
make it impossible to directly apply relational techniquesto XML. Therefore, new
solutions need to be developed to distribute XML database systems.

While there has been research interest in distributed XML query processing for a
while, much of the existing work has focused on the problem ofintegrating multiple
repositories into a single XML view [2–4]. It is important topoint out that, while data
integration also deals with optimizing queries over fragmented collections of XML
data, its goals and the constraints it faces are decidedly different from those seen in
a scenario where we are distributing to improve scalability. For instance, whereas
data integration requires a fragmentation model that can express the complex ways in
which we might need to integrate individual and possibly redundant data sources, in
this work, we optimize our fragmentation model entirely forquery performance.

A few publications have focused on distribution as a means toimprove scalability.
These either rely heavily on replicated index structures that complicate the handling
of updates [5] or they focus primarily on minimizing networkcommunication cost
[6–8]. In this paper, in contrast, we look at end-to-end solutions and take into account
all components of the cost of query evaluation, including communication and pro-
cessing. Our experiments show that our technique, which is specifically designed for
this purpose, outperforms techniques that focus on communication cost alone.

In this paper, we focus on the following three aspects of the problem of improving
the scalability of XML query evaluation through distribution:

– First, we present adistribution modelfor XML. We have chosen to focus on a
fragmentation approach that partitions a collection of XMLdata (consisting of
one or multiple documents) based on characteristics of its content and structure.
A key advantage of this model is that it is simple and yet sufficiently power-
ful to significantly improve the scalability of distributedquery evaluation. This
simplicity makes it easier to identify a suitable fragmentation for a given query
workload.
Our distribution model supports horizontal fragmentation(based on selection op-
erators and predicates) and vertical fragmentation (basedon a partitioning of the
set of element types in a schema). Both types of fragmentation are designed to be
orthogonal, which means they can be used together to achievehybrid fragment-
ation. While the semantics of this model are inspired by relational fragmentation
techniques, it is important to point out that the characteristics of XML, such as
its nested data model and structure-based queries, lead to aset of challenges and
optimization opportunities that differ significantly fromwhat is encountered in
the relational context.
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Query Localization Pruning Dist. Opt. Local Opt. Opt. Dist. Plan

Fig. 1 Phases of distributed query evaluation

– Second, we focus on the problem of evaluating queries over a distributed XML
database. This problem is solved in a number of phases (shownin Figure 1),
turning a fragmentation-unaware query into an optimized distributed plan.
1. To evaluate a fragmentation-unaware query, the query is first localized.Lo-

calization(as defined in [1]) is the process of transforming a fragmentation-
unaware query into a set of sub-queries that can be evaluatedin parallel at the
individual sites in the system. Based on these local sub-queries, an initial dis-
tributed execution plan is generated, which determines howsub-query results
are combined to the overall query result.

2. Next, apruningstrategy is applied, which identifies fragments that do not con-
tribute to the query result. The sub-queries correspondingto these fragments
are removed from the distributed execution plan.

3. After pruning, furtherdistributed optimizationtechniques can be applied to
improve the performance of the distributed execution plan.

4. Finally, each site independently performslocal optimizationof the sub-queries
assigned to it.

In this paper, we focus on the first two steps of distributed query evaluation. Lo-
calization yields an initial strategy that allows us to evaluate queries over hori-
zontally and vertically fragmented collections. Applyingthe novel pruning tech-
niques presented in this paper then allows us to improve the performance of this
strategy. The reason why pruning helps improve query performance is twofold.
First, it allows us to avoid accessing the sites that hold irrelevant fragments. In
addition, by not processing these irrelevant fragments, wecan reduce the overall
computation and memory cost of evaluating a query.
As we show in this paper, distributed query evaluation basedon localization and
pruning alone is sufficient to significantly improve the performance and scalabil-
ity of XML query processing. To further improve performance, additional opti-
mizations can be applied to the distributed execution plan after pruning is com-
plete. Some of these optimizations have been published separately [9] and further
work along these lines is the subject of ongoing research. Inaddition, the sub-
queries resulting from localization can be optimized independently at each site.
Since our techniques place no constraints on the local queryevaluation techniques
used, existing optimization techniques for centralized XML query evaluation can
be applied.
The query evaluation techniques presented in this paper do not require a globally
replicated index structure, which could limit the scalability of a distributed system
and negatively affect the performance of updates.

– Based on our query evaluation techniques, we then propose a set of workload-
aware fragmentation algorithms. These algorithms are designed to determine a
fragmentation layout that will optimize performance for a given set of queries.

To motivate our work, consider Figure 2, which shows a horizontally fragmented
data collection consisting of four documents representinginformation about authors
and their publications. The horizontal fragmentation is defined based on the first letter
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of the authors’ last names, placing “John Adams” in fragmentfH
1

, “Jane Dean” in
fragmentfH

2
and “John Smith” as well as “William Shakespeare” in fragment fH

3
.

Figure 3 shows a similar collection that has been fragmentedvertically. Ignoring
the nodes labeled asP i→j

k andRP i→j
k for now, we can see thatauthor andagent

nodes are stored in fragmentfV
1

, the nodes related to the author’s name are stored in
fragmentfV

2 , pubs andbook nodes are stored in fragmentfV
3 andchapter and

reference nodes are stored in fragmentfV
4

.
Consider evaluating the following XPath query (q):

/author[name[first=’William’ and last=’Shakespeare’]]//book//reference

In the horizontal case, it is easy to see that the fragmentsfH
1 andfH

2 cannot
possibly contribute to the result of this query since they correspond to authors whose
last names start with the letters “A” and “D”, respectively.Pruning these fragments
allows us to answer the query without contacting the sites atwhich they are stored.

When evaluatingq on the vertically fragmented collection, we generally haveto
access all four fragments. FragmentfV

2 is needed to evaluate the value constraint
predicates, fragmentfV

4
is needed to obtain result nodes and fragmentsfV

1
andfV

3

are needed to evaluate structural constraints. We later present a technique that allows
us to avoid accessing some of the fragments only needed for structural constraints.

The remainder of this paper is structured as follows: Section 2 describes the tech-
nical background of our work. Section 3 introduces our modelof horizontal and ver-
tical fragmentation. In Section 4, we propose techniques for evaluating queries over
distributed collections. In Section 5, we describe how the performance of distributed
query evaluation can be improved by pruning the set of fragments accessed. Based
on these techniques, Section 6 describes our algorithms forfragmenting an XML
collection such that performance for a given workload is optimized. In Section 7, we
present a thorough evaluation of the performance impact of the techniques presented
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3Fig. 2 A horizontally fragmented collection
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4Fig. 3 A vertically fragmented collection

in this paper. Section 8 discusses related work. In Section 9, we summarize our work
and present our conclusions.

2 Background

2.1 Data model

An XML collection can be described as a set of labeled, ordered trees. While XML is
a self-describing format that can be used without a schema, in practice, the structure
of document trees is usually constrained by a schema that specifies how elements may
be nested and what the domain of their textual content is. A schema is usually defined
in a language such as DTD or XML Schema. In this paper, we use a simple directed
graph representation that covers only the aspects of the schema that are important for
our purposes. For example, our representation ignores the distinction between XML
elements and attributes by treating both of them uniformly as nodes. Similarly, we
refer to element types and attribute names asnode types. Assuming that the original
schema definition does not contain unspecified portions (such as those defined using
the DTD keywordANY), it is straightforward to extract the information captured by
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author(name, pubs, agent?)
pubs(book*)
book(chapter*)
chapter(reference?)
reference(chapter)
agent(name)
name(first, last)
first(#text)
last(#text)
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chapter

MULT

reference

OPT

ONCE
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Fig. 4 A schema

our graph representation from a DTD1 or an XML Schema. Extracting schema infor-
mation yields a schema graph that may be less restrictive than the original schema,
but since the schema graph is never used for the validation ofdocuments this does
not pose a problem [10].

Definition 1 An XML schema graphis defined as a 5-tuple〈Σ,Ψ, s,m, ρ〉 where
Σ is an alphabet of node types,ρ is the root node type,Ψ ⊆ Σ × Σ is a set of
directed edges between node types,s : Ψ → {ONCE, OPT,MULT} andm : Σ →
{string}.

The semantics of this definition are as follows: An edgeψ = (σ1, σ2) ∈ Ψ
denotes that a node of typeσ1 may contain a node of typeσ2. s(ψ) denotes the
cardinality of the containment represented by this edge: Ifs(ψ) = ONCE, then a
node of typeσ1 must contain exactly one node of typeσ2. If s(ψ) = OPT, then a
node of typeσ1 may or may not contain a node of typeσ2. If s(ψ) = MULT, then
a node of typeσ1 may contain multiple nodes of typeσ2. m(σ) denotes the domain
of the text content of a node of typeσ, represented as the set of all strings that may
occur inside such a node. Figure 4 shows an example of a schema, represented both
as a simplified DTD and as a schema graph.

2.2 Query model and tree patterns

The query model used in this paper is a subset of XPath, which we call XQ. XQ con-
sists of absolute location paths consisting of node tests with and without wildcards,
child (/) and descendant (//) axes and predicates. Predicates may consist of (i) a
relative location path with the same restrictions (with XPath’s existential semantics);
(ii) a textual constraint of the form “. θs s”, where s is a string constant andθs is
either= or!=; or (iii) a numeric constraint of the form “. θn n”, wheren is a numeric
constant andθn is one of<, <=, =, >, >=, or!=. As in XPath, XQ steps return nodes
in document order (since both axes we support are forward axes).

XQ queries are not only commonly used on their own, but they also represent
an important building block of more complex XPath or XQuery queries (containing
additional axis types, explicit joins or full FLWOR expressions) [11,12]. Therefore,
solving the problem of evaluating XQ queries in a distributed fashion is an important
contribution to distributed XQuery evaluation.

It is convenient to represent XQ queries as tree patterns [13,14], which we for-
malize as follows:

1 Note that a DTD does not explicitly specify the root element type of a document. However, the root
element type can be inferred from the DOCTYPE declarations of documents conforming to a DTD.
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Fig. 5 Query tree pattern (QTP) representation of queryq

Definition 2 Let 〈Σ,Ψ, s,m, ρ〉 be a schema. Atree patternis a 7-tuple〈N,E, r, ν,
ǫ, T, c〉 whereN is a set of pattern nodes,E ⊆ N × N is a set of pattern edges and
〈N,E, r〉 is a tree rooted atr ∈ N . For eachn ∈ N , ν(n) ∈ Σ ∪ {∗} denotes a node
test. For eache ∈ E, ǫ(e) ∈ {child, descendant} denotes the axis type.T ⊆ N
denotes the set of extraction points. For eachn ∈ N , c(n) ⊆ m(ν(n)) denotes a
value constraint on the text content of nodes of typeν(n).

In the following, we will refer to the tree pattern representation of a query as a
query tree pattern(QTP). It is interesting to note that, in addition to XQ queries,
QTPs can be used to express queries with multiple extractionpoints. While this may
be useful for supporting a larger class of queries, in this paper, our focus is on que-
ries with a single extraction point. Sub-queries resultingfrom vertical fragmentation,
however, frequently contain multiple extraction points.

Figure 5 shows the QTP representation of queryq from Section 1. The double-
outlined node labeled withreference is an extraction point and the edge labels
“/” and “//” denote child and descendant steps, respectively.

A match for a QTP assigns a node from a document to each patternnode such
that all node tests, value constraints, and structural constraints (expressed as axis
relationships) are satisfied. While all pattern nodes in theQTP have to be matched to
nodes in a document, only the nodes associated with pattern nodes that are designated
as extraction points are returned as part of the result.

3 Fragmentation

Distribution of an XML collection over multiple sites requires the fragmentation of
the collection. In this work, the motivation for distributing data is query performance
and scalability (rather than integrating data from multiple sources) and our fragment-
ation model reflects this motivation.

We have developed a fragmentation model that partitions a collection based on
characteristics of the content and the structure of the XML data. This yields a succinct
specification for a given fragmentation layout, which – as wewill show – is a valuable
asset when optimizing query evaluation.

It is important to realize that our fragmentation model doesnot aim to capture
arbitrary fragmentation of XML collections, as would be needed in a data integration
scenario but instead focuses on simplicity and utility for query optimization. Also,
while our focus is on partitioning a collection, other techniques, which replicate all
or part of the collection, can be used in conjunction with ourtechniques for further
performance improvement.

In particular, our work is based on two techniques for fragmenting XML collec-
tions. Horizontal fragmentation is based on predicates andresults in a collection that
is partitioned into fragments that all follow the same schema. Vertical fragmentation,
on the other hand, is based on partitioning the schema.
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3.1 Horizontal fragmentation

By itself, horizontal fragmentation is particularly useful for improving query response
times because it allows for easy parallelization of query evaluation. When combined
with the pruning techniques presented later in this paper, it can also yield a significant
improvement in query throughput by reducing the amount of data that needs to be
processed to answer a query.

Our model of horizontal fragmentation assumes a collectionthat consists of mul-
tiple document trees. These document trees can either be entire XML documents or
they can be the result of a previous fragmentation step. In either case, we require
that all document trees correspond to the same schema. Multiple-document collec-
tions where all documents follow the same schema are a commonuse case for XML.
Popular examples include MathML [15] and CML [16].

A horizontal fragmentation is defined by a set of predicates.In the relational
scenario, fragmentation predicates are commonly expressed as algebraic expressions.
In our case, tree patterns represent a convenient abstraction. Therefore, we express
horizontal fragmentation predicates as tree patterns without extraction points, which
we refer to asfragmentation tree patterns(FTPs).
Definition 3 A tree patternfp = 〈N,E, r, ν, ǫ, T, c〉 is a fragmentation tree pattern
if T = ∅. A document treed matchesthe fragmentation tree patternfp if evaluating
fp overd yields at least one match.

A document matches an FTP if evaluating this FTP over the document yields
at least one result. For notational convenience,fp(d) denotes that the documentd
matches the FTPfp.
Definition 4 LetD = {d1, d2, . . . , dn} be a collection of document trees such that
eachdi ∈ D corresponds to the same schema. Further, letFP = {fp1, fp2, . . . fpm}
be a set of FTPs. ThenF = {{di ∈ D | fpj(di)} | fpj ∈ P} is the set ofhorizontal
fragmentsof D corresponding to the FTPs inFP .

Each fragment consists of the document trees that match the FTP corresponding
to that fragment. To ensure that the fragmentation is lossless and complete and that
the fragments are disjoint, we require that whenever a document tree conforms to the
schema of the collection, it matches exactly one of the predicates.
Definition 5 Let F = {f1, f2, . . . fm} be a set of horizontal fragments of the doc-
umentsD corresponding to the FTPs inFP = {fp1, fp2, . . . fpm}. ThenF is a
horizontal fragmentationof D if ∀di ∈ D : ∃ uniquefpj ∈ FP wherefpj(di).

The losslessness of a fragmentation can be enforced by carefully crafting the
value constraints in the FTPs so that they cover the entire domain of the values to
which they refer.

If we assume that the document trees in the fragmented collection shown in Figure
2 conform to the schema in Figure 4 and thatm(last) is the set of strings that
start with upper-case letters of the English alphabet, thenthe fragmentation of this
collection can be described by the set of FTPs shown in Figure6.

3.2 Vertical fragmentation

Vertical fragmentation allows us to improve both query response time and through-
put. The main difference between both types of fragmentation is that vertical frag-
mentation defines fragments based on the structure of the data, whereas horizontal
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Fig. 6 Set of fragmentation tree patterns (FTPs)

fragmentation defines them based on the content. As we will see later, this heavily
influences how efficiently we can answer certain types of queries.

Our model of vertical fragmentation can handle collectionsthat consist of a single
or multiple document trees. Again, it is possible that thesetrees are the result of
a previous fragmentation step, which allows us to combine horizontal and vertical
fragmentation.

A vertical fragmentation schemais defined by fragmenting the schema graph of
the collection into connected subgraphs:

Definition 6 Let 〈Σ,Ψ, s,m, ρ〉 be a schema graph. Avertical fragmentation schema
is defined by a partitioningFΣ of the set of node typesΣ such that for eachfΣ ∈ FΣ

〈fΣ , (Ψ ∩ (fΣ × fΣ))〉 is weakly connected.

The dashed outlines in Figure 7 show how the node types in thisschema have
been partitioned into four disjoint subgraphs. FragmentfV

1
consists of the node types

author andagent; fragmentfV
2

consists of the node typesname, first and
last along with their text content; fragmentfV

3 consists ofpubs andbook; frag-
mentfV

4
includes the node typeschapter andreference.

Since we require the schema graph to be connected, after fragmentation, there
will be graph edges that cross fragment boundaries. Whenever the schema contains
an edge from a fragmentfV

i to another fragmentfV
j , we refer tofV

j as achild
fragmentof fV

i and tofV
i as aparent fragmentof fV

j . There is exactly one fragment
fV
ρ ∈ FΣ that contains the root node typeρ (the root fragment). While the schema

graph may contain cycles, for performance reasons, we require that the fragmentation
schema be a DAG (i.e., each cycle has to be contained within a single fragment).

When a collection is partitioned according to a vertical fragmentation schema,
there will be document edges that cross fragment boundaries. We represent a docu-
ment edge from fragmentfV

i to fragmentfV
j by inserting a pair of artificial nodes

P i→j
k andRP i→j

k into fragmentsfV
i andfV

j , respectively.P i→j
k denotes aproxy

nodein fragmentfV
i (the originating fragment) with IDk, whereasRP i→j

k denotes
a root proxy nodein fragmentfV

j (the target fragment) with IDk. SinceP i→j
k and

RP i→j
k share the same ID (k) and reference the same fragments (i→ j), they corre-

spond to each other and together represent a single cross-fragment edge.
The collection shown in Figure 3 has been fragmented according to the verti-

cal fragmentation schema shown in Figure 7. The proxy pair consisting ofP 1→2

11 in
fragmentfV

1
andRP 1→2

11
in fragmentfV

2
, for example, represents an edge from an

author node infV
1 to aname node infV

2 .
Vertical fragments generally consist of multiple unconnected pieces of XML data,

which we refer to asdocument subtrees. In Figure 3, for example, fragmentfV
1

con-
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author

agent

OPT

(a) fV
1

name

first

ONCE

#text

last

ONCE

#text

(b) fV
2

pubs

book

MULT

(c) fV
3

chapter

reference

OPT ONCE

(d) fV
4

ONCE

ONCE

ONCE

MULT

Fig. 7 A vertical fragmentation schema

tains three subtrees, each of which consists of theauthor andagent nodes of one
of the documents in the collection.

4 Distributed query evaluation

In this section, we propose a technique for evaluating queries over horizontally and
vertically distributed collections. There are two main components to this technique:
First, we describe how a fragmentation-unaware query can belocalizedand thereby
transformed into multiple sub-queries corresponding to individual fragments. Then,
we describe an initial strategy for combining the results ofindividual sub-queries to
the overall query result. This strategy will then serve as the foundation for the pruning
techniques described in Section 5 and for further optimizations.

4.1 Querying horizontally fragmented collections

With horizontal fragmentation, it is possible to evaluate aquery by computing the
union of all fragments and then executing a centralized query plan over the result.
While this leads to the correct result, to improve scalability it is better to distribute
query evaluation throughout the system. Our query model implies that each result is
derived from exactly one document tree in the collection. This allows us to push the
(unchanged) fragmentation-unaware query down to the individual fragments:

Definition 7 If q is a plan that evaluates the query on an un-fragmented collection of
document treesD andF is a horizontal fragmentation ofD, then

qf (F ) := sort( ⊙
f∈F

q(f))

is adistributed execution planthat evaluates the same query onF , where⊙ denotes
concatenation of results, andqf (F ) ≡ q(D).

As shown in the definition, it may be necessary to sort the results received from
the individual fragments in order to return them in a stable global order as required
by the XQuery data model [17]. For unordered queries, or if weare willing to relax
the ordering constraint, we can reduce the amount of sorting-induced buffering by
only maintaining a stable order between nodes in the same document. This may be a
reasonable trade-off in many use cases.

4.2 Querying vertically fragmented collections

In this section, we define an initial strategy for evaluatingqueries over a vertically
fragmented collection. In relational systems, query localization is usually done based
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on an algebraic representation of a distributed query [1]. For the technique presented
here, however, the QTP represents a simpler abstraction that contains all the infor-
mation necessary for localization. We therefore describe vertical query localization
in terms of the QTP representation of the query:
– First, we decompose the QTP representation of the query (theglobal QTP) into a

set oflocal QTPscorresponding to individual fragments.
– Then, we use an existing, centralized tree pattern evaluation strategy to obtain a

local plan for each local QTP (the specific strategy is left toeach site to decide).
– After evaluating the local plans over their corresponding fragments, the result-

ing pattern matches are joined based on their proxy/root proxy IDs to obtain the
overall query result. How this is done is specified by adistributed execution plan.

4.2.1 Localization of QTPs

Localization is the process of decomposing a query into sub-queries that can be eval-
uated over individual fragments. The decomposition of a global QTP into a set of
local QTPs directly follows the schema graph. After unrolling wildcard nodes us-
ing schema information, the global QTP is divided into a set of sub-patterns, each
of which consists of pattern nodes that match nodes in the same fragment. Edges
between pattern nodes in the same subtree are assigned the same axis type as the
corresponding edge in the global QTP.

A child edge from a pattern node in sub-patterna to one in sub-patternb is con-
verted to a pattern node matching a proxy ina and a pattern node matching a root
proxy inb. These new pattern nodes are marked as extraction points because they are
needed to join the results of local QTPs to generate the final result.

When descendant edges across fragment boundaries are encountered, we need
to identify all paths in the fragmentation schema that satisfy the descendant edge.
If a descendant step traverses multiple fragments, additional local QTPs have to be
generated for the fragments that are traversed. Consider, for example, the descendant
stepauthor//reference. Since this step traverses fragmentfV

3
, a local QTP

has to be generated for this fragment even when no pattern node in the global QTP
refers to node types in this fragment. The resulting local QTP consists solely of a
pattern node matching a root proxy node and a pattern node matching a proxy node,
connected by a descendant edge.

If the global QTP does not reach a certain fragment (because even when taking
cross-fragment descendant steps into account no local QTP is generated for it), then
distributed query evaluation will not access this fragment. Therefore, the localization
technique eliminates some vertical fragments even withoutfurther pruning.

Localizing queryq (shown in Figure 5) yields the set of local QTPs shown in
Figure 8(a)–(d). Each cross-fragment edge in the global QTPis represented by a pair

author

P 1→2
∗

/

P 1→3
∗

//

(a) q1

RP 1→2
∗

name

/

last

/

.=’Shakespeare’

first

/

.=’William’

(b) q2

RP 1→3
∗

book

//

P 3→4
∗

//

(c) q3

RP 3→4
∗

reference

//

(d) q4

Fig. 8 Local QTPs corresponding to queryq
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of pattern nodes that match a proxy/root proxy pair. The edgefromauthor toname,
for example, is replaced by the pattern nodeRP 1→2

∗
in q2 and the pattern nodeP 1→2

∗

in q1. The pattern nodeRP 1→2
∗

matches all of the root proxy nodesRP 1→2

i in q2’s
fragmentf2. The pattern nodeP 1→2

∗
matches the proxy nodesP 1→2

i in f2’s parent
fragmentf1; these are the proxy nodes that correspond toRP 1→2

i . Since the original
pattern edge is a child edge, edges to and from the generated pattern nodes are also
child edges. In the case where the original pattern edge is a descendant edge (such
as the edge betweenauthor andbook, which is represented by the pattern nodes
labeledP 1→3

∗
andRP 1→3

∗
), edges to and from the generated pattern nodes are also

descendant edges.
Whenever we decompose a global QTP, there will be exactly onelocal QTP that

does not contain a pattern node that matches a root proxy node. We refer to this
local QTP as theroot QTP. In our example,q1 is the root QTP. All other local QTPs
contain exactly one pattern node that matches root proxy nodes in their fragments. If
local QTPqs contains a pattern node labeledRP i→j

∗ and local QTPqt contains the
corresponding pattern node labeledP i→j

∗ , then we callqs a child QTPof qt andqt a
parent QTPof qs.

4.2.2 Conversion of local QTPs to local plans

Each local QTPqi is then transformed into a local query planpi. This is done at the
site holding the fragment corresponding toqi, using centralized XML query evalua-
tion strategies (e.g., [18,19]). The techniques presentedin this paper are independent
of the techniques used by local query plans. We therefore omit a detailed description
of local plan generation and the algebra used in these local plans.

4.2.3 Distributed execution plans

To obtain the overall query result, the results of local plans need to be “combined”
based on the IDs of their proxy and root proxy nodes. Adistributed execution plan
specifies how exactly this is done. In this section, we explore how distributed execu-
tion plans can be constructed and what their properties are.

Definition 8 Let P = {p1, . . . , pn} be the set of local query plans corresponding to
a queryq. For eachpi ∈ P , let fi denote the vertical fragment corresponding topi.
Further, letP ′ ⊆ P . ThenGP ′ is adistributed execution planfor P ′ iff
1. P ′ = {pi} andG′

P = pi, or
2. P ′ = P ′

a ∪ P ′

b, Pa ∩ Pb = ∅; pi ∈ Pa, pj ∈ Pb, pi = parent(pj); GP ′

a
and

GP ′

b
are distributed execution plans forP ′

a andP ′

b, respectively; andGP ′ = GP ′

a

1
P

i→j
∗ .id=RP

i→j
∗ .id

GP ′

b
.

If GP is a distributed execution plan forP (the entire set of local query plans),
thenGq = GP is a distributed execution plan forq.

A distributed execution plan must contain all the local plans corresponding to
the query. As shown in the recursive definition above, an execution plan for a single
local plan is simply the local plan itself (condition 1). Fora set of multiple local
plansP ′ we assume thatP ′

a andP ′

b are two non-overlapping subsets ofP ′ such that
P ′

a ∪ P ′

b = P ′. We require thatP ′

a contains the parent local planpi for some local
planpj in P ′

b. An execution plan forP ′ is then defined by combining execution plans
for P ′

a andP ′

b using a join whose predicate compares the IDs of root proxy nodes
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1P 1→3
∗

.id=RP 1→3
∗

.id

1P 1→2
∗

.id=RP 1→2
∗

.id

p1 p2

1P 3→4
∗

.id=RP 3→4
∗

.id

p3 p4
Fig. 9 Initial distributed execution plan for queryq

derived frompj to the IDs of corresponding proxy nodes derived frompi (condition
2). We refer to this join as across-fragment join.

If G′

P consists of a single local planpi, then the set of attributes returned byG′

P

(referred to asMG′

P
) is identical to the set of attributes returned bypi. If GP ′ = GP ′

a

1
P

i→j
∗ .id=RP

i→j
∗ .id

GP ′

b
, thenMG′

P
=MGP ′

a
∪MGP ′

b

\ {P i→j
∗ , RP i→j

∗ }.

Figure 9 shows a distributed execution plan that combines the results of the local
plansp1 throughp4, corresponding to the local QTPsq1 throughq4 (shown in Figure
8). There are usually many different vertical execution plans that all yield the correct
result but that may vary in cost. Since the focus of this paperis on localization and
pruning, we do not discuss the problem of picking the most advantageous plan.

5 Pruning fragments

In many cases it is not necessary to access all fragments of a collection in order to
answer a query. This section focuses on exploiting this insight by pruning irrelevant
fragments from a distributed execution plan. Pruning decisions are made based on the
QTP representation of the query.

5.1 Pruning horizontal fragments

As discussed before, to evaluate queryq (shown in Figure 5) over the horizontally
fragmented collection shown in Figure 2, only the documentscontained in the frag-
mentfH

3
need to be accessed. The initial distributed execution plandescribed in Sec-

tion 4.1, in contrast, accesses every fragment in the collection, which can significantly
reduce query throughput.

In this section, we propose a procedure that detects irrelevant horizontal frag-
ments and prunes them from a distributed query plan. This procedure relies on the
schema of the collection and the FTPs that define the fragmentation. Both of these
are static over time, do not depend on the size of the collection and can be encoded
in a compact manner. This makes it feasible to replicate themat all sites as metadata.

To eliminate a fragment from the distributed query plan, we need to show that the
FTP corresponding to this fragment cannot be satisfied by a document that matches
the QTP. While this problem could be solved by a general-purpose query intersection
algorithm, we present a schema-aware algorithm that supports QTPs with multiple
extraction points as are frequently encountered in hybrid fragmentation (for a discus-
sion of this, see Section 8.3.4).

As a first step, the algorithm transforms QTP and FTP into a simplified form.
While this form is less expressive than general tree patterns, it is sufficient to detect
contradictions. We then traverse both simplified patterns simultaneously, pruning all
but the shared branches, and check for contradictory constraints. If we find such a
contradiction, there cannot be any results for the query in the fragment corresponding
to the FTP and the fragment can thus be eliminated from the distributed plan.
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author

name

//

first

/

.=’William’

last

/

.=’Shakespeare’

book

//

reference

//

(a) QTPq′

author

name

/

last

/

startswith(’A’)

(b) FTPfp′

Fig. 10 QTP and FTP that are not contradictory

5.1.1 Transformation to simplified form

The goal of transforming tree patterns into a simplified formis to make sure that each
pattern node refers to a unique node within the context of a single document tree.
In general, pattern nodes may match more than one node in a given document tree.
A constraint associated with such a pattern node is satisfiedif one of the matching
nodes conforms to the constraint. This makes it impossible to exploit contradictory
constraints associated with such pattern nodes. Even if theconstraints themselves are
contradictory, they may be satisfied by different nodes in the same document.

With QTPs, there are three sources of pattern nodes that may match multiple
nodes in the same document tree:

Node types reached via MULT edges. Node types that are reached via an edge
in the schema that has a cardinality of MULT may occur multiple times in the same
context. Based on the schema in Figure 4, for example, the step pubs/book may
yield multiplebook nodes corresponding to a singlepubs node.

Descendant stepscan also yield multiple results in the same context. In the QTPq′

shown in Figure 10(a), for example, the descendant edge betweenauthor andname
can be satisfied either by aname node that is the direct child of a givenauthor node
or by aname node that is reachable through an intermediateagent node. Because
of this, even though the constraints on the author’s last name imposed by the FTPfp′

and the QTPq′ seem to cause these two patterns to be contradictory, they actually are
not. Document trees in the fragment corresponding to the FTPfp′ will only contain
information about authors whose last names start with the letter “A”. The QTPq′, on
the other hand, matches books that are either authored by “William Shakespeare” or
by someone whose agent is “William Shakespeare” and whose last name might well
start with the letter “A”.

Wildcardsare another source of multiple matches in the same context whenever
the schema specifies that a node type may contain multiple other node types.

We define simplified tree patterns as tree patterns that do notcontain any of these
primitives:

Definition 9 A tree pattern〈N,E, r, ν, ǫ, T, c〉 is a simplified tree pattern iff∀n ∈ N ,
ν(n) ∈ Σ and∀(x, y) ∈ E, ǫ((x, y)) = child∧(ν(x), ν(y)) ∈ Ψ∧s((ν(x), ν(y)))
6= MULT.

To convert a tree pattern into a simplified tree pattern, all disallowed primitives
have to either be removed or converted into an equivalent simplified form. It is im-
portant to note that simplified tree patterns are strictly less expressive than arbitrary
tree patterns. Therefore, when a tree pattern is transformed to a simplified tree pat-
tern, the result is not generally equivalent to the originaltree pattern. Instead, the
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simplified tree pattern matches a superset of the document trees that match the origi-
nal tree pattern. Since simplified tree patterns are only used to identify fragments that
can be pruned, but not for the subsequent query evaluation onthose fragments, this
loss of expressiveness does not pose a problem. Nevertheless, it is important that the
transformation retains as much of the information present in the original pattern as
possible so that this information can be exploited for pruning.

The transformation of a tree pattern into a simplified tree pattern is based on the
following principles. A formal algorithm is given in [20].
– Using schema information, descendant steps are unrolled into equivalent paths

comprised entirely of child steps. If there is more than one path, artificial nodes
representing a choice (denoted as⊕) are inserted and the branch below the de-
scendant step becomes reachable via more than one path, thusturning the tree
pattern into a directed, acyclic graph (DAG).

– Wildcard node tests are converted to non-wildcard node tests wherever this is un-
ambiguously possible. Otherwise, the corresponding pattern nodes are removed
along with their descendants.

– Pattern nodes matching nodes from the collection for which the schema allows
multiple occurrences in the same position are removed alongwith the branches
below them.

5.1.2 Unrolling descendant steps

The unrolling of descendant steps can be succinctly implemented as a manipulation
of the directed graph representation of the schema. To unroll a descendant step from
a pattern node labeleda to a pattern node labeledb, we consider the subgraph of the
schema graph that consists of all nodes that are reachable froma and from whichb is
reachable. This yields a graph that contains all the intermediate node types that may
occur on a downward path froma to b.

If there exists a cycle in this schema subgraph, we discard the descendant step
and all the pattern nodes that occur below it. This is necessary because the presence
of a cycle implies that a matching node may occur at differentlevels in the document
tree. This creates ambiguity, making it impossible to take advantage of the value
constraints associated with such a node. Assume, for example, that we want to unroll
the stepbook//reference. We can observe that there is a cycle involving the
node typeschapter andreference. This corresponds to the fact that the path
can be satisfied either by a reference in a chapter of the book where we start out, or
by a reference in a chapter referenced by this chapter, and soon.

If the subgraph is acyclic, we introduce a new pattern node for each of the inter-
mediate schema nodes such that the node test of the pattern node matches the name
of the corresponding schema node. In cases where a schema node has more than one
child, an intermediate choice node is inserted (denoted by⊕), signifying that the sub-
sequent branch of the pattern can be satisfied by a match for any of the child nodes.

After these intermediate nodes have been inserted, the pattern has been trans-
formed from a tree into a DAG. We can reconstruct a tree representation by dupli-
cating nodes that are reachable through more than one path. In general, however, this
is not necessary since we can directly traverse the more compact DAG, which yields
the same result as traversing the equivalent tree.
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author

⊕

name

/

first

/

.=’William’

last

/

.=’Shakespeare’

agent

/

name

/

first

/

.=’William’

last

/

.=’Shakespeare’

pubs

/

book

/

Fig. 11 QTPq′ after unrolling descendant steps

Figure 11 showsq′ after unrolling descendant steps. Note that while the step
author//book can simply be unrolled into a sequence of child steps, unrolling
author//name requires the insertion of a choice node and the duplication of the
branch below it. This is because the schema contains two paths from author to
name, as is shown in Figure 4.

5.1.3 Removing wildcard nodes

We convert wildcard nodes whenever they unambiguously refer to a specific node
type. For example, by relying on the schema shown in Figure 4,we can determine
that the stepagent/* can be translated to the stepagent/name. It is also possible
to convert wildcard nodes that can refer to more than one nodetype by introducing
choice nodes into the pattern in a procedure that is largely analogous to the way
descendant steps are unrolled.

5.1.4 Removing pattern nodes that match nodes with multipleoccurrences

In general, a meaningful conversion of pattern nodes corresponding to nodes with
multiple occurrences in the same context is not possible andwe need to eliminate
these nodes from the pattern. For queryq′, we need to remove thebook node since
the schema indicates that apubs node may have multiple children of typebook.
The resulting simplified pattern is shown in Figure 12.

5.1.5 Traversal and pruning

After transforming both QTP and FTP into simplified tree patterns, we traverse both
patterns simultaneously. Only pattern nodes occurring in both patterns are visited.
For each pair of corresponding pattern nodes, we check whether the value constraints
in one pattern contradict those in the other pattern. Since in simplified tree patterns
each pattern node corresponds to a unique node from the collection within the context

author

⊕

name

/

first

/

.=’William’

last

/

.=’Shakespeare’

agent

/

name

/

first

/

.=’William’

last

/

.=’Shakespeare’

pubs

/

Fig. 12 QTPq′ after simplification
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⊕
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/
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last

/

.=’Shakespeare’
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name

/

first

/

.=’William’

last

/

.=’Shakespeare’

pubs

/

(a) QTPq′

author

name

/

last

/

startswith(’A’)

(b) FTP

Fig. 13 Simplified QTP and FTP that are not contradictory

author

name

/

first

/

.=’William’

last

/

.=’Shakespeare’

pubs

/

(a) QTPq′′

author

name

/

last

/

startswith(’A’)

(b) FTPfp′

Fig. 14 Simplified QTP and FTP that are contradictory

of a single document tree, a contradiction between patternsallows us to immediately
eliminate the fragment corresponding to the FTP from further consideration.

Special care has to be taken when a choice node is encountered. In this case, a
contradiction exists only if we can find contradictory constraints regardless of which
branch of the choice we follow. If there is at least one choicewithout a contradiction,
which may be a choice that leads to a branch that is not presentin the other pattern,
it is not possible to conclude that the fragment can be eliminated.

In the example shown in Figure 13, the traversal proceeds as follows. First, the
author nodes in QTP and FTP are visited. Since there is no value constraint asso-
ciated with this node in either pattern, there is no conflict,therefore we move on to
the children of theauthor nodes. Thepubs node is only present in the QTP and
is therefore not visited. As the other child of theauthor node, the QTP contains
a choice node. We now have to check both branches for conflict.The left branch
leads to thename node, for which there is an equivalent node in the FTP. In both
patterns thename node has a child with node testlast. When inspecting the value
constraints associated with thelast nodes, the algorithm detects a contradiction be-
cause the content of the corresponding document node cannotbe equal to the string
‘Shakespeare’ and at the same time start with the letter ‘A’.Therefore, we know that
there is a contradiction for the left branch of the choice node. In order for there to be a
global contradiction, however, the patterns have to be contradictory for both branches
of the choice node. Therefore, the algorithm still has to inspect the right branch, for
which it encounters a node with the node testagent. For this node, there is no
equivalent in the FTP and therefore no contradiction. Sincethe algorithm only found
a contradiction for one branch of the choice node, there is noglobal contradiction and
the fragment corresponding to the FTPfp′ cannot be pruned for queryq′.

For the example in Figure 14, on the other hand, the traversalalgorithm does de-
tect a contradiction. After inspecting theauthor andname nodes in both patterns,
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the algorithm reaches thelast nodes and their contradicting value constraints. This
time, thelast node does not occur as the descendant of a choice node so this con-
tradiction is sufficient to prune the fragment corresponding to the FTPfp′.
5.1.6 Abstract FTPs

Since horizontal fragmentation is defined as a partitioningof the data collection, FTPs
need to be disjoint and cover the entire collection. Becauseof this, we expect that in
many instances the FTPs will only differ in their value constraints but not in their
structure. It is therefore possible to simplify the traversal process by traversing the
QTP together with a single abstract FTP rather than with eachFTP in the fragment-
ation. In this abstract FTP, value constraints are replacedwith variables. Traversal
of QTP and abstract FTP results in an expression that describes the conditions un-
der which there is a contradiction between the QTP and an FTP.Figure 15(b) shows
an abstract FTP, in which a value constraint has been replaced with the variablex.
Traversing this abstract FTP with the QTP in Figure 15(a) shows that there is a con-
tradiction if¬(.=’Shakespeare’∧ x) holds.

author

name

/

first

/

.=’William’

last

/

.=’Shakespeare’

pubs

/

(a) QTPq′′

author

name

/

last

/

x

(b) abstract
FTP

Fig. 15 Simplified QTP and abstract FTP

We can now instantiatex with the corresponding value constraint from each of
the original simplified FTPs, i.e., with the expressions

startswith(’A’), . . . , startswith(’S’), . . . , startswith(’Z’)
Solving this formula yields a contradiction for all of thesecases exceptx =

startswith(’S’). A similar technique can be applied to QTPsif we assume that the
structure of a query is known at compile time whereas the constants used in value
constraints are known only at run time.
5.1.7 Analysis

While it may seem that the transformation and traversal of QTP and FTPs could
pose a significant overhead, there are a number of considerations that reduce this
impact. The transformation of the FTPs only has to be performed once when the
fragmentation is set up. Therefore, it does not pose a run-time overhead during query
execution.

During the transformation of the QTP, child steps are eithercopied from the QTP
to the simplified QTP or omitted. Both the size of the simplified QTP and the time
consumed by the transformation are therefore linear in|EQTP

child|, which is the number
of child steps in the QTP. Unrolling each descendant step, inthe worst case, intro-
duces one choice node and one non-choice pattern node for each σ in Σ. Therefore,
the size of the simplified QTP is linear in|EQTP

desc| |Σ|. To analyze the time complex-
ity, we also have to take into account the time consumed by computing the reachable
schema subgraph and by detecting cycles in the resulting graph. We can compute the
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subgraph consisting of nodes that are reachable from nodea and from whichb is
reachable by first marking all nodes reachable froma, then marking all nodes from
whichb is reachable and finally choosing all nodes that were marked both times. As-
suming a suitable representation of the graph, this can be done inO(|Σ|+ |Ψ |) time.
Using Tarjan’s algorithm [21], we can detect cycles inO(|Σ|+ |Ψ |) time. Therefore,
the transformation of a QTP takesO(|EQTP

child|+ |EQTP
desc| (|Σ|+ |Ψ |)) time and yields

a result containingO(|EQTP
child| + |EQTP

desc| |Σ|) nodes. Since the result is also a di-
rected graph, in which nodes may be shared among multiple branches, the equivalent
tree pattern is of sizeO(|EQTP

desc| |Σ| |EQTP
child| + |EQTP

desc|
2 |Σ|2). This is important,

because the time consumed by the subsequent traversal step depends on the size of
the equivalent tree.

The time required to traverse the QTP and the FTPs is linear inthe size of the tree
representations of the simplified QTP and the FTPs. Because the traversal has to be
performed for each fragment, it is also linear in the number of fragments. This leads to
an overall time complexity ofO((|EQTP

desc| |Σ| |EQTP
child|+ |EQTP

desc|
2 |Σ|2) (|EFTP

desc| |Σ|
|EFTP

child|+ |EFTP
desc|

2 |Σ|2) |F |). Note that run-time of the pruning algorithm depends
solely on the size of the patterns, the number of fragments and the size of the schema.
It is independent of the size of the collection.

5.2 Pruning vertical fragments

The localization strategy for vertical fragmentation avoids accessing fragments whose
node types are not reached by the global QTP. It does not, however, address a scenario
where node types in a fragment are reached by the global QTP but no constraints are
placed on these node types. Consider, for example, the localQTPq3 shown in Figure
8(c), which is evaluated on fragmentfV

3
. Its sole purpose is to determine which proxy

nodes infV
1 lead to which root proxy nodes in fragmentfV

4 . Since the only way
from a root proxy node infV

3
to a proxy node in the same fragment is through a

book node, no further constraints are placed onfV
3

. We now propose a technique
that allows us to avoid accessing such intermediate fragments, and, thereby, prune
the local QTPs corresponding to these fragments from a distributed query plan.

We achieve this by storing information that allows us to identify all ancestor proxy
nodes for any given root proxy node. Using this information,we can then determine
for any root proxy node infV

4
which proxy node infV

1
is its ancestor. This, in turn,

allows us to answer the query without accessingfV
3

or evaluating the local QTPq3.
The benefits of this are twofold: it reduces load on the intermediate fragments (since
they are not accessed) and it avoids the cost of computing intermediate results and
joining them together.

While it would be possible to store the ancestor-descendantjoin information in
a centralized (or replicated) index structure, this could severely limit the scalabil-
ity of distributed query processing. In addition, it would make update management
more difficult. Therefore, we store the join information by numbering proxy nodes
according to a scheme based on the Dewey decimal system2 [22].

2 We have also experimented with other numbering schemes, such as one where each proxy pair is
identified by its pre-order and post-order position in the collection. Our techniques are applicable to these
alternate representations as well.
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1RP 3→4
∗

.id.startswith(P 1→3
∗

.id)

1P 1→2
∗

.id=RP 1→2
∗

.id

p1 p2

p4

Fig. 16 Skipping vertical plan for queryq

To define this numbering scheme (referred to asskipping IDs), we need to distin-
guish between the following two cases:(i) If a document subtree does not have a root
proxy node as its root (i.e., if the subtree contains the rootelement of a document tree
in the collection, which can only occur in the root fragment), then the proxy nodes in
this subtree (and, of course, the root proxy nodes in other fragments that correspond
to these proxy nodes) receive simple numeric IDs. In the collection shown in Figure
3, this can be seen in all subtrees in fragmentfV

1 . The proxy nodes in this fragment
therefore receive numeric IDs, which means that all(R)P 1→2

∗
and(R)P 1→3

∗
are al-

ready numbered in accordance with our numbering scheme.(ii) If a document subtree
is rooted at a root proxy node then the ID of each of its proxy nodes is prefixed by
the ID of the root proxy node of the subtree, followed by a numeric identifier that is
unique within this subtree. In Figure 3, fragmentsfV

2 , fV
3 andfV

4 consist of subtrees
that are rooted at a root proxy. However, only fragmentfV

3
contains proxy nodes.

Therefore, onlyP 3→4

18
, P 3→4

19
andP 3→4

20
have to be renumbered.P 3→4

18
is part of a

subtree that is rooted at the root proxy nodeRP 1→3
12 . We would therefore have to

renumber it toP 3→4

12.1 . Similarly,P 3→4

19
would be renumbered toP 3→4

14.1 andP 3→4

20
to

P 3→4

16.1 .
If all proxy pairs are numbered according to this scheme, a root proxy node is the

descendant of a proxy node precisely when the ID of the proxy node is a prefix of
the ID of the root proxy node. When evaluating query patterns, we can exploit this
information by removing local QTPs from the distributed query plan if they contain
no value or structural constraints, and no extraction pointnodes other than those
corresponding to proxies. These local QTPs are only needed to determine whether a
root proxy node in some other fragment is a descendant of a proxy node in a third
fragment, which we can now infer from the skipping IDs. Usingthis technique, we
can rewrite the query plan from Figure 9 to the simpler plan shown in Figure 16,
which avoids accessing fragmentfV

3 .
It is important to note that our numbering scheme does not complicate update

management. Subtrees can be inserted or removed from a document collection with-
out having to modify other parts of the collection and without having to maintain a
centralized index.

5.2.1 Structural constraints in skipped fragments

While skipping IDs allow us to skip fragments on which no constraints are placed,
sometimes structural constraints make it necessary to access intermediate fragments,
even if they are not needed for evaluating value constraints. To illustrate this, consider
the modified fragmentation schema shown in Figure 17, which adds the additional
type of publicationarticle. If we evaluate the local QTPs shown in Figure 8 on
this modified schema, we can no longer eliminate the local QTPq3 because skipping
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author

agent

OPT

(a) fV ′

1

name

first

ONCE

#text

last

ONCE

#text

(b) fV ′

2

pubs

book

MULT

article

MULT

(c) fV ′

3

chapter

reference

OPT ONCE

(d) fV ′

4

ONCE

ONCE

ONCE

MULT

MULT

Fig. 17 A modified fragmentation schema

the corresponding fragment would mean that we could no longer distinguish between
the subtrees in fragmentfV ′

4 that are part of abook and those that are part of an
article.

We propose a technique that allows us to skip such fragments.In addition to stor-
ing skipping IDs, we use the proxy IDs to keep track of some structural information
for cases where there is ambiguity. We define structural ambiguity as follows:

Definition 10 Let fb be a child fragment of the non-root fragmentfa. Thenfa is
structurally ambiguouswith respect tofb if there is more than one path in the schema
of fa from a root proxy node infa to a proxy node infa corresponding tofb.

If fa is structurally ambiguous with respect tofb, then we add label path infor-
mation to the proxy ID of each proxy node infa that corresponds tofb. This infor-
mation consists of the labels encountered on a path from the root proxy of the subtree
in which the proxy occurs to the proxy itself. Since the labelpath information is part
of the locally unique identifier specified by our numbering scheme, it is also part of
the prefix of the IDs of proxy nodes that are descendants of theproxy node for which
it was inserted.

In the case of the fragmentation schema shown in Figure 17, there is one instance
of structural ambiguity: fragmentfV ′

3
is structurally ambiguous with respect tofV ′

4
.

This is because there are two label paths from a root proxy infV ′

3 that could lead to a
proxy node that corresponds tofV ′

4
: pubs/book andpubs/article. We there-

fore store the label path as part of the ID of each proxy node infV ′

3
that corresponds

to fV ′

4 . Figure 18 shows a sample instance of fragmentfV ′

3 with label path IDs.

RP 3→4
12

pubs

book

RP 3→4
12.1[pubs/book]

RP 3→4
14

pubs

article

RP 3→4
14.1[pubs/article]

Fig. 18 FragmentfV
3

with label path IDs
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1RP 3→4
∗

.id.startswith(P 1→3
∗

.id)

1P 1→2
∗

.id=RP 1→2
∗

.id

p1 p2

σRP3→4
∗

.label=pubs/book

p4
Fig. 19 Label path plan for queryq

Label paths as defined here can be viewed as a materializationof structural se-
lections on linear paths through a particular fragment. Thus, they contain sufficient
information to evaluate structural constraints in a linearpath, as seen in the QTPq3.
In combination with skipping IDs, label paths therefore allow us to evaluate the query
using the plan shown in Figure 19, which avoids accessingfV ′

3
.

5.2.2 Analysis

Both skipping IDs and label paths are inserted at fragmentation time and whenever
data are added to the collection. Since they are not replicated, local insertions and
deletions can be handled without having to modify other fragments.

The vertical pruning techniques proposed here operate solely on the QTP and the
fragmented schema graph. They are independent of the size ofthe data and of the con-
stants used in value constraints. This allows us to perform pruning at query compile
time, thereby minimizing the run-time overhead introducedby our technique.

Label paths are useful not only for localization but also forpruning irrelevant
subtrees within fragments [9]. Studying further uses of label paths in a distributed
context is the subject of ongoing research.

6 Workload-aware distribution design

To obtain the maximum benefit from our distribution techniques, it is important to
choose a fragmentation layout that is suitable for the workload at hand. There are two
main considerations when deciding between horizontal and vertical fragmentation (or
when designing a hybrid fragmentation consisting of both):

– Since horizontal fragmentation defines fragments based on the textual content of
XML nodes, it is particularly suitable for a query workload that contains a large
number of constraints on these values. Furthermore, for pruning to be effective,
the nodes on which such constraints are placed in the workload should be used
when defining fragmentation predicates.

– Vertical fragmentation, on the other hand, is based on a fragmentation of the
schema. Therefore, it is especially useful when queries consist mainly of struc-
tural constraints (i.e., path expressions) because this scenario maximizes pruning
opportunity and allows us to limit query processing to few, small fragments.

In the remainder of this section, we propose a set of techniques for determining
a horizontal or vertical fragmentation that is suitable fora given workload. While a
complete solution to this problem is the subject of ongoing research, these techniques
serve as valuable building blocks.

For both the horizontal and the vertical scenario, we will make the simplifying
assumption that each site in the distributed system holds exactly one fragment. In
the case of horizontal fragmentation, it is important that the FTPs are defined such
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Q1 /author[name/last=’Shakespeare’ or name/last=’John’]
/pubs/book

Q2 /author[name/first=’William’]/pubs/book

Table 1 Sample workload

Path Constraint

/author/name/last .==’Shakespeare’ ∨ .==’John’
/author/name/first .==’William’

Table 2 Constraints
/author/name/last==’Shakespeare’
/author/name/last==’John’
/author/name/first==’William’

Table 3 Simple Predicates

/author/name/last==’Shakespeare’∧ /author/name/first==’William’
/author/name/last==’Shakespeare’∧ /author/name/first!=’William’
/author/name/last==’John’∧ /author/name/first==’William’
/author/name/last==’John’∧ /author/name/first!=’William’
/author/name/last!=’Shakespeare’∧ /author/name/last!=’John’∧

/author/name/first==’William’
/author/name/last!=’Shakespeare’∧ /author/name/last!=’John’∧

/author/name/first!=’William’

Table 4 Minterm Predicates

that for a given QTP in the workload contradictions can be found that allow us to
exclude some of the fragments. For vertical fragmentation,a suitable fragmentation
schema should aim to maximize parallelism between the (non-skippable) sub-queries
of a given query while avoiding excessively large intermediate results. In either case,
what constitutes a good fragmentation schema cannot be defined independently of the
query evaluation strategy used. While in practice fragmentation is performed before
query evaluation, we have chosen to present our fragmentation algorithms after our
query evaluation strategies in order to better illustrate this dependency.

6.1 Horizontal distribution design

Horizontal fragmentation allows us to directly apply a fragmentation algorithm that
was originally developed for relational systems. This relational fragmentation algo-
rithm is based on minterm predicates, which are conjunctions of simple predicates
on individual attributes. Minterm predicates are obtainedby extracting the predicates
found in the query workload, decomposing them into simple predicates consisting
of a single (in)equality and finally combining these simple predicates such that all
possible combinations of simple predicates are covered [1].

To apply this technique, we need to transform the predicatesfound in tree patterns
into simple predicates from which minterm predicates can beconstructed. We do this
by first unrolling descendant steps into child steps (using schema information). Then,
each value constraint in the pattern can be transformed intoa set of simple predicates
whose left-hand side is the path from the root of the unrolledtree pattern to the node
with which the value constraint is associated.

Performing this transformation for the workload shown in Table 1 yields the con-
straints shown in Table 2. We then extract the simple predicates from these con-
straints, i.e. predicates that do not contain conjuction ordisjunction. The result of
this is shown in Table 3.
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From these simple predicates, we can then construct mintermpredicates using the
same techniques applied to the relational scenario. The minterm predicates derived
from the simple predicates in Table 3 are shown in Table 4. These minterm predicates
can then be transformed into FTPs, resulting in a horizontalfragmentation of the
collection.

6.2 Vertical distribution design

To evaluate a query over a vertically fragmented collection, we evaluate each sub-
query on its corresponding fragment and then join the intermediate results to obtain
the overall query result. Depending on how the collection isfragmented, the inter-
mediate results may be large and the sub-queries may be expensive to evaluate. In
extreme cases, this can lead to a scenario where it is more expensive to evaluate a
query on a vertically distributed collection than it is to evaluate the same query in a
centralized fashion. To avoid this situation and to take full advantage of the potential
of vertical distribution, we have to ensure that the vertical fragmentation schema is
well suited to the query workload.

In the following, we propose a vertical fragmentation algorithm that chooses a
suitable vertical fragmentation schema for a given query workload. Our algorithm is
based on a cost model, which estimates the response time of a query when evaluated
over a vertically fragmented collection.

6.2.1 Cost model

We define the following cost metrics for each local planpj and its corresponding
fragmentf(pj):

– cost(pj), the response time of evaluatingpj onf(pj),
– scancost(pj), the time it takes to scan the root proxy nodes inf(pj) that are

accessed bypj ,
– card(pj), the number of tuples returned bypj when evaluated onf(pj),
– subt(pj), the number of document subtrees inf(pj) that are accessed bypj.

While it is possible to obtain these metrics experimentally, this can be expensive
and in practice it may be preferable to estimate these valuesusing one of the various
cost estimation techniques that have been developed for thecentralized evaluation
of XML queries (e.g., [23,24]). Our distributed cost model functions regardless of
which local cost estimation technique is used. For notational convenience, we do not
distinguish between estimated cost metrics and their precise counterparts.

Since the local plans can be evaluated independently of eachother in parallel, we
can model the cost of a queryq as cost(q) = max{cost(pj) | pj ∈ P} whereP is the
set of local plans (after pruning) corresponding toq for a given vertical fragmentation
schema.

6.2.2 Heuristic fragmentation algorithm

The naı̈ve strategy for determining the best fragmentationschema for a given work-
load would be to exhaustively enumerate all possible vertical fragmentation schemas,
compute the total cost for each of them and then choose the schema with the lowest
cost. While this is guaranteed to yield the optimal result, the large number of possible
vertical fragmentation schemas generally makes this strategy infeasible (there areBn
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alternatives, whereBn is thenth Bell number andn is the number of node types in
the schema).

To obtain a feasible fragmentation algorithm, we instead propose a heuristic strat-
egy that starts out with an initial fragmentation schema in which each node type is
placed in its own fragment and then greedily merges fragments until we can no longer
reduce the estimated workload cost. While this strategy is not guaranteed to find the
global optimum, it produces a valid vertical fragmentationschema and, as shown by
our experiments, leads to good performance in practice.

In the following, we explain how the greedy strategy proceeds for a single query.
A formal algorithm is given in [20]. After determining the local cost metrics for each
local plan based on the initial fragmentation, we identify the plan with the highest
local costpmax (ignoring local plans that can be pruned) and its corresponding frag-
mentf(pmax). Since the overall cost of the query is determined by the costof the
most expensive local plan, we can focus on decreasing the cost of pmax.

To do this, we attempt to mergef(pmax) with one of its ancestor fragments. We
start withf(pmax)’s parent fragments. For each parent fragmentfi, we mergef(pmax)
andfi, and then determine the cost of each non-prunable local plancorresponding
to fi ∪ f(pmax). If the cost of all of these plans is lower than cost(pj), we remove
fi and f(pmax) from the fragmentation schema and insertfi ∪ f(pmax). We then
repeat the procedure by determining the most expensive local plan for the modified
fragmentation schema and attempting to reduce its cost.

If none of the parent fragments off(pmax) allow us to reduce the maximum lo-
cal plan cost, we tryf(pmax)’s “grand-parent” fragments, “great grand-parent” frag-
ments, and so forth. When merging with an ancestor fragmentfi that is not a direct
parent off(pmax), we merge all the fragments on the path fromf(pmax) to fi. If
no ancestor fragment off(pmax) allows us to reduce the maximum local plan cost,
the algorithm terminates without making further modifications to the fragmentation
schema.

6.2.3 Estimating local plan costs after merging

Our fragmentation algorithm relies on frequent tentative merges between fragments.
While it is possible to re-estimate the cost of all affected local plans after each such
merge, this can be expensive. To address this, we propose a method for estimating
the cost of a local planpij corresponding to the fragmentf(pi)∪f(pj) based on cost
estimates forpi (corresponding tof(pi)) andpj (corresponding tof(pi)’s parent
fragmentf(pj)):

cost(pij) = cost(pj) +
card(pj)
subt(pi)

(

cost(pi)− scancost(pi)
)

The rationale behind this is as follows: cost(pij) includes all of the cost of the
local plan corresponding to the parent fragment, cost(pj). The cost of the child frag-
ment is scaled by the selectivity of the parent fragment, represented as the fraction of
the subtrees inf(pi) for which corresponding proxy nodes are returned bypj. This
is because pipelined execution allows us to restrict local evaluation to these subtrees
[9]. We also subtract the portion of the cost that can be attributed to scanning the root
proxy nodes inf(pi). Our experiments show that using this approximation does not
prevent us from identifying good vertical fragmentation schemas.
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6.2.4 Handling multiple-query workloads

So far, for simplicity, we have focused on identifying a fragmentation schema for
a single query. In practice, however, workloads generally consist of more than one
query. It is possible to adapt our algorithm by modifying thetermination condition:
instead of terminating when the cost of the most expensive local plan cannot be re-
duced further, we check the most expensive local plans of each query in descending
order of cost and only terminate once we cannot further reduce the cost of any of
those.

7 Performance evaluation

We have enhanced the native XML database system NATIX [18] with distributed ca-
pabilities and implemented our techniques within this system. This allows us to val-
idate our approach and to perform realistic experiments. Our experiments are struc-
tured as follows:

– The first set of experiments evaluate how our techniques improve the performance
of distributed query evaluation in a realistic scenario. Todo this, we conduct a set
of experiments based on the XPathMark benchmark [25] that combine both the
horizontal and the vertical techniques presented in this paper and verify that they
lead to a significant improvement in performance when compared to centralized
techniques (Section 7.1).

– In the second set of experiments, we compare our approach with existing tech-
niques (Section 7.2) by implementing the core phases of these techniques within
our NATIX testbed.

– Finally, to analyze how our techniques improve performance, a third set of exper-
iments perform a number of stress tests that explore the behaviour of horizontal
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A1 /site/closed auctions/closed auction/annotation/description/text/keyword
A2 //closed auction//keyword
A3 /site/closed auctions/closed auction//keyword
A4 /site/closed auctions/closed auction[annotation/description/text/keyword]

/date
A5 /site/closed auctions/closed auction[descendant::keyword]/date
A6 /site/people/person[profile/gender and profile/age]/name
B7 //person[profile/@income]/name

H
or

iz
on

ta
ls

tr
es

s

Q1 /open auction[./interval/end[.= xs:date(’12/28/2001’)]]
[initial > 120]//item/name

Q2 /open auction[./interval/end
[.>= xs:date(’01/01/1998’)][.< xs:date(’12/28/1998’)]]
[initial > 120]//item/name

Q3 /open auction[./interval/end
[.>= xs:date(’01/01/1998’)][.< xs:date(’12/28/1999’)]]
[initial > 120]//item/name

Q4 /open auction[./interval/end
[.>= xs:date(’01/01/1998’)][.< xs:date(’12/28/2000’)]]
[initial > 120]//item/name

Q5 /open auction[./interval/end
[.>= xs:date(’01/01/1998’)][.< xs:date(’12/28/2001’)]]
[initial > 120]//item/name

V
er

tic
al

st
re

ss Q6 /open auction[initial > 200 ]/interval/end
Q7 /open auction//person//category[id=’category10’]
Q8 /open auction/bidder//person//category[id=’category10’]
Q9 /open auction/bidder//person[creditcard]//category[id=’category10’]
Q10 /open auction/bidder//person[creditcard]/profile[education]

//category[id=’category10’]

Table 5 Queries used in experiments
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Fig. 20 Response time, vertical and hybrid fragmentation

(Section 7.3) and vertical fragmentation (Section 7.4) separately. For these exper-
iments, we use a set of carefully selected queries and fragmentation layouts that
exercise the different scenarios our localization and pruning techniques may en-
counter, ranging from a case in which the fragmentation is highly advantageous
for answering the query at hand to one where it is adversarial.

All of our experiments rely on collections of on-line auction data generated by
the XMark benchmark [26], which is one of the standard benchmarks for evaluating
XML query performance. The experiments are conducted on virtualized Linux ma-
chines within Amazon’s Elastic Compute Cloud, each providing 1.7 GB of memory
and a single CPU core. We use a separate instance for each fragment, with an ad-
ditional instance for dispatching queries. All instances run in the same availability
zone, ensuring low-latency, high-throughput communication.

7.1 XPathMark benchmark

To evaluate the performance of our techniques in a realisticscenario, we use a subset
of the queries in the XPathMark benchmark (those that can be expressed in our query
model, i.e., A1-A6 and B7, as shown in Table 5). We evaluate these queries on an
XMark collection consisting of documents that are approximately 40 MB each. To
evaluate the scalability of our techniques, we use 3 different collection sizes: 120
MB, 1.2 GB and 12 GB. We first vertically fragment this collection into 3 fragments
using our vertical fragmentation algorithm. Then, we use a manually tuned hybrid
fragmentation consisting of 5 fragments.

In Figure 20, we show the response time results obtained by centralized query ex-
ecution over an un-fragmented collection (central), distributed execution with prun-
ing over the vertically fragmented collection (vertical), and distributed execution with
pruning over the collection with hybrid fragmentation (hybrid). We can see that for
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all queries, distributed query execution over the vertically fragmented collection out-
performs centralized execution by a significant margin. Distributed query execution
over the hybrid fragmentation yields even better results. The performance advantage
of the hybrid technique over centralized execution increases with the collection size,
illustrating the superior scalability of this technique. For the largest collection size,
hybrid fragmentation is in some cases more than 30 times faster than centralized ex-
ecution. Together, these results confirm that our techniques for localization and prun-
ing significantly improve the performance of distributed query execution in realistic
scenarios.

7.2 Comparison with other techniques

While much of the existing work either focuses primarily on data integration [2–4] or
relies heavily on a replicated index structure [5], there are two techniques that follow
a performance motivation that is similar to ours: Cong et al.’s technique for distributed
query evaluation [6] and Suciu’s query evaluation technique for semistructured data
[8]. While both papers use a definition of performance that issomewhat different
from ours (focusing primarily on communication cost ratherthan end-to-end response
time), they are nevertheless the best candidates for a direct comparison.

Cong et al. present two multi-phase algorithms for distributed query evaluation,
named PaX3 and PaX2. Both algorithms feature a phase during which all fragments
are traversed in their entirety and in parallel (phase 2 in PaX3 and phase 1 in PaX2).
Based on the description in their paper, we suspected that this phase would dominate
the overall response time of their technique. Therefore, for our comparison, we have
chosen to implement this traversal within NATIX. In Figure 21, we report the re-
sponse time (PaX) of executing this traversal on those hybrid fragments of the 12 GB
collection that remain after applying their simple pruningstrategy3. While this does
not capture the total response time cost of evaluating PaX3 or PaX2, the traversal is a
necessary step for either algorithm that cannot be avoided or parallelized with other
phases. Therefore, the time consumed by this parallel traversal can serve as a lower
bound on the overall response time of PaX3 and PaX2.

For Suciu’s distributed evaluation algorithm, we use a similar insight: while the
paper does not give any experimental results, we suspected that the response time cost
of applying this technique would be dominated by the generation of partial results
using an automaton that accepts the query. Unlike our work, this technique does not
take advantage of a fragmentation specification. Therefore, the starting state of the
automaton at a given root proxy node cannot be determined andall states have to be
examined, increasing the processing cost of this phase.

We have implemented the partial result generation phase of Suciu’s algorithm
within NATIX and report the response time asdistevalin Figure 21. As in the case
of Cong et al.’s work, this phase is not parallelized with other phases of the algorithm
and it cannot be avoided, which allows us to use it to obtain a lower bound on the per-
formance of Suciu’s algorithm. The query model used in Suciu’s paper is somewhat
different from the XPath-based models seen in more recent work and only appears

3 For both Cong et al.’s and Suciu’s technique, the hybrid fragmentation turned out to be more advanta-
geous, which is why we have omitted results for running thesetechniques on the vertical fragmentation.
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Fig. 21 Response time, comparison to other techniques

to support linear path queries. Therefore, we only report results for the linear queries
A1-A3 for this technique.

Comparing the lower bounds on the cost of the existing techniques with the total
cost of our techniques allows us to make a number of observations:

– Most importantly, our best technique (hybrid) achieves the best (lowest) response
time for all queries and collection sizes and is always significantly better than
both of the existing techniques.

– The result of comparing the existing techniques to our vertical technique varies.
We suspect that the cases where our vertical technique does worse are caused by
the larger fragment sizes of the 3-fragment vertical fragmentation compared to
the 5-fragment hybrid fragmentation.

Overall, these results are encouraging because they allow us to show that our
techniques successfully improve the scalability of distributed query evaluation. While
both Cong’s and Suciu’s techniques offer impressive guarantees with regard to com-
munication cost, we have shown that when optimizing for end-to-end performance,
our technique, which is specifically designed for this purpose, yields significantly
better results.

7.3 Horizontal fragmentation stress test

We now take a closer look at our horizontal techniques. The goal of this evaluation
is twofold: First, we want to verify that horizontal distribution allows us to improve
both query response time and throughput. Then, we want to show that our pruning
techniques allow us to further improve throughput beyond the level achieved by dis-
tributed execution alone without any adverse effects on response time.

Since our definition of horizontal fragmentation assumes a multiple-document
collection, we conduct these experiments on an XMark collection that has been de-
composed into multiple small documents, placing eachopen auction element
into its own document along with its descendants and document subtrees referenced
via ID/IDREF. This results in documents of regular structure with an average size of
approximately 30 KB. We scale this collection to 350 MB, 3.5 GB, and 35 GB4.

7.3.1 Balanced fragmentation

Eachopen auction element generated by XMark contains an auction end date and
these dates are uniformly distributed across the years 1998-2001. We can therefore

4 Since the decomposition of the collection increases the size by a factor of about three, the collections
used in this experiment correspond to the same data as the collections used in the previous experiments.
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obtain a balanced horizontal fragmentation schema (i.e., afragmentation schema in
which all fragments are approximately the same size) by dividing this date range into
non-overlapping periods of equal length, with each such period corresponding to one
horizontal fragment. For this experiment, we use fragmentation schemas consisting
of 1, 2, 4, 8, 16, 32, 64 and 99 fragments5.

On this distributed collection, we evaluate 5 classes of queries, which we have
chosen to illustrate the behaviour of our techniques in different scenarios. Q1 consists
of queries that contain a point predicate on the auction end date, i.e., each query re-
turns auctions that end on exactly one date within the 4 year period. Q2-Q5 represent
range queries that cover 25%, 50%, 75%, and 100% of the date range, respectively.
These queries correspond to different scenarios for our horizontal pruning algorithm:
whereas Q1 can be answered using a single fragment, Q2-Q5 need to access an in-
creasingly large fraction of all fragments. Thus, Q1 is a good fit for this fragmentation
and Q5 is an extremely poor fit. It is important to note that each time we run a query in
one of these classes, we randomly choose a date/date range within the 4-year range.
Table 5 shows an example of a query in each class.

We first measure the response time of evaluating the queries on the horizontally
distributed collection. As in all measurements in this paper, the results reported in
Figure 22(a) include the cost of constructing sub-query results at the individual sites,
shipping them to the dispatcher and assembling them to the overall query result6.
In the case of the 35 GB collection, some data points are missing for centralized
execution and the fragmentation schemas with a lower numberof fragments. In these
cases, the query did not finish within 2 hours.

When interpreting the results, we can see that horizontal distribution allows us
to reduce query response time when compared to centralized execution (i.e., the sce-
nario with a single fragment on a single machine). The more machines we add to
the system (by fragmenting the collection into more fragments), the faster response
time becomes. Similarly, adding more machines allows us to manage larger collec-
tions while maintaining the same level of response time. We can also observe that
pruning does not result in a major improvement of response time when compared
to distributed execution without pruning. This is expectedsince pruning is primarily
intended to improve throughput. It is important, however, to point out that pruning
has no negative impact on response time.

Next, we consider the impact of distribution and pruning on throughput. To mea-
sure query throughput, we use multiple dispatcher processes to keep the system
loaded with queries. In Figure 22(b), we report the maximum throughput rates we
were able to achieve for each class of queries. Even without pruning, distribution
significantly increases throughput and this increase in throughput is proportional to
the number of fragments. Enabling pruning further improvesthroughput by a signif-
icant margin. Naturally, the impact of pruning is most pronounced for the class of
point queries Q1, where a single date is selected and where our pruning algorithm
can therefore avoid accessing all but one of the fragments for each query. Pruning

5 We were limited to 100 EC2 instances running simultaneously. Since one instance is needed for the
dispatcher, this means that we can use at most 99 instances tostore fragments.

6 Note that we use a logarithmic scale on the x-axis.
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Fig. 22 Balanced horizontal fragmentation
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Fig. 23 Throughput, balanced and skewed horizontal fragmentation

also helps for the queries that involve a range of dates, particularly when this range
is small, though the effect is less pronounced. For Q4 and Q5,where a large portion
of the fragments or all fragments have to be inspected, pruning offers no advantage
over simple distribution but it also does not harm performance (apart from some in-
significant anomalies in the case of the 35 GB collection where throughput rates are
very low).

This illustrates the importance of a fragmentation schema that is well suited to the
workload: fragmenting on attributes on which single-valueselections are performed
leads to greater pruning opportunities than fragmenting onattributes that are used in
wide range predicates. Even in the latter case, however, distributed evaluation by far
outperforms centralized querying.

Our results also show that once a throughput of approximately 20 queries per sec-
ond is achieved, further increasing the number of machines does not lead to improved
performance. This is because, for simplicity, our experimental setup uses a single dis-
patcher, which becomes saturated at this point so that distributed query evaluation is
no longer the bottleneck. In practice, this problem can easily be avoided by dispatch-
ing queries from multiple sites.

7.3.2 Skewed fragmentation
While pruning performs well on a balanced fragmentation, inpractice it is not al-
ways possible to achieve this balance. We therefore measurethe effect of pruning
with a skewed fragmentation consisting of 8 fragments. Our skewed fragmentation
is defined as follows: The first fragment contains half of the entire collection (corre-
sponding to the first 2 years of the 4-year period), the next fragment contains half of
the remaining collection (i.e., 25% of the data), and so forth, with the last fragment
containing the remainder of the collection data.

Figure 23 shows the throughput rates achieved by centralized query execution
(which is vanishingly low in some of the cases shown), as wellas distributed query
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Fig. 24 Pruning efficacy

execution (with and without pruning) on a balanced fragmentation consisting of 2, 4
and 8 fragments and on the skewed fragmentation. We use queries Q1 and Q2, for
which pruning has been shown to be particularly effective. Even in the presence of
skew, distribution results in a significant boost in performance over centralized query-
ing in all cases. As with a balanced fragmentation schema, pruning further improves
throughput.

The throughput rates obtained on the skewed fragmentation tend to fall between
that of a balanced fragmentation with 2 fragments and 4 fragments. This can be ex-
plained by the fact that the largest fragment in the skewed fragmentation, which is the
same size as a fragment in the balanced fragmentation with 2 fragments, represents a
throughput bottleneck.

To further improve querying performance on a skewed distribution, it could be
beneficial to replicate the most heavily loaded fragments. We plan to examine repli-
cation as part of our future work.

7.3.3 Pruning efficacy

In addition to evaluating the performance impact of pruning, we are interested in
how effectively the pruning technique limits query execution to the fragments that
actually yield part of the result. To determine this, we measure the fraction of those
sites accessed by a pruned query plan that yield part of the query result. The results
(based on a balanced fragmentation consisting of 16 fragments) are shown in Figure
24. We omitted Q1 from this experiment, since it can be answered using a single
fragment. We vary the cut-off value for the initial bid of theauction, which affects
the selectivity of the queries, with a lower value yielding more query results. We
can see that pruning is more effective for the queries that select a large number of
results (corresponding to lower bid values). This is because a query that selects a
larger portion of the collection is more likely to find a matchwithin a given fragment.
The results reported here are derived from the 35 GB collection. With the smaller
collections, efficacy tends to be slightly lower, which can be attributed to the lower
numbers of results derived from these collections.

7.4 Vertical fragmentation stress test

The experimental evaluation of our vertical techniques focuses on response times.
In a vertically fragmented system, a single type of query always accesses the same
fragments resulting in a closed system in which throughput can only be improved by
reducing the response time. This makes a separate study of throughput unnecessary.
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Fig. 25 Response time, vertical fragmentation

We again use the multiple-document XMark collection described in the previ-
ous section, which we partition into six vertical fragments. This results in a skewed
fragmentation because different node types in the collection occur with different fre-
quencies. We scale the collection to 350 MB and 3.5 GB.

We evaluate queries Q6-Q10 shown in Table 5. Q6 only involvesa single frag-
ment. Previous work has shown that this is the ideal case for vertical fragmentation
[27]. The remaining queries, however, reach five of the six fragments in the col-
lection. Traversing such a large number of vertical fragments poses a challenge for
distributed query evaluation because the large number of joins required to assemble
the results from individual fragments can degrade performance. A carefully designed
fragmentation schema will therefore aim to avoid this scenario, although this is not
always possible. One of the goals of this experiment is to show that our distributed
execution and pruning techniques allow us to achieve good performance even in this
adversarial case. While Q7 to Q10 reach the same number of fragments, they differ
in the number of structural and value constraints they contain, which increases as we
go from Q7 to Q10.

Figure 25 shows, for each collection and query, the responsetime obtained by
centralized query execution, distributed execution without any pruning, distributed
execution with pruning based on skipping IDs and distributed execution with prun-
ing based on skipping IDs as well as label paths. We can observe that distributed
execution significantly outperforms centralized execution in all cases.

To closely analyze the impact of the various distributed techniques, it is useful
to consider the number of fragments that they access for eachquery, which is shown
in Table 6. For Q6, which can be answered by accessing a singlefragment, all dis-
tributed execution techniques yield approximately the same response time. For Q7,
naı̈ve distributed execution needs to access 5 fragments, whereas both pruning tech-
niques access only a single fragment. This explains why bothpruning techniques
yield comparable response times, which are approximately half of that of naı̈ve dis-
tributed execution. In the case of Q8, pruning with skippingIDs performs better than
naı̈ve distributed execution and pruning with label paths in turn performs better than
pruning with skipping IDs. Again, these results are reflected in the number of frag-
ments accessed by each of these techniques. For Q9 and Q10, finally, where even
with pruning a large number of fragments need to be accessed,response times for all
distributed techniques are approximately on par with each other.
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Fragments accessed
Query Dist Skip Label

Q6 1 1 1
Q7 5 1 1
Q8 5 2 1
Q9 5 3 2

Q10 5 4 3

Table 6 Number of fragments accessed, vertical fragmentation

8 Related work

There exist significant bodies of work on both querying XML data in a centralized
environment and distributed query evaluation in relational systems. Due to space con-
straints, we will restrict our discussion of related work toXML query evaluation in
distributed systems and to techniques that are directly related to our work.

8.1 Specifying XML fragmentation

Existing work has focused on two main approaches to fragmenting a collection of
XML data:ad-hoc fragmentationandstructure-based fragmentation.

8.1.1 Ad-hoc fragmentation

Ad-hoc fragmentation is a flexible fragmentation model thatdoes not rely on an ex-
plicit fragmentation specification. Instead, it allows us to fragment XML data by
arbitrarily cutting edges in XML documents.

One approach that follows the ad-hoc fragmentation model isActive XML, which
represents cross-fragment edges as calls to remote functions. When a remote function
call is activated, the data corresponding to the remote fragment is retrieved and is
then available for local query processing [4,28–30]. Active XML provides a flexible
model for describing how multiple sources of XML data can be integrated.

Based on this work, Abiteboul et al. present a technique for ensuring that an Ac-
tive XML document conforms to a specified type [2]. This is achieved by reasoning
about how the types of individual document fragments affectthe overall type of a
document, thereby combining Active XML with a more structure-based fragment-
ation approach.

Cong et al.’s work on partial query evaluation is also based on ad-hoc fragment-
ation although their single-document data model allows theauthors to infer certain
structural relationships between fragments, which can then be used for distributed
query optimization [6,7]. Therefore, this work can be considered a hybrid case that
has certain structure-based characteristics.

Deutsch and Tannen describe a technique for publishing an XML view over ex-
isting relational and XML data [3]. Their model uses XQuery expressions to map
between the published view and the (possibly redundant) data sources. While the au-
thors do not describe their work in a distributed context, they present a query rewriting
technique that could be used to answer queries in a data integration scenario. When
distributing to improve scalability, their technique seems less useful since the rewrit-
ing procedure is relatively complex and the complete freedom given by an XQuery-
based fragmentation model with overlapping fragments would further increase the
already large search space encountered when fragmenting for a given workload.

The representation of cross-fragment edges as pairs of proxy nodes is a technique
that has been used successfully to fragment XML document trees onto pages in the
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native XML database system NATIX, albeit at a much smaller level of granularity
than in the work presented here [18].

8.1.2 Structure-based fragmentation

Structure-based fragmentation is based on the concept of fragmenting a collection
based on some properties of the schema or the data itself. As in the relational context,
we can distinguish betweenhorizontal fragmentation, which defines fragments by
selectingsubsets of the collection, andvertical fragmentation, in which fragments are
defined byprojectingto different parts of the schema. In addition to these options, it
is possible to define ahybrid fragmentationby concatenating selection and projection
steps.

One of the first attempts to transfer the relational conceptsof horizontal and ver-
tical fragmentation to the realm of XML was made by Ma and Schewe [31,32]. How-
ever, their definition of vertical fragmentation is limitedto elements whose content
is a sequence of other elements. Under these constraints, itis straightforward to ex-
tend the relational definition of vertical fragmentation bytreating the containing ele-
ment type as a relation that contains attributes corresponding to the contained element
types. As in the relational case, we can then simply project to subsets of the contained
elements. The authors also assume a single-document collection, which means that
a horizontal fragmentation step always has to be preceeded by an implicit vertical
fragmentation step. In addition, their approach is based onmodifying the schema by
renaming elements and rearranging their nesting. Therefore, unlike later techniques,
it is not transparent and it requires queries to be formulated explicitly for a particular
fragmentation specification.

Bremer et al. present another mechanism for specifying a vertical fragmentation
of XML data [5]. They call such a specification a Repository Guide. In a Repository
Guide, a fragment is defined by a selection path expression identifying the root nodes
of the subtrees contained, as well as a set of exclusion pathsrepresenting nodes whose
descendants are excluded from the fragment. The set of fragments is required to be
both disjoint and complete. The authors argue that this approach can be expanded to
horizontal fragmentation by allowing branching and value constraints in the defining
path expressions. However, this would make it more difficultto enforce completeness
and disjointness.

Andrade et al. expand Bremer’s specification method by adding explicit support
for horizontal and hybrid fragmentation [27]. They define each horizontal fragment
by giving a selection predicate in the form of a Boolean path expression with value
constraints. This predicate is used to determine whether a given document is part
of the fragment. The predicates are required to cover all documents (completeness)
and be mutually exclusive (disjointness). The authors alsomake the observation that
by nesting horizontal and vertical fragmentation, both single-document and multiple-
document scenarios can be accommodated.

In addition to predicate-based horizontal fragmentation,Kido et al. introduce a
novel definition of vertical fragmentation that is based on partitioning the schema
graph, rather than on inclusion and exclusion paths [33]. This definition closely re-
sembles the way we define vertical fragmentation.
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While not directly related to fragmentation, Marian et al. propose a technique
that improves query performance by projecting away irrelevant portions of an XML
collection [34]. The goal of this technique is to reduce the size of the relevant portion
of the collection and thus be able to process the query in mainmemory.

In summary, we can observe that ad-hoc fragmentation offersgreat flexibility
in how a collection can be distributed, which makes it a good candidate for a data
integration scenario. This flexibility, however, comes at the cost of decreased oppor-
tunity for distributed query optimization. Structure-based fragmentation, on the other
hand, is less flexible but yields a well-defined specificationof the fragmentation lay-
out, which is a valuable asset during distributed query optimization and which makes
structure-based fragmentation a good candidate when fragmenting for performance
reasons.

8.2 Representing XML schema information

A concise graph representation of the schema of an XML collection has been used to
convert XML data to relational tuples [10]. As in our work, the authors capture only
the relevant aspects of the original DTD or XML Schema.

8.3 Query evaluation

A number of techniques have been developed to evaluate queries on distributed XML
collections. In this section, we classify these existing techniques based on their ap-
proach to optimizing distributed query evaluation.
8.3.1 Query models

Query models similar to XQ and their connection to standard XPath and XQuery
have been considered in related work [11,12]. The representation of such queries as
tree patterns is also an established technique [13,14].
8.3.2 Fragmentation in centralized query processing

The problem of centralized query processing on fragmented collections of XML data
has been studied within the context of streamed XML data on devices with lim-
ited resources [35] and as a means to implement publish/subscribe systems [36].
Fragmentation-aware query evaluation techniques have also been used within the
context of a centralized XML database system [37].
8.3.3 Distributed query language extensions

A simple way to query distributed collections is to make the distribution explicit in
the query language. Zhang and Boncz have developed the querylanguage XRPC [38,
39], which is a superset of XQuery that has been enriched withfacilities for ship-
ping queries to remote sites. When XRPC queries are evaluated, these requests are
forwarded and the results are used during local query processing. If a remote site
does not support XRPC but supports plain XQuery, an adapter can be used to trans-
late. This allows queries to make use of remote data sources without requiring any
changes to those sources, which is desirable since a user might not have administra-
tive control over them. While Zhang and Boncz do not describeany optimizations
that go beyond what is explicitly specified in the query, XRPCmay be well suited to
serve as a target language for a distributed optimizer.

XQueryD [40] and DXQ [41] provide XQuery extensions that aresimilar to
XRPC. All these approaches cater primarily to a data integration scenario. They
might, however, be useful as a backend language for a distributed database system.
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8.3.4 Pruning irrelevant fragments

Pruning is an important step in distributed query optimization. The idea behind prun-
ing is to identify which fragments are irrelevant for a givenquery and then refraining
from accessing these fragments altogether. This can help improve the query through-
put of a distributed system and can also reduce latency by eliminating the need to
wait for processing of irrelevant fragments to finish.

Based on their partial evaluation strategy, Cong et al. present a simple technique
for pruning fragments [6]. They identify fragments that canbe pruned by examining
the structural relationship between fragments. Unlike ourpruning techniques, how-
ever, they cannot eliminate intermediate fragments. Theirpruning technique is there-
fore largely equivalent to the initial vertical localization we perform before applying
our more advanced pruning techniques.

Within the context of Active XML, Abiteboul et al. present a technique that avoids
calling certain remote functions and thereby limits the number of fragments that have
to be retrieved to answer a given query [4]. Due to the ad-hoc fragmentation of Active
XML documents, it is not possible to identify in advance the set of irrelevant frag-
ments. Instead, a lazy approach to retrieving fragments is employed, and fragments
are only shipped to the central query processing site when the corresponding function
call is reached during query evaluation. This is consistentwith Active XML’s focus
on querying over integrated XML data services.

On the structure-based side, Andrade et al. allude to the possibility of pruning
irrelevant horizontal fragments but do not provide detailson how this pruning could
be performed [27,42] .

Hammerschmidt et. al have developed a technique that uses automata to deter-
mine whether two XPath expressions intersect [43]. While this technique could be
used as an alternate strategy for pruning horizontal fragments, the authors do not
appear to support queries with multiple extraction points,as are frequently encoun-
tered in sub-queries resulting from vertical fragmentation, preventing us from using
this technique in a hybrid scenario. Furthermore, the automaton-based technique is
likely to be less performant since (potentially large) product automata have to be
constructed, whereas our technique aggressively prunes branches that are not shared
between QTP and FTP.

8.3.5 Distributed query execution

An important consideration when evaluating queries on a distributed system is the
trade-off between shipping data and shipping queries. On one hand, it is possible to
ship all relevant data to a central location where all query processing is performed. On
the other hand, it is possible to ship the query or parts of thequery to the sites storing
the individual fragments and perform as much as possible of the query processing
work distributed throughout the system, thereby taking advantage of parallelism and
reducing communication cost; finally, only the (partial) results derived from each
fragment are shipped back to the originating site.

While most of the literature on Active XML employs a data shipping approach
[4,28] there has been some work on distributing query processing [30]. Distributing
query processing is complicated by the ad-hoc fragmentation of Active XML, which
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makes it difficult to determine which part of the query has to be executed on which
fragments.

Based on a hybrid of ad-hoc and structure-based fragmentation, Cong et al. pres-
ent a distributed query evaluation strategy that computes partial matches at each frag-
ment and then combines them at a central location [6,7]. The authors start with a
technique that is designed to answer Boolean queries and then expand the scope of
their work to include data-selecting queries with a single extraction point while main-
taining impressive performance guarantees. The main goal of their strategy is to limit
the number of times that each fragment has to be accessed and to provide a bound
on the amount of network traffic incurred. Our technique, in contrast, considers the
overall cost of evaluating a query, including the computation cost at each site. Our
performance evaluation shows that our technique indeed yields better results when
optimizing for overall cost (cf. Section 7.2). Also, unlikeour technique, Cong et al.’s
partial evaluation approach requires that a specific technique be used for local sub-
query evaluation at each fragment, limiting the potential for local query optimization.

Suciu presents a technique for evaluating queries on an ad-hoc distributed col-
lection of semistructured data [8]. As in Cong et al.’s work,the main focus is on
bounding the number of communication steps and the amount ofdata transferred,
rather than on overall query performance, which explains why our technique leads to
better performance when considering overall query cost (asshown experimentally in
Section 7.2).

Within the context of vertical fragmentation, there is a large optimization space
in how sub-queries are executed and how their results are combined to the overall
query result. We discuss this problem in [9] and suggest a number of plan alterna-
tives that improve query performance. Another aspect of this problem is related to
how distributed joins are ordered and executed. This has been studied in detail in the
relational context and many of those results are applicablehere [1].

8.3.6 Query decomposition

Another important aspect of distributed query evaluation,particularly in the context
of vertical fragmentation, is the problem of decomposing a query into sub-queries
that can be evaluated on the individual fragments.

Suciu describes a limited class of queries that can be decomposed and for which
it can be shown that evaluating the decomposed queries is efficient [8].

Based on the XRPC extension of XQuery, Zhang et al. describe atechnique that
transforms a centralized, data shipping-oriented query into a distributed, query ship-
ping equivalent [44]. This is achieved by decomposing the query and pushing part
of the query execution to remote sites. This work supports all of XQuery, although
certain query primitives make it impossible to perform effective query decomposition
while maintaining result correctness. In these cases, the technique falls back to a data
shipping approach.

Le et al. present a schema-based technique for decomposing aglobal query into
local queries within the context of a data integration system [45]. They identify which
of the local schemas contain information that can be mapped to the global schema
types used in the query. While their technique is not directly applicable to the dis-
tributed database scenario, one might employ a similar method to identify which
fragments in a vertically fragmented collection are relevant for a given query.
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8.3.7 Representing partial results

A common problem encountered when using a query shipping approach to distributed
query evaluation is how to represent the partial results that need to be shipped from
one site to another. If more than one of these results containthe same node, it may be
advantageous not to send multiple copies of this redundant node.

Tajima and Fukui present a technique that can be used to solvethis problem by
sending a minimal view that contains all results rather thansending each result sepa-
rately [46]. While their work is primarily intended for querying a single XML data-
base instance over a network, it could also be used to ship partial results within a
distributed system.

8.3.8 Index structures

Another option for enabling distributed query processing is the use of index struc-
tures, which can provide a compact summary of the data storedin other fragments
and thereby enable some amount of local query processing over remote data.

Bremer et al. employ this approach to evaluate queries on a collection that is frag-
mented based on structure [5]. One of their indexes stores label path information for
all the nodes in the collection. Our technique, on the other hand, only stores label path
information for proxy nodes and only if there is ambiguity. By replicating the indexes
across the system the bulk of the query processing work can beperformed efficiently
and at a single site. Remote fragments only need to be accessed to evaluate value
constraints in the query. While replicated indexes allow the authors to achieve good
query performance, this comes at the potential cost of decreased scalability and more
complicated update management (since replicated indexes have to be updated when
changes are made to the collection). The centralized natureof index-based query pro-
cessing might also lead to reduced intra-query parallelismand can potentially cause
bottlenecks in the system when queries are not evenly distributed across all sites.

Koloniari and Pitoura present a Bloom filter-based index structure that can be
used to derive top-k results for an approximate structural query on a distributed XML
collection [47]. This index is used to prune fragments that will not yield top-k results.
It can also serve to determine the order in which fragments are accessed, with the
most promising fragments being accessed first.

Dewey IDs, first proposed in [22] are another technique that has been used to
index structural information within the context of XML documents [48].

Index structures are also widely used for the centralized querying of XML col-
lections. For an overview of these techniques, refer to [49].

9 Conclusion and future work

We have shown how tree pattern queries can be evaluated in a distributed system by
employing a predicate-based definition of horizontal fragmentation and a schema-
based definition of vertical fragmentation. We have proposed pruning techniques for
horizontal and vertical fragmentation. Our performance experiments show that, when
combined, these techniques lead to a significant improvement in query performance,
both when compared to centralized query execution and to existing distributed tech-
niques.
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One direction of future work is to examine the optimization opportunities of our
fragmentation model that go beyond localization and pruning. Some of these opti-
mizations are discussed in our companion paper [9]. Expanding our query model such
that it can express a larger subset of XQuery is another important goal. It would also
be interesting to investigate what additional optimizations are possible for a hybrid
of vertical and horizontal fragmentation and how we can determine hybrid fragment-
ation schemas automatically. Another interesting direction for future work would be
to combine the fragmentation-based distribution model with (selective) replication of
heavily loaded fragments.
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