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Abstract

As the World Wide Web continues to grow in an exponential rate, Web Caching
has become a hot research area, in the hope that by using it, we could not only
reduce the client observed latency, but the network traffic and server load as well.
Traditional wisdom holds that strong cache consistency is too expensive for the
Web [CL98] because a lot of extra resource is required to enforce that. However, as
business transactions on the Web become more popular, strong consistency will get
widely accepted and required by popular online applications. This thesis evaluates
the performance of different categories of cache consistency algorithms using TPC-
W, the Web commerce benchmark. In order to decide on the optimum cache de-
ployment location, we also conduct a number of experiments using the benchmark.
Our experiments show that we could still enforce strong cache consistency with-
out much overhead, and Invalidation, as an event-driven strong cache consistency
algorithm, is most suitable for online e-business. Proxy-side cache has a 30-35%

performance advantage over client-side cache with regard to system throughput.
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Chapter 1

Introduction

1.1 Overview

As a large-scale interaction of human activity and computer systems, the World-
Wide Web (in this thesis we use WWW or Web as reference to this term) has helped
to push the modern world into a true information society. While the traditional
business model does not have anything to do with the Internet at all, more and
more e-Business Web sites have emerged in the past several years, representing
the fierce competition of customer and business opportunities on the Web. Not
surprisingly, there has been much recent interest in designing high performance
electronic commerce Web sites to help maximize competitive advantage. These
sites put heavy load on resources. Most of them could rely on Web caching to
reduce network load, server load, and the latency of responses. Generally speaking,
Web caching is a mechanism to store Web objects (such as HTML pages and image

files) at certain location for convenient future access. It is a simple and easy way of
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providing fast response while reducing traffic jam on the Internet. However, while
applying Web caching, cache consistency becomes a prominent issue. If the original
object on server is changed while the end user keeps accessing an out-of-date copy
from its local cache, he/she would be accessing stale data. On the other hand, the
straightforward solution of directing every request to origin server totally discards
Web caching and has adverse performance effects. In the past decade, researchers
have made tremendous efforts to solve this issue by designing caching architectures
and implementing various cache consistency algorithms. The main purpose of this
thesis is to compare several representative consistency algorithms under the Web
commerce environment, evaluate their performance using TPC-W [Tra01], the Web
commerce benchmark. Based on our experimental results, we draw conclusions on
the most suitable cache consistency mechanism for electronic commerce and the
most efficient place to deploy a cache system. We focus on one class of algorithms

known as strong Web caching consistency algorithms.

1.2 Problem Definition

The size of the Web is increasing surprisingly fast. Researchers at the Online Com-
puter Library Center (OCLC) claim that by October 2001, the Web contained some
8.4 million unique sites, compared to 7.1 million in year 2000. In 1999, this number
was 4.66 million while in 1998 it was only about 2.6 million'. The rapid increase
in Web usage has led to dramatically increased loads on the network infrastruc-

ture and on individual Web servers, as well as latency problems while accessing a

thttp://www.pandia.com/sw-2001/57-websize.html
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Web site. Exponential growth without scalability solutions will eventually result
in prohibitive network load and unacceptable service response times. According
to Zona Research, long Web page download times resulted in the loss of US$4.4
billion in e-Commerce revenue in 1999 alone?. As businesses turn more dependent
on the Internet for additional customers and revenue, it becomes critical for these
businesses to have high performing Web sites. Web caching emerged as an effective
solution to these problems. In the context of WWW. caches act as intermediate
service systems that intercept the end-users requests before they arrive at the re-
mote server. Here is a general picture of how caching works. The cache manager
checks to see if the requested object is available in its local storage, if it is, a reply
is sent back to the user with the requested object; otherwise the cache forwards the
request on behalf of the user to either another cache or to the origin server. When
the cache manager receives the data, it keeps a copy in its local storage and for-
wards the object to the user. The copies kept in the cache are used for subsequent
user requests. Finding (not finding) a copy in the local cache is referred to as a
cache hit (cache miss).

In this thesis, unless explicitly addressed, the term object has the same meaning
as document or data, if it refers to something that can be stored by Web cache.

A Web cache may be used within a Web browser that is installed on each physical
PC/workstation, within the network itself (typically on proxy servers that might
be located between a department and an enterprise network, between an enterprise

network and the Internet, or on a link out of a country), and at servers. However,

Zhttp://www.clickarray.com/caching.htm
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some classes of documents usually cannot be cached, such as scripts and pay-per-
view documents. One focus in this thesis is client caching and unless otherwise
noted, references to cache and cache manager should be interpreted as client cache
and client cache manager (We will further explain the difference of the term ‘client’
and ‘client-side’ in Chapter 2).

Web caching has three main advantages [Wes95]: reduced bandwidth consump-
tion (fewer user requests and server responses that need to go through the network),
reduced server load (some of user requests could be served locally), and reduced
latency (because a requested Web page is cached, it is available immediately, and it
locates closer to the client being served). Sometimes a fourth advantage is added:
higher reliability, because some objects may be retrievable from cache even when
the original servers are not reachable. Another positive side-effect of Web caching
is the opportunity to analyze the usage patterns of organizations [Wes95]. To-
gether, these features can make the Web less expensive, less congested, and better
performing.

Despite the above mentioned advantages, Web caching comes with some unde-
sirable issues. One major issue is stale data access, i.e., the potential of using an
out-of-date object stored in the cache instead of fetching the current object from
the origin server. When the cache manager stores an object in its cache, how long
can it be sure that this object will remain consistent with the original copy on the
server? If the cache manager serves client with its cached object whose original
copy has changed, the client gets a stale copy. Always keeping the cached copies

up-to-date is possible if we keep contacting the server to validate their freshness, or
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if the server sends updates to cache each time the object is changed, which seems
to be the only way to guarantee that a cached document is consistent with the
version on the original server. However this means more control messages sent over
the network, which consumes bandwidth and adds to server load, not to mention
that the client might experience longer response time (usually referred to as client
latency).

Therefore, the tradeoft is, either sacrifice document freshness for faster response
time and fewer control messages, or enforce the consistency of cached objects with
their original copies on the server by sending control messages, using other time-
based mechanisms, or making the origin server to take full responsibility. The first
is known as weak cache consistency, while the second is referred to as strong cache
consistency. For every online application system, a decision has to be made whether

to maintain weak or strong cache consistency.

1.3 Why Strong Cache Consistency Is Important

To some extent, the literature agrees that always keeping the cached copy consistent
with the original object means more latency observed by the client, and possibly
more network traffic. For this reason, many caching systems apply weak cache
consistency, believing that methods such as Time-To-Live (TTL) are sufficient and
most appropriate for Web caching [GS96].

For many Internet services, strong consistency is not required, although it may
be desired. One good example is online newspaper and journals. If it is a daily or

weekly newspaper, the cache manager can just cache the documents and need not
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check for their freshness during the remaining time period (this is also an example
of TTL cache consistency algorithm that we will discuss later). Even for those
newspapers that do get updated frequently, we could still apply weak consistency
because the worst case is the Web user reads out-of-date news, but nobody gets
hurt.

In the e-business world, however, weak cache consistency might not only be
unsatisfactory and even annoying, sometimes it will be completely unacceptable.
Here are several example applications where strong cache consistency must be main-

tained.

Online Bookstore Today, like many other businesses, bookstores are extended
to the Internet. Good examples of online bookstores include Amazon, Chapters,
etc. Users can browse best-selling books, read customer reviews, compare prices,
place their orders and buy books online. Let’s say that a customer (could be
an individual or business organization) wants to buy 3 copies of a book, he/she
checks the available amount from Web page and it shows that the book still has
5 copies available, the customer might happily make the order and go ahead with
the purchase. If the available copy number is fetched from the local cache instead
of Web server, this number could be the available amount of several minutes or
even hours ago. In that case, if the book is popular, it is quite possible that at the
time the user checks its availability, the book has only 1 copy left or it is already
out of stock. Therefore it is impossible for the customer to make the purchase at
the time; in other words, the transaction is invalid, or at least won’t guarantee

that the user actually bought the book. The credit card transaction would have



CHAPTER 1. INTRODUCTION 7

to be reversed, and the customer might rather go to a bookstore nearby and buy
the books there. If this happens often, the Web users will be disappointed with
the information they retrieve from the Web application, and lose interest in buying
books online, because they got the feeling that what they see from the Web pages
is not exactly the information at the moment. This could mean lost business to

online stores.

Stock Quote Stock market is always a hot place to go. The up-and-down of
index figures and prices of individual stocks often attract the attention of hundreds
of millions of people. Since not very long time ago, people could get stock quotes
online via the services provided by online brokerage companies. You enter the
ticker for a stock, hit ‘Enter’ and you will see its most recent price and all the news
and headlines related to it. Many people make buy/sell decisions based on the
information they receive from the Internet. If there is a cache that services user
requests from its cached copies, it is possible that such information is out-of-date. It
is hard to imagine that a user would be happy if he/she made his/her stock-buying
or stock-selling decision based on out-of-date information. Here the strict demand
for such information is that the information must always be updated. The result

of such stale information because of weak cache consistency could be disastrous.

Online Auction This is another good example where strong cache consistency
must be applied if Web caching mechanism is used. Online auction stores, such as
Ebay, Yahoo! Auction, etc., auction various kinds of merchandise. Each auctioned

item comes with a current bid, a closing time, and bid increments. Any registered
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customer can place a bid before the closing time, but only those bids that are higher
than the price at the time the bids are placed will be valid, otherwise they will be
rejected. In this case, accessing stale data that is provided by cache will result in
failure of bidding on the item because the bid might be too low due to the fact
that it is based on outdated information. Weak cache consistency is completely
intolerable here.

From the above examples (there are a lot more of them) we could see that
weak cache consistency, although saving response time and network bandwidth, is
not generally acceptable in electronic commerce, where information is sensitively
related to time. On the contrary, strong cache consistency can well satisfy user’s

data freshness requirements, although it costs more resources.

1.4 Thesis Scope

As discussed in previous sections, there are both desirable features and undesirable
drawbacks of applying either weak or strong cache consistency. This thesis evalu-
ates various cache consistency algorithms under electronic commerce environment
because we believe that strong cache consistency is a critical prerequisite for any suc-

cessful online business model. TPC-W Benchmark is used to generate workloads to

mimic an online bookstore. In this thesis, we first come up with a two-dimensional
classification of cache consistency algorithms, then focus on more representative
ones. These algorithms are: Time-To-Live, Invalidation, Polling-Every-Time and
Lease. For each algorithm, we deploy it both at client-side cache and proxy-side

cache and compare the performance results. We also implemented infinite caching



CHAPTER 1. INTRODUCTION 9

mechanism, because we want to use it as our upper-bound performance reference

of system throughput and response time.

1.5 Thesis Organization

This thesis is organized as follows. The next chapter provides a comprehensive sur-
vey of state-of-the-art in Web caching. Chapter 3 introduces TPC-W benchmark,
its system requirements, performance metrics and workload specification. The de-
tailed description of the algorithms we implemented is given in Chapter 4. We
discuss our simulation model and environment setup in Chapter 5. Chapter 6 gives
the experimental results. We draw our conclusions and clarify possible future work

in Chapter 7.



Chapter 2

Background and Related Work

The purpose of this chapter is to conduct a comprehensive background study in
the literature of Web caching, identifying related work that has been done by other

researchers.

2.1 Cache Deployment Strategies

As previously discussed, a cache could be deployed either in a browser, on proxy
server, or at the Web server. There has been significant research on combinations of
physical deployment strategies, cache consistency and/or replacement algorithms
in order to achieve optimal performance gain in a Web environment. This section
identifies major cache deployment strategies that are either widely used or proposed

in the literature.

10
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2.1.1 Browser Caching

Browser caching is the simplest form of Web caching. Most commercial Web
browsers have caching facilities. The browser simply stores in local storage ev-
ery Web object that the user accesses, and if the user requests the same object
at a later time, the application gets the object from local cache storage instead
of sending a request to the server. As most users have undoubtedly experienced,
accessing a Web page that was visited just a moment ago could be very fast by
simply pressing the “Back” button in the browser window. However, sometimes
this could be annoying if the user wants to read the most recent version of the
page. He/she might have to press “Reload” button to force the browser to fetch
the Web page from origin server. On the other hand, if for a period of time the
user keeps requesting new objects that he/she never requested before, the existence
of a browser cache will help nothing but increase latency. The reason is that no
matter whether a cache hit happens, the local cache manager searches cache upon
each user request. The more objects the cache stores, the longer it takes the cache
manager to finish its search. If the user requests a new object every time, every
search results in a cache miss that takes more time, therefore client latency would

be longer.

2.1.2 Server Caching

In order to reduce the workload of Web server (the original content provider), a
server-side cache could also be deployed. The main purpose of server-side caching is

to store documents, images and other frequently inquired database information in
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cache so that the need for redundant computation or database retrieval is reduced
and server could be relieved from repeated requests. Needless to say, if we can cache
database query results, a lot of database operation time delay could be saved. As
Challenger et al. claim, the 1998 Olympic Winter Games Web site had cache hit
rates close to 100% by placing caches in front of the Web server to instantly cache
and update dynamically generated pages [CDI99]. Even without using their Data
Update Propagation (DUP) algorithm, their system had cache hit rates of 80%
[CDI99]. However, common sense suggests that in order to achieve 100% cache hit
ratio, all the objects that can possibly be requested should be stored in cache. In
other words, we need a cache storage no smaller than that of the content server.
This might be feasible for an Olympic Games Web site, but is not a practical

solution for most systems.

2.1.3 Proxy Caching

Proxy caching is probably the most popular and widely accepted general caching
architecture. As its name indicates, proxy caches are usually deployed at the edges
of a network (i.e., at company or institutional gateway/firewall hosts) where a
proxy server resides, so that they can serve a large number of internal users. This
can consequently reduce the bandwidth consumption on the wide area network,
because a noticeable portion of the traffic is localized. In this thesis, in order to
differentiate proxy caching from browser caching as two different choices of cache
deployment location, we refer to browser caching as “client-side caching” and proxy

caching as “proxy-side caching”, while they are both client caching compared to
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server caching.

One advantage of proxy-side caching over browser caching is that proxy caching
improves information sharing. Let’s assume that user A and user B are both in the
same network and their browser caches have not cached any object yet. User A
requests objects OBJ1, OBJ2, OBJ3 and OBJ4 respectively. Later, user B submits
the same request for these four objects in the same sequence. With only local
browser cache, both user A and B will experience zero cache hit rate. With a proxy
cache in the network, however, all the requests from user B will be satisfied from the
cache because those objects were already requested, retrieved and cached. In this
simple example, the cache hit rate reaches 50%. The advantage of proxy caching,
therefore, is that once one user requests a document which causes the proxy to fetch
it from the Web server, the proxy keeps one copy for future sharing by all users
within that network. The more users a proxy cache takes care of, the higher the
possibility that a cached object will be requested again, either by the same user
or some other users within the same network. Abrams et al. claim that a proxy
cache that takes their workload has a 30-50% maximum possible hit rate regardless
of the way it is designed [ASAT95], which is very attractive to network managers
who want to reduce unnecessary network traffic as much as possible. This idea has
been repeatedly visited in the area of dynamic content caching. We will discuss it
in more detail in Section 2.1.6.

The example given above might not always be true. The reason is that proxy
cache stores Web pages, many of which contain user-specific information, e.g., user

id, browser 1d, shopping id, etc. If a Web page P1 is cached and it contains informa-
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tion about user A, then even if user B issues exactly the same request as user A, the
cache manager is unable to feed B with page P1, just because of the user-specific
part of the page. In order to be more flexible, and better utilize the Web pages that
proxy cache stores, Luo and Naughton propose a framework called “Form-Based
proxy caching” [LNO1], in which the proxy cache manager could extract general
information from a Web page and partly satisfy another user’s request without
submitting the whole request that results in significant database operation at the
Web server side. Again, this falls into the category of dynamic content caching and
we shall elaborate on it later.

The types of traffic that a browser, a proxy, and a server cache must manage
are different. A browser cache responds to exactly one client, while a caching proxy
server responds to a group of clients that have some relationship (e.g., members of
the same domain or organization). Certain degree of similarity in browsing behavior
is expected from those clients. Finally, a server cache responds to world-wide user
requests, but stores only a limited set of objects that belong to the server on which
it resides. Depending on the specific purpose of caching, any one of them could be
the best choice.

In [KLMO7], the authors further classify proxy caching into two categories: pas-
sive and active. Passive caching is one that only caches objects that have been
requested by the user, while active caching has the ability to request objects before
they are requested by the user. This concept has another name: prefetching. There
is a whole class of prefetching algorithms. There is also a lot of debate on their

pros and cons. We shall discuss the issues deeper in Section 2.3.4.
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Besides cache hit ratio, another major performance indicator used widely to
evaluate caching performance is latency, or response time. These two terms have
the same meaning throughout this thesis. In most situations, a proxy is located
much closer to the client than the Web server. Usually (and realistically) the la-
tency between proxy and server contributes a large portion of the overall latency
between the Web server and ultimate user. This part of the latency is called external
latency, and the part between proxy and client is internal [KLM97]. A maximum
of 26% latency could be reduced by using proxy caching that has no prefetching
mechanism [KLM97]. With prefetching, the maximum latency reduction reaches
57%. However, Douglis et al. [CDF*98] cast doubts on these latency reduction
claims. They claim that the 26% maximum latency reduction is based on some
simplifying assumptions such as ignoring requests that did not result in a success-
ful retrieval. These unsuccessful requests that were ignored in [KLM97], on the
contrary, contribute significantly to the total bandwidth requirement [CDF*98],
and consequently, the overall system performance.

Douglis et al. also argue that the interactions between HTTP, TCP, and the
network environment should not be neglected when judging the performance impact
of proxy caches [CDF*98]. Due to the slow start feature of the protocol, a TCP
connection takes a fair amount of time to reach full throughput [Luo98]. Since the
cost of setting up TCP connection is high, and connection aborts between client and
server (sometimes) more than offset the latency reduction that is achieved by proxy
caches, Douglis et al. suggest a non-traditional role of the proxy as a connection

cache, which caches connections in addition to data [CDF*98]. By caching the
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connection between the end user and proxy, as well as the connection between
proxy and the original server, there are several flexibilities. First, the connection
cache needs only one (or small number of) persistent connection(s) between the
proxy and the original server, regardless of the number of clients connected to the
proxy. Second, each client needs to maintain only a small number of persistent
connections to the proxy regardless of the number of servers it visits [CDF198].
Finally, if for some reason the connection between the client and proxy or between
proxy and the original server is broken down, significant performance benefits could
still be achieved thanks to the connection cached on the other side.

Figure 2.1 is a general model of proxy caching. In order to implement a fully
functioning Web proxy cache, a cache architecture requires several components
such as a storage mechanism for storing the cache data, a mapping mechanism to
establish relationship between the URLs and their respective cached copies, and
the format of the cached object content and its metadata [Luo98].

As we mentioned, the general notion of deploying a proxy cache is to have it
reside at network gateway or connection point between the organization and the
Internet, so that the cache could serve the content from the Internet to a group
of users. There is another way of deploying proxy cache, which is called reverse
prozy caching, in which the proxy caches serve a specified group of Web servers
to general Internet users [LNO1]. This kind of deployment can also alleviate Web
server workload while putting the cache closer to server instead of end user. This
is a feasible solution to improving overall performance, but the performance gain

is limited compared to having the cache on proxy server. So far, there is little
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Figure 2.1: General model of Proxy Caching

published information available on reverse proxy caching, probably due to its own

limitations.

2.1.4 Hierarchical Caching

Proxy caching is a general caching architecture based on the idea of maximizing the

sharing of cached objects. In the Web environment, there are thousands of proxy
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caches and each stores objects that others might be requesting. Sharing information
locally results in network bandwidth savings and server workload relief. Therefore,
designing cooperative caching architectures have become attractive. Danzig et al.
showed in their 1993 study of file transfer traffic on the National Science Foundation
Network (NSFNET) that by deploying caches in a hierarchical architecture, the
network bandwidth consumption could be greatly reduced [DHS93].

Let us first discuss how hierarchical caching works. Rodriguez et al. make a
reasonable assumption that the Internet hierarchy consists of three tiers of ISPs:
institutional networks, regional networks, and national backbones [RSB99]. Figure
2.2 displays the network topology of this model.
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Figure 2.2: Network Topology (adapted from [RSB99])

At the bottom level of the hierarchy there are the client caches, which are also

referred to as leaf caches [PH97]. One or multiple Web end users are attached to
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each client/leaf cache. In the situation of multiple end users, a client cache acts as
proxy cache whose content is shared by all the users under it. When a request is
not satisfied by the client cache, or in other words, a cache miss occurs, the request
is forwarded to the institutional cache, which is one level above leaf cache. If the
document is not found at the institutional level, the request is then forwarded to
a higher level called regional cache. Regional cache further forwards unsatisfiable
request to the national cache. If the requested object cannot be found at any cache
level, the national cache contacts directly the original server, which results in file
transfer through the Internet. When the object is found, either at a cache or at the
Web server, it travels down the hierarchy, leaving a copy at each of the intermediate
caches. Further requests for the same object travel up the caching hierarchy until
it is found at a certain level. The term siblings refers to neighbor caches that are
on the same level of the hierarchy. When a cache miss happens, the cache manager
could also forward requests to its sibling caches and if any of them has the object,
it would take less time retrieving the object compared to forwarding the request to
the next higher level.

Hierarchical Web caching was first proposed in the Harvest project [DHS93,
CDN'96]. By having a hierarchical arrangement of caches, wide-area network
bandwidth demand could be reduced because a lot of information transfer is limited
to within institutional or regional network, and redundant transfer of information
at successive levels in the network is reduced to the minimum possible. Compared
to single proxy caching, this is an improvement since it reduces traffic through an

organization’s gateway, as well as all gateways up to the root node of the hierarchy.
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However, using hierarchical caching introduces undesirable features. First, since
every object travelling down the hierarchy will leave a copy at each level, extra disk
space may be required at each node of upper levels to store objects that are stored
in nodes beneath it. For a node to maintain an optimal hit rate, and provide the
maximum reduction in redundant transfers, its local cache should contain the union
of the contents of all its child nodes. Obviously, the higher a node is in the hierarchy,
the more storage space it needs. But the reality is that the number of end users
on the Internet (who are all attached to leaf caches) increases exponentially, so it
is impossible for each node to store all the information its child nodes request.

Second, for each user request, every level on the hierarchy introduces extra time
delay, which affects overall system performance. If an object is not stored at any
leaf cache, a user request for it will travel up the hierarchy until it hits the root
node. The hit/miss check at each node level might be slow because the list of
objects tends to grow bigger and bigger as the level goes higher. Chankhunthod et
al. [CDN*96] claim that if the hierarchy contains no more than 3 levels, it will add
little noticeable access latency. However, a normal hierarchy, as shown in Figure
2.2, should have at least 4 levels of caches. After all, for a hierarchy as deep as
only three levels of caches, the time delay issue still exists and cannot be eliminated.
Their claim is not convincing. Our experiment results suggest that even when there
is only one level of cache between the origin server and end user, the access delay
at cache is not negligible, especially when the cache storage is rather big.

The nature of hierarchical caching is such that higher level caches will have

to handle more requests coming from their child nodes. They will easily become
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bottlenecks of the system and result in long queuing delays that makes the latency
issue even worse.

As previously discussed, in most hierarchical caching systems, missed cache
requests are sent to sibling caches as well as upper level caches in the hierarchy
so as to reduce object retrieval latency. This also creates maintenance problems
because each node in the hierarchy has to maintain location information about all
its siblings. While it is trivial to maintain such information when the hierarchy is
within a single organization or local-area network, the task becomes increasingly
complicated as the responsibility for maintenance is allocated throughout various
organizations within a caching network. The dynamic nature of the Internet makes
it more difficult than expected, considering the possibility of frequent cache addition
and deletion.

Finally, from the cache consistency point of view, having multiple copies of the
same object at different cache levels will potentially increase stale hit ratio and

consistency maintenance costs if object update happens frequently.

2.1.5 Distributed Caching

Generally speaking, the benefits of applying hierarchical caching are somewhat
offset by its disadvantages. As a result, researchers have proposed various schemes
to better utilize cache resources to address the above issues. Most of these schemes
belong to the category of Distributed Caching. In a distributed caching system,
the hierarchical structure remains intact, but only leaf caches will actually store

objects, and file transfers only happen at leaf cache level. Upper level caches would
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be used to maintain meta-data of objects stored in leaf caches, i.e., what object is
stored in which cache. This scheme takes advantage of the hierarchy for quickly
locating requested documents. At the same time it removes the requirement for

upper level nodes to maintain large storage space.
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Figure 2.3: A distributed caching scheme (a) (adapted from [PH97])

We borrow the figures in [PH97] to illustrate how a distributed caching system
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generally works. As shown in Figure 2.3, D, E, F, G are leaf caches that cache

objects. A, B and C are upper level caches that only maintain location information

about objects. When a leaf cache D receives a user request for a document that it

does not have, it forwards the request to upper levels until it reaches the root level

cache and the “cache-miss” response gets all the way down to D. So cache D requests

the document directly from the original server (notice that in this scheme, it is not

the root cache but leaf cache who contacts origin server for object retrieval). After

storing the object, D notifies its parent caches by “advertising”. The advertisement
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message gets forwarded up to the root level cache A. Figure 2.4 explains what
happens if later on another end user under leaf cache G in the network requests
the same object. Since G does not contain the document, it forwards the request
to upper level cache C, which in turn forwards the request to its parent cache A.
Now that A has been informed that a copy of the object is present in leaf cache D,
it sends the location information back down to leaf cache G, which results in direct
object transfer from leaf cache D to G.

In [PH97], the authors exclude the possibility that each leaf cache could query
its siblings to determine whether they store requested objects. Instead, each cache
could only communicate with its parent or child caches. This rule was soon
improved to allow more cooperation between sibling caches [CDN196, TDVK99,
FCABO00, SMK*01].

Cooperative caches usually need reliable cache-to-cache communication proto-
cols for efficient object discovery and delivery. In the context of distributed caching,
the Harvest group also designed the Internet Cache Protocol (ICP) [WC97b, WC97a],
which supports document discovery and retrieval from sibling caches as well as par-
ent caches. Cache Digests is proposed by Rousskov and Wessels [RW98] as an
alternative to ICP. Under this scheme, each cache contains a digest (i.e., meta-
data) about the objects its neighbors have. Digests are made available via HTTP,
and a cache downloads its neighbors’ digests at the time it starts up. Another ap-
proach to distributed caching is the Cache Array Routing Protocol (CARP)[VR9S],
which has been applied in Microsoft Proxy Server 2.0. CARP uses hash-based rout-

ing to provide a deterministic “request resolution path” through an array of proxy
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caches. Each of these proxy caches has an array member identity. The request res-
olution path, based upon a hashing algorithm of the proxy array member identities
and uniform resource locators (URLs), means that for any given URL request, the
browser or downstream proxy server will know exactly where in the proxy cache
array the information will be stored - whether already cached from a previous re-
quest, or making a first Internet hit for delivery and caching. Both Cache Digests
and CARP have been tested and deployed in Squid! proxy caching system.
Distributed caching has become a hot research topic. Povey and Harrison pro-
posed a distributed Internet cache [PH97]. In their scheme, upper level caches are
replaced by directory servers which contain location hints about the documents
stored at every cache. A hierarchical metadata-hierarchy is used to make the dis-
tribution of these location hints more efficient and scalable. Tewari et al. studied
several Internet caching strategies and derived several basic design principles for
distributed caching, such as sharing data among as many caches as possible, and
caching data close to clients [TDVK99]. The authors proposed a similar approach
by implementing a fully distributed Internet cache where location hints are repli-
cated locally at the institutional caches [TDVK99], and push-based algorithms are
used to dynamically push objects towards users who are more likely to request
them. Zhang et al. propose a similar approach called adaptive caching, in which
all distributed Web servers and cache servers are organized into co-related multi-
cast groups [ZFJ97]. By using multicast, an object request will be satisfied by the

nearest cache who has it. Popular Web pages travel through cache groups to get

thttp://www.squid-cache.org/



CHAPTER 2. BACKGROUND AND RELATED WORK 26

closer to the caches who request them the most. One fatal flaw of this scheme, as
pointed out by the authors [ZFJ97], is the limitation on scalability, because it is
impossible to multicast all Web requests on the Internet.

So far we have discussed hierarchical and distributed caching architectures. Al-
though the relative merits and performance characteristics of caching architectures
is still a debatable issue, what is certain is that, as the size of the Internet grows,
Web caching systems tend to become more cooperative, taking advantage of infor-
mation sharing to save bandwidth consumption and reduce user perceived document
retrieval latency. In [RSB99], the authors analyze the performance of hierarchical
and distributed caching, as well as a hybrid scheme where caches cooperate at ev-
ery network level of a caching hierarchy. Their experiments show that hierarchical
caching has shorter connection times than distributed caching. Placing additional
copies at intermediate levels reduces latency for small documents. Meanwhile, the
results show that distributed caching has shorter transmission times and higher
bandwidth usage than hierarchical caching. A “well configured” hybrid caching
scheme can combine the advantages of both hierarchical and distributed caching,

reducing the connection time as well as object transfer time.

2.1.6 Dynamic Content Caching

Despite various forms of caching strategies, proxy caching is still the most effective
and well accepted mechanism to improve Web performance [YFIV00]. The cache
hit rates of most proxy caches, however, are not always satisfying. By using traces,

it has been shown that proxy caches can manage to obtain a maximum cache hit
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rate of about 50% [WVSt99], i.e., every one out of two user requests can not be
serviced from the cache, and this is already the best case. This limitation is mainly
due to the dynamic nature of many HTML documents that are generated based
on user profiles and request parameters. As more and more Web sites evolve to
provide e-commerce and personalized services to a wide range of application users,
dynamic content generation becomes more popular, and caching dynamic contents
becomes an increasingly important issue that affects the scalability of the Web.

Dynamic documents are typically generated using CGI scripts, Java Server
Pages (JSP) or they include the result of a query to a database. Some Web pages
might contain client-specific information as well, such as cookies. Measurement
results show that 30% of user requests contain cookies [CDF198, FCD199] that
make the document non-cacheable. In this thesis we are not concered with Web
documents that contain cookies.

A Web page might contain both static content part that is always the same re-
gardless of user request, and dynamic content part that is generated per user-specific
request. If a cache manager caches such a Web page as a single and non-separable
object, the next hit on this object is unlikely to happen unless the request is from
the same user with exactly the same specific request parameters. In other words,
many such objects would be useless although they are cached, which significantly
reduces caching efficiency.

Researchers have come up with various schemes for caching systems to better
utilize Web pages that contain dynamic contents. Cao et al. propose active cache

[CZB98], in which a Java applet is attached to each URL or a collection of URLs.
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When caching an object, the proxy also fetches the corresponding cache applet. If
later on a request is received for that object, the applet is invoked with the user
request and other information as parameters. The applet then decides whether it
should return the cached object as is, rewrite the cached object, or direct the proxy
cache manager to forward the user request to the origin server. The approach is very
flexible and can be used to maintain consistency in an application-specific manner.
Meanwhile, it is also capable of dynamically modifying existing documents without
adding workload to the server. Despite the flexibility, active cache has its design
limitations. For every user request, a new Java process needs to be started, which
means extra memory space needs to be allocated for each request, even if the request
is the same as a previous or simultaneous one. From security and robustness point
of view, this design leaves the door open to denial-of-service attacks. A malicious
Web user or group of users could deliberately send large number of requests at the
same time, which results in server crash.

Smith et al. propose Dynamic Content Caching Protocol (DCCP) [SAYZ99],
to allow individual content-generating applications to exploit query semantics and
specify how their results should be cached and/or delivered. Using DCCP protocol,
a Web application can specify result equivalence between different documents it
generates. Proxy and other caching agents can make use of this information to
speed up dynamic Web content delivery. However, DCCP has its design flaws as
well, in that it has been designed to target only at GET-based queries, which have
user specific parameters appending with ‘7’ to the URL paths. However, there

are a large number of Web requests that use POST-based queries which have their
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parameters sent in a separate line. For those queries, DCCP is useless.

We can regard Web pages that are changed or updated frequently as dynamic
content as well. If a page has been changed on origin server and the cache still keeps
the old version, there is a consistency issue that the system must resolve as early as
possible to avoid sending stale copy of the page to user. Banga et al. suggest that
only the differences between version of a page, or delta, be sent to cache manager so
that the entire page does not need to be transferred every time the page is changed,
considering the change might be minor [BDR97]. This solution is mainly to deal
with latency issue. Of course, it can also save bandwidth because fewer bytes will
be transfered, assuming the delta part is smaller than the Web page itself. However,
since the delta-encoding is based on at least one basic form of the Web page, cache
manager will have to store a potentially large number of past versions. Meanwhile,
server and each cache manager need to have at least one common base version of
the page to compute delta upon, not to mention that the computation of the delta
itself takes time too.

Being aware of the limitations of delta-encoding, Douglis et al. designed a
macro-encoding language called HTML Pre-Processing (HPP) for dynamic content
delivery [DRI7]. The authors observe that for each common class of resources such
as Web pages provided by the same category in a Web server, a significant part
of these pages remains static. Therefore, Web pages could be separated into static
and dynamic parts. The static portion contains macro-instructions for inserting
dynamic information. The static portion together with such instructions (called

template[DRIT]) could be cached freely. In other words, part of the dynamic in-
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formation is cached as static. The macro-encoding language itself is an HTML
extension. Some useful tags and keywords are added to HTML. For example, the
tag LOOP is used to compress the repeated representation of content in a Web
page. In this way, HPP not only allows the dynamic portions of similar pages to
be transferred without sending the static portions, but allows a compact represen-
tation of repetition within a resource. Recall that for delta-encoding, server and
the cache manager must agree on a common base version against which to apply
a delta. HPP solves this problem by permitting a single cached template that
all clients can cache, and providing additional dynamic information based on that

template [DRI7].

2.1.7 Negative Caching

Negative caching, as the name indicates, refers to prevention of caching activity by
the origin server. In a Web-based system, when a Domain Naming System (DNS)
look-up fails or a Web object retrieval failure occurs, it probably means that the
remote server or one particular portion of the network is not available, and won’t be
available for at least a while. In this case, any immediately subsequent request to the
same server might result in the same failure notice, therefore imposing unnecessary
traffic on the network. Chankhunthod et al. propose the concept of negative caching
[CDN*96] where, when a Web object retrieval failure occurs, the caching manager
caches the negative result for a parameterized period of time (e.g., five minutes),
preventing any request to the origin server within this period. Any such request

will result in the cache manager sending the client a failure notice right away.
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2.2 Existing Web Caching Servers and Systems

The word caching has different meanings depending on the context. The purpose
of using caching, whether it is in the area of computer architecture [PHG96], dis-
tributed file systems [SGK*85], or distributed database systems [OV99], is mainly
to make better use of available resources to speed up access. Over the past decade,
significant research effort has been made in Web caching, resulting in a number of
Web server application systems that contain caching functionality.

As mentioned in [CDN*96], the Harvest software, which contains a hierarchical
caching architecture, was developed with the aim of making efficient use of the
network and of individual servers. Harvest project was the first to introduce the
ICP protocol for communication between caches. Squid is a well functioning and
full-featured Web proxy cache. It could support caching protocols such as ICP,
CARP, and Cache Digests [RW98]. CERIN Web server was developed by the World
Wide Web Consortium (W3C) as a single server process that creates a new child
process to handle each user request. This pretty much limits the scalability of the
server itself. Other freely available Web server systems include Jigsaw?, Apache®,
etc.

Web caching technology has also gained commercial importance. Companies like

CacheFlow*, CacheArray®, and Fireclick® develop and sell Web caching technology

Zhttp://www.w3.org/Jigsaw/
3http://www.apache.org
*http://www.cacheflow.com
“http://www.cachearray.com

Shttp://www.fireclick.com
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in their integrated application software. Their customers include many e-commerce
enterprises to whom reducing client latency means increased customer base and

revemnue.

2.3 Cache Consistency Algorithms

Any caching system, regardless of the caching architecture it deploys or how the
objects are cached, has to deal with a fundamental issue: the consistency between
objects in cache and their original copies. In order for caches to be useful, con-
sistency must be enforced, i.e., cached copies should be updated when the objects
get changed on origin server. There are many ways to maintain consistency, with
different loss and gains, and many cache consistency algorithms have been designed
and implemented. Based on the role of the client and the server in the cache consis-
tency control processing, we could have three categories of consistency algorithms:
Client Validation, Server Invalidation, and C/S Interaction. In client validation
approach, it is the client (proxy) cache manager that is responsible for verifying
the validity /freshness of its cached objects. With server invalidation, caches always
assume the freshness of the objects they cache, and whenever an object is changed
on a Web server, it is the server’s responsibility to notify all the caches who cache
that object to delete their stale copies. However, the way that the server invalidates
stale copy could vary. In the C/S interaction category, the client and the server
work interactively to enforce consistency to certain level as required by application.

From another point of view, based on how strict the caches are kept consistent,

algorithms could be classified into two categories: strong cache consistency and
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Client Validation | Server Invalidation | C/S Interaction

Strong | Polling-every-time Invalidation Lease

Weak TTL, PCV PSI N/A

Table 2.1: A Classification of Cache Consistency Algorithms

weak cache consistency. We have briefly discussed these two terms in Chapter
1. As defined in [CL98], weak consistency is the model in which a stale copy
of document might be returned to the user, while in strong consistency model,
the consistency between cached copies and original ones is always enforced, and
no stale copy of the modified document will ever be returned to the user. We
can see that validation/invalidation classification and weak/strong taxonomy are
orthogonal although overlapping.

Table 2.1 gives a two-dimension classification of most publicly known cache con-
sistency algorithms. Unfortunately, in the category of “C/S interaction-weak”, we
did not find any algorithm available to be put in. We discuss these algorithms in
more detail in this section. We shall keep in mind that the relative performance of
a consistency algorithm is very much dependent on the application system archi-
tecture and specific Web behavior. There is no single best algorithm that fits all

scenarlios.

2.3.1 TTL (Time-To-Live)

Under TTL approach, each object (document, image file, etc.) is assigned by its
origin server a time-to-live (TTL) value, which could be any value that is reasonable
to the object itself, or for the sake of the content provider. This value is an estimate

of the cached object’s lifetime, after which it is regarded as invalid. When the TTL
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expires, the next request for the object will cause it to be requested from the origin
server. A slight improvement to this basic mechanism is that when a request for an
expired object is sent to the cache, instead of requesting file transfer from the server,
the cache first sends an If-Modified-Since (IMS) control message to the server to
check whether a file transfer is necessary.

TTL-based strategies are simple to implement, by using the “expires” header
field in HTTP response or explicitly specifying it at object creation time. HTTP
protocol version 1.1 contains header keywords such as “expires” and “max-age” to
notify the cache manager how long the object could be deemed valid. However, a
large number of HTTP responses do not have any expiry information [RS02], which
forces the cache manager to use heuristics to determine the object lifetime.

The challenge in this approach lies in selecting an appropriate TTL value, which
reflects a trade-off between object consistency on the one hand, and network band-
width consumption and client latency on the other. If the value is too small, after
every short period of time the cached copy will be considered stale. Therefore many
IMS messages will be sent to origin server frequently for validity check, which re-
sults in extra network traffic (although it might be trivial compared to the actual
file transfer, if the file size is big) and server overhead. By choosing a large TTL
value, a cache will make fewer external requests to origin server and can respond
to user requests more quickly. Cached objects are retrieved as updated versions
although their original copies are already changed on the server, thus out-of-date
document may be returned to the end-user. The chance that this would happen

is higher for a larger TTL. In [GS96], the authors initially use a flat lifetime as-
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sumption for their simulation, which means that they assigned all objects equal
TTL values. This is also called explicit TTL, which results in poor performance.
This was later modified and the TTL value was based on the popularity of the file.
This method is also mentioned in [CL98], where this improved approach is termed
adaptive TTL. Adaptive TTL takes advantage of the fact that file lifetime distri-
bution is not flat. If a file has not been modified for a long time, it tends to stay
unchanged. This heuristic estimation traces back to the Alex file system [Cat92].
Gwertzman and Seltzer also mention that globally popular files are the least likely
to change. By using adaptive TTL, the probability of stale documents is kept on
reasonable bounds (<5%) [GS96].

TTL algorithm and its variations all enforce weak cache consistency, since it is
possible that the cache manager satisfies client requests with stale object. Once
an object is cached, it can be used as the fresh version until its time-to-live value
expires. The cache manager assumes its validity during the TTL period. The origin
server does not guarantee that the server copy of an object will remain unchanged
before the object’s TTL expires. In other words, server is free to update the object
even though its time-to-live value has not expired yet, thus making it possible for
user to get out-of-date objects. On the other hand, applying TTL algorithm has
the advantage that the origin server does not need to notify caches when the objects

are changed on server.
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2.3.2 Client Polling and Polling-every-time

Both Client Polling and Polling-every-time belong to the category of Client Valida-
tion approach, i.e., client (either browser or proxy cache) is responsible for checking
the validity of cached objects. With client polling approach, the client (cache) pe-
riodically checks back with the server to determine if cached objects are still valid.
It is somewhat like the adaptive TTL, because under both cases the client sends
out validation message from time to time to check if the object is still valid. Alex
FTP cache [Cat92] uses an update threshold to determine how frequently to poll
the server. The update threshold is expressed as a percentage of the object’s age.
An object becomes invalid when the time since last validation exceeds the update
threshold times the object’s age [GS96]. For example, consider a cached file whose
age 1s 30 minutes and whose validity was checked one minute ago. If the update
threshold is set to 10%, then the object should be marked as invalid after 3 minutes
(10% * 30 minutes). Since the object was checked the minute before, requests that
occur during the next two minutes will be satisfied locally, and there will be no
communication with the server including control message. After the two minutes
have elapsed, the file will be marked invalid, and the next request for the file will
cause the cache to retrieve a new copy of the file from the server. Same as TTL,
the trick here is how to decide the update threshold.

Obviously, client polling cannot guarantee that the object stored in cache is
fresh, because cache manager determines object validity by time-to-live value or
certain heuristic estimate, which might not be accurate at all. Therefore client

polling (some researchers also call it periodic polling) is only a weak form of consis-
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tency control. By contrast, polling-every-time enforces strong cache consistency by
sending If-Modified-Since (IMS) messages to origin server to confirm object validity
whenever a user request arrives and an object is present in cache. However, sending
polling message upon each cache hit adds too much traffic to the network which
is not favorable at all. Meanwhile, it might incur unnecessary delay in response,
because when a cache hit occurs, even though the cached object is still valid, the
consistency algorithm still requires the cache manager to confirm the object validity
with origin server. Polling-every-time is generally ranked as an undesirable consis-
tency mechanism, mainly because it does not take full advantage of Web cache.
Even though all the cached objects are fresh copies of original, the end user still

has to experience the validation delay.

2.3.3 Invalidation

The Invalidation algorithm frees client cache manager from the burden of sending
If-Modified-Since (IMS) messages. To ensure strong consistency, if an object A gets
changed on the server, the server must send out an invalidation message right away
to all the caches that store a copy of A. In this way, cache managers don’t need to
worry about object validity. As long as invalidation message is not received, the
object is valid. Invalidation approach requires the server to play a major role in
the consistency control process over cached objects. This might be a significant
burder for the Web server, because, in order to invalidate, for each single object
that has ever been accessed, the server has to keep a list of the addresses of all the

requestors. Such a list is likely to grow very fast, especially for popular objects.
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The server has to maintain at least a big storage space for keeping the lists. On the
other hand, although an object is stored in a cache whose address is kept on the
server list, this object might be evicted from the cache later on, because it is rarely
or never requested again, or the cache manager needs free space for newly-arrived
objects. Therefore, it does not make sense for the server to keep address of that
cache on the list. Even worse, if the object is about to be changed, the server has
to send invalidation message to the caches whose addresses are on the list, but they
no longer keep the object, which adds unnecessary traffic to the network.

Since invalidation approach tends to make sure that strong cache consistency
is always enforced, every invalidation message must be acknowledged. A server
will not update an object until it receives all the acknowledgement messages from
the caches to whom it sent invalidation notices. This is sometimes called delayed
updates [RS02]. However, this approach might be a big problem if one of the caches
loses contact with the network and becomes unreachable. The server will have to
keep waiting and none of the caches get updated version of the object, which results
in stale access by end user. Yu et al. argue that it is absolutely unnecessary to delay
updates on Web pages because if the need to update a page occurs, the page itself
has changed semantically anyway, no matter whether or not the server updates it
[YBS99]. So the cached copy of the page is out-of-date regardless of any update
delay.

There are possible modifications that alleviate the problems of invalidation.
For example, invalidation messages can be multicast to reduce server burden. The

basic idea, as discussed in [RS02], is that a multicast group is assigned to each
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object. When a cache manager requests a certain object, that cache is added to
that object’s multicast group. Therefore, there will be a list of cache addresses
for each multicast group. Such lists are stored in the multicast membership state
maintained by routers. When an object update takes place, the server just sends
one invalidation message to the corresponding multicast group, and then it is the
router’s job to multicast the invalidation message to all the caches that belong to
the multicast group.

Providing strong consistency using invalidation is indeed very difficult given a
large and widely distributed system such as the Internet. The heterogeneous nature
of the Internet makes the time delay from server to proxy and from proxy to end
user unpredictable. It is also quite possible that a cache, once connected to the
Internet and communicates smoothly with other resources, crashes or disappears
all of a sudden. The server’s life becomes miserable if it sends out an invalidation
message to such an unavailable client and keeps waiting for acknowledgement from

that client before updating Web pages.

2.3.4 Piggybacking Approaches

So far, the algorithms we discussed are all synchronous, i.e., after the initiating part
(either client or server) sends out a validation/invalidation message, it will wait till
it has received a response/acknowledgement. This sometimes introduces extra and
unnecessary time delay. The reason is that for client validation, in many cases, the
object on the origin server has not been changed and the validation request will

simply result in a “Not Modified” response. For server invalidation, the message
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that the server sends out might not be critical to certain caches. In other words,
if the cached object will not be requested for quite a while, it is unnecessary for
the server to send out every single invalidation message once an object update is
going to happen. If the server-update is often, these invalidation messages will be
overwhelming, which is inevitable if strong consistency is the purpose. On the other
hand, if strong cache consistency is not a requirement, we might use asynchronous
mechanisms to do the job. Krishnamurthy and Wills [KW97, KW98] introduce al-
gorithms using piggybacking to improve cache consistency while reducing network
traffic resulted from validation/invalidation control messages. Piggyback Client
Validation (PCV) is another client-driven algorithm, and Piggyback Server Invali-
dation (PSI) falls into server invalidation category. Obviously these two algorithms
are both weak due to their asynchronous nature.

Piggyback Client Validation (PCV) [KW97] is an enhancement of traditional
TTL mechanism. Instead of sending IMS messages to the server every time the
cache manager receives a request for an object whose TTL has expired, the vali-
dation is done in a different way. Whenever a certain message is going to be sent
to a server, the cache manager piggybacks a list of cached objects whose original
copies are on that server. These objects are not necessarily requested by end user
at the time, instead they are in the piggyback list because their TTL values have
expired. Therefore, the validity of these objects are checked in advance, which re-
duces the possible stale hit ratio. Meanwhile, using a batch of validation messages
could reduce the control message overhead.

Piggyback Server Invalidation (PSI) [KW98] sends invalidation messages in
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batch compared to individual invalidation notification. As long as strong consis-
tency is not the major concern, this performs better than synchronous invalidation
in a sense that it reduces the number of invalidation messages in the system.

On the other hand, Piggybacking mechanisms introduce some side-effects as
well. For PCV, the cache manager has to keep a piggyback list for each server
in order to conduct the piggybacking operation. This requires extra memory/disk
space, which may slow down the validation process. Such extra delay also exists in
PSI approach. As we mentioned, all piggybacking approaches could only enforce
consitency to a certain level. Stale hits will still happen. Krishnamurthy and Wills
propose a hybrid scheme, which combines PSI with PCV [KW98]. They claim that
the hybrid scheme can result in stale hit ratio of 0.1%. However, we did not put
this hybrid algorithm into the “C/S interaction-Weak” category of our classification
table. Designing a consistency algorithm that falls into this category will be a very

interesting research topic, and piggybacking could be a starting point.

2.3.5 Lease-based Techniques

The concept of lease was introduced as early as 1989 by Gray and Cheriton, in their
paper addressing the cache consistency issue in a distributed file system [GC89].
Leases could also be applied in Web caching to provide stronger cache consistency
control while solving the issues that seem insurmountable for the algorithms dis-
cussed in previous sections. The basic idea is that when the origin server sends out
an object in response to a client request, it assigns a “lease” value to the object.

The server promises not to update the object before the lease expires. The cache
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then is ensured that as long as the lease has not expired, the object is valid and any
request for that object will be a positive hit. When the lease expires, upon next
request of the object, the cache manager will send IMS messages to origin server,
and the server either responds with the new version of the object, or, if the object
has not been changed yet, extends the lease and returns that to the client, and the
same rule applies.

Lease algorithm maintains strong cache consistency while keeping servers from
indefinite waiting due to a client failure. If a server cannot contact a client, it delays
updating the object until the unreachable client’s lease expires, and from then on
it becomes the client’s responsibility to contact the server for validation. On the
other hand, Lease algorithm needs to be implemented both at client side and on
the server. That is why we put it into the “C/S interaction-Strong” category.

As with TTL algorithm, the lease duration affects the efficiency of the algorithm
itself. If the lease value is shorter than the interval between two requests, every
subsequent request comes when the current lease has already expired. In this case
lease becomes polling-every-time, which is far from desirable. However this doesn’t
mean that the longer a lease is, the better. Having a very long lease out there forces
server to delay object updates until that lease expires. To solve this problem, Yin et
al. introduce volume lease in addition to object lease that goes with each individual
object [YADL9S, YADL99]. In this approach, each volume lease is assigned to a
set of related objects on the same server. In order to use a cached object, a client
must hold the leases on both the object and the vulume it belongs to. The cache

manager cannot respond to user request with cached object unless both the object
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and volume lease on that object are valid. Server is free to update an object as
soon as either the volume or object lease on the object has expired. By making
object leases long and volume leases short, server can make object updates without
long delays. Meanwhile, long object leases prevent the cache manager from having

to validate individual objects frequently.

2.4 Prefetching

The idea of prefetching Web pages comes as the result of long response time that
user experiences. Usually it takes seconds or more to download a page in a normal-
speed Internet connection environment. It would be nice if documents or Web
pages that are likely to be requested by a client could be retrieved in advance.
Examples are images that are in a document, and other documents pointed to by
hypertext links from within a requested document. Despite expected performance
improvement, retrieving all documents referred to by a given page is not a wise
choice either [Luo98]. It would cause bursts of requests, and if this were done for
every incoming request, it would reverse the effect of proxies from being bandwidth
savers to bandwidth burden consumers retrieving everything possible that a user
might request.

Prefetching is sometimes used in the context of consistency control, too. When a
cache manager realizes that some of its cached objects are stale because of their TTL
expiration, it might contact the origin server to validate these objects or retrieve
the updated version at an off-peak time, e.g., during the night or network idle

period. This potentially improves cache consistency while making better balance
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of network bandwidth.

2.5 Cache Replacement Algorithms

If a cache had infinite storage space, the cache manager would simply store all the
requested objects in cache and never remove any of them unless the copy on origin
server has been changed. This would be nice, because it maximizes the possible
cache hit rate. However, the reality is that the storage space (main memory or disk)
is limited, and if the cache is active, sooner or later it will get full. As a result, any
practical Web caching system has to deploy certain replacement algorithm to make
best decision on which object(s) to evict when it is inevitable to do so.

There are several factors that affect the performance of cache replacement algo-
rithms: object size, object retrieval time, access popularity and frequency. If every
object is considered equal in terms of these factors, a simple queueing model, or
First-In-First-Out (FIFO) rule would be more than enough for replacement policy.
Again, the reality is more complicated, in that different Web objects vary signif-
icantly in the above-mentioned factors. Using FIFO as replacement algorithm is
feasible, but might result in poor performance because it does not consider the
feature of Web object differences.

The most classic replacement algorithms include Least Recently Used (LRU)
and Least Frequently Used (LFU). As their names indicate, LRU replaces the ob-
ject that was used least recently and LFU replaces the object that was used least
frequently. Both algorithms can be implemented easily and are actually used in

many areas such as computer architecture and distributed file systems. In the con-
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text of Web caching, LRU is usually used as the basis of comparison when new
replacement algorithms are proposed.

Despite the advantage of simplicity that LRU has, numerous experiments prove
that the performance of basic LRU in Web caching is poor [ASAT95, CI97, JBOO,
PPO01]. The reason is that LRU only considers the access frequency of Web objects
while neglecting two other important factors, object size and retrieval time delay. If
we are only concerned about object size, we can use a largest-size-first replacement
policy, which always removes from cache the object with largest size. For the
workloads studied by Williams et al. [WAST96], the largest-size-first algorithm
achieved the highest cache hit rate, but performs worst in terms of byte hit rate.

Similarly, some cache replacement algorithms only focus on retrieval latency.
Lowest Latency First algorithm [WA97] first replaces the objects that can be re-
trieved faster from their origin servers. The object that takes more time to down-
load are less likely to be replaced. This set of algorithms, like the above-mentioned
algorithms that focus only on one factor of the many, might perform well in cer-
tain workload, but won’t fit other scenarios. Researchers realized that any of the
factors that would affect caching performance should be taken into account while
designing cache replacement algorithms. Abrams et al. introduced LRU-MIN and
LRU-Threshold [ASA*95] that are based on the strict LRU but consider the other
factors. LRU-MIN selects from a list of objects that are sorted by LRU and remove
the large object first. This reduces the number of objects that need to be removed.
LRU-Threshold only caches object that are smaller than a certain size limit. In this

case, large objects such as multimedia documents whose sizes are normally in the
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order of tens or hundreds of million bytes would never be cached. In a workload
where large-size objects are accessed frequently, this algorithm won’t be winning
either.

The Lowest Relative Value (LRV) algorithm [RV00] includes the retrieval time
and size of an object in calculating its priority of being kept in the cache. The
algorithm purges the object with the lowest value. The Greedy-Dual-Size algo-
rithm proposed by Cao and Irani [CI97] is similar to LRV but more flexible in
that it calculates such value depending on whether the goal is to maximize hit
ratio, to minimize average latency, or to minimize the overall retrieval cost. The
Greedy-Dual*Web Caching algorithm [JB00] takes this approach one step further
by considering the fact that objects that belong to the same Web page and were
retrieved together will most likely be retrieved together in the future. Therefore, if
there is a cache hit on any of the objects in a Web page, all of them should be kept
in the cache.

Exploring all the cache replacement algorithms is outside the scope of this thesis.
On the other hand, no commercial vendors of caching system distinguish their
product by the replacement algorithm they use, simply because cache replacement
policy is not as critical a factor in the performance of Web caching systems as cache
consistency algorithms. As a matter of fact, the storage space is no longer as major

a concern as it used to be.
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2.6 Performance Measurement Tools

As pointed out by Rabinovich and Spatscheck [RS02], performance evaluation meth-
ods could be generalized into three main categories: live measurement, trace-based
methods, and benchmarking. Live measurement is based on the real-time Web ac-
tivity. Experiments are conducted in an active Web environment. The advantage of
this is that it reflects one set of real Web transactions that actually happened. The
drawback of using a live measurement, though, is that there is no way to implement
such a real-time Web behavior, not to mention that such live measurement is not
repeatable. It is not suitable for stress test either, because nobody wants to over-
load their system in the real case, in other words, some situations that researchers
want to explore will never happen in a live measurement.

As a matter of fact, a lot of research in Web caching literature is based on trace-
based methods, i.e., getting the access log of a certain period of time from the server
or proxy, and replaying it to analyze the Web behavior. It is not hard to configure
the Web server or proxy to get a trace log that is designed for a specific research,
e.g., time and sequence of each URL request, size of each object, response status
code, etc.. This makes the research work easier, partly because the experiments
could be repeated as needed. On the other hand, Web behaviors differ significantly
in terms of different Web servers and end user groups. Therefore, the experiment
results obtained from a certain trace log might only fit one specific access pattern
or commercial scenario.

Another category of measurement methods is by using benchmark. Bench-

marks are synthetic workloads designed to mimic real-life workloads [RS02]. Spe-
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cific benchmarks are used for specific academic or commercial purposes. In the
context of Web caching, the performance of caching proxies is the most widely
studied topic and quite a few benchmarks have been proposed as the standard for
comparison. The Wisconsin Proxy Benchmark was developed in an attempt to
provide a tool to analyze and predict performance of different proxy products in
real-life situations [AC98]. Another product is Web Polygraph, a freely available
benchmarking tool for Web caching proxies. Polygraph distribution includes high-
performance Web client and server simulators. Polygraph has been used to test
and tune most leading caching proxies.

Since the focus of our research is the performance comparison of different cache
consistency algorithms, we use TPC-W benchmark because we want to explore
the cost of keeping strong consistency in an e-commerce environment where object
updates are often and object freshness is mission critical. TPC-W is a transactional
Web e-commerce benchmark and a member of industry and academy accepted
benchmarks designed and supported by he Transaction Processing Performance
Council (TPC). TPC is a non-profit organization founded to define transaction
processing and database benchmarks and to disseminate objective, verifiable TPC
performance data to the industry”. We will discuss TPC-W benchmark in a great

more detail in the next chapter.

"http://www.tpc.org/information/about /about.asp



Chapter 3

TPC-W Benchmark

This chapter gives a brief introduction of TPC-W benchmark. Interested reader

should refer to TPC Web site! for detailed specification and/or industry results.

3.1 Benchmark Description

TPC Benchmark W (TPC-W) is a transactional Web benchmark [Tra01] that sim-
ulates the activities of a 24/7 online bookstore. The benchmark measures both
business-to-consumer (B2C) and business-to-business (B2B) models. It includes
real world features such as security, shopping carts, credit card validation, load
balancing and Web page information from the database. The original purpose of
developing this benchmark is to have a standard e-commerce workload to mea-
sure and compare the performance of specific components of a commercial online

business system, such as Web server, database server, or application server. It is

thttp://www.tpc.org
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desired by customers, who are considering buying hardware/software package for
their e-commerce solutions, that most vendors of such systems test their products
on TPC-W benchmark and publicly announce their performance results.

In order to model varying bookstore sizes, the benchmark permits database size
of 1,000 to 10,000,000 book items in tenfold increments. The number of books
configured is defined as the scale-factor of the benchmark. We will discuss in more
detail the scaling requirements of the benchmark in the following section.

The benchmark defines 14 Web interactions that normally occur in an online
bookstore Web site. The emulated browser (EB), as we will elaborate in Section 3.3,
will go through one or more of these interactions just like a normal customer would
while visiting the online store. For example, a customer can browse pages containing
a list of new arrival or best selling books, or search for a certain book item by title,
subject or author name. A product page will give the customer detailed information
for the book along with a picture of the book’s front cover. The customer may then
place an order for books through the order pages, including credit card verification.
If the customer is new to the bookstore, the Web site will ask him /her to fill out a
customer registration form, and the information will be stored at database server. If
the customer has visited before, the information will be retrieved from database and
filled in the order form automatically. Shopping cart is an important component of
online transaction processing, and the customer is free to add or delete items from
the cart. The customer is also able to review the status of previous orders at any
time. Each of the 14 Web interactions are represented as Web pages on the book-

store Web site. Figure 3.1 gives an example of how an EB might move through the
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Figure 3.1: An Example of EB activities at TPC-W Web site (adapted from [Tra01])
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is part of a computer program. We have our implemented benchmark reside at
URL: http : //gocek.uwaterloo.ca/tpew/serviets|T PCW _home_interaction. This
implementation was originally done by a course project team at University of
Wisconsin-Madison. The detailed discussion of the benchmark implementation is
presented in Chapter 5.

Obviously, the fourteen Web interactions impose different workloads on Web
server, because each of them demonstrates a different kind of user operation, from
read-only to updating database information. The variety enables the benchmark
to test the performance of different components in the System Under Test (SUT),
which is the collection of servers that support TPC-W e-commerce interaction.

The users who come to visit the bookstore Web site might have different inter-
ests. Some might be just browsing, searching for interested books and comparing
prices. Others would have already made up their minds and are ready to buy.
The interactions they will go through would be different too. In order to model
different types of users, the benchmark defines two categories of Web interactions:
browsing and ordering. Browsing interactions include displaying the home page,
searching for an item, viewing product details, etc., while ordering interactions
include the more resource intensive ones such as buying an item, updating items
in the shopping cart, displaying an order, etc. Based on the ratios of these two
categories, the benchmark measures the Web Interactions Per Second (WIPS) for
three different types of mixes, namely Shopping (WIPS), Browsing (WIPSbh) and
Ordering (WIPSo). The Shopping mix (WIPS) models an 80% - 20% ratio between

the browsing and ordering interactions and is intended to emulate a typical user’s



CHAPTER 3. TPC-W BENCHMARK 33

shopping activity. The Browsing mix (WIPSb) models a 95% - 5% ratio and em-
ulates “window shoppers” who spend most of their time browsing the online store
and seldom purchase anything. Conversely, the Ordering mix(WIPSo) has a 50% -
50% ratio for both categories and emulates “power buyers” shopping at the online
store. This mix attempts to mimic a B2B type of workload.

More than 90% of all the Web interactions at the online store are dynamic in
nature, which means that the Web pages generated by the interactions are put
together on the fly, using dynamic data retrieved from multiple sources. Naturally,
caching such data will be difficult, and more detailed discussion could be found in

the next chapter.

3.2 System Architecture

Before looking into the scaling requirements of TPC-W benchmark, it is helpful to
understand the functionality of components that constitute a valid TPC-W envi-

ronment.

3.2.1 Remote Browser Emulator

The Remote Browser Emulator (RBE) is the software component that drives the
TPC-W workloads [Tra01]. The purpose of the RBE is to drive the System Under
Test (SUT) by simulating users using the site to examine and purchase books. Each
simulated user is called an emulated browser (EB). The RBE manages a collection
of EBs. We follow the notion in [Tra0l] that the term RBE includes the entire

population of EBs that it manages. Essentially, each EB sends out HT'TP requests,
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as a Web browser would, and receives the HTML response from the Web server.
Based on the content received EBs randomly make the next request, emulating the
behavior of typical users.

By managing EBs, the RBE needs to make sure that for each user session that
an EB measures, a specific duration of user session is maintained. This is to ensure
that EBs are really emulating the browsing and/or shopping activities of a real
Web user. This is called User Session Minimum Duration (USMD). For each User
Session, the EB generates a USMD randomly selected from a negative exponential
distribution. Readers of this thesis can refer to the benchmark specification for the
calculation formula of USMD [Tra01]. Like a normal Web user, the EB can start a

new user session right after it terminates one. This is controlled by RBE, too.

3.2.2 System Under Test

The System Under Test (SUT) is the integrated part on which we conduct per-
formance evaluation. As displayed in Figure 3.2, this part consists of Web server,
application server, database server, as well as Web objects such as image files that
are stored on server file system. The network interface card, which is required to
form the physical TPC/IP connections, is also regarded as part of SUT.

Although performance test could focus on certain component of SUT and only
care about that part, each component of SUT as shown in Figure 3.2 must exist to
perform a valid run. The SUT performs all the operations required for successful
Web interactions, such as required database access and communication between EB

and Payment Gateway Emulator (PGE).
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Figure 3.2: Model of the Complete Tested System (adapted from [Tra01])

3.2.3 Payment Gateway Emulator

The Payment Gateway Emulator (PGE) represents an external system that au-
thorizes payment of funds as part of purchasing transactions [Tra0l]. This part
usually includes client message encryption, generating authorization code and es-
tablishing secure socket layer (SSL) session for authorization security check, as well
as returned message decryption. In a real e-commerce Web site, this component
is critical and indispensable for customer to conduct secure payment transactions.
However, whether the PGE performs well or not is trivial to our experiments. As

long as we simulate the response time delay properly, we can get around the ab-
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sence of a PGE. In our experiments, we don’t have a full-functioning PGE. Instead
we always assume that the information customer entered is valid and will receive
positive acknowledgement from PGE so that the EB can go ahead and complete
the ordering transaction. This is a simplifying assumption that we made to keep
us from extra effort of developing such an emulator and at the same time, our
experiments are still valid because PGE is not part of SUT. Meanwhile, we have
reasons to believe that PGE component is not mandatory to the benchmark. More

discussion will follow.

3.3 Scaling Requirements

The intent of the scaling requirements is to maintain the ratio among the Web in-
teraction load that is experienced by the SUT, the size of the tables accessed by the
interactions, the requirement space for storing related information, and the number
of EBs generating the transaction load [Tra0l]. The throughput of the TPC-W
benchmark is driven by the activity of the EBs, each of which emulates exactly
one user session at a time. In order to increase throughput demand on the SUT,
the number of EBs has to be increased too. Obviously, the configured EBs must
remain active and generate Web interactions throughout the entire measurement
interval [Tra01].

Besides the number of EBs, database size is another scaling factor that will affect
throughput. According to the benchmark specification [Tra01], valid database sizes
are 1,000, 10,000, 100,000, 1.000,000 and 10,000,000 book items. TPC-W results

can only be compared at the same scale factor level; in other words, the performance
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result under a database size of 1,000 items cannot be compared with that of a
database containing 10,000 items.

Let’s take a look at the database component of SUT. There are altogether 8
tables that are required by TPC-W: Customer, Country, Address, Orders,
Order_Line, Author, CC_Xacts and Item. The detailed field description of
these tables could be found in Appendix B. The number of records in Item ta-
ble is explicitly specified as one scale factor of the database, i.e., from 1,000 to
10,000,000, representing an online bookstore from very small size to a significantly
large one. For each of the emulated browsers, the database must maintain 2,880
customer records and associated order information, and the sizes of most tables are
determined by either the number of EBs or the number of customers.

The reported WIPS throughput is required to satisfy the following inequalities:

(number of EBs)/14 < WIPS < (number of EBs)/7

According to the specification, the intent of this requirement is to prevent
throughput that exceeds the maximum, where the maximum throughput is achieved
with infinitely fast Web interactions resulting in a null response time and minimum
required think times. In fact, from our experiments, we found that it is very dif-
ficult to get even close to the upper bound, given the fact that we used a positive
acknowledgement generator to emulate the PGE. If a full-functioning PGE is in
place, we believe the resulting WIPS will be close to the lower bound conceptually.

However, some WIPS results in our experiments are below the lower bound. The
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reason is that we added the delay at network transfer and application server side.
The limited processing capability of our application server makes the server delay
inevitable. The processing at cache side takes time, too, which affects WIPS as
well. Setting up the lower bound helps tester to verify whether the SUT has been

over-scaled.

3.4 Performance Metrics

The TPC-W benchmark measures the number of successful Web Interactions Per
Second (WIPS), given a particular workload and response time constraints.

Each Web page is usually made of several components (e.g. texts, forms, images,
etc.), which, when put together, form the entire Web page in the browser. Each of
these components are unique objects and have to be retrieved separately from the
Web server. A Web interaction is defined as the complete transfer of a Web page,
including all objects, from the Web server to the user’s browser.

Besides WIPS, the benchmark also measures the response time of each success-
ful Web interaction, i.e., the period between the time when the first byte of the
first HTTP request of the Web interaction is sent by the EB to the SUT, to the
time when the last byte of the last HT'TP responses that completes the Web inter-
action is received by the EB from the SUT [Tra0l]. As we discussed in Chapter 2,
response time, or client latency, is an important performance indicator of a Web
caching system. It shows whether the extra delay due to the introduction of a cache
consistency or replacement algorithm is kept to a minimum. It also shows whether

the caching architecture would have adverse impact on the overall system perfor-
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mance. Definitely, WIPS can also measure that, because it indicates the system
throughput.

Another term that is defined in the benchmark specification is user think time.
It is the period between the time when the last byte of the last Web interaction
is received by the EB from the SUT, to the time when the first byte of the first
HTTP request of the next Web interaction is sent by the EB to the SUT [Tra01].
Like USMD, the value of each think time must be taken independently from a
negative exponential distribution. Refer to the benchmark specification for detailed
computation method [Tra0l]. The average duration of the think time over each
measurement interval, for each type of Web interaction, must be no less than seven
seconds and no more than eight seconds.

The performance of the SUT under a constant overload state is also measured
by TPC-W. This test helps demonstrate system behavior when it is driven with
more than the normal load. For a Web server or an online application server, this
is likely to happen when many users visit the Web site at the same time, or certain

portions of the Web site suddenly becomes popular.

3.5 Benchmark Implementation

Since the first version of TPC-W benchmark specification was publicly announced
in 1999, the benchmark has been implemented using different programming lan-
guages on various platforms. We considered two implementations: one by IBM
Toronto Research Lab on Linux system, which was written in C++ language, and

a pure Java version implemented by a team at University of Wisconsin-Madison.
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The former implementation was not publicly available, while the latter was online
with complete source code and installation guide. Considering the compatibility
advantage of Java implementation, we chose the latter package, and implemented

all our cache consistency algorithms on top of it.

3.6 Why TPC-W

The reason we chose TPC-W to study cache consistency algorithms is because
TPC-W 1s a Web commerce benchmark and it generates workloads that can in-
volve frequent object update at server side. It models a real-world e-commerce

Web site, whose activity and performance is of great interest.



Chapter 4

Evaluated Consistency Algorithms

Cao and Liu [CL98] compare the performance of three cache consistency algorithms:
adaptive TTL, polling-every-time and invalidation. The first one enforces weak
cache consistency, while the latter two maintain strong consistency. Polling-every-
time, as a strong consistency algorithm, is known for its inefficiency, because, under
this algorithm, the number of IMS messages reaches the maximum. In our research,
we are more interested in strong cache consistency mechanisms. Besides Polling-
every-time and Invalidation that were examined in [CL98], we add Lease algorithm
as per our classification in Table 2.1. We also evaluate and compare the performance
effect of TTL algorithm, since it is the most popular consistency algorithm in the
“weak” category. Our evaluation of these algorithms is done within the framework
of a recognized benchmark.

We are interested not only in consistency algorithms, but the location of the
cache as well. For the same consistency algorithm, a browser cache will have dif-

ferent performance impact on the system compared to a proxy cache or server side
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cache. Conceptually, the contribution of server cache is limited due to its physical
location, i.e., it is only capable of caching contents on one single server. Because of
this, we ignore the possible deployment location of server cache in our research. We
implement each of the examined algorithms both in a browser cache and a proxy
cache, and compare the result horizontally (per algorithm) and vertically (per lo-
cation). We implement all these algorithms on top of the Java implementation
of TPC-W benchmark from University of Wisconsin-Madinson®. In order not to
change the benchmark code, we follow the class definition that was already in the
existing Java code. We add two classes, CacheObj and Cache, for each caching al-
gorithm, and all the necessary operations according to individual algorithms. They

will be discussed in more detail in following sections.

4.1 Cache Replacement Algorithm

Any real-world caching system needs some replacement mechanism because of its
limited storage space. In order to implement a functioning cache for our research,
we need to choose a replacement algorithm as well. Since the focus of our research is
not replacement algorithms, we just use the widely accepted LRU-SIZE algorithm
[RS02] as our replacement policy. The algorithm sorts cached objects according to
their access frequency and size. The least recently used objects will be evicted first,
and if there are two or more objects that are equally least recently used, the one
with the biggest size will be evicted first.

In our implementation (see Figure 4.1), we separate each cache into two storage

Lwww.ece.wisc.edu/~pharm/tpcw.shtml



CHAPTER 4. EVALUATED CONSISTENCY ALGORITHMS 63

CachedURLsD 0 an array that stores the information of all cached Web pagesl
NewSizell 0 the size of the new object to be stored in cachell
removeSizell 0 the size of the object to be removed from cachel
CACHELIMITD 1 the storage limit of the cachel
CurrentTotall 0 current total storage size of all the cached objectsl
Ko ] the index of the object to be removed from cachell

0

maxAgell the access frequency of an object, the less frequent, the biggerl

if (CurrentTotal + NewSize) < CACHELIMITO
return;l /IThe cache still has enough space, no need for replacement(l

while(CurrentTotal + NewSize > CACHELIMIT) {0
leti=1; // point the cursor to the first element of CachedURLSs[
let K=1:0
let maxAge = 0; //initializel
while it's not the end of the cache list {0
if the age of object CachedURLs(i) is bigger than maxAge {0
assign the age of CachedURLSs(i) to maxAge;l
let K =10
assign the size of CachedURLSs(i) to removeSize;l
)0
else if the age of object CachedURLSs(i) is equal to maxAge {0
if the size of object CachedURLs(i) is bigger than removeSize {0
assign the age of CachedURLSs to maxAge;l
let K =10
assign the size of CachedURLSs(i) to removeSize;l

10

remove object CachedURLs(K) from cache;l
CurrentTotal = CurrentTotal - removeSize;l

Figure 4.1: Pseudo-code of LRU-SIZE cache replacement algorithm

sections, one for HTML pages and the other for images. There are two reasons for
this arrangement. First, we want to speed up cache object search. By grouping,
the cache manager doesn’t need to search Web pages in image objects, nor does it
need to search images in a long list of Web pages. Second, since the size of image
files is normally much larger than HTML pages, we don’t want the replacement

algorithm to always remove image files from the cache. The replacement takes
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place only when the total size of the two sections reaches cache capacity. In other
words, these two storage sections share the total cache. If a new image file needs
to be stored in cache but there is not enough space, then the cache manager will
first remove the objects in the image storage section, and if there is still not enough
free space after all images have been evicted, object removal will take place in the
HTML page section. However this situation will never happen unless the cache size
is so small that it fills up with objects that are all HTML pages (because images

are always retrieved after HTML pages).

4.2 Infinite Caching

Infinite caching is not a consistency algorithm. It does not enforce any cache
consistency at all. All it does is to cache all the objects that EB ever requests.
This will give us the upper bound of cache hit ratio and WIPS throughput.

We are also aware that infinite caching will not always give upper bound perfor-
mance result although conceptually it should. In some cases it might even perform
worse than a finite cache or a system without cache. This is because as the cache
size grows, it takes longer time for the cache manager to search through the cache
to make decision on whether it is a cache hit or cache miss. If there are too many
cached objects, it might be faster to simply request the object directly from origin
server. There might be a certain cache size threshold for a specific Web environ-
ment. In our research, we are not going to find such a threshold, because even if
the threshold does exist, it might take extremely long time (to fill up a big-enough

cache storage) to get to that state.
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4.3 Time-To-Live

We make the simplifying assumption that image files will never expire, therefore
we don’t worry about the TTL value of images. For the TTL values of HTML
Web pages, we follow what is required by the benchmark specification, i.e., we set
the TTL value of most pages to be 30 seconds. For those pages that don’t require
validity check every 30 seconds, we set their time-to-live to be 30 seconds to enforce
stronger consistency. Similar to polling-every-time, we created a server-side Java
class called TTLSocketManager that keeps track of updated pages. This socket
manager handles both page-update messages from serlvets and IMS messages from
EBs.

Figure 4.2 gives the pseudo-code of TTL algorithm implementation.

4.4 Polling-Every-Time

By now, it’s conceptually clear that polling-every-time (POL), although maintain-
ing strong cache consistency, is inefficient in the sense that a major portion of
validation messages might turn out to be just unnecessary. However, it could be
beneficial and efficient if used in an environment where most objects are of large
size. This will give us a great saving by sending IMS messages instead of complete
document transfer. In TPC-W benchmark environment, the size of most HTML
documents are around 5-10KB. Image files, which usually have size of 250KB, don’t

need to be polled because their validity is always assumed. On the other hand, the
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Upon receiving the client URL request, check the cache to see if the page is in cache;l

point the counter to the first URL in cache;l
for all the cached pages, dol
if the URL of current page is the same as the requested URL {0
if the TTL of the current cache page has not expired {0
return the corresponding Web page to the EB;lI
set the access frequency value of current object to 0;0
10
else {0
send If-Modified-Since message to Server ;0
wait till reply from server is received;l
if the URL has expired {0
inform EB to retrieve the Web page directly from origin serverf
10
else {0
set the access frequency value of current object to 0;0
return the page to EB;0
10
break out of the for-loop;ll

10
else {0
increase the access frequency of current object by 1;0
go to the next cached page;l
}0

endforl

Figure 4.2: Pseudo-code of Time-To-Live algorithm

size of an IMS message is in the order of bytes, therefore, we still expect that
polling-every-time performs better than no cache.

From the perspective of implementation, it is not hard to send IMS message to
server every time an EB submits a URL request. At server side, we need to record
any database changes as the result of Web transactions. Therefore, we created a
server-side Java class called PollSocketManager, which keeps a list of updated pages
and their update time. We studied TPC-W benchmark carefully and found that
only the shopping cart operation could result in database update. Therefore, we

changed the shopping cart servlet to have it notify the socket manager of any page
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updates so that the socket manager updates its list accordingly.

We implemented POL by making slight changes to TTL algorithm. Instead
of checking whether the TTL value of the cached object has expired, whenever a
cache hit happens, the cache manager sends out an IMS message immediately to
validate the freshness. From implementation perspective, POL has the advantage

of simplicity.

4.5 Invalidation

As discussed in Chapter 2, invalidation algorithm requires server side bookkeeping.
The most strict invalidation approach requires that the server send out invalida-
tion messages, wait for acknowledgement notice from all the parties to which the
messages were sent, and then proceed with the update operation. As we argued,
the delayed update does not make much sense because the semantics of the Web
page has changed anyway.

For invalidation algorithm, we changed the shopping cart servlet to have it send
out an invalidation message as soon as it is triggered, and the update operation
is not delayed. Notice that the servlet sends out only one message at a time,
and this message is sent to a version control manager that resides on RBE. Upon
recelving this message, RBE will go through all the EBs that it manages and
remove all the objects that each EB has which become out-of-date due to the
update operation that has taken place on the server. Again, at this point proxy
cache has an advantage over client cache, because in the case of proxy caching, the

version control manager needs to evict objects from only one cache, compared to
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browser caching.

The content of the invalidation message is very simple, just the item id. Upon
receiving the invalidation message, all the Web pages that contain this item id
will be deleted. In the real world, however, this might be unnecessary, because
even some portion of the item information is changed in database server, the Web
pages that contain general information of the item would still be up-to-date and not
affected by such update. Here we make a stronger assumption that once any part
of an item information (e.g., title, amount available, unit price, etc.) gets changed,
all the pages that contain any information about this page will be out-of-date, and,
therefore, cached copies should be evicted.

The version control manager extends the role of server as an invalidator. It
is similar to the socket manager classes we implemented in polling-every-time and

TTL, except that it resides at proxy.

4.6 Lease

As we discussed in Chapter 2, it is a bit tricky to assign appropriate lease values
to Web objects. If it is too long, server has to wait longer before an update can
take place. But if it is too short, more IMS messages will have to be sent. In our
implementation, we treat all the online store book items equally and assign the
lease value to be 20 seconds, a bit shorter than the standard time-to-live value in
TTL algorithm. This might result in a few more IMS messages than TTL, but it
is expected to perform better than POL while keeping strong consistency.

We created a Java class called LeaseServerManager, which resides on the server
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and keeps track of all the requested item IDs. When the server is about to make
changes to a certain item, it checks if that id is in the request list, if so the current
server process will idle until the lease for that id has expired. The process on client
side 1s similar to that of TTL. As long as the lease on an object is still valid, the
cache manager could satisfy user requests by simply return the cached copy without
validating the object. Once it gets expired, the next hit will result in the validity
check.

Figure 4.3 gives the pseudo-code of Lease algorithm implementation.
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Server Side:[
if a servlet is going to issue update statement to the database {0
send a message with the item ID to LeaseServerManager;l
if there is a valid lease for that ID {0
keep current servlet sleeping until the lease expires;l
10
issue the SQL statement to database;ll

il

Client Side:l
upon receiving the client URL request, check the cache to see if the page is in cache;l
for all the cached pages, doll
if the URL of current page is the same as the requested URL {0
if the lease of the current cache page has not expired {[I
return the corresponding Web page to the EB;ll
set the access frequency value of current object to 0;0

il
else {0
send If-Modified-Since message to Server ;0
wait till reply from server is received:l
if the URL has expired {0
inform EB to retrieve the Web page directly from origin serverl
il
else {0
set the access frequency value of current object to 0;0
return the page to EB;l
il
break out of the for-loop;l
il
i
else {0

increase the access frequency of current object by 1;0
go to the next cached page;ll

}0

endforll

Figure 4.3: Pseudo-code of Lease algorithm
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Chapter 5

System Model and Experiment

Setup

5.1 System Model

In this section we introduce the system model that we set up for the performance
study. We set up our model in accordance with TPC-W benchmark requirements.
At the same time, we add application server queuing manager component to the
model to reflect application server delay. Figure 5.1 is an overall picture of our

system model.

5.1.1 Client

According to the benchmark specification, the RBE acts as the driving program

for the benchmark workload. It creates multiple threads during runtime, which
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Server-side componentsl

Database Serverl

—¢
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AS Queuing Managert
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T

Proxy Serverl

Client-side componentsl

Figure 5.1: Simulation System Model

simulate real Web users who browse the online bookstore Web site and place orders
to buy books. The user thinktime, as introduced in Chapter 3, is calculated by the

RBE. Individual EBs are not allowed to communicate or share information directly
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with each other.

5.1.2 Proxy Server

Proxy server is not mandatory for an E-commerce Web site, because Web interac-
tions don’t need to go through proxies. However, we have the proxy server com-
ponent in our system for the following reasons. First, most individual customers
access the Internet through ISPs, which act materially as proxies. Second, a RBE
acts exactly like a proxy server to all the EBs it manages. We would rather have a
proxy server component here to give RBE a physical location in the architecture.
We shall point out that we did not implement a full-fledged proxy server. Instead
we implemented proxy-side cache together with RBE. The measurement interval of
the benchmark is set and checked by RBE as well. Once the measurement period is
up, the RBE will force all currently-running emulated browsers to stop and produce

statistics reports based on information gathered during the measurement interval.

5.1.3 Database Server

We use IBM DB2 Universal Database Version 7.2 (Enterprise Edition) as the
database server. We used the default installation configuration, but changed one
parameter, a DB2 variable called ‘maxappls’, which is the maximum number of
active applications allowed by DB2. The default value is 40, which we changed
to 1000. Since we are simulating the real world Web behavior, there can be a lot
more than 40 concurrent users and each user might try to connect to DB2 indepen-

dently and simultaneously. According to the benchmark specification, the database
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contains 8 master tables (see Chapter 3). To build up the whole set of data, we
use a database population program that is shipped with the Wisconsin Java im-
plementation kit. When we populated the database, we assume that there are at
most 100 concurrent users accessing the online bookstore, and the bookstore sells
100,000 book items. These are the parameters required by the database population

program.

5.1.4 Web Server

Since our main objective is to compare performance of cache consistency algorithms
in a Web e-commerce environment, our criteria of choosing the Web server is one
that is widely used, easy to configure and easy to use. The Wisconsin kit is claimed
to have been tested under various Web Servers such as Java Web Server, Jakarta
Tomcat, Jigsaw Web Server, etc. We set up the environment with Jakarta Tomcat
3.2.1, and found Tomecat to be pretty easy to use and robust. Although it is not
a fully functioning HTTP server, it’s powerful enough for our experiments, partly
because it supports servlets.

According to the nature of the Remote Browser Emulator, the main program
creates multiple threads, each of which simulates a real Web user who performs
browsing or shopping activities on an online bookstore. Upon each URL request
that is generated by an emulated browser (EB), there is a servlet request to the
Web server. A connection is set up between the client and the Web server. For
example, if 4 EBs are requesting the same Web page at the same time (or within a

very short time period), there will be 4 concurrent connections to the same servlet
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on the server. The capability of servlet container on the Web server determines how
many concurrent requests it can handle without crashing the server. Commercial
Web servers should generally have much more powerful servlet containers than Web
servers that are free of charge, such as Jakarta Tomcat and Jigsaw. Apache, another
freely available Web server, is more powerful than Tomecat, but it still has to use
Jserv or Tomcat as its servlet container component.

We also tried to use Java Web Server and Jigsaw. We visited Sun Microsystems
Inc.’s Web site, and found out that on February 7th 2001, Sun announced the end
of life of Java Web Server!. Using this product might result in lack of support
of new technology and protocols in the future. Jigsaw Web server is W3C’s Web
server platform. However we found that it is not as easy-to-use as Jakarta Tomcat,
although it takes much more effort to install and configure Tomcat rather than
Jigsaw. For the above reasons, we still decided to use Jakarta Tomcat 3.2.1 as
our Web server and stand-alone servlet container. This results in its performance
limitation in scalability that we have to get around within our implementation.
On the other hand, stand-alone servlet containers perform much faster than out-of-
process servlet containers, which have better performance in many other measurable

ways such as scalability and stability.

5.1.5 Application Server

Application server is a critical part of an e-commerce Web site. Generally speaking,

it contains process flow and logic of the business. It also has security mechanisms

thttp://www.sun.com /software/jwebserver /index.html
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that prevent private customer information being stolen by hackers. The application
server is also respomsible for interacting with external system which authorizes
payment of funds as part of the purchasing transactions.

The Java implementation kit from University of Wisconsin-Madison does not
have the application server part. Instead, it contains a set of servlets that respond
to Web user requests with corresponding information. To some extent, this could
be regarded as application server, but it does not model the response time delay
and concurrent service capability of a real application server. In order to simulate
a real Web e-commerce environment, we implemented the application server queu-
ing model based on the paper written by Edwards et. al [EBH*01]. The authors
introduce a methodology that uses an analytic model to simulate e-commerce ap-
plications. This model is implemented using Lotus 1-2-3 spreadsheet. It considers
page size, number of images in each page, whether or not using SSL, and whether
applying cache as four factors that determine server response time. The basis of
the model creation is a case study of ShopIBM Web site. We worked with one
of the authors to determine the server response time and application server capa-
bility in our experiment environment. We adjusted the spreadsheet according to
our scenario and found that the average response time of the application server
should be 0.5 second. We changed the application service capability and found
that when we set the number of concurrent requests the application server could
service to 41, the response time is most close to 0.5 seconds. Therefore, we set
the application server in our system model to be able to handle 41 concurrent user

requests. All the upcoming requests from clients will be stored in a request queue
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first. In other words, if the server receives 50 requests at a time, 41 of them will be
served immediately and the remaining 9 are placed in queue. The queuing manager
sends acknowledgement back to client based on its service capability. We also add
time delay during the servlets execution to simulate the application server response

factor.

5.1.6 Network Connection

We made a simplifying assumption that the client side (proxy and individual Web
browsers) and remote server are connected through high-speed network, i.e., we
didn’t simulate the data transfer exactly the same as real world. Our simulation
model is that for each data transfer, the network delay time is decided by a randomly

generated number between 1 to 3 seconds.

5.2 Experiment Setup

5.2.1 System Parameters
Hardware configuration

In our experiments, the server is a PC with Pentium IIT 1GHz CPU, 512MB RAM
and 80GB hard disk. We install Tomcat Web server, all servlets and image files for
the bookstore, and application server on it. Client machine is a PC with Pentium
ITT 800 MHz CPU, 128MB RAM and 30GB hard disk. It is used both as proxy
server that runs RBE, and client machines because there are multiple emulated

browsers generated and managed by the RBE. Both the server and client are on
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a department network with 100MB data transfer speed. Both of them run on

Windows 2000 operating system.

Database Size (specified by TPC-W)

As discussed in Chapter 3, Database scaling is defined by the size (number of rows)
of the ITEM table and the number of EBs configured for WIPS, i.e., it is defined
by the size of the store and size of the supported customer population. The size
of ITEM table, according to the benchmark specification, must be chosen from the

set of defined scale factors as follow:

1,000; 10,000; 100,000; 1,000,000; 10,000,000.

In order to conduct our experiments under a database environment with rep-
resentative size, we initially decided to have 100,000 items for the database, i.e.,
we want to simulate a mid-sized online bookstore. However, experiment results
show that the time delay at server side was so long that the system throughput is
far below our expectation. The reason for this is the limitation of Windows 2000
operating system itself. According to the Java implementation of the benchmark,
all the image files for book items are stored in file system instead of database. For
each book item, it requires a regular image file of around 250KB, and a thumbnail
file of about 6KB. 100,000 items require a file structure of 100 directories, each
directory containing 2,000 files (each item needs two image files), and the total
size of all the images is approximately 26GB. We found that the time delay at

searching image files in the file structure is significantly long. Several times the
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process went into “not-responding” state. Because of the hardware limitation, we
changed the database size to have only 10,000 items. We also fixed the number
of EBs to be 100 when populating the database. During experiments, we plan to
still fix the item number (because it determines the size of all database tables, and
the directory structures for storing images) as one of the runtime parameters of the
benchmark, while varying the number of EBs in an attempt to see the impact of

client population on system performance.

The number of EBs (specified by TPC-W)

Theoretically speaking, there is no limit on the number of EBs that we can specify
to run the benchmark with. The more EBs we specify, the heavier is the workload
that the Web server, the application server, and the network between server and
proxy will experience. If the benchmark runs with more than 40 EBs, the capability
of the application server will force some of the EBs to wait for some time before
their requests could be served. If we apply client-side caching algorithms, since
all our caches are implemented in main memory, the cache size for each EB is
limited by the number of EBs due to the 128MB maximum client RAM space. We
change the number of EBs at first to see the impact of user population on the
system throughput under no-cache and infinite-cache scenario. While comparing

the performance of different consistency algorithms, we fix the number of EBs to

100.
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Web Interaction Mixes (specified by TPC-W)

The benchmark defines three distinct Web interaction mixes: browsing, shopping
and ordering. Browsing mix involves 95% browsing and 5% ordering, shopping mix
has 80% browsing and 20% ordering, while ordering mix involves 50% browsing and
50% ordering. Since we are more interested in a Web commerce environment where
database update happens from time to time, we choose to focus on the ordering
mix. In other words, no matter what the system parameters are, half of the Web
user URL requests are browsing related and the other half are ordering related. The

URL generation rules specified in the benchmark specification is strictly followed.

Cache size

Except for the infinite cache, we specify the maximum cache capacity in the pro-
gram. This means when the benchmark has been running for a certain period of
time, the caches will become full and LRU-SIZE cache replacement algorithm is
used to remove the least recently accessed Web object(s) and make room for newly
arrived ones.

For client-side cache, we start with 100KB, and increase in increments of 100KB
up to a cache size of 800 KB. For proxy-side cache, since multiple EBs (simulated
Web users) will share one single cache residing on the proxy, we set its initial
capacity to be 50 MB, and increase it by 10 MB. The maximum cache size will be
100 MB (almost reach the memory limit). This maximum value can be increased

by increasing the available RAM on the testing machine.
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Measurement Interval

We started running the benchmark with an initial measurement interval of 1 hour.
Later on, in order to find the performance bottleneck for each algorithm (especially
TTL), we increased the measurement interval by 1 hour each time. The maximum
time duration of benchmark running is 6 hours. For the proxy-side infinite cache, a
3-hour benchmark running with 100 EBs (concurrent Web users) will increase the

cache size up to 100 MB.

5.2.2 Performance Evaluation Metrics

Following are the performance metrics we use in our research to evaluate consistency

algorithms.

Web Interactions Per Second (WIPS) (specified by TPC-W)

The number of Web Interactions Per Second (WIPS) is one of the two primary
metrics of the TPC-W benchmark (the other one is a price performance metric
defined as Dollar/WIPS, but it is not quite relevant to our research). Basically
the value should be stable in a small range given fixed EB number, cache size
and server response time, and it should increase with more EBs. But we expect
a boundary value (maximum throughput) where the WIPS becomes stable even

when the number of EBs increases dramatically.
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Response Time (specified by TPC-W)

In the TPC-W benchmark specification, response time is measured per successful
Web interaction and used as an indicator of how fast the System Under Test (SUT)
could perform. In the Web caching literature, response time is one of the most
important performance metrics for caching architectures and algorithms. During
our experiments, we collect response time for every successful Web interaction. Such

response time includes network delay and therefore corresponds to client latency.

Hit Ratio

In our experiments, we define cache hit ratio as the total number of bytes that
all the EBs received from caches divided by the total number of bytes all the EBs
actually received, either from cache or original server. The total number of bytes
caches provide to end users is called saved traffic, and it is calculated by recording
the size and number of hits on each cached object. We keep a global count in
each cache to avoid miscalculation. This is mainly because when a cached object
is evicted from cache by LRU-SIZE algorithm, all the information of this object is
lost, such as its size and number of hits on the object.

Stale hit ratio is an important measurement factor for consistency control algo-
rithms. We measure this result by calculating the portion of stale cache hits over
the total number of hits. For a fixed cache size, we want to find out whether this
value gets bigger or smaller as measurement interval increases. It is possible for

both directions.
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Traffic

There are two types of measurement traffic in our experiments. The first is the total
number and size of control messages. For TTL algorithm, there will be If-Modified-
Since and server acknowledgement messages. For invalidation and polling-every-
time algorithms, there will be only one-directional control messages transferred.
This more or less affects network traffic. The other type is the total size of all Web
objects (HTML pages, images, etc.). This is the majority of online traffic. We are
going to explore them separately in our experiments.

In [CDF*98], the authors argue that in addition to high-level performance met-
rics such as the above-mentioned ones, we should also consider low-level details
such as connection aborts and network delay because of heterogeneous bandwidth
environment (e.g., modem pools connected to faster networks). In our research, we
ignore the low level effect and focus mainly on the above metrics that will differen-
tiate the performance of various cache consistency algorithms and their deployment
locations.

We should point out that the overhead due to data collection for the performance
metrics is negligible, because during the experiments we only record the timestamp
at the beginning and the end of a Web interaction). Data is collected during the ex-
periment, but all calculations are performed at the end of the measurement period.
Thus, the only overhead is due to data recording, which is negligible. Similarly,

cache statistic is also performed after all the Web interactions are complete.



Chapter 6

Experiments and Results

In order to compare the impact of different cache consistency algorithms on system
performance, especially strong consistency algorithms, we conduct extensive exper-
iments based on the performance metrics we listed in the previous chapter. Our
results below are categorized by these metrics. For each set of experiments, we first
get the boundary conditions, i.e., worst and best cases. The worst case, we believe,
is when there is no cache, which gives us the lower bound of the performance. The
upper bound is when the benchmark runs with proxy-side infinite cache. We don’t
have infinite space to implement a real infinite cache, but as long as there is no
cache object removal during the whole Web transaction period, the cache could be
regarded as infinite. We did not implement client-side infinite cache because of the
hardware limitation of our experiments. The machine that runs RBE and all the
emulated browsers has only 128MB RAM. If we configure 100 EBs to run with,
the size of browser cache for each EB cannot exceed 1MB. Real world caches are

usually much bigger than 1MB. In our experiments, some browser cache becomes
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full several minutes into experiment. Therefore we gave up exploring deeper with

client-side infinite cache.

6.1 WIPS - System Throughput

At the very beginning of our experiments, we wanted to see what the impact of client
population will have on system throughput under the best and worst cases. We
changed the number of EBs while fixing all other system parameters, and then ran
the benchmark first without cache, then with infinite cache at proxy side. Figure
6.1 illustrates the change of WIPS as a result of change in client population.

We see that having an infinite cache, regardless of client population, the system
throughput is almost twice as high as when there is no cache. For each setting, it
seems that the WIPS goes up linearly as client population increases, but becomes
stable as the number of clients reaches 100. This is due to the limited capacity
of the system itself. According to the benchmark specification, under the ideal
system configuration the WIPS number should reach approximately the number
of EBs divided by 7. In other words, a benchmark running with 100 EBs on an
extremely fast system should get about 14.3 Web interactions per second. This is
far more than what we got from our experiments (for infinite cache with 100 EBs,
our result is about 7.5 WIPS; without cache, WIPS is 3.99). The reason is that
the ideal system configuration assumes an extremely fast Web server, no delay at
application server side, and no delay at the network. This is not feasible in the real
world. In fact, we simulated network delay by following a random distribution of

seconds between 1 and 3. We also added an application server queuing manager
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to simulate the delay at application server side. The system environment we set
up for our experiment is realistic and comparable to real-world Web behavior. The

network delay should not affect the WIPS unless it is the bottleneck.
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Figure 6.1: System Throughput vs Client Population (boundary conditions)

We believe that having the cache located at either client side or proxy server side
will impact the WIPS differently, in addition to the choice of individual consistency
algorithms. Therefore we implemented TTL, Invalidation (INV), Polling-every-time
(POL) and Lease algorithms on both proxy cache and browser cache. Figure 6.2
is the throughput comparison of client-side deployment, and Figure 6.3 shows the
result of proxy-side deployment. As we mentioned before, due to the main memory
limitation, the client-side cache size cannot exceed 1MB. We started with 100KB
and increased it by 100KB till S00KB. As expected, the system throughput increases
as a result of client population increase. Regardless of cache size, INV has similar
throughput as Lease. When cache size is small, TTL beats Lease, but as the size

grows, Lease algorithm outperforms TTL, and INV is always the champion. The
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reason why Lease does not perform as well as INV is that sometimes Lease expires
before the objects actually get updated, which results in extra validation delay.
Expecting that longer lease period might boost system throughput, we experiment
the Lease algorithm with different lease periods. The result is that longer lease
period does improve system throughput, however, it is always lower than INV.
This indicates the advantage of event-driven algorithms over time-based ones in an
online Web commerce environment.

TTL, INV and Lease perform better than POL, although the difference is minor.
One interesting finding is that for client-cache size, 500KB seems to be the optimum
for our system. We could see from Figure 6.2 that the WIPS decreases when cache
size gets larger than 500KB. This is because at a certain point when there are
considerably large number of objects in cache, the time delay due to cache search
more than offsets the time saved by serving object from cache instead of origin
server. In the real-world scenario, if the network connection speed is fast enough,
we don’t recommend having a browser cache of very large size unless the cache
manager has a very efficient hash table or other mechanism for object search.

From Figure 6.3 we could see that the increase of proxy-side cache size does
not have as dramatic an effect on WIPS as client-side cache does. TTL, Lease and
INV still perform very close while outperforming POL. This further proves that a
strong consistency algorithm can do as well as a weak one. Notice that both TTL
and Lease are time-based algorithms, while INV is completely event driven. The
increase of cache size will result in higher cache hit rates for all algorithms, but

for POL, it means more polling messages sent to server, which increases network
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traffic. In a network environment where connection speed is relatively slow, polling-
every-time might perform even worse than having no cache at all.

While running the above two sets of experiments, we fixed 100 emulated browsers
as the client population for the purpose of comparison. In the following experiments,
unless explicitly specified, all results are obtained when the benchmark runs under
the client population of 100 EBs.

After getting all the above results, we made a vertical comparison, i.e., for each
consistency algorithm, we compared the WIPS results of client-side and proxy-side
cache, and Figure 6.4 illustrates the comparison. For comparison purposes, since
the cache size for each of the 100 EBs is 800KB in the case of browser cache, we

chose the proxy-cache result when the cache size 1s SOMB.
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Figure 6.4: WIPS Comparison of consistency algorithms at different locations

Obviously, with proxy-side cache, any of these consistency algorithms performs

significantly better than with client-side cache. This is because proxy-side cache
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increases information sharing, which in turn increases system throughput. At the
same time, we believe that the limitation of our hardware configuration limits client-
side caching performance significantly. We also notice that for client-side cache,
these algorithms don’t have much difference with regard to WIPS. But for proxy-
side cache, TTL, INV and Lease have similar throughput, and are all about 15%
better than POL. The similarity of results at client-cache scenario is mainly because
of the cache replacement time delay due to limited cache size, which constitutes a
majority of factors that affect system throughput. For proxy-side cache, the cache
size is bigger, therefore the impact of polling messages is reflected more significantly

from the results.

6.2 Response Time

WIPS reflects the system capability of handling a large number of user requests.
This is a factor that most online e-business competitors are concerned with. Mean-
while, response time, as another very important performance metric for e-business,
affects directly the degree of customer satisfaction. The famous folkloric §-second
rule 1s a hard evidence. If a Web site takes more than 8 seconds to deliver a page,
the customers are very likely to leave the site. In this section, we present our
experiment results on this critical success factor of e-commerce.

First of all, we want to see the comparison at boundary conditions. Fixing
client population of 100 EBs, we ran the benchmark under different measurement
intervals, from 1 to 6 hours. The benchmark was run first without cache, and then

with proxy-side infinite cache. Figure 6.5 shows the results.
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Figure 6.5: Response Time under boundary conditions

It seems that without cache, no matter how long the measurement interval is,
the mean response time remains almost unchanged. This is because whenever a
user request is submitted, it has to experience the network and application server
delay. By contrast, we can see that with infinite cache, the response time first drops
but then increases steadily although very little. Besides the factor of randomly
generated network delay (same for non-cache scenario), this change in response
time is mainly due to the time delay as a result of cache search. Again, having a
large size cache is not always desirable, unless efficient cache search algorithms are
implemented.

In order to find out the impact of client population on response time, as well
as the cache deployment mechanism, we ran the benchmark with client-side cache
consistency algorithms, fixing cache size of each EB to be 500KB. Figure 6.6 is the
result of the experiments. Then we ran the same set of experiments with proxy-

side consistency algorithms, fixing proxy cache size to be 100MB. The experiment
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results are displayed in Figure 6.7. We notice that regardless of client population or
cache location, INV performs a bit better than TTL and Lease (less response time).
This suggests that an event-driven consistency algorithm might be more suitable for
online e-business than time-based ones. On the other hand, POL is event-driven,
too (because validation message is sent out only when a cache hit happens), but it
results in the longest response time, and it becomes worse as the number of EBs
increases. This is because, as the client population increases, the objects stored in
proxy cache accumulate quickly and after a while it takes significantly longer to
search an object in the cache, and even if the object is found in cache, the cache
manager still needs to send out an IMS message to validate its freshness. Therefore,
for that Web interaction, end user will experience not only cache search delay, but
network and application server delay as well. Increased number of EBs result in

longer queuing waiting time at application server side.
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Figure 6.6: Response Time using client-side consistency algorithms
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Figure 6.7: Response Time using proxy-side consistency algorithms

We also conducted a vertical comparison, comparing the response time difference
of each consistency algorithm under both client-side and proxy-side caches. Figure
6.8 gives us the comparison result. We concluded that POL is the least favorable
algorithm regardless of cache location. As we can see from the system throughput
experiments, if the network transfer speed is slow, POL will perform even worse.

For response time, we expect the same result.

6.3 Hit Ratio

Hit ratio is a performance metric for caching deployment. It does not make sense
to measure the hit ratio if there is no cache at all. Therefore in our boundary
case, we only ran the benchmark with proxy-side infinite cache. We first fixed

the measurement interval of 1 hour, changed the client population from 10 to 200
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Figure 6.8: Response Time under different cache locations

concurrent EBs, and ran the benchmark with a proxy cache that has 100MB storage
space. We found that up to 50 EBs there was no cache replacement during the 1-
hour execution. However, when there are more than 50 EBs, the proxy cache soon
fills up. We terminated the benchmark when cache manager realized that there
was not enough cache space for the next object, and analyzed the Web interactions
up to that moment. Figure 6.9 shows the cache hit ratio under different client
populations. The result shows that with 100 EBs, we could achieve hit ratio of
about 43%. If the cache space is big enough, this number is expected to be higher.

We then fixed the measurement interval to be 1 hour, changed client population,
and ran the benchmark with different consistency algorithms first with client-side
cache, then with proxy-side. Figure 6.10 shows the change of cache hit ratio under
client-side cache deployment, and Figure 6.11 gives the result of proxy-side deploy-

ment. From the results we did not see much difference, because the cache hits
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Figure 6.9: Cache hit ratio under proxy-side infinite cache

include both valid and stale hits. We analyzed the data and separated stale hits

from valid ones, Figure 6.13 displays the results.
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Figure 6.10: Comparison of client-side consistency algorithms
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Figure 6.11: Comparison of proxy-side consistency algorithms

We extracted from the above experiment those data when the client population
is 100 EBs. Then we compared the hit ratio under either client-side or proxy-side
cache deployment. Figure 6.12 illustrates the results. Still, INV outperforms all
other algorithms and achieved the highest cache hit ratio. Notice that for proxy-
side cache, POL has almost the same cache hit ratio as TTL, while both of them
achieve a little less than Lease algorithm does. The explanation is that we count
both valid and stale hit as cache hit. Therefore, even though the TTL value has
expired and the cached pages are stale, cache hit could still happen on these pages.

We are also interested in the stale hit ratio comparison under various consistency
control algorithms. Figure 6.13 shows the stale hit ratio while applying TTL and
POL both at client and proxy side. We can see that the stale hit ratio is not very
high in each case. This is because an online bookstore does not have as frequent

data updates as other transaction systems do, therefore most objects remain valid
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Figure 6.12: Cache hit ratio under different cache locations

for quite a while. Meanwhile, even if an object is updated, it might not be requested
at all. In other words, in the TPC-W scenario, cache hits don’t often happen on

stale objects.

6.4 Traffic

In order to measure the impact of consistency algorithms on network traffic, we
made comparisons on two domains. First, we analyzed the control messages gen-
erated while running the benchmark. Since the size of the control messages, either
IMS or acknowledgement notice, is in the order of bytes, we just counted the total
number of messages for each algorithm. Figure 6.14 shows the total number of

control messages under each algorithm, both at client side and proxy side. The
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Figure 6.13: Stale hit ratio under different cache locations

measurement interval is fixed at one hour. We could see that POL generated a
lot more control messages than other algorithms did. This creates extra delay
experienced by end user.

Second, we tried to compare the total bytes of objects that users receive and the
total bytes of objects that are served by cache. We fixed 100 emulated browsers as
client population, 1 hour as the measurement interval, and set the cache at proxy-
server side. We then ran the benchmark under infinite caching, TTL, INV, POL
and Lease consistency algorithms. Figure 6.15 gives the experiment results.

We then conducted the same set of experiments with client-side cache. This
time we don’t have boundary case since we did not implement client-side infinite

cache due to the main memory storage limitation. Figure 6.16 gives the experi-
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ment results. We don’t see much difference on traffic savings for these algorithms,

although it seems from the figure that Lease algorithm achieves the best.

Our
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conclusion is that, with respect to network traffic saving, these algorithms perform
similarly. Considering that INV and Lease provide strong consistency control, we

would recommend either Lease or invalidation algorithm as the better choice.
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Figure 6.16: Traffic comparison under different client-side consistency algorithms

We should point out that our experiment system is not in an isolated environ-
ment. Instead, it is part of the campus network whose data transfer speed is not
stable from time to time due to other network activities. During our experiments,
the network sometimes became extremely congested, which resulted in significantly
lower system throughput and much longer response time. It is not reasonable that
we include such results in the performance comparison and analysis. Therefore,

this set of results are discarded.
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Conclusion and Future Work

7.1 Contributions

We identify following aspects as the contributions of our research.

First of all, we use TPC-W benchmark, the industry standard for measuring
e-commerce activity, as our testbed. The advantage of this is that our research is
based on a representative workload that represents online business behavior. At the
same time, the benchmark implementation that we use is a third-party package and
it is available online. This makes our experiment results convenient for comparison.

Secondly, we studied most of the cache consistency algorithms in the literature,
classifying them into a two-dimension taxonomy. The basis of our classification
is both on the level of consistency that an algorithm could enforce, and
who acts the major role in the consistency control process. Focusing
on strong consistency, we picked up one representative algorithm in each of the

3 categories that enforce strong cache consistency. We implemented these three

101
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strong consistency algorithms, as well as TTL, the most popular weak consistency
algorithm. We conducted extensive experiments and compared the performance of
these algorithms. Our experiment results, no matter which algorithm they favour,
will be interesting to both academic and commercial parties.

Thirdly, we chose as many as four performance metrics in evaluating consistency
algorithms. This is rare in the literature, as most research papers focus only on
one particular metric, e.g., response time or hit ratio. In addition to response time,
hit ratio and total bytes of messages, which are traditional performance indicators
for cache study, we also use WIPS, a performance metric of TPC-W benchmark
itself, as a measurement of system throughput to compare consistency algorithms.
Therefore, our experiment results are attractive to commercial vendors.

We also discussed the choice of cache location and compared the performance
results of each consistency algorithm at both client side and proxy side. This gives
us a complete picture of the advantages and disadvantages of cache deployment
and decision on consistency control, which could be valuable to many online e-
business Web sites who are considering caching mechanism for their performance
enhancement. We have already mentioned in Chapter 1 the misunderstanding that
Web caching systems should apply weak consistency instead of strong, because the
former requires less response time and server load. Our experiments prove that
from any aspect of performance measurement, weak algorithms don’t necessarily
outperform strong ones. By analyzing the experiment results, we also found that
in the category of strong cache consistency, event-driven algorithms perform better

than time-based, due to the nature of e-business, i.e., it is unpredictable when
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customers will come and when the transaction will be made.

We draw our conclusion (in Section 7.2) based on objective analysis of exper-
iment data. The impact of cache size and network delay on the overall caching
performance are studied and the result is of reference value to the real world cache

deployment.

7.2 Conclusion and Future Work

We have analyzed and compared the performance of three strong cache consistency
control algorithms: Invalidation, Polling-every-time and Lease. As a comparison
base, we also implemented TTL algorithm, the popular consistency mechanism
that enforces weak consistency. We compared the pros and cons of deploying these
mechanisms either at client or proxy side. Our experiment results show that proxy
side cache improves system performance better than client side cache does, and
INV performs the best regardless of cache location. POL is the least favorable
algorithm from our results. It has the longest response time, producing the most
message traffic. On the other hand, we are aware that POL is the easiest algorithm
to implement.

The advantage of Invalidation algorithm over TTL and Polling-every-time is
twofold. First, as we can see from our experiments, Invalidation has the fewest
control message transfer, shortest response time, similar throughput as TTL while
keeping cached objects fresh. On the other hand, comparing to TTL, a time-based
consistency algorithm, INV is event-based, which is more suitable for online E-

commerce. The reason is that most Web data are not set to be changed at certain



CHAPTER 7. CONCLUSION AND FUTURE WORK 104

time. Instead, Web objects get updated because of some event, e.g., client request.
Event-based consistency control helps reduce unnecessary control messages while
enforcing strong consistency more efficiently.

As we expected at the beginning of our experiments, the performance of proxy-
side cache beats that of client-side cache significantly. From storage point of view,
having the cache shared by a group of users reduces redundant object storage.
From consistency point of view, it is easier to maintain consistency between server
and one proxy cache rather than multiple browser caches. As mentioned in the
previous chapter, however, the hardware limitation of our experiments affects the
client-side cache performance. According to our experiment results, browser cache
i1s not recommended compared to proxy cache even the storage space is not an
issue. We believe that having both browser and proxy cache in place will result
in better performance than applying either one alone, but we did not explore the
combination in this thesis.

The performance result of our experiments may not be optimum, partly because
we chose the simplest and generally accepted LRU algorithm as our cache replace-
ment algorithm. We did make some enhancement to the basic LRU, but as Cao
and Irani point out, there are many factors that should be taken into consideration
when designing cache replacement algorithm[CI97]. These factors include docu-
ment download time delay, network travelling costs of different Web objects, etc.
However, our results are still comparable to each other because each caching algo-
rithm is deployed under the same replacement algorithm, the network environment

and Web page set is the same, too.



CHAPTER 7. CONCLUSION AND FUTURE WORK 105

The operating system that we use is another limitation of our research. We
are not sure yet whether the long file search delay on the hard disk is due to the
Windows 2000 itself, but because of that, we had to choose store size of 10,000
items instead of 100,000, the one representative of a mid-size online bookstore.

Due to hardware limitations, we only considered one proxy cache in our ex-
periments. This prevented us from examining the performance of different cache
consistency algorithms under a cooperative caching architecture. For large scale
organizations who have thousands of end users possibly locating at geographically
separated sites, the use of a single proxy cache by all users will certainly not achieve
desirable system performance. We plan to add more hardware to our experiment
network environment and test the performance of the examined algorithms again
and analyze the impact of proxy cache cooperation on individual consistency control
algorithms.

A lot of future work remains ahead. We plan to move the benchmark to Solaris
or Linux, and change the store size to 100,000, then run the whole set of experiments
over again. In this way, we can tell how the consistency control algorithms perform
in a mid-size online bookstore scenario. We can also tell whether the slow file
search issue we encountered in our experiment is indeed due to Windows 2000
operating system. We are going to increase the processing power of both client and
server machine, and see whether our current conclusions remain the same. All the
performance expectation and estimates need to be checked against real experiment
results.

In our current experiment settings, all the EBs are managed by one single RBE.
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To run the benchmark under a cooperative caching architecture, we could have
multiple RBEs in the system, each RBE managing a group of EBs. The result of
this configuration will be interesting.

As the future work, a set of stress tests could be conducted on the current
environment to evaluate the performance of these consistency algorithms. We could
run the benchmark with extremely many number of EBs (e.g., 1000) or adjust the
network delay parameter to be very long to see whether the results of relative
performance will be different.

With regard to cache consistency algorithm, we could explore further with pig-
gybacking mechanism in cache consistency control and try to come up with an algo-
rithm that requires the interaction between server and client but enforces stronger

cache consistency.
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Appendix A

Glossary

CARP - Cache Array Routing Protocol
CGI - Common Gateway Interface

DCCP - Dynamic Content Caching Protocol
DNS - Domain Naming System

EB - Emulated Browser

FIFO - First In First Out

HTTP - HyperText Transfer Protocol

ICP - Internet Cache Protocol

INV — Invalidation, a strong consistency control algorithm

IMS - If-Modified-Since
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ISP - Internet Service Provider

JSP — Java Server Pages

LFU - Least Frequently used cache replacement algorithm

LRU - Least Recently Used cache replacement algorithm

LRV - Lowest Relative Value cache replacement algorithm

NSFNET - National Science Foundation Network

OCLC - Ounline Computer Library Center

PCV - Piggyback Cache Validation, a weak consistency control algorithm
POL - Polling-every-time, a strong consistency control algorithm

PSI — Piggyback Server Invalidation, a weak consistency control algorithm
RBE - Remote Browser Emulator

SUT - System Under Test

TCP - Transmission Control Protocol

TPC — Transaction Processing Performance Council

TPC-W - TPC Benchmark™™ W, a transactional Web benchmark

TTL — Time-To-Live, one of the representative weak consistency control algo-

rithms
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URL - Uniform Resource Locator

WIPS - Web Interaction Per Second, one of the major performance metrics for

the benchmark

W3C -~ World Wide Web Consortium



Appendix B

TPC-W Database Entity

Definition

CREATE TABLE ICUSTOMERI

(C_IDn INT not null,0 /lanique ID per customer]
C_UNAMEI VARCHAR(20),0 //unique user name for customerl
C_PASSWDI VARCHAR(20),0 /luser password for customerfl
C_FNAMED VARCHAR(17),0 //first name of customerl
C_LNAMEI VARCHAR(17),0 /Nast name of cusomerdl
C_ADDR_ID0 INT,O //address ID of customerl
C_PHONED VARCHAR(18),0 //phone number of customerf]
C_EMAILD VARCHAR(50),0 /lemail address of customer(l
C_SINCED DATE //date of customer registrationl]
C_LAST_LOGINI DATE,D //date of last visitl
C_LOGINI TIMESTAMP,1 //start of current customer sessionl
C_EXPIRATIONDI  TIMESTAMP,0 //current customer session expiryll
C_DISCOUNTI REAL, /Ipercentage discount for customeril
C_BALANCED DOUBLE. //balance of customerll
C_YTD_PMTu DOUBLE, //Year-To-Date paymentll
C_BIRTHDATEI = DATE[ //birth date of customer(l
C_DATAD VARCHAR(510),0  //miscellaneous informationl

PRIMARY KEY(C_ID))l

Figure B.1: DDL to create TPC-W database master tables
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APPENDIX B. TPC-W DATABASE ENTITY DEFINITION

CREATE TABLE ICOUNTRYI
(CO_IDI
CO_NAMED
CO_EXCHANGEI
CO_CURRENCY1T

INT not null,d
VARCHAR(50),0
DOUBLE[
VARCHAR(18),0

PRIMARY KEY(CO_ID))

CREATE TABLE 1ADDRESSI

( ADDR_IDI
ADDR_STREET11
ADDR_STREET20
ADDR_CITYD
ADDR_STATEI
ADDR_ZIP1
ADDR_CO_ID1

INT not null,0
VARCHAR(40),0
VARCHAR(40),0
VARCHAR(30),0
VARCHAR(20),0
VARCHAR(10),0
INT,0

PRIMARY KEY(ADDR_ID))I

CREATE TABLE IORDERS]
(0O_IDI

0_C_IDI
O_DATED
O_SUB_TOTALQ
O_TAXD
O_TOTALI
O_SHIP_TYPED
O_SHIP_DATED

O_BILL_ADDR_ID0O
O_SHIP_ADDR_IDI

O_STATUSI

INT not null,0
INT,0
DATE
DOUBLE,
DOUBLE/[
DOUBLE,l
VARCHAR(10),0
DATE]
INT,0
INT,0
VARCHAR(15),0

PRIMARY KEY(O_ID))

CREATE TABLE ICC_XACTSI

(CX_O_IDn
CX_TYPED
CX_NUMI
CX_NAMED
CX_EXPIRED
CX_AUTH_IDO
CX_XACT_AMTI
CX_XACT_DATED
CX_CO_IDn

INT not null,d
VARCHAR(10),0
VARCHAR(20),0
VARCHAR(30),0
DATE,
CHAR(15),0
DOUBLE]
DATE,

INT,0

PRIMARY KEY(CX_O_ID))
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/lunique country IDI

//name of countryll

/lexchange rate to US Dollarsl
/Iname of currencyl

//unique address 1Dl
//street address, line 10
/Istreet address, line 20
/Iname of cityll

/Iname of statell

//zip code or postal codel
/lanique ID of countryl

//unique ID per orderf]
//customer ID of order(
/lorder date and timel
//subtotal of all order-line items[
//tax over the subtotall
/ltotal for this orderl
//method of deliveryl
//order ship datel

/laddress ID to billd
/faddress 1D to ship order]
/lorder statusl

//unique order ID (O_ID)0
//credit card typel

//credit card numberl

//mame on credit cardd
/lexpiration date of credit cardl
/lauthorization for trans. amountd
/famount for this transactionl
//date and time of authorization
//country where trans. originatedl

Figure B.2: DDL to create TPC-W database master tables (cont’d)



CREATE TABLE IITEMO
(1IDD

L_TITLED
L_A_IDD
I_PUB_DATED
I_PUBLISHERD
I_SUBJECTU
I_DESCU
I_RELATEDID
I_RELATED20
I_RELATED30
I_RELATED40
I_RELATEDSU
I_THUMBNAILD
_IMAGED
_SRPU
1_COSTD
L_AVAILD
I_STOCKI
_ISBNU
I_PAGED
I_BACKINGI
I_DIMENSIONSI

INT not null,d
VARCHAR(60),0
INT,0

DATE,l
VARCHAR(60),0
VARCHAR(60),0
VARCHAR(500),0
INT,0

INT,0

INT,0

INT,0

INT,0
VARCHAR(40),0
VARCHAR(40),0
DOUBLE,
DOUBLE,
DATE,l

INT,0
CHAR(13),0
INT,0
VARCHAR(15),0
VARCHAR(25),0

PRIMARY KEY/(I_ID))

CREATE TABLE IORDER_LINE]
(OL_IDD
OL_O_IDU
OL_I_IDU
OL_QTY!
OL_DISCOUNTI
OL_COMMENTSI

INT not null,g

INT not null,0
INT,0

INT,0

DOUBLE.
VARCHAR(110),0

PRIMARY KEY(OL_ID, OL_O_ID))i

CREATE TABLE IAUTHORI
( A_IDI
A_FNAMEI
A_LNAMED
A_MNAMEI
A_DOBI
A_BIOD

INT not null,g
VARCHAR(20),0
VARCHAR(20),0
VARCHAR(20),0
DATE,D
VARCHAR(500),0

PRIMARY KEY(A_ID))0

Figure B.3: DDL to create TPC-W database master tables (cont’d)

APPENDIX B. TPC-W DATABASE ENTITY DEFINITION

/funique ID of item0

/ltitle of iteml

//author ID of iteml

//date of release of the productl]
//publisher of iteml

//subject of bookl
//description of Iteml
/Irelated item 10

//related item 200

//related item 30

//related item 40

/Irelated item 50

/Ipointer to thumbnail imagel
/Ipointer to imagell
//suggested retail pricel
//cost of iteml

/Iwhen item is availablel
//quantity in stockl

//product ISBNI

//mumber of pages of bookl
/Itype of book, paper or hard backl
/Isize of book in inchesl

//unique order line item IDI

/forder ID of order linel

//unique item ID (I_ID)0

//quantity of Iteml

//Percentage discount off of I_SRPIO
//special instructionsl

//unique author IDI
//first name of author
/Nast name of authorl
//middle name of authorl
//date of birth of authorl
//about the authorll
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