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Abstract Distributing data collections by fragmenting them is areefive way of
improving the scalability of a database system. While ttstrihution of relational
data is well understood, the unique characteristics of thié. Mata and query model
present challenges that require different distributiochteques. In this paper, we
show how XML data can be fragmented horizontally and velilicRased on this, we
propose solutions to two of the problems encountered iniliiged query processing
and optimization on XML data, namely localization and pngiiLocalization takes
a fragmentation-unaware query plan and converts it to aildised query plan that
can be executed at the sites that hold XML data fragments istetkdited system.
We then show how the resulting distributed query plan canrbeqd so that only
those sites are accessed that can contribute to the queiy k&%s demonstrate that
our techniques can be integrated into a real-life XML dasabsystem and that they
significantly improve the performance of distributed quexgcution.

Keywords Distributed- XML - Localization- Pruning

1 Introduction

Over the past decade, XML has become a commonly used formstbiong and ex-

changing data in a wide variety of systems. Due to this witkspuse, the problem
of effectively and efficiently managing XML collections hasracted significant at-
tention in both the research community and in commerciadlpets. One can claim
that techniques for the management and querying of XML degaling on a single
system are now well understood. However, because theseides are inherently
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based on centralized execution on a single machine, thelsitity is limited when
faced with large collections (or single, large documents) laeavy query workloads.

In relational database systems, these scalability clgdeiave been success-
fully addressed by patrtitioning data collections and pssg®y queries in parallel in
a distributed system [1]. Our work is focused on similarlyplexting distribution in
the context of XML database systems. While there are somitasities between the
way relational database systems can be distributed anghertoinities for distribut-
ing XML database systems, the significant differences ih bata and query models
make it impossible to directly apply relational techniqo@sXML. Therefore, new
solutions need to be developed to distribute XML databastsys.

While there has been research interest in distributed XMérgprocessing for a
while, much of the existing work has focused on the problemmiigrating multiple
repositories into a single XML view [2—4]. It is importantpoint out that, while data
integration also deals with optimizing queries over fragted collections of XML
data, its goals and the constraints it faces are decidetigreint from those seen in
a scenario where we are distributing to improve scalabilityr instance, whereas
data integration requires a fragmentation model that cpness the complex ways in
which we might need to integrate individual and possiblyuredhnt data sources, in
this work, we optimize our fragmentation model entirely forery performance.

A few publications have focused on distribution as a meaimapoove scalability.
These either rely heavily on replicated index structuras tbmplicate the handling
of updates [5] or they focus primarily on minimizing netwartmmunication cost
[6-8]. In this paper, in contrast, we look at end-to-end sohs and take into account
all components of the cost of query evaluation, includingnownication and pro-
cessing. Our experiments show that our technique, whigbesiically designed for
this purpose, outperforms techniques that focus on conmeation cost alone.

In this paper, we focus on the following three aspects of thelem of improving
the scalability of XML query evaluation through distriboni:

— First, we present distribution modefor XML. We have chosen to focus on a
fragmentation approach that partitions a collection of Xkfta (consisting of
one or multiple documents) based on characteristics obitsent and structure.
A key advantage of this model is that it is simple and yet sigffity power-
ful to significantly improve the scalability of distributegliery evaluation. This
simplicity makes it easier to identify a suitable fragméiotafor a given query
workload.

Our distribution model supports horizontal fragmentatiosised on selection op-
erators and predicates) and vertical fragmentation (basedpartitioning of the
set of element types in a schema). Both types of fragmentat®designed to be
orthogonal, which means they can be used together to achydoré fragment-
ation. While the semantics of this model are inspired byti@tal fragmentation
techniques, it is important to point out that the charasties of XML, such as
its nested data model and structure-based queries, leagetaéchallenges and
optimization opportunities that differ significantly fromhat is encountered in
the relational context.
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Fig. 1 Phases of distributed query evaluation
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— Second, we focus on the problem of evaluating queries ovéstabdited XML

database. This problem is solved in a number of phases (showigure 1),
turning a fragmentation-unaware query into an optimizedtitiuted plan.

1. To evaluate a fragmentation-unaware query, the querysisidicalized.Lo-
calization(as defined in [1]) is the process of transforming a fragnterta
unaware query into a set of sub-queries that can be evalumpedallel at the
individual sites in the system. Based on these local subiegjan initial dis-
tributed execution plan is generated, which determinesswwquery results
are combined to the overall query result.

2. Next, apruningstrategy is applied, which identifies fragments that do natc
tribute to the query result. The sub-queries correspontitigese fragments
are removed from the distributed execution plan.

3. After pruning, furthedistributed optimizationiechniques can be applied to
improve the performance of the distributed execution plan.

4. Finally, each site independently perforimsal optimizatiorof the sub-queries
assigned to it.

In this paper, we focus on the first two steps of distributedrgevaluation. Lo-
calization yields an initial strategy that allows us to exdé queries over hori-
zontally and vertically fragmented collections. Applyitig novel pruning tech-
niques presented in this paper then allows us to improveghfemmance of this
strategy. The reason why pruning helps improve query pexdoce is twofold.
First, it allows us to avoid accessing the sites that holelésant fragments. In
addition, by not processing these irrelevant fragments;avereduce the overall
computation and memory cost of evaluating a query.

As we show in this paper, distributed query evaluation basekbcalization and
pruning alone is sufficient to significantly improve the penhance and scalabil-
ity of XML query processing. To further improve performanadditional opti-
mizations can be applied to the distributed execution pfter aruning is com-
plete. Some of these optimizations have been publishedatepa[9] and further
work along these lines is the subject of ongoing researchdtition, the sub-
queries resulting from localization can be optimized irefegently at each site.
Since our techniques place no constraints on the local quatyation techniques
used, existing optimization techniques for centralizedX@iery evaluation can
be applied.

The query evaluation techniques presented in this papeotd®quire a globally
replicated index structure, which could limit the scalapidf a distributed system
and negatively affect the performance of updates.

Based on our query evaluation techniques, we then proposta workload-
aware fragmentation algorithmg hese algorithms are designed to determine a
fragmentation layout that will optimize performance foriaam set of queries.

To motivate our work, consider Figure 2, which shows a hariathy fragmented

data collection consisting of four documents represeritifggmation about authors
and their publications. The horizontal fragmentation iérdel based on the first letter
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of the authors’ last names, placing “John Adams” in fragmght “Jane Dean” in
fragmentf{’ and “John Smith” as well as “William Shakespeare” in fragtngi.
Figure 3 shows a similar collection that has been fragmeveetitally. Ignoring
the nodes labeled &3/ andR P, for now, we can see thatt hor andagent
nodes are stored in fragmefif, the nodes related to the author’s name are stored in
fragmentfy’, pubs andbook nodes are stored in fragmefif andchapt er and
r ef er ence nodes are stored in fragmefi .
Consider evaluating the following XPath quety:(

Jauthor[name[first="WIliam and |ast="Shakespeare’]]//book//reference

In the horizontal case, it is easy to see that the fragmgfitand f# cannot
possibly contribute to the result of this query since theyespond to authors whose
last names start with the letters “A” and “D”, respectivétyuning these fragments
allows us to answer the query without contacting the siteghath they are stored.

When evaluating on the vertically fragmented collection, we generally htwe
access all four fragments. Fragmefi}t is needed to evaluate the value constraint
predicates, fragment}” is needed to obtain result nodes and fragmefitand £y
are needed to evaluate structural constraints. We latsepta technique that allows
us to avoid accessing some of the fragments only neededfmtstal constraints.

The remainder of this paper is structured as follows: Sa@idescribes the tech-
nical background of our work. Section 3 introduces our madélorizontal and ver-
tical fragmentation. In Section 4, we propose techniques¥aluating queries over
distributed collections. In Section 5, we describe how thdgrmance of distributed
query evaluation can be improved by pruning the set of fragmaccessed. Based
on these techniques, Section 6 describes our algorithmgdgmenting an XML
collection such that performance for a given workload isrojed. In Section 7, we
present a thorough evaluation of the performance impadteofdchniques presented
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in this paper. Section 8 discusses related work. In Sectise®ummarize our work
and present our conclusions.

2 Background

2.1 Data model

An XML collection can be described as a set of labeled, odlreees. While XML is
a self-describing format that can be used without a schemaaictice, the structure
of documenttreesis usually constrained by a schema theifiggdhow elements may
be nested and what the domain of their textual content ishamsa is usually defined
in a language such as DTD or XML Schema. In this paper, we usam@esdirected
graph representation that covers only the aspects of tlsxthat are important for
our purposes. For example, our representation ignoredslieation between XML
elements and attributes by treating both of them unifornsipades Similarly, we
refer to element types and attribute namegs@de typesAssuming that the original
schema definition does not contain unspecified portiony(as¢hose defined using
the DTD keywordANY), it is straightforward to extract the information captditgy
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aut hor (nane, pubs, agent?)
pubs( bookx)

book( chapt er *)

chapter (reference?)

ref erence(chapter) ONCE MuLT

agent ( nane)
name(first, last) MULT
first(#text)

| ast (#t ext) #text) iftext)
OPT ONCE

Fig. 4 A schema

our graph representation from a D¥Br an XML Schema. Extracting schema infor-
mation yields a schema graph that may be less restrictivettteoriginal schema,
but since the schema graph is never used for the validatialoaiments this does
not pose a problem [10].

Definition 1 An XML schema graplis defined as a 5-tupleX, ¥, s, m, p) where
27 is an alphabet of node typeg,is the root node typef C X' x X' is a set of
directed edges between node types@ — {ONCE OPT,MULT } andm : X —

{string}.

The semantics of this definition are as follows: An edgge= (01,02) € ¥
denotes that a node of typa may contain a node of types. s(v) denotes the
cardinality of the containment represented by this edge(df) = ONCE, then a
node of types; must contain exactly one node of type. If s(¢)) = OPT, then a
node of types; may or may not contain a node of type. If s()) = MULT, then
a node of typer; may contain multiple nodes of typs. m (o) denotes the domain
of the text content of a node of type represented as the set of all strings that may
occur inside such a node. Figure 4 shows an example of a s¢hepnasented both
as a simplified DTD and as a schema graph.

2.2 Query model and tree patterns

The query model used in this paper is a subset of XPath, whictall XQ. XQ con-
sists of absolute location paths consisting of node tests avid without wildcards,

child (/) and descendant () axes and predicates. Predicates may consist of (i) a

relative location path with the same restrictions (with ¥Paexistential semantics);
(ii) a textual constraint of the form.?¥, s”, where s is a string constant anél, is
either= or! =; or (iii) a numeric constraint of the form §,, n”, wheren is a numeric
constant and,, is one of<, <=, =, >, >=, or! =. As in XPath, XQ steps return nodes
in document order (since both axes we support are forwarg) axe

XQ queries are not only commonly used on their own, but thep a¢present
an important building block of more complex XPath or XQueneges (containing
additional axis types, explicit joins or full FLWOR exprésss) [11,12]. Therefore,
solving the problem of evaluating XQ queries in a distrilbLf@shion is an important
contribution to distributed XQuery evaluation.

It is convenient to represent XQ queries as tree patterndf3which we for-
malize as follows:

1 Note that a DTD does not explicitly specify the root elemempietof a document. However, the root
element type can be inferred from the DOCTYPE declaratidrioouments conforming to a DTD.
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Fig. 5 Query tree pattern (QTP) representation of query

Definition 2 Let (X', ¥, s,m, p) be a schema. &ee patternis a 7-tuple(N, E, r, v,

¢, T,c) whereN is a set of pattern nodeg, C N x N is a set of pattern edges and
(N,E,r)isatreerooted at € N. Foreachm € N, v(n) € X' U {x} denotes a node
test. Foreach € F, ¢(e) € {chi | d,descendant } denotes the axis typ&. C N
denotes the set of extraction points. For eack N, ¢(n) C m(v(n)) denotes a
value constraint on the text content of nodes of type).

In the following, we will refer to the tree pattern represaittn of a query as a
query tree patterr(QTP). It is interesting to note that, in addition to XQ qus;i
QTPs can be used to express queries with multiple extraptiorts. While this may
be useful for supporting a larger class of queries, in thjgepaour focus is on que-
ries with a single extraction point. Sub-queries resulfiogn vertical fragmentation,
however, frequently contain multiple extraction points.

Figure 5 shows the QTP representation of quefyom Section 1. The double-
outlined node labeled withef er ence is an extraction point and the edge labels
“I" and “/I” denote child and descendant steps, respedgtivel

A match for a QTP assigns a node from a document to each pabeis such
that all node tests, value constraints, and structuraltcaings (expressed as axis
relationships) are satisfied. While all pattern nodes ifQi@ have to be matched to
nodes in a document, only the nodes associated with patelesrthat are designated
as extraction points are returned as part of the result.

3 Fragmentation

Distribution of an XML collection over multiple sites reqgas the fragmentation of
the collection. In this work, the motivation for distribng data is query performance
and scalability (rather than integrating data from muétipburces) and our fragment-
ation model reflects this motivation.

We have developed a fragmentation model that partitiondlacation based on
characteristics of the content and the structure of the XlsladThis yields a succinct
specification for a given fragmentation layout, which — asvileshow — is a valuable
asset when optimizing query evaluation.

It is important to realize that our fragmentation model donesaim to capture
arbitrary fragmentation of XML collections, as would be ded in a data integration
scenario but instead focuses on simplicity and utility faexy optimization. Also,
while our focus is on partitioning a collection, other teijues, which replicate all
or part of the collection, can be used in conjunction with mahniques for further
performance improvement.

In particular, our work is based on two techniques for fragtimg XML collec-
tions. Horizontal fragmentation is based on predicatesasdlts in a collection that
is partitioned into fragments that all follow the same sche¥fertical fragmentation,
on the other hand, is based on partitioning the schema.
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3.1 Horizontal fragmentation

By itself, horizontal fragmentation is particularly uskfar improving query response
times because it allows for easy parallelization of quesf@ation. When combined
with the pruning techniques presented later in this papeai also yield a significant
improvement in query throughput by reducing the amount ¢4 daat needs to be
processed to answer a query.

Our model of horizontal fragmentation assumes a colled¢tiahconsists of mul-
tiple document trees. These document trees can either ibe ¥ML documents or
they can be the result of a previous fragmentation step.theecase, we require
that all document trees correspond to the same schema.pMuitocument collec-
tions where all documents follow the same schema are a coms®oase for XML.
Popular examples include MathML [15] and CML [16].

A horizontal fragmentation is defined by a set of predicabeghe relational
scenario, fragmentation predicates are commonly exptessalgebraic expressions.
In our case, tree patterns represent a convenient abstratterefore, we express
horizontal fragmentation predicates as tree patternsowttbxtraction points, which
we refer to agragmentation tree pattern&TPs).

Definition 3 A tree patternfp = (N, E,r,v, ¢, T, ¢) is afragmentation tree pattern
if T = (). A document treel matchegshe fragmentation tree pattefip if evaluating
fp overd yields at least one match.

A document matches an FTP if evaluating this FTP over the mect yields
at least one result. For notational convenienfged) denotes that the documeit
matches the FTFp.

Definition 4 Let D = {d,,ds,...,d,} be a collection of document trees such that
eachd; € D correspondsto the same schema. FurtheF = { fp1, fp2,... fPm}

be a set of FTPs. Thefi = {{d; € D | fp;(d;)} | fp; € P} is the set ohorizontal
fragmentsof D corresponding to the FTPs iP.

Each fragment consists of the document trees that matchitRecBrresponding
to that fragment. To ensure that the fragmentation is lessééd complete and that
the fragments are disjoint, we require that whenever a deatitnee conforms to the
schema of the collection, it matches exactly one of the petes.

Definition 5 Let F = {f1, fo,... fm} be a set of horizontal fragments of the doc-
umentsD corresponding to the FTPs iAP = {fp1, fp2,... fpm}. ThenF is a
horizontal fragmentatioof D if Yd, € D : 3 uniquefp; € FP wherefp;(d;).

The losslessness of a fragmentation can be enforced byutigrefafting the
value constraints in the FTPs so that they cover the entingadto of the values to
which they refer.

If we assume that the document trees in the fragmented tiolkeshown in Figure
2 conform to the schema in Figure 4 and thafl ast) is the set of strings that
start with upper-case letters of the English alphabet, therfragmentation of this
collection can be described by the set of FTPs shown in Figure

3.2 Vertical fragmentation

Vertical fragmentation allows us to improve both query mse time and through-
put. The main difference between both types of fragmentatidhat vertical frag-
mentation defines fragments based on the structure of tlae whereas horizontal
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Fig. 6 Set of fragmentation tree patterns (FTPs)

fragmentation defines them based on the content. As we vellater, this heavily
influences how efficiently we can answer certain types ofigaer

Our model of vertical fragmentation can handle collectitnas consist of a single
or multiple document trees. Again, it is possible that thizees are the result of
a previous fragmentation step, which allows us to combimézbotal and vertical
fragmentation.

A vertical fragmentation schermria defined by fragmenting the schema graph of
the collection into connected subgraphs:

Definition 6 Let (X, ¥, s, m, p) be a schema graph.vertical fragmentation schema
is defined by a partitioning'y, of the set of node typeX such that for eaclfiy, € Fx
(fz, (TN (fs x fx))) is weakly connected.

The dashed outlines in Figure 7 show how the node types irsttiiema have
been partitioned into four disjoint subgraphs. Fragmfghtonsists of the node types
aut hor andagent ; fragmentf) consists of the node typesame, first and
| ast along with their text content; fragmerfif’ consists opubs andbook; frag-
mentf}” includes the node typeshapt er andr ef er ence.

Since we require the schema graph to be connected, aftenératgtion, there
will be graph edges that cross fragment boundaries. Whetiegeschema contains
an edge from a fragment! to another fragmenf}’, we refer tof}" as achild
fragmentof £V and tof) as aparent fragmenof fJV. There is exactly one fragment
f,}/ € Fy that contains the root node type(the root fragmen}. While the schema
graph may contain cycles, for performance reasons, wenethat the fragmentation
schema be a DAG (i.e., each cycle has to be contained withimgledragment).

When a collection is partitioned according to a verticagfrentation schema,
there will be document edges that cross fragment boundailesepresent a docu-
ment edge from fragment" to fragmentij by inserting a pair of artificial nodes
P77 and RP; ™7 into fragmentsf)” and Y, respectively.P; "’ denotes groxy
nodein fragmentf} (the originating fragment) with I, whereasRP,i”j denotes
aroot proxy noddn fragmenthV (the target fragment) with 102, SinceP,i_’j and
RP,j_’j share the same |0} and reference the same fragmeritsy 5), they corre-
spond to each other and together represent a single cagpsidint edge.

The collection shown in Figure 3 has been fragmented aaogridi the verti-
cal fragmentation schema shown in Figure 7. The proxy paisisting of P{; 72 in
fragmentf!” and RP\;? in fragmentf)’, for example, represents an edge from an
aut hor node inf)" to anane node inf, .

Vertical fragments generally consist of multiple uncortedpieces of XML data,
which we refer to aslocument subtreetn Figure 3, for example, fragmepfi{’ con-
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Fig. 7 A vertical fragmentation schema

tains three subtrees, each of which consists oétiiehor andagent nodes of one
of the documents in the collection.

4 Distributed query evaluation

In this section, we propose a technique for evaluating gsasver horizontally and
vertically distributed collections. There are two main gaments to this technique:
First, we describe how a fragmentation-unaware query cdadadizedand thereby

transformed into multiple sub-queries corresponding tividual fragments. Then,
we describe an initial strategy for combining the resultndividual sub-queries to
the overall query result. This strategy will then serve aftlundation for the pruning
techniques described in Section 5 and for further optirronat

4.1 Querying horizontally fragmented collections

With horizontal fragmentation, it is possible to evaluatguery by computing the
union of all fragments and then executing a centralizedygptan over the result.
While this leads to the correct result, to improve scalgbitiis better to distribute
guery evaluation throughout the system. Our query modeligmphat each result is
derived from exactly one document tree in the collectiorisHtlows us to push the
(unchanged) fragmentation-unaware query down to the it fragments:

Definition 7 If ¢ is a plan that evaluates the query on an un-fragmented tiotheaf
document tree® and F' is a horizontal fragmentation dp, then

7 (F) = o & a(/)

is adistributed execution plathat evaluates the same query Bnwhere® denotes
concatenation of results, agd(F') = ¢(D).

As shown in the definition, it may be necessary to sort thelteseceived from
the individual fragments in order to return them in a staliddgl order as required
by the XQuery data model [17]. For unordered queries, or ifweewilling to relax
the ordering constraint, we can reduce the amount of seitidgced buffering by
only maintaining a stable order between nodes in the samgnalerat. This may be a
reasonable trade-off in many use cases.

4.2 Querying vertically fragmented collections

In this section, we define an initial strategy for evaluatijugries over a vertically
fragmented collection. In relational systems, query lizedion is usually done based



O©CO~NOOOTA~AWNPE

11

on an algebraic representation of a distributed query [df tie technique presented
here, however, the QTP represents a simpler abstractiorcdingains all the infor-
mation necessary for localization. We therefore descréxical query localization
in terms of the QTP representation of the query:
— First, we decompose the QTP representation of the queryglohal QTP) into a
set oflocal QTPscorresponding to individual fragments.
— Then, we use an existing, centralized tree pattern evaluatrategy to obtain a
local plan for each local QTP (the specific strategy is leftdch site to decide).
— After evaluating the local plans over their correspondiraggents, the result-
ing pattern matches are joined based on their proxy/rootyplios to obtain the
overall query result. How this is done is specified hljistributed execution plan

4.2.1 Localization of QTPs

Localization is the process of decomposing a query intocaudries that can be eval-
uated over individual fragments. The decomposition of dgl@TP into a set of
local QTPs directly follows the schema graph. After unrgliwildcard nodes us-
ing schema information, the global QTP is divided into a detub-patterns, each
of which consists of pattern nodes that match nodes in the dJesmgment. Edges
between pattern nodes in the same subtree are assignechtbeasis type as the
corresponding edge in the global QTP.

A child edge from a pattern node in sub-patterto one in sub-pattertis con-
verted to a pattern node matching a proxyiand a pattern node matching a root
proxy inb. These new pattern nodes are marked as extraction poirassethey are
needed to join the results of local QTPs to generate the fasailt.

When descendant edges across fragment boundaries arenexredy we need
to identify all paths in the fragmentation schema that Batise descendant edge.
If a descendant step traverses multiple fragments, additiocal QTPs have to be
generated for the fragments that are traversed. Consaterxémple, the descendant
stepaut hor / / r ef er ence. Since this step traverses fragmeit, a local QTP
has to be generated for this fragment even when no pattem inatie global QTP
refers to node types in this fragment. The resulting locaP@bnsists solely of a
pattern node matching a root proxy node and a pattern nodghingta proxy node,
connected by a descendant edge.

If the global QTP does not reach a certain fragment (becatrese when taking
cross-fragment descendant steps into account no local Qgénierated for it), then
distributed query evaluation will not access this fragme&herefore, the localization
technique eliminates some vertical fragments even withather pruning.

Localizing queryq (shown in Figure 5) yields the set of local QTPs shown in
Figure 8(a)—(d). Each cross-fragment edge in the global @Tépresented by a pair

/ U
book >
u q4

(@ a1

(© g3

Fig. 8 Local QTPs corresponding to quan(/b) g2



O©CO~NOOOTA~AWNPE

12

of pattern nodes that match a proxy/root proxy pair. The édgeaut hor tonane,

for example, is replaced by the pattern ndtle! 2 in ¢z and the pattern node! 2

in ¢1. The pattern nod& P12 matches all of the root proxy nodé&’! 2 in ¢2's
fragmentfs. The pattern nod€’! ~2 matches the proxy nodd3' 2 in fy's parent
fragmentf;; these are the proxy nodes that corresponl &} ~2. Since the original
pattern edge is a child edge, edges to and from the generatiedrpnodes are also
child edges. In the case where the original pattern edge eseetidant edge (such
as the edge betweerut hor andbook, which is represented by the pattern nodes
labeledP!—~3 and RP!~3), edges to and from the generated pattern nodes are also
descendant edges.

Whenever we decompose a global QTP, there will be exactlyawat QTP that
does not contain a pattern node that matches a root proxy. Megleefer to this
local QTP as theoot QTP. In our exampleg; is the root QTP. All other local QTPs
contain exactly one pattern node that matches root proxgsiodtheir fragments. If
local QTPg, contains a pattern node label&P; "’ and local QTRy; contains the
corresponding pattern node labelBfi””, then we cally, achild QTPof ¢, andg; a
parent QTPof g;.

4.2.2 Conversion of local QTPs to local plans

Each local QTRy; is then transformed into a local query plan This is done at the
site holding the fragment correspondinggto using centralized XML query evalua-
tion strategies (e.g., [18,19]). The techniques presdntdds paper are independent
of the techniques used by local query plans. We thereforéanhétailed description
of local plan generation and the algebra used in these Idaasp

4.2.3 Distributed execution plans

To obtain the overall query result, the results of local plared to be “combined”
based on the IDs of their proxy and root proxy nodedligtributed execution plan
specifies how exactly this is done. In this section, we explmw distributed execu-
tion plans can be constructed and what their properties are.

Definition 8 Let P = {p1, ..., pn} be the set of local query plans corresponding to
a queryg. For eactp; € P, let f; denote the vertical fragment correspondingo
Further, letP’ C P. ThenGp: is adistributed execution plafor P’ iff
1. P ={p;} andG’, = p;, or
2. P = P,UP,P,NP, =0, p; € Po,p; € Py, p; = parentp;); Gp, and
G p; are distributed execution plans fBY, and Py, respectively; andrp: = Gp:
Npi”j.id:RPﬁf.id GP;-
If Gp is a distributed execution plan fd? (the entire set of local query plans),
thenG, = G p is a distributed execution plan for

A distributed execution plan must contain all the local glaerresponding to
the query. As shown in the recursive definition above, an i@t plan for a single
local plan is simply the local plan itself (condition 1). Farset of multiple local
plansP’ we assume tha®, and P} are two non-overlapping subsets®f such that
P/ U P, = P'. We require thai, contains the parent local plan for some local
planp; in P/. An execution plan foP’ is then defined by combining execution plans
for P and P] using a join whose predicate compares the IDs of root proxjeso
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N p1-3 jg= Rp1-3.id

N

Npio2 jg—ppi-2iq  MNpi=1id=Rp3-1.4d

/\ A

P11 P2
Fig. 9 Initial distributed execution plan for query
derived fromp; to the IDs of corresponding proxy nodes derived frongcondition
2). We refer to this join as eross-fragment join

If G'» consists of a single local plgn, then the set of attributes returned &y,
(referred to as\/¢;,) is identical to the set of attributes returnedipylf Gpr = Gp;
D(]Pzﬂy id=RPI™ id Gp/ thenMG/ = MGP/ U ]\/fG / \{Pl_m RPl_}J}

Figure 9 shows a distributed execution plan that combinesehults of the local
plansp; throughp,, corresponding to the local QTisthroughg, (shown in Figure
8). There are usually many different vertical executiompldhat all yield the correct
result but that may vary in cost. Since the focus of this pégpen localization and
pruning, we do not discuss the problem of picking the mosaathgeous plan.

5 Pruning fragments

In many cases it is not necessary to access all fragmentsalfegtion in order to
answer a query. This section focuses on exploiting thightddy pruning irrelevant
fragments from a distributed execution plan. Pruning deetsare made based on the
QTP representation of the query.

5.1 Pruning horizontal fragments

As discussed before, to evaluate quergshown in Figure 5) over the horizontally
fragmented collection shown in Figure 2, only the documeatdained in the frag-
mentf# need to be accessed. The initial distributed executiongéseribed in Sec-
tion 4.1, in contrast, accesses every fragment in the caleavhich can significantly
reduce query throughput.

In this section, we propose a procedure that detects iaptdvorizontal frag-
ments and prunes them from a distributed query plan. Thisgulare relies on the
schema of the collection and the FTPs that define the fragatient Both of these
are static over time, do not depend on the size of the catleend can be encoded
in a compact manner. This makes it feasible to replicate ttesl sites as metadata.

To eliminate a fragment from the distributed query plan, wedto show that the
FTP corresponding to this fragment cannot be satisfied bycardent that matches
the QTP. While this problem could be solved by a general-pggmuery intersection
algorithm, we present a schema-aware algorithm that stp@¥FPs with multiple
extraction points as are frequently encountered in hybaigrhentation (for a discus-
sion of this, see Section 8.3.4).

As a first step, the algorithm transforms QTP and FTP into gkfied form.
While this form is less expressive than general tree patatris sufficient to detect
contradictions. We then traverse both simplified pattemmsikaneously, pruning all
but the shared branches, and check for contradictory @nsr If we find such a
contradiction, there cannot be any results for the queryerfragment corresponding
to the FTP and the fragment can thus be eliminated from thghiited plan.
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(@) QTP¢
Fig. 10 QTP and FTP that are not contradictory

5.1.1 Transformation to simplified form

The goal of transforming tree patterns into a simplified figto make sure that each
pattern node refers to a unique node within the context ohglsidocument tree.
In general, pattern nodes may match more than one node irea gocument tree.
A constraint associated with such a pattern node is satigfmte of the matching
nodes conforms to the constraint. This makes it impossibkxploit contradictory
constraints associated with such pattern nodes. Even dfathstraints themselves are
contradictory, they may be satisfied by different nodes énséime document.

With QTPs, there are three sources of pattern nodes that nagghnrmultiple
nodes in the same document tree:

Node types reached via MULT edg&kode types that are reached via an edge
in the schema that has a cardinality of MULT may occur mutifghes in the same
context. Based on the schema in Figure 4, for example, tipepstbs/ book may
yield multiplebook nodes corresponding to a singlabs node.

Descendant stemsn also yield multiple results in the same context. In th@g@T
shown in Figure 10(a), for example, the descendant edgeseebut hor andnane
can be satisfied either bynane node that is the direct child of a givarit hor node
or by anane node that is reachable through an intermedéatent node. Because
of this, even though the constraints on the author’s lastniamposed by the FTPp’
and the QTR seem to cause these two patterns to be contradictory, thegllycare
not. Document trees in the fragment corresponding to the B ®vill only contain
information about authors whose last names start with titerI#&\". The QTP¢’, on
the other hand, matches books that are either authored HijdhviShakespeare” or
by someone whose agent is “William Shakespeare” and whesadane might well
start with the letter “A”.

Wildcardsare another source of multiple matches in the same contestever
the schema specifies that a node type may contain multipée atide types.

We define simplified tree patterns as tree patterns that doomdéin any of these
primitives:

Definition 9 Atree pattern N, E,r, v, ¢, T, ¢) is a simplified tree pattern iffn € N,
v(n) € YandV(z,y) € E,e((z,y)) = chi 1 dA(v(z),v(y)) € UAs((v(z),v(y)))
# MULT.

To convert a tree pattern into a simplified tree pattern, igthltbwed primitives
have to either be removed or converted into an equivalernlgied form. It is im-
portant to note that simplified tree patterns are stricthg lexpressive than arbitrary
tree patterns. Therefore, when a tree pattern is transtbtma simplified tree pat-
tern, the result is not generally equivalent to the origimeé pattern. Instead, the
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simplified tree pattern matches a superset of the docune=d that match the origi-
nal tree pattern. Since simplified tree patterns are onlg ts&entify fragments that
can be pruned, but not for the subsequent query evaluatidhase fragments, this
loss of expressiveness does not pose a problem. Neveghigéisimportant that the
transformation retains as much of the information preserié original pattern as
possible so that this information can be exploited for pngni

The transformation of a tree pattern into a simplified trettepa is based on the
following principles. A formal algorithm is given in [20].

— Using schema information, descendant steps are unroltecenuivalent paths
comprised entirely of child steps. If there is more than oath partificial nodes
representing a choice (denotedd@pare inserted and the branch below the de-
scendant step becomes reachable via more than one pathuthingy the tree
pattern into a directed, acyclic graph (DAG).

— Wildcard node tests are converted to non-wildcard node tiserever this is un-
ambiguously possible. Otherwise, the corresponding pattedes are removed
along with their descendants.

— Pattern nodes matching nodes from the collection for whiehschema allows
multiple occurrences in the same position are removed algtigthe branches
below them.

5.1.2 Unrolling descendant steps

The unrolling of descendant steps can be succinctly impheaeas a manipulation
of the directed graph representation of the schema. To lumd®scendant step from
a pattern node labeleadto a pattern node labelds] we consider the subgraph of the
schema graph that consists of all nodes that are reachabi@fand from whichb is
reachable. This yields a graph that contains all the intdiate node types that may
occur on a downward path froeto b.

If there exists a cycle in this schema subgraph, we discadiéscendant step
and all the pattern nodes that occur below it. This is necgdsscause the presence
of a cycle implies that a matching node may occur at diffelerdls in the document
tree. This creates ambiguity, making it impossible to taleaatage of the value
constraints associated with such a node. Assume, for exathjk we want to unroll
the stepbook/ / r ef er ence. We can observe that there is a cycle involving the
node typeshapt er andr ef er ence. This corresponds to the fact that the path
can be satisfied either by a reference in a chapter of the bbekemve start out, or
by a reference in a chapter referenced by this chapter, aad.so

If the subgraph is acyclic, we introduce a new pattern nodedgh of the inter-
mediate schema nodes such that the node test of the patdemraiches the name
of the corresponding schema node. In cases where a schemaa®sdore than one
child, an intermediate choice node is inserted (denoted)bgignifying that the sub-
sequent branch of the pattern can be satisfied by a matchyafahne child nodes.

After these intermediate nodes have been inserted, therpdias been trans-
formed from a tree into a DAG. We can reconstruct a tree remtason by dupli-
cating nodes that are reachable through more than one pagankral, however, this
is not necessary since we can directly traverse the more acrAG, which yields
the same result as traversing the equivalent tree.
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Figure 11 shows;’ after unrolling descendant steps. Note that while the step

aut hor// book can simply be unrolled into a sequence of child steps, ungpll
aut hor/ / name requires the insertion of a choice node and the duplicatfaheo
branch below it. This is because the schema contains twes ffiathn aut hor to
nane, as is shown in Figure 4.

5.1.3 Removing wildcard nodes

We convert wildcard nodes whenever they unambiguously tefa specific node
type. For example, by relying on the schema shown in Figurgedcan determine
that the ste@gent / * can be translated to the stagent / nane. Itis also possible
to convert wildcard nodes that can refer to more than one hgueby introducing
choice nodes into the pattern in a procedure that is largefyogous to the way
descendant steps are unrolled.

5.1.4 Removing pattern nodes that match nodes with mutigdarrences

In general, a meaningful conversion of pattern nodes cporeding to nodes with
multiple occurrences in the same context is not possiblevemdieed to eliminate
these nodes from the pattern. For qugrywe need to remove tHeook node since
the schema indicates thatpaibs node may have multiple children of tyfmook.
The resulting simplified pattern is shown in Figure 12.

5.1.5 Traversal and pruning

After transforming both QTP and FTP into simplified tree pats, we traverse both
patterns simultaneously. Only pattern nodes occurringoith [patterns are visited.
For each pair of corresponding pattern nodes, we check whtth value constraints
in one pattern contradict those in the other pattern. Sincgnplified tree patterns
each pattern node corresponds to a unique node from theotiavithin the context

Fig. 12 QTP¢’ after simplification
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(@) QTP¢
Fig. 13 Simplified QTP and FTP that are not contradictory

(a) QTPg” (b) FTPfp’
Fig. 14 Simplified QTP and FTP that are contradictory

of a single document tree, a contradiction between pat@lnss us to immediately
eliminate the fragment corresponding to the FTP from furtdoasideration.

Special care has to be taken when a choice node is encounlieitbds case, a
contradiction exists only if we can find contradictory coasits regardless of which
branch of the choice we follow. If there is at least one chaitbout a contradiction,
which may be a choice that leads to a branch that is not presém other pattern,
it is not possible to conclude that the fragment can be ekieih.

In the example shown in Figure 13, the traversal proceedslasvs. First, the
aut hor nodesin QTP and FTP are visited. Since there is no value reamisasso-
ciated with this node in either pattern, there is no conftletyefore we move on to
the children of theaut hor nodes. Thepubs node is only present in the QTP and
is therefore not visited. As the other child of thet hor node, the QTP contains
a choice node. We now have to check both branches for conflie.left branch
leads to thenare node, for which there is an equivalent node in the FTP. In both
patterns theane node has a child with node tdsast . When inspecting the value
constraints associated with thast nodes, the algorithm detects a contradiction be-
cause the content of the corresponding document node charemual to the string
‘Shakespeare’ and at the same time start with the letteferefore, we know that
there is a contradiction for the left branch of the choicesndd order for there to be a
global contradiction, however, the patterns have to beradidtory for both branches
of the choice node. Therefore, the algorithm still has tpéts the right branch, for
which it encounters a node with the node tagent . For this node, there is no
equivalentin the FTP and therefore no contradiction. Stheealgorithm only found
a contradiction for one branch of the choice node, there galzal contradiction and
the fragment corresponding to the FFP cannot be pruned for query.

For the example in Figure 14, on the other hand, the travafgatithm does de-
tect a contradiction. After inspecting tlaeit hor andnane nodes in both patterns,
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the algorithm reaches theast nodes and their contradicting value constraints. This
time, thel ast node does not occur as the descendant of a choice node sorthis ¢
tradiction is sufficient to prune the fragment correspogdathe FTPfp'.

5.1.6 Abstract FTPs

Since horizontal fragmentation is defined as a partitionirtge data collection, FTPs
need to be disjoint and cover the entire collection. Becafigieis, we expect that in
many instances the FTPs will only differ in their value coastts but not in their
structure. It is therefore possible to simplify the traednsrocess by traversing the
QTP together with a single abstract FTP rather than with &¢hin the fragment-
ation. In this abstract FTP, value constraints are replag#d variables. Traversal
of QTP and abstract FTP results in an expression that desctlite conditions un-
der which there is a contradiction between the QTP and anFHgBre 15(b) shows
an abstract FTP, in which a value constraint has been raplaith the variabler.
Traversing this abstract FTP with the QTP in Figure 15(apshihat there is a con-
tradiction if =(.="Shakespeare! z) holds.

(@) QTPq” (b) abstract
FTP

Fig. 15 Simplified QTP and abstract FTP

We can now instantiate with the corresponding value constraint from each of
the original simplified FTPs, i.e., with the expressions

startswith(C'A), ..., startswith('S’) ..., startswith('Z’)

Solving this formula yields a contradiction for all of thesases except =
startswith('S’). A similar technique can be applied to QTiP&e assume that the
structure of a query is known at compile time whereas theteots used in value
constraints are known only at run time.

5.1.7 Analysis

While it may seem that the transformation and traversal oP@hd FTPs could
pose a significant overhead, there are a number of consmesahat reduce this
impact. The transformation of the FTPs only has to be perarmnce when the
fragmentation is set up. Therefore, it does not pose a ma-tiverhead during query
execution.

During the transformation of the QTP, child steps are eitlogied from the QTP
to the simplified QTP or omitted. Both the size of the simplif@TP and the time
consumed by the transformation are therefore lineaEf; 4|, which is the number
of child steps in the QTP. Unrolling each descendant stethaérworst case, intro-
duces one choice node and one non-choice pattern node foréact. Therefore,
the size of the simplified QTP is linear jE5o.. | | £|. To analyze the time complex-
ity, we also have to take into account the time consumed bypeimg the reachable
schema subgraph and by detecting cycles in the resultindngvsle can compute the
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subgraph consisting of nodes that are reachable from nagled from whichb is
reachable by first marking all nodes reachable fegrthen marking all nodes from
whichb is reachable and finally choosing all nodes that were mark#utimes. As-
suming a suitable representation of the graph, this can be i@ (| X| + |#|) time.
Using Tarjan’s algorithm [21], we can detect cycleif| | + [#|) time. Therefore,
the transformation of a QTP takeX | Eq| 4| + | Eqe| (| |+ [¥])) time and yields
a result containing)(|EQL 4| + |E&+.| |Z]) nodes. Since the result is also a di-
rected graph, in which nodes may be shared among multipfebess, the equivalent
tree pattern is of siz&(|EQL.| |Z] |ESL, 4| + |EQee|? |£[?). This is important,
because the time consumed by the subsequent traversalegiepds on the size of
the equivalent tree.

The time required to traverse the QTP and the FTPs is lingheigize of the tree
representations of the simplified QTP and the FTPs. Bechasiaversal has to be
performed for each fragment, itis also linear in the numib&agments. This leads to
an overall time complexity aD((| EQIz, | | 5| [EQN ol + | ESse | |212) (| ESE: | | 2]
|EEIR gl + | ERdE. 12 | X12) | F|). Note that run-time of the pruning algorithm depends
solely on the size of the patterns, the number of fragmentstansize of the schema.
Itis independent of the size of the collection.

5.2 Pruning vertical fragments

The localization strategy for vertical fragmentation @gaccessing fragments whose
node types are not reached by the global QTP. It does not Meryasidress a scenario
where node types in a fragment are reached by the global Qfffolmonstraints are
placed on these node types. Consider, for example, the@iials shown in Figure
8(c), which is evaluated on fragmefi . Its sole purpose is to determine which proxy
nodes inf} lead to which root proxy nodes in fragmefi . Since the only way
from a root proxy node irf) to a proxy node in the same fragment is through a
book node, no further constraints are placed fih We now propose a technique
that allows us to avoid accessing such intermediate fratgnand, thereby, prune
the local QTPs corresponding to these fragments from alalistd query plan.

We achieve this by storing information that allows us to tifgrmall ancestor proxy
nodes for any given root proxy node. Using this informatiea,can then determine
for any root proxy node irf}” which proxy node inf)” is its ancestor. This, in turn,
allows us to answer the query without accessfiigor evaluating the local QTR;.
The benefits of this are twofold: it reduces load on the intatimte fragments (since
they are not accessed) and it avoids the cost of computiegnediate results and
joining them together.

While it would be possible to store the ancestor-descerjdaninformation in
a centralized (or replicated) index structure, this cowdesely limit the scalabil-
ity of distributed query processing. In addition, it wouldhke update management
more difficult. Therefore, we store the join information bymbering proxy nodes
according to a scheme based on the Dewey decimal sy$&h

2 We have also experimented with other numbering schemeh, asione where each proxy pair is
identified by its pre-order and post-order position in thikection. Our techniques are applicable to these
alternate representations as well.
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N R ps—4.id.startswith{ P1=3.id)

Npi-2 jg=pp1-2id P4

Y41 2
Fig. 16 Skipping vertical plan for query

To define this numbering scheme (referred takipping IDg, we need to distin-
guish between the following two cas€B:If a document subtree does not have a root
proxy node as its root (i.e., if the subtree contains the etmhent of a document tree
in the collection, which can only occur in the root fragmettten the proxy nodes in
this subtree (and, of course, the root proxy nodes in otlagnfients that correspond
to these proxy nodes) receive simple numeric IDs. In theecttin shown in Figure
3, this can be seen in all subtrees in fragmght The proxy nodes in this fragment
therefore receive numeric IDs, which means that R P!~2 and(R)P}~3 are al-
ready numbered in accordance with our numbering sch@iné.a document subtree
is rooted at a root proxy node then the ID of each of its proxgesois prefixed by
the ID of the root proxy node of the subtree, followed by a ndmidentifier that is
unique within this subtree. In Figure 3, fragmeils, f1" andf} consist of subtrees
that are rooted at a root proxy. However, only fragmghtcontains proxy nodes.
Therefore, onlyP*4, P3** and Py;7* have to be renumbere®** is part of a
subtree that is rooted at the root proxy nd@e};”3. We would therefore have to

renumber it toP2; 3%, Similarly, P7;74 would be renumbered t83,%* and P34 to

3—4
P16.1 .

If all proxy pairs are numbered according to this schemepapmxy node is the
descendant of a proxy node precisely when the ID of the pradens a prefix of
the ID of the root proxy node. When evaluating query pattewescan exploit this
information by removing local QTPs from the distributed guplan if they contain
no value or structural constraints, and no extraction poodes other than those
corresponding to proxies. These local QTPs are only needéetermine whether a
root proxy node in some other fragment is a descendant of a/prode in a third
fragment, which we can now infer from the skipping IDs. Usthgs technique, we
can rewrite the query plan from Figure 9 to the simpler plasmshin Figure 16,
which avoids accessing fragmefit .

It is important to note that our numbering scheme does notpticate update
management. Subtrees can be inserted or removed from a dataollection with-
out having to modify other parts of the collection and withbaving to maintain a
centralized index.

5.2.1 Structural constraints in skipped fragments

While skipping IDs allow us to skip fragments on which no doaisits are placed,
sometimes structural constraints make it necessary tsaatermediate fragments,
even if they are not needed for evaluating value constraibtslustrate this, consider
the modified fragmentation schema shown in Figure 17, whiltdls dhe additional
type of publicatiorar ti cl e. If we evaluate the local QTPs shown in Figure 8 on
this modified schema, we can no longer eliminate the local @T#ecause skipping
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Fig. 17 A modified fragmentation schema (d) sz

the corresponding fragment would mean that we could no llodigénguish between
the subtrees in fragmerfff” that are part of dook and those that are part of an
article.

We propose a technique that allows us to skip such fragmierasidition to stor-
ing skipping IDs, we use the proxy IDs to keep track of somecstiral information
for cases where there is ambiguity. We define structural gnityias follows:

Definition 10 Let f, be a child fragment of the non-root fragmefat Then f, is
structurally ambiguousvith respect taf;, if there is more than one path in the schema
of f, from a root proxy node irf,, to a proxy node iry, corresponding tq.

If f, is structurally ambiguous with respect fg, then we add label path infor-
mation to the proxy ID of each proxy node fij that corresponds t¢,. This infor-
mation consists of the labels encountered on a path fronotitgproxy of the subtree
in which the proxy occurs to the proxy itself. Since the lgiegh information is part
of the locally unique identifier specified by our numberingesme, it is also part of
the prefix of the IDs of proxy nodes that are descendants qdritney node for which
it was inserted.

In the case of the fragmentation schema shown in Figure & fk one instance
of structural ambiguity: fragmerng’ is structurally ambiguous with respectﬂ)”.
This is because there are two label paths from a root proxyirthat couldlead to a
proxy node that correspondsf@’/: pubs/ book andpubs/ arti cl e. We there-
fore store the label path as part of the ID of each proxy nod'l inthat corresponds
to fX’. Figure 18 shows a sample instance of fragnftg/ritwith label path IDs.
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N R ps—4.id.startswith{ P1=3.id)
MPJ*?id:RP*l%Z,id O RP3—4 label=pubs /book

Fig. 19 Label path plan for query n 2 4

Label paths as defined here can be viewed as a materializ#tgtructural se-
lections on linear paths through a particular fragment.sThivey contain sufficient
information to evaluate structural constraints in a lineath, as seen in the QT¢3.
In combination with skipping IDs, label paths therefore@allus to evaluate the query
using the plan shown in Figure 19, which avoids accesﬁgﬁ'g

5.2.2 Analysis

Both skipping IDs and label paths are inserted at fragmiemtéitme and whenever
data are added to the collection. Since they are not repticédcal insertions and
deletions can be handled without having to modify otherritagts.

The vertical pruning techniques proposed here operatysmighe QTP and the
fragmented schema graph. They are independent of the dize déta and of the con-
stants used in value constraints. This allows us to perfatmipg at query compile
time, thereby minimizing the run-time overhead introdubgaur technique.

Label paths are useful not only for localization but also gouning irrelevant
subtrees within fragments [9]. Studying further uses otlgiaths in a distributed
context is the subject of ongoing research.

6 Workload-aware distribution design

To obtain the maximum benefit from our distribution techmiguit is important to
choose a fragmentation layout that is suitable for the vearitlat hand. There are two
main considerations when deciding between horizontal antital fragmentation (or
when designing a hybrid fragmentation consisting of both):

— Since horizontal fragmentation defines fragments basetetektual content of
XML nodes, it is particularly suitable for a query worklodtht contains a large
number of constraints on these values. Furthermore, faripguo be effective,
the nodes on which such constraints are placed in the watldbauld be used
when defining fragmentation predicates.

— Vertical fragmentation, on the other hand, is based on anfeagation of the
schema. Therefore, it is especially useful when queriesisbmainly of struc-
tural constraints (i.e., path expressions) because thisasio maximizes pruning
opportunity and allows us to limit query processing to femall fragments.

In the remainder of this section, we propose a set of teclesifor determining
a horizontal or vertical fragmentation that is suitable dagiven workload. While a
complete solution to this problem is the subject of ongoaggarch, these techniques
serve as valuable building blocks.

For both the horizontal and the vertical scenario, we wilke¢he simplifying
assumption that each site in the distributed system holdstlgxone fragment. In
the case of horizontal fragmentation, it is important tthegt EFTPs are defined such
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Q1 | /aut hor[nane/| ast =" Shakespeare’ or nane/l ast="John’]
/ pubs/ book
Q2 | /author[name/first="WIIliam ]/ pubs/book

Table 1 Sample workload

[ Path | Constraint |
[ aut hor/ nane/ | ast . ==’ Shakespeare’ v.=="John’
/author/nane/first | .=="WIIiam

Table 2 Constraints

[ aut hor/ name/ | ast ==" Shakespear e’
[ aut hor/ name/ | ast ==" John’
[author/name/first=="WIIiam

Table 3 Simple Predicates

[ aut hor/ nane/ | ast ==" Shakespeare’ A/author/name/first=="WIIiam

[ aut hor/ nane/ | ast ==" Shakespeare’ A/author/name/first!="WIIiam

[ aut hor/ nane/ | ast ==" John’ A/aut hor/name/first=="WIIian

[ aut hor/ nanme/ | ast ==" John’ A/author/nane/first!="WIIiam

[aut hor/ nane/ | ast! =" Shakespeare’ A/author/nane/l ast!="John’ A
/author/nane/first=="WIIiam

[ aut hor/ nane/ | ast! =" Shakespeare’ A/author/nane/last!="John’ A
[author/name/first!="WIIian

Table 4 Minterm Predicates

that for a given QTP in the workload contradictions can bentbthat allow us to
exclude some of the fragments. For vertical fragmentaticsyitable fragmentation
schema should aim to maximize parallelism between the ghkippable) sub-queries
of a given query while avoiding excessively large internagglresults. In either case,
what constitutes a good fragmentation schema cannot beedéfidependently of the
query evaluation strategy used. While in practice fragmugon is performed before
guery evaluation, we have chosen to present our fragmentalijorithms after our
guery evaluation strategies in order to better illustrate dependency.

6.1 Horizontal distribution design

Horizontal fragmentation allows us to directly apply a fregntation algorithm that
was originally developed for relational systems. Thistietsl fragmentation algo-
rithm is based on minterm predicates, which are conjunstafrsimple predicates
on individual attributes. Minterm predicates are obtaingéxtracting the predicates
found in the query workload, decomposing them into simplkedjrates consisting
of a single (in)equality and finally combining these simpiedicates such that all
possible combinations of simple predicates are covered [1]

To apply this technique, we need to transform the predidatex in tree patterns
into simple predicates from which minterm predicates cacdvestructed. We do this
by first unrolling descendant steps into child steps (usigma information). Then,
each value constraint in the pattern can be transformedisét of simple predicates
whose left-hand side is the path from the root of the unrdlled pattern to the node
with which the value constraint is associated.

Performing this transformation for the workload shown ibl€al yields the con-
straints shown in Table 2. We then extract the simple préeickom these con-
straints, i.e. predicates that do not contain conjuctiodisjunction. The result of
this is shown in Table 3.
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From these simple predicates, we can then construct mingerdicates using the
same techniques applied to the relational scenario. Théeeminpredicates derived
from the simple predicates in Table 3 are shown in Table 4s&ng@nterm predicates
can then be transformed into FTPs, resulting in a horizdndgmentation of the
collection.

6.2 Vertical distribution design

To evaluate a query over a vertically fragmented colle¢tioa evaluate each sub-
query on its corresponding fragment and then join the inégliate results to obtain
the overall query result. Depending on how the collectiofragmented, the inter-
mediate results may be large and the sub-queries may be xpéa evaluate. In
extreme cases, this can lead to a scenario where it is moensxge to evaluate a
guery on a vertically distributed collection than it is tcayate the same query in a
centralized fashion. To avoid this situation and to takeddivantage of the potential
of vertical distribution, we have to ensure that the vettitagmentation schema is
well suited to the query workload.

In the following, we propose a vertical fragmentation altjon that chooses a
suitable vertical fragmentation schema for a given quergkigad. Our algorithm is
based on a cost model, which estimates the response timeuefra \when evaluated
over a vertically fragmented collection.

6.2.1 Cost model

We define the following cost metrics for each local pjanand its corresponding
fragmentf (p;):
— cos{p; ), the response time of evaluatipgon f(p;),
— scancosbp;), the time it takes to scan the root proxy nodesfip;) that are
accessed by;,
— cardp;), the number of tuples returned py when evaluated offi(p;),
— subtp,), the number of document subtreesfifp,) that are accessed Ipy.

While it is possible to obtain these metrics experimentéttiis can be expensive
and in practice it may be preferable to estimate these valsiag one of the various
cost estimation techniques that have been developed farethigalized evaluation
of XML queries (e.g., [23,24]). Our distributed cost modehé€tions regardless of
which local cost estimation technique is used. For notatioanvenience, we do not
distinguish between estimated cost metrics and their peasmunterparts.

Since the local plans can be evaluated independently ofathehnin parallel, we
can model the cost of a quegyas costg) = max{costp,) | p; € P} whereP is the
set of local plans (after pruning) corresponding for a given vertical fragmentation
schema.

6.2.2 Heuristic fragmentation algorithm

The naive strategy for determining the best fragmentaabrema for a given work-

load would be to exhaustively enumerate all possible varfiagmentation schemas,
compute the total cost for each of them and then choose tlegrecivith the lowest

cost. While this is guaranteed to yield the optimal reshk,large number of possible
vertical fragmentation schemas generally makes thisgtyahfeasible (there arg,,
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alternatives, wheré,, is then™ Bell number and is the number of node types in
the schema).

To obtain a feasible fragmentation algorithm, we insteagpse a heuristic strat-
egy that starts out with an initial fragmentation schema friclv each node type is
placed in its own fragment and then greedily merges frageantil we can no longer
reduce the estimated workload cost. While this strategypignaranteed to find the
global optimum, it produces a valid vertical fragmentatschema and, as shown by
our experiments, leads to good performance in practice.

In the following, we explain how the greedy strategy procsfed a single query.
A formal algorithm is given in [20]. After determining thedal cost metrics for each
local plan based on the initial fragmentation, we identifg plan with the highest
local costpmax (ignoring local plans that can be pruned) and its correspgitag-
ment f (pmax)- Since the overall cost of the query is determined by the abtte
most expensive local plan, we can focus on decreasing th®tagax-

To do this, we attempt to merg&pmax) With one of its ancestor fragments. We
start with f (pmax)'s parent fragments. For each parent fragmgnive mergef (pmax)
and f;, and then determine the cost of each non-prunable localqderesponding
to f; U f(pmax). If the cost of all of these plans is lower than dps}, we remove
fi and f(pmax) from the fragmentation schema and insértJ f(pmax). We then
repeat the procedure by determining the most expensivéptara for the modified
fragmentation schema and attempting to reduce its cost.

If none of the parent fragments ¢fpmax) allow us to reduce the maximum lo-
cal plan cost, we tryf (pmax)'s “grand-parent” fragments, “great grand-parent” frag-
ments, and so forth. When merging with an ancestor fragrfiethiat is not a direct
parent of f (pmax), we merge all the fragments on the path frgifpmax) to f;. If
no ancestor fragment gf(pmax) allows us to reduce the maximum local plan cost,
the algorithm terminates without making further modifioas to the fragmentation
schema.

6.2.3 Estimating local plan costs after merging

Our fragmentation algorithm relies on frequent tentatiwrges between fragments.
While it is possible to re-estimate the cost of all affectecal plans after each such
merge, this can be expensive. To address this, we propos¢hadnier estimating
the cost of a local plap;; corresponding to the fragmeyfitp;) U f (p;) based on cost
estimates forp; (corresponding tof (p;)) andp; (corresponding tof (p;)’s parent
fragmentf (p,)):

cost(pi;) = costp;) + cardp;)

Sublp,) (costp;) — scancos;))

The rationale behind this is as follows: c@st) includes all of the cost of the
local plan corresponding to the parent fragment, @g$t The cost of the child frag-
ment is scaled by the selectivity of the parent fragmentasgnted as the fraction of
the subtrees irf (p;) for which corresponding proxy nodes are returneghyThis
is because pipelined execution allows us to restrict loealuation to these subtrees
[9]. We also subtract the portion of the cost that can belatteid to scanning the root
proxy nodes inf(p;). Our experiments show that using this approximation doés no
prevent us from identifying good vertical fragmentatiohemas.
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6.2.4 Handling multiple-query workloads

So far, for simplicity, we have focused on identifying a fnagntation schema for
a single query. In practice, however, workloads generailystst of more than one
query. It is possible to adapt our algorithm by modifying teamination condition:
instead of terminating when the cost of the most expensiz@ lplan cannot be re-
duced further, we check the most expensive local plans df gaery in descending
order of cost and only terminate once we cannot further redine cost of any of
those.

7 Performance evaluation

We have enhanced the native XML database system NATIX [18] distributed ca-

pabilities and implemented our techniques within thiseystThis allows us to val-
idate our approach and to perform realistic experiments.e@periments are struc-
tured as follows:

— The first set of experiments evaluate how our techniquesdugthe performance
of distributed query evaluation in a realistic scenariod®dhis, we conduct a set
of experiments based on the XPathMark benchmark [25] thatb@we both the
horizontal and the vertical techniques presented in thigpand verify that they
lead to a significant improvement in performance when coetpar centralized
techniques (Section 7.1).

— In the second set of experiments, we compare our approabhexisting tech-
niques (Section 7.2) by implementing the core phases oétteehniques within
our NATIX testbed.

— Finally, to analyze how our techniques improve performaadhird set of exper-
iments perform a number of stress tests that explore thevimhraf horizontal

Al /sitelclosed.auctions/closed.auction/annotation/description/text/keyword

A2 ITclosed_auction//keyword

A3 /sitelclosedauctions/closedauction//keyword

/sitelclosed.auctions/cl osed_aucti on[ annot ati on/ descri pti on/text/keyword]
/date

A5 [sitelclosed_auctions/closed.aucti on[ descendant: : keyword]/date

A6 ['sitel peopl e/ person[profile/gender and profile/age]/nanme

B7 /I person[profile/ @ncone]/nane

Q1 /open_auction[./interval/end[. = xs:date(’ 12/28/2001")]]
[initial > 120]//item name

Q2 open_auction[./interval/end

[.>= xs:date(’ 01/01/1998)][. < xs:date(’ 12/28/1998")]]
[initial > 120]//item name

Q3 /open_auction[./interval /end

[.>= xs:date(’01/01/1998")][. < xs:date(’ 12/28/1999')]]
[initial > 120]//item name

Q4 /open_auction[./interval/end

[.>= xs:date(’ 01/01/1998')][. < xs:date(’12/28/2000')]]
[initial > 120]//itemn name

Q5 open_auction[./interval/end

[.>= xs:date(’01/01/1998')][. < xs:date(’ 12/28/2001')]]
[initial > 120]//item name

Q6 /open_auction[initial > 200 ]/interval/end

Q7 Iopen_auction//person//category[id="categoryl0’]

[ open_aucti on/ bi dder// person//category[id="categorylQ’ ]

Q9 /open_aucti on/ bi dder//person[creditcard]//category[id="categoryl0’]
Q10 | /open_auction/bidder//person[creditcard]/profile[education]
!/ category[id="categoryl0’']

XPathMark
>
D

Horizontal stres

Vertical stresg
Q|
0]

Table 5 Queries used in experiments
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(Section 7.3) and vertical fragmentation (Section 7.4 psaely. For these exper-
iments, we use a set of carefully selected queries and frattien layouts that

exercise the different scenarios our localization and ipgitechniques may en-
counter, ranging from a case in which the fragmentationgslgiadvantageous
for answering the query at hand to one where it is adversarial

All of our experiments rely on collections of on-line auctidata generated by
the XMark benchmark [26], which is one of the standard berattksfor evaluating
XML query performance. The experiments are conducted doalized Linux ma-
chines within Amazon'’s Elastic Compute Cloud, each prawgdi.7 GB of memory
and a single CPU core. We use a separate instance for eachefnagwith an ad-
ditional instance for dispatching queries. All instances in the same availability
zone, ensuring low-latency, high-throughput commundzati

7.1 XPathMark benchmark

To evaluate the performance of our techniques in a reatisgoario, we use a subset
of the queries in the XPathMark benchmark (those that caxjmessed in our query
model, i.e., A1-A6 and B7, as shown in Table 5). We evaluagsdhgueries on an
XMark collection consisting of documents that are appratigty 40 MB each. To
evaluate the scalability of our techniques, we use 3 diffeoellection sizes: 120
MB, 1.2 GB and 12 GB. We first vertically fragment this coliectinto 3 fragments
using our vertical fragmentation algorithm. Then, we useamually tuned hybrid
fragmentation consisting of 5 fragments.

In Figure 20, we show the response time results obtainedrtyatized query ex-
ecution over an un-fragmented collectiaetral), distributed execution with prun-
ing over the vertically fragmented collectiorgtical), and distributed execution with
pruning over the collection with hybrid fragmentatidnybrid). We can see that for
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all queries, distributed query execution over the verydahgmented collection out-
performs centralized execution by a significant margintribisted query execution
over the hybrid fragmentation yields even better resulte performance advantage
of the hybrid technique over centralized execution inaeeasith the collection size,
illustrating the superior scalability of this techniqu@rFhe largest collection size,
hybrid fragmentation is in some cases more than 30 timesrfttsin centralized ex-
ecution. Together, these results confirm that our techsifprdocalization and prun-
ing significantly improve the performance of distributeceguexecution in realistic
scenarios.

7.2 Comparison with other techniques

While much of the existing work either focuses primarily aialintegration [2—4] or
relies heavily on a replicated index structure [5], theretar techniques that follow
a performance motivation that is similar to ours: Cong & tchnique for distributed
query evaluation [6] and Suciu’s query evaluation techaifpr semistructured data
[8]. While both papers use a definition of performance thaamewhat different
from ours (focusing primarily on communication cost ratttemn end-to-end response
time), they are nevertheless the best candidates for a dmatparison.

Cong et al. present two multi-phase algorithms for distaduquery evaluation,
named PaX3 and PaX2. Both algorithms feature a phase duhirdhwall fragments
are traversed in their entirety and in parallel (phase 2 X3and phase 1 in PaX2).
Based on the description in their paper, we suspected tisgitthse would dominate
the overall response time of their technique. Therefomeofw comparison, we have
chosen to implement this traversal within NATIX. In Figuré, 2ve report the re-
sponse timeRaX) of executing this traversal on those hybrid fragments efitd GB
collection that remain after applying their simple prunsigategy. While this does
not capture the total response time cost of evaluating PaXax2, the traversal is a
necessary step for either algorithm that cannot be avoidedmallelized with other
phases. Therefore, the time consumed by this parallelrsalvean serve as a lower
bound on the overall response time of Pax3 and PaX2.

For Suciu’s distributed evaluation algorithm, we use a lsimnsight: while the
paper does not give any experimental results, we suspéetethe response time cost
of applying this technique would be dominated by the geimraif partial results
using an automaton that accepts the query. Unlike our whikteéchnique does not
take advantage of a fragmentation specification. Therefbeestarting state of the
automaton at a given root proxy node cannot be determinedlastates have to be
examined, increasing the processing cost of this phase.

We have implemented the partial result generation phaseiouS algorithm
within NATIX and report the response time distevalin Figure 21. As in the case
of Cong et al.'s work, this phase is not parallelized withestphases of the algorithm
and it cannot be avoided, which allows us to use it to obtagmet bound on the per-
formance of Suciu’s algorithm. The query model used in Ssi@aper is somewhat
different from the XPath-based models seen in more recerkt aod only appears

3 For both Cong et al.’s and Suciu’s technique, the hybridrfragtation turned out to be more advanta-
geous, which is why we have omitted results for running theskeniques on the vertical fragmentation.
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to support linear path queries. Therefore, we only repailte for the linear queries
A1-A3 for this technique.

Comparing the lower bounds on the cost of the existing tephes with the total
cost of our techniques allows us to make a number of obsensti

— Most importantly, our best techniquieybrid) achieves the best (lowest) response
time for all queries and collection sizes and is always $icgaitly better than
both of the existing techniques.

— The result of comparing the existing techniques to our gaktechnique varies.
We suspect that the cases where our vertical technique dursg are caused by
the larger fragment sizes of the 3-fragment vertical fragtaigon compared to
the 5-fragment hybrid fragmentation.

Overall, these results are encouraging because they akotw show that our
techniques successfully improve the scalability of disttéd query evaluation. While
both Cong’s and Suciu’s techniques offer impressive guaeswith regard to com-
munication cost, we have shown that when optimizing for endnd performance,
our technique, which is specifically designed for this psmoyields significantly
better results.

7.3 Horizontal fragmentation stress test

We now take a closer look at our horizontal techniques. Tta gbthis evaluation
is twofold: First, we want to verify that horizontal distution allows us to improve
both query response time and throughput. Then, we want to #et our pruning
techniques allow us to further improve throughput beyomrdéivel achieved by dis-
tributed execution alone without any adverse effects opaese time.

Since our definition of horizontal fragmentation assumesudtipte-document
collection, we conduct these experiments on an XMark ctilachat has been de-
composed into multiple small documents, placing eapen_aucti on element
into its own document along with its descendants and doctumdsirees referenced
via ID/IDREF. This results in documents of regular struetwith an average size of
approximately 30 KB. We scale this collection to 350 MB, 3.8,@nd 35 GB.

7.3.1 Balanced fragmentation

Eachopen_auct i on element generated by XMark contains an auction end date and
these dates are uniformly distributed across the years-2008. We can therefore

4 Since the decomposition of the collection increases thetsjza factor of about three, the collections
used in this experiment correspond to the same data as teetmwis used in the previous experiments.
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obtain a balanced horizontal fragmentation schema (ifagmentation schema in
which all fragments are approximately the same size) byldigithis date range into
non-overlapping periods of equal length, with each suclogerorresponding to one
horizontal fragment. For this experiment, we use fragntemtaschemas consisting
of 1,2, 4,8, 16, 32, 64 and 99 fragments

On this distributed collection, we evaluate 5 classes ofigaewhich we have
chosen toillustrate the behaviour of our techniques ired#fit scenarios. Q1 consists
of queries that contain a point predicate on the auction el de., each query re-
turns auctions that end on exactly one date within the 4 yedog. Q2-Q5 represent
range queries that cover 25%, 50%, 75%, and 100% of the dade reespectively.
These queries correspond to different scenarios for ouzdwaal pruning algorithm:
whereas Q1 can be answered using a single fragment, Q2-@3meecess an in-
creasingly large fraction of all fragments. Thus, Q1 is adyfitdor this fragmentation
and Q5 is an extremely poor fit. Itis important to note thabdame we run a query in
one of these classes, we randomly choose a date/date ratmire the 4-year range.
Table 5 shows an example of a query in each class.

We first measure the response time of evaluating the quemidisechorizontally
distributed collection. As in all measurements in this pafiee results reported in
Figure 22(a) include the cost of constructing sub-quenyltesit the individual sites,
shipping them to the dispatcher and assembling them to theathquery resuft
In the case of the 35 GB collection, some data points are ngdsir centralized
execution and the fragmentation schemas with a lower nuofifeEmgments. In these
cases, the query did not finish within 2 hours.

When interpreting the results, we can see that horizongatibiution allows us
to reduce query response time when compared to centralkesditon (i.e., the sce-
nario with a single fragment on a single machine). The morehin@s we add to
the system (by fragmenting the collection into more fragtegithe faster response
time becomes. Similarly, adding more machines allows usdoage larger collec-
tions while maintaining the same level of response time. Afe @lso observe that
pruning does not result in a major improvement of respormse tvhen compared
to distributed execution without pruning. This is expediette pruning is primarily
intended to improve throughput. It is important, howeverpbint out that pruning
has no negative impact on response time.

Next, we consider the impact of distribution and pruninglmoetghput. To mea-
sure query throughput, we use multiple dispatcher prosessdeep the system
loaded with queries. In Figure 22(b), we report the maximhnoughput rates we
were able to achieve for each class of queries. Even withautipg, distribution
significantly increases throughput and this increase ioupinput is proportional to
the number of fragments. Enabling pruning further impratesughput by a signif-
icant margin. Naturally, the impact of pruning is most pronced for the class of
point queries Q1, where a single date is selected and wherproning algorithm
can therefore avoid accessing all but one of the fragmemtedoh query. Pruning

5 We were limited to 100 EC2 instances running simultaneo®ilyce one instance is needed for the
dispatcher, this means that we can use at most 99 instansesedragments.

6 Note that we use a logarithmic scale on the x-axis.
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also helps for the queries that involve a range of datesicpéatly when this range
is small, though the effect is less pronounced. For Q4 andv@Bre a large portion
of the fragments or all fragments have to be inspected, pguoifers no advantage
over simple distribution but it also does not harm perforogaapart from some in-
significant anomalies in the case of the 35 GB collection whleroughput rates are
very low).

This illustrates the importance of a fragmentation schérasis well suited to the
workload: fragmenting on attributes on which single-vadeéections are performed
leads to greater pruning opportunities than fragmentingttibutes that are used in
wide range predicates. Even in the latter case, howevénfdited evaluation by far
outperforms centralized querying.

Our results also show that once a throughput of approxima@etiueries per sec-
ond is achieved, further increasing the number of machines dot lead to improved
performance. This is because, for simplicity, our expentaksetup uses a single dis-
patcher, which becomes saturated at this point so thatlilisgd query evaluation is
no longer the bottleneck. In practice, this problem canlgasi avoided by dispatch-
ing queries from multiple sites.

7.3.2 Skewed fragmentation

While pruning performs well on a balanced fragmentationpiiactice it is not al-
ways possible to achieve this balance. We therefore medisareffect of pruning
with a skewed fragmentation consisting of 8 fragments. Geewed fragmentation
is defined as follows: The first fragment contains half of thére collection (corre-
sponding to the first 2 years of the 4-year period), the nexjrfrent contains half of
the remaining collection (i.e., 25% of the data), and sahfontith the last fragment
containing the remainder of the collection data.

Figure 23 shows the throughput rates achieved by centdatjpery execution
(which is vanishingly low in some of the cases shown), as a®MUlistributed query
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Fig. 24 Pruning efficacy

execution (with and without pruning) on a balanced fragragom consisting of 2, 4
and 8 fragments and on the skewed fragmentation. We useequ@fi and Q2, for
which pruning has been shown to be particularly effectiweerkin the presence of
skew, distribution results in a significant boost in perfarroe over centralized query-
ing in all cases. As with a balanced fragmentation schemaipg further improves
throughput.

The throughput rates obtained on the skewed fragmentatiahto fall between
that of a balanced fragmentation with 2 fragments and 4 feagm This can be ex-
plained by the fact that the largest fragment in the skewaghfrentation, which is the
same size as a fragment in the balanced fragmentation witlgghents, represents a
throughput bottleneck.

To further improve querying performance on a skewed distidn, it could be
beneficial to replicate the most heavily loaded fragments pln to examine repli-
cation as part of our future work.

7.3.3 Pruning efficacy

In addition to evaluating the performance impact of pruniwg are interested in
how effectively the pruning technique limits query exeountto the fragments that
actually yield part of the result. To determine this, we nueaghe fraction of those
sites accessed by a pruned query plan that yield part of teg/gasult. The results
(based on a balanced fragmentation consisting of 16 fratghare shown in Figure

24. We omitted Q1 from this experiment, since it can be ansteising a single

fragment. We vary the cut-off value for the initial bid of teection, which affects

the selectivity of the queries, with a lower value yieldingna query results. We
can see that pruning is more effective for the queries thatsa large number of

results (corresponding to lower bid values). This is beeausjuery that selects a
larger portion of the collection is more likely to find a matelthin a given fragment.

The results reported here are derived from the 35 GB catlectiVith the smaller

collections, efficacy tends to be slightly lower, which candttributed to the lower

numbers of results derived from these collections.

7.4 Vertical fragmentation stress test

The experimental evaluation of our vertical techniquesu$as on response times.
In a vertically fragmented system, a single type of queryasvaccesses the same
fragments resulting in a closed system in which throughpaotanly be improved by
reducing the response time. This makes a separate studsoobtiput unnecessary.
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Fig. 25 Response time, vertical fragmentation

We again use the multiple-document XMark collection ddwamtiin the previ-
ous section, which we partition into six vertical fragmenithkis results in a skewed
fragmentation because different node types in the collaatcur with different fre-
guencies. We scale the collection to 350 MB and 3.5 GB.

We evaluate queries Q6-Q10 shown in Table 5. Q6 only invadvemgle frag-
ment. Previous work has shown that this is the ideal caseeidical fragmentation
[27]. The remaining queries, however, reach five of the sigifinents in the col-
lection. Traversing such a large number of vertical fragtm@oses a challenge for
distributed query evaluation because the large numbeiind jequired to assemble
the results from individual fragments can degrade perfocaaA carefully designed
fragmentation schema will therefore aim to avoid this scenalthough this is not
always possible. One of the goals of this experiment is tovsihat our distributed
execution and pruning techniques allow us to achieve goddmpeance even in this
adversarial case. While Q7 to Q10 reach the same numbergrhénats, they differ
in the number of structural and value constraints they éontehich increases as we
go from Q7 to Q10.

Figure 25 shows, for each collection and query, the resptimseobtained by
centralized query execution, distributed execution withany pruning, distributed
execution with pruning based on skipping IDs and distridigrecution with prun-
ing based on skipping IDs as well as label paths. We can obgbat distributed
execution significantly outperforms centralized exequtioall cases.

To closely analyze the impact of the various distributedhtégues, it is useful
to consider the number of fragments that they access foraaety, which is shown
in Table 6. For Q6, which can be answered by accessing a diagjment, all dis-
tributed execution techniques yield approximately the essa@sponse time. For Q7,
naive distributed execution needs to access 5 fragmeh&sgas both pruning tech-
nigues access only a single fragment. This explains why paihing techniques
yield comparable response times, which are approximatdfyofi that of naive dis-
tributed execution. In the case of Q8, pruning with skipdidg performs better than
naive distributed execution and pruning with label pathtaiin performs better than
pruning with skipping IDs. Again, these results are refldétethe number of frag-
ments accessed by each of these techniques. For Q9 and R, firhere even
with pruning a large number of fragments need to be accessguhnse times for all
distributed techniques are approximately on par with edéro
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\ [[ Fragments accessed
| Query || Dist | Skip | Label |

Q6 1 1 1
Q7 5 1 1
Q8 5 2 1
Q9 5 3 2

Q10 5 4 3

Table 6 Number of fragments accessed, vertical fragmentation

8 Related work

There exist significant bodies of work on both querying XMltada a centralized
environment and distributed query evaluation in relatisgatems. Due to space con-
straints, we will restrict our discussion of related workdbIL query evaluation in
distributed systems and to techniques that are direciyeelto our work.

8.1 Specifying XML fragmentation

Existing work has focused on two main approaches to fragimgat collection of
XML data: ad-hoc fragmentatioandstructure-based fragmentation

8.1.1 Ad-hoc fragmentation

Ad-hoc fragmentation is a flexible fragmentation model thag¢s not rely on an ex-
plicit fragmentation specification. Instead, it allows asftagment XML data by
arbitrarily cutting edges in XML documents.

One approach that follows the ad-hoc fragmentation modedtive XML, which
represents cross-fragment edges as calls to remote foacthen a remote function
call is activated, the data corresponding to the remotenfeag is retrieved and is
then available for local query processing [4,28-30]. A&KML provides a flexible
model for describing how multiple sources of XML data canrtegrated.

Based on this work, Abiteboul et al. present a techniquerisugng that an Ac-
tive XML document conforms to a specified type [2]. This isigekd by reasoning
about how the types of individual document fragments affeetoverall type of a
document, thereby combining Active XML with a more struetlrased fragment-
ation approach.

Cong et al.’s work on partial query evaluation is also basedd-hoc fragment-
ation although their single-document data model allowsatliors to infer certain
structural relationships between fragments, which can tfeeused for distributed
query optimization [6, 7]. Therefore, this work can be cdesed a hybrid case that
has certain structure-based characteristics.

Deutsch and Tannen describe a technique for publishing ah Xk over ex-
isting relational and XML data [3]. Their model uses XQuerpeessions to map
between the published view and the (possibly redundard)statrces. While the au-
thors do not describe their work in a distributed contexdytbresent a query rewriting
technique that could be used to answer queries in a dataatitmy scenario. When
distributing to improve scalability, their technique sesless useful since the rewrit-
ing procedure is relatively complex and the complete freediven by an XQuery-
based fragmentation model with overlapping fragments ddutther increase the
already large search space encountered when fragmentiagyfeen workload.

The representation of cross-fragment edges as pairs of pades is a technique
that has been used successfully to fragment XML documess wato pages in the
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native XML database system NATIX, albeit at a much smallgell®f granularity
than in the work presented here [18].

8.1.2 Structure-based fragmentation

Structure-based fragmentation is based on the concepagfienting a collection
based on some properties of the schema or the data itseli.tAs relational context,
we can distinguish betwedmorizontal fragmentationwhich defines fragments by
selectingsubsets of the collection, andrtical fragmentationin which fragments are
defined byprojectingto different parts of the schema. In addition to these ogtidn
is possible to define laybrid fragmentatiofy concatenating selection and projection
steps.

One of the first attempts to transfer the relational concefpiterizontal and ver-
tical fragmentation to the realm of XML was made by Ma and S&hE31, 32]. How-
ever, their definition of vertical fragmentation is limitéal elements whose content
is a sequence of other elements. Under these constrairgtstiaightforward to ex-
tend the relational definition of vertical fragmentationtbgating the containing ele-
ment type as a relation that contains attributes correspgia the contained element
types. Asin the relational case, we can then simply progestibsets of the contained
elements. The authors also assume a single-documenttamilewhich means that
a horizontal fragmentation step always has to be preceegaa implicit vertical
fragmentation step. In addition, their approach is basedhodifying the schema by
renaming elements and rearranging their nesting. Thexgfmlike later techniques,
it is not transparent and it requires queries to be formdleilicitly for a particular
fragmentation specification.

Bremer et al. present another mechanism for specifying ticaéfragmentation
of XML data [5]. They call such a specification a RepositoryideuIn a Repository
Guide, a fragment is defined by a selection path expressantifgling the root nodes
of the subtrees contained, as well as a set of exclusion pgthssenting nodes whose
descendants are excluded from the fragment. The set of &atgnis required to be
both disjoint and complete. The authors argue that thisagmbr can be expanded to
horizontal fragmentation by allowing branching and valoastraints in the defining
path expressions. However, this would make it more diffitmuéinforce completeness
and disjointness.

Andrade et al. expand Bremer’s specification method by agebplicit support
for horizontal and hybrid fragmentation [27]. They defineleaorizontal fragment
by giving a selection predicate in the form of a Boolean pitression with value
constraints. This predicate is used to determine whethevemy glocument is part
of the fragment. The predicates are required to cover alish@nts (completeness)
and be mutually exclusive (disjointness). The authors islake the observation that
by nesting horizontal and vertical fragmentation, botlyErdocument and multiple-
document scenarios can be accommodated.

In addition to predicate-based horizontal fragmentatiGidp et al. introduce a
novel definition of vertical fragmentation that is based @mtitioning the schema
graph, rather than on inclusion and exclusion paths [33i @kfinition closely re-
sembles the way we define vertical fragmentation.
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While not directly related to fragmentation, Marian et alopose a technique
that improves query performance by projecting away irr@h\portions of an XML
collection [34]. The goal of this technique is to reduce tize sf the relevant portion
of the collection and thus be able to process the query in maimory.

In summary, we can observe that ad-hoc fragmentation offierat flexibility
in how a collection can be distributed, which makes it a goaddidate for a data
integration scenario. This flexibility, however, comeshat tost of decreased oppor-
tunity for distributed query optimization. Structure-bdgragmentation, on the other
hand, is less flexible but yields a well-defined specificatibthe fragmentation lay-
out, which is a valuable asset during distributed querynoiatition and which makes
structure-based fragmentation a good candidate when &atyng for performance
reasons.

8.2 Representing XML schema information

A concise graph representation of the schema of an XML cidietas been used to
convert XML data to relational tuples [10]. As in our worketauthors capture only
the relevant aspects of the original DTD or XML Schema.

8.3 Query evaluation

A number of techniques have been developed to evaluatesgumridistributed XML
collections. In this section, we classify these existinghtéques based on their ap-
proach to optimizing distributed query evaluation.

8.3.1 Query models

Query models similar to XQ and their connection to standaR&tk and XQuery
have been considered in related work [11,12]. The reprasentof such queries as
tree patterns is also an established technique [13, 14].

8.3.2 Fragmentation in centralized query processing

The problem of centralized query processing on fragmeribeations of XML data
has been studied within the context of streamed XML data anicde with lim-
ited resources [35] and as a means to implement publistdsbbssystems [36].
Fragmentation-aware query evaluation techniques hawebsen used within the
context of a centralized XML database system [37].

8.3.3 Distributed query language extensions

A simple way to query distributed collections is to make tleribution explicit in
the query language. Zhang and Boncz have developed the lgngyage XRPC [38,
39], which is a superset of XQuery that has been enriched fadttties for ship-
ping queries to remote sites. When XRPC queries are evdluthiese requests are
forwarded and the results are used during local query psotgsIf a remote site
does not support XRPC but supports plain XQuery, an adaptebe used to trans-
late. This allows queries to make use of remote data sourithewt requiring any
changes to those sources, which is desirable since a uskt nughave administra-
tive control over them. While Zhang and Boncz do not descailyg optimizations
that go beyond what is explicitly specified in the query, XRR&y be well suited to
serve as a target language for a distributed optimizer.

XQueryD [40] and DXQ [41] provide XQuery extensions that aimilar to
XRPC. All these approaches cater primarily to a data integrascenario. They
might, however, be useful as a backend language for a distdidatabase system.
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8.3.4 Pruning irrelevant fragments

Pruning is an important step in distributed query optim@atThe idea behind prun-
ing is to identify which fragments are irrelevant for a givarery and then refraining
from accessing these fragments altogether. This can hgimira the query through-
put of a distributed system and can also reduce latency byiredting the need to
wait for processing of irrelevant fragments to finish.

Based on their partial evaluation strategy, Cong et al.gues simple technique
for pruning fragments [6]. They identify fragments that ¢enpruned by examining
the structural relationship between fragments. Unlike pruning techniques, how-
ever, they cannot eliminate intermediate fragments. Teining technique is there-
fore largely equivalent to the initial vertical localizati we perform before applying
our more advanced pruning techniques.

Within the context of Active XML, Abiteboul et al. presentechnique that avoids
calling certain remote functions and thereby limits the benof fragments that have
to be retrieved to answer a given query [4]. Due to the ad-tagmfientation of Active
XML documents, it is not possible to identify in advance tle¢ af irrelevant frag-
ments. Instead, a lazy approach to retrieving fragments@ayed, and fragments
are only shipped to the central query processing site wheeadtresponding function
call is reached during query evaluation. This is consistétit Active XML's focus
on querying over integrated XML data services.

On the structure-based side, Andrade et al. allude to thsilplity of pruning
irrelevant horizontal fragments but do not provide detaiishow this pruning could
be performed [27,42] .

Hammerschmidt et. al have developed a technique that usesiaia to deter-
mine whether two XPath expressions intersect [43]. Whils tbchnique could be
used as an alternate strategy for pruning horizontal fragsn¢he authors do not
appear to support queries with multiple extraction poiassare frequently encoun-
tered in sub-queries resulting from vertical fragmentatjgreventing us from using
this technique in a hybrid scenario. Furthermore, the aatombased technique is
likely to be less performant since (potentially large) prodautomata have to be
constructed, whereas our technique aggressively pruaesibes that are not shared
between QTP and FTP.

8.3.5 Distributed query execution

An important consideration when evaluating queries on #ibiged system is the
trade-off between shipping data and shipping queries. @nhamd, it is possible to
ship all relevant data to a central location where all queogessing is performed. On
the other hand, it is possible to ship the query or parts ofjtrey to the sites storing
the individual fragments and perform as much as possibléefjuery processing
work distributed throughout the system, thereby takingaativge of parallelism and
reducing communication cost; finally, only the (partialsults derived from each
fragment are shipped back to the originating site.

While most of the literature on Active XML employs a data gy approach
[4,28] there has been some work on distributing query pingg30]. Distributing
guery processing is complicated by the ad-hoc fragmemtafid\ctive XML, which
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makes it difficult to determine which part of the query has ¢oelzecuted on which
fragments.

Based on a hybrid of ad-hoc and structure-based fragmeni&lbng et al. pres-
ent a distributed query evaluation strategy that compagigbmatches at each frag-
ment and then combines them at a central location [6,7]. Thieoas start with a
technique that is designed to answer Boolean queries ancettpand the scope of
their work to include data-selecting queries with a singkeaction point while main-
taining impressive performance guarantees. The main ddladw strategy is to limit
the number of times that each fragment has to be accesse® andvide a bound
on the amount of network traffic incurred. Our technique,dntcast, considers the
overall cost of evaluating a query, including the compotatiost at each site. Our
performance evaluation shows that our technique indeddsyheetter results when
optimizing for overall cost (cf. Section 7.2). Also, unliker technique, Cong et al.’s
partial evaluation approach requires that a specific teglnbe used for local sub-
guery evaluation at each fragment, limiting the potentaldécal query optimization.

Suciu presents a technique for evaluating queries on aroadhistributed col-
lection of semistructured data [8]. As in Cong et al.'s watke main focus is on
bounding the number of communication steps and the amoudétaf transferred,
rather than on overall query performance, which explaing adr technique leads to
better performance when considering overall query costl{as/n experimentally in
Section 7.2).

Within the context of vertical fragmentation, there is aglaoptimization space
in how sub-queries are executed and how their results ardicech to the overall
query result. We discuss this problem in [9] and suggest abeurof plan alterna-
tives that improve query performance. Another aspect af pnoblem is related to
how distributed joins are ordered and executed. This has stedied in detail in the
relational context and many of those results are applidadde [1].

8.3.6 Query decomposition

Another important aspect of distributed query evaluatfarticularly in the context
of vertical fragmentation, is the problem of decomposinguary into sub-queries
that can be evaluated on the individual fragments.

Suciu describes a limited class of queries that can be dezseoand for which
it can be shown that evaluating the decomposed querieségeetfi8].

Based on the XRPC extension of XQuery, Zhang et al. describehaique that
transforms a centralized, data shipping-oriented queoyardistributed, query ship-
ping equivalent [44]. This is achieved by decomposing thergand pushing part
of the query execution to remote sites. This work suppottefakQuery, although
certain query primitives make it impossible to perform efiee query decomposition
while maintaining result correctness. In these casesetiietque falls back to a data
shipping approach.

Le et al. present a schema-based technique for decompoginba query into
local queries within the context of a data integration sysi5]. They identify which
of the local schemas contain information that can be mappéhet global schema
types used in the query. While their technique is not diyeafiplicable to the dis-
tributed database scenario, one might employ a similar odeth identify which
fragments in a vertically fragmented collection are refdfar a given query.
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8.3.7 Representing partial results

A common problem encountered when using a query shippingapp to distributed
guery evaluation is how to represent the partial resultsribad to be shipped from
one site to another. If more than one of these results cotiitaisame node, it may be
advantageous not to send multiple copies of this redundzte.n

Tajima and Fukui present a technique that can be used to #ot/problem by
sending a minimal view that contains all results rather gemding each result sepa-
rately [46]. While their work is primarily intended for queng a single XML data-
base instance over a network, it could also be used to shipaasults within a
distributed system.

8.3.8 Index structures

Another option for enabling distributed query processimghie use of index struc-
tures, which can provide a compact summary of the data storether fragments
and thereby enable some amount of local query processingevete data.

Bremer et al. employ this approach to evaluate queries oftection that is frag-
mented based on structure [5]. One of their indexes stobes teath information for
all the nodes in the collection. Our technique, on the othadhonly stores label path
information for proxy nodes and only if there is ambiguity. @plicating the indexes
across the system the bulk of the query processing work caetfermed efficiently
and at a single site. Remote fragments only need to be actessvaluate value
constraints in the query. While replicated indexes alloevdlithors to achieve good
query performance, this comes at the potential cost of dserkscalability and more
complicated update management (since replicated indexestb be updated when
changes are made to the collection). The centralized natumdex-based query pro-
cessing might also lead to reduced intra-query paralledinchcan potentially cause
bottlenecks in the system when queries are not evenlyldisédl across all sites.

Koloniari and Pitoura present a Bloom filter-based indexdttire that can be
used to derive top-k results for an approximate structuratgon a distributed XML
collection [47]. This index is used to prune fragments thiditrwat yield top-k results.
It can also serve to determine the order in which fragmergsaacessed, with the
most promising fragments being accessed first.

Dewey IDs, first proposed in [22] are another technique tlaat leen used to
index structural information within the context of XML daments [48].

Index structures are also widely used for the centralizeztygng of XML col-
lections. For an overview of these techniques, refer to.[49]

9 Conclusion and future work

We have shown how tree pattern queries can be evaluated strébdied system by

employing a predicate-based definition of horizontal fragtation and a schema-
based definition of vertical fragmentation. We have prodgsening techniques for

horizontal and vertical fragmentation. Our performangeegiments show that, when
combined, these techniques lead to a significant improvemepery performance,

both when compared to centralized query execution and stiegidistributed tech-

niques.
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One direction of future work is to examine the optimizatigiportunities of our

fragmentation model that go beyond localization and prgn8ome of these opti-
mizations are discussed in our companion paper [9]. Exparalir query model such
that it can express a larger subset of XQuery is another itapbgoal. It would also

be interesting to investigate what additional optimizasi@are possible for a hybrid
of vertical and horizontal fragmentation and how we canmeige hybrid fragment-

ation schemas automatically. Another interesting dicector future work would be

to combine the fragmentation-based distribution modéh gelective) replication of
heavily loaded fragments.
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