
A Web Page Prediction Model Based on Click-Stream Tree
Representation of User Behavior

Şule Gündüz
Computer Engineering Department

Istanbul Technical University
Istanbul, Turkey

gunduz@cs.itu.edu.tr

M. Tamer Özsu
School of Computing Science

University of Waterloo
Waterloo, Ontario, Canada N2L 3G1

tozsu@db.uwaterloo.ca

ABSTRACT
Predicting the next request of a user as she visits Web pages
has gained importance as Web-based activity increases. Mar-
kov models and their variations, or models based on se-
quence mining have been found well suited for this problem.
However, higher order Markov models are extremely com-
plicated due to their large number of states whereas lower
order Markov models do not capture the entire behavior of
a user in a session. The models that are based on sequen-
tial pattern mining only consider the frequent sequences in
the data set, making it difficult to predict the next request
following a page that is not in the sequential pattern. Fur-
thermore, it is hard to find models for mining two different
kinds of information of a user session. We propose a new
model that considers both the order information of pages
in a session and the time spent on them. We cluster user
sessions based on their pair-wise similarity and represent
the resulting clusters by a click-stream tree. The new user
session is then assigned to a cluster based on a similarity
measure. The click-stream tree of that cluster is used to
generate the recommendation set. The model can be used
as part of a cache prefetching system as well as a recommen-
dation model.

Categories and Subject Descriptors
I.5.2 [Pattern Recognition]: Design Methodology - clas-
sifier design and evaluation

Keywords
Web usage mining, two dimensional sequential model, graph
based clustering

1. INTRODUCTION
Web mining is defined as the use of data mining techniques

to automatically discover and extract information from Web
documents and services [7]. With the rapid growth of the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2003 ACM 1-58113-737-0/03/0008 ...$5.00.

World Wide Web, the study of modelling and predicting a
user’s access on a Web site has become more important.
There are three steps in this process [14]. Since the data
source is Web server log data, the first step is to clean the
data and prepare for mining the usage patterns. The sec-
ond step is to extract usage patterns, and the third step
is to build a predictive model based on the extracted us-
age patterns. Fundamental methods of data cleaning and
preparation have been well studied [14]. The main tech-
niques traditionally used for modelling usage patterns in a
Web site are collaborative filtering (CF), clustering pages or
user sessions, association rule generation, sequential pattern
generation and Markov models. The prediction step is the
real-time processing of the model, which considers the ac-
tive user session and makes recommendations based on the
discovered patterns.

However, the discovery of usage patterns discussed above
is not sufficient to accurately describe the user’s navigational
behavior in a server session1. An important feature of the
user’s navigation path is the time that a user spends on dif-
ferent pages [13]. Even the same person may have different
desires at different times. The time spent on a page is a
good measure of the user’s interest in that page, providing
an implicit rating for it. If a user is interested in the content
of a page, she will likely spend more time there compared
to the other pages in her session.

In this paper, we present a new model that uses both the
sequences of visiting pages and the time spent on that pages.
As far as we know, existing tools for mining two different
information types like the order of visited Web pages and
the time spent on those pages, are hard to find. Therefore,
we concentrate in this study on a model that well reflects
the structural information of a user session and handles two-
dimensional information.

Our overall approach can be summarized as follows. The
user sessions are clustered based on the similarity of the user
sessions. When a request is received from an active user, a
recommendation set consisting of three different pages that
the user has not yet visited, is produced using the best
matching user session2. For the first two requests of an
active user session all clusters are explored to find the one
that best matches the active user session. For the remaining
requests, the best matching user session is found by explor-

1The term server session is defined as the click stream of
page views for a single visit of a user to a Web site [14].
2The user session that has the highest similarity to the active
user session is defined as the best session.

ing the top-N clusters that have the highest N similarity
values computed using the first two requests of the active
user session. The rest of the recommendations for the same
active user session are made by using the top-N clusters.

The novelty of our approach lies in the method by which
we compute the similarity of user sessions and how we cluster
them. We propose a method for calculating the similarity
between all pairs of user sessions considering both the order
of pages, the distance between identical pages, and the time
spent on these pages. The distance between identical pages
is taken into consideration, because the similarity between
two user sessions also reflects the distance between identical
pages as measured by the number of user requests between
these pages with the same order of occurrence in these ses-
sions. Using these pair-wise similarity values, a graph is
constructed whose vertices are user sessions. An edge con-
necting two vertices in the graph has a weight equal to the
similarity between these two user sessions. Using an efficient
graph-based clustering algorithm the user sessions are clus-
tered, and each cluster is then represented by a click-stream
tree whose nodes are pages of user sessions of that cluster.

This approach to recommendation is novel and unique.
The experimental results show that using time as a sec-
ond dimension to the order of user requests improves the
accuracy of the prediction of the next request. Equally im-
portant, these results are robust across sites with different
structures. Clustering of the sessions enables us to reduce
the search space and the time for producing the recommen-
dation set.

The rest of the paper is organized as follows. Section
2 presents the proposed model. Section 3 provides detailed
experimental results. In Section 4, we examine related work.
Finally, in Section 5 we conclude our work.

2. WEB PAGE RECOMMENDATION MODEL

2.1 Data Preparation and Cleaning
In the experimental part of this research (Section 3), we

use two sets of server logs. The first is from the NASA
Kennedy Space Center server over the months of July and
August 1995 [9]. The second log is from ClarkNet Web
server which is a full Internet access provider for the Metro
Baltimore-Washington DC area [8]. This server log was
collected over the months of August and September, 1995.
These are well-known data sets that have been used in other
studies. For each log data set we apply the same pre-processing
steps. Since the cleaning procedure is beyond the scope of
this paper, the details of this procedure are not given here.

In this work, visiting page times3, which are extracted
during cleaning procedure, are normalized across the visiting
times of the pages in the same session, such that the mini-
mum value of normalized time is 1. For evaluating the effect
of the normalization values, we try 4 different maximum val-
ues: 2, 3, 5 and 10. If a page is not in the user session, then
the value of corresponding normalized time is set to 0. This
normalization captures the relative importance of a page to
a user in a session. The output of this step is a set of user
sessions, where each user session of a length m is in the
form of: 〈ti, (p1

ti
, p2

ti
, ..., pm

ti
), (Tp1

ti

, Tp2
ti

, ..., Tpm
ti

)〉, where ti

is a unique session number, (p1

ti
, p2

ti
, ..., pm

ti
) ⊂ P is the or-

3It is defined as the time difference between consecutive page
requests.

P4 P1 P2 P5 P3 P6 -
P1 2 3 0 -3 -4 -4 -4
P2 -1 0 1 -2 -3 -3 -3
P4 -1 -2 -1 -1 -2 -2 -2
P5 -3 -2 -1 0 -2 -1 -1
- -6 -5 -4 -3 -2 -1 0

Table 1: The scoring matrix for two dimensional
sequences

dered user requests in session ti and (Tp1
ti

, Tp2
ti

, ..., Tpm
ti

) is

the corresponding normalized time values.

2.2 Session Similarity Measure
In this section, we propose a session similarity measure

based on FastLSA [3] sequence alignment method. Since
user sessions are ordered URL request, we can refer them as
sequences of Web pages. The problem of finding the optimal
sequence alignment is solved using a dynamic programming.
The algorithm uses a matrix where one sequence is placed
along the top of the matrix and the other one along the left
side of the matrix. There is gap added to the end of each
sequence which indicates the starting point of calculation
of similarity score. We shall not go into the details of the
algorithm since they are given in [3]. For two user session
〈ti, (P1P2P4P5), (1, 2, 2, 2)〉 and 〈tj , (P4P1P2P5P3P6), (1, 2, 2,
2, 2, 2)〉 the score matrix is given in Table 1. We have im-
plement the algorithm with an additional module that takes
into account the time spent on matching pages. We use a
scoring system which helps to find the score of the optimal
alignment between two sessions. In our implementation the
identical matching of web pages is given a score s(m) = 2.
The two dimensional score is calculated for a pair matching
pages, pl

ti
and pr

tj
as follows:

s(pl
ti

, pr
tj

) = s(m)

min(T
p
(l)
ti

, T
p
(r)
tj

)

max(T
p
(l)
ti

, T
p
(r)
tj

)
(1)

Each mismatching or gap inserted to the sequences is given
a penalty score of −1.

The similarity between sessions is then calculated such
that only the identical matching of sequences has a simi-
larity value of 1. The similarity measure has two compo-
nents, which we define as alignment score component and
local similarity component. The alignment score component
computes how similar the two sessions are in the region of
their overlap. If the highest value of the score matrix of two
sessions, ti and tj , is σ and the number of matching pages
is M , then the alignment score component is:

sa(ti, tj) =
σ

s(m) ∗M

The intuition behind this is that the score σ is higher if
the sessions have more consecutive matching pages. This
value is normalized by the matching score and the number of
matching pages. The local similarity component computes
how important the overlap region is. If the length of the
aligned sequences is L, the local similarity component is :

sl(ti, tj) =
M

L

Then the overall similarity between two sessions is given by

sim(ti, tj) = sa(ti, tj) ∗ sl(ti, tj) (2)

2.3 Pairwise Clustering
A graph is constructed whose vertices are user sessions.

There is an edge between two vertices (Si, Sj) if the sim-
ilarity value between Si and Sj computed as described in
the previous subsection is greater than 0 and this edge is
weighted by this similarity value. The problem of clustering
user sessions is formulated as partitioning the graph G into k
disjoint subgraphs Gm, (m ∈ [1, ..., k]) by minimizing Min-
MaxCut function [6]. MinMaxCut function combines both
the minimization of similarity between each subgraph and
the maximization of similarity within each subgraph and is
defined as:

minimize
k∑

m=1

cut(Gm, G−Gm)∑
vi,vj∈Gm

sim(vi, vj)

where cut(Gm, G−Gm)is the sum of edges connecting the
vertices in Gm to the rest of the vertices in graph G−Gm and
sim(vi, vj) is the similarity value between vertices vi and
vj calculated using the similarity metric. In this study an
efficient and fast graph partitioning algorithm called Cluto
is used for graph partitioning [4].

2.4 Cluster Representation
The clusters created by the graph partitioning algorithm

contain user sessions. Each user session in a cluster is a
sequence of Web pages visited by a single user and the nor-
malized time spent on those pages with a unique session
number. We generate a click-stream-tree for each cluster.
Each click-stream tree has a root node, which is labelled as
“null”. Each node except the root node of the click-stream-
tree consists of three fields: data, count and next node. Data
field consists of page number and the normalized time infor-
mation of that page. Count field registers the number of
sessions represented by the portion of the path arriving to
that node. Next node links to the next node in the click-
stream tree that has the same data field or null if there is
any node with the same data field. Each click-stream tree
has a data table, which consists of two fields: data field and
first node that links to the first node in the click-stream
tree that has the data field. The tree for each cluster is
constructed by applying the algorithm given in Figure 1.

1: Create a root node of a click-stream tree, and label it as
“null”

2: index← 0
3: while index ≤ number of Sessions in the cluster do
4: Active Session← tindex

5: m← 0
6: Current Node← root node of the click-stream tree
7: while m ≤ Active Session length do
8: Active Data← {pm

tindex
} {T m

ptindex
}

9: if there is a Child of Current Node with the same
data field then

10: Child.count + +
11: Current Node← Child
12: else
13: create a child node of the Current Node
14: Child.data = Active Data
15: Child.count = 1
16: Current Node← Child
17: end if

18: m + +
19: end while
20: index + +
21: end while

Figure 1: Build Click − Stream Tree Algorithm

The children of each node in the click-stream tree is or-
dered in the count-descending order such that a child node
with bigger count is closer to its parent node. The resulting
click-stream trees are then used for recommendation.

2.5 Recommendation Engine
The recommendation engine is the real time component

of the model that selects the best path for predicting the
next request of the active user session. There is a trade-
off between the prediction accuracy of the next request and
the time spent for recommendation. The speed of the rec-
ommendation engine is of great importance in on-line rec-
ommendation systems. Thus, we propose the clustering of
user sessions in order to reduce the search space and rep-
resent each cluster by a click-stream tree. Given the time
of the last visited page of the active user session, the model
recommends three pages. The most recent visited page of
the active user session contains the most important infor-
mation. The click-stream tree enables us to insert the en-
tire session of a user without any information loss. We not
only store the frequent patterns in the tree but also the
whole path that a user follows during her session. Besides
this, the tree has a compact structure. If a path occurs
more than once, only the count of its nodes is incremented.
Based on the construction of the click-stream tree, a path
(p1, p2, ..., pk), (Tp1 , Tp2 , ..., Tpk

) occurs in the tree dk.count
times, where dk is the data field formed by merging the page
request pk

ti
and corresponding normalized time value Tpk

ti

of

the path.
Figure 2 presents the algorithm for finding the path that

best matches the active user sessions. For the first two pages
of the active user session all clusters are searched to select
the best path (line 3). After the second request of the active
user top-N clusters that have higher recommendation scores
among other clusters are selected (line 29-31) for producing
further recommendation sets (line 5). To select the best path
we use a backward stepping algorithm. The last visited page
and normalized time of that page of the active user session
are merged together to build the data field (line 10). We find
from the data table of the click-stream tree of a cluster the
first node that has the same data field (line 11). We start
with that node and go back until the root node (or until the
active user session has no more pages to compare) to calcu-
late the similarity of that path to the active user session (line
16-19). We calculate the similarity of the optimal alignment.
To obtain the recommendation score of a path, the similarity
is multiplied by the relative frequency of that path, which
we define as the count of the path divided by the total num-
ber of paths (S[cl]) in the tree (line 20). Starting from the
first node of the data field and following the next node, the
recommendation score is calculated for the paths that con-
tain the data field in the cluster (line 26). The path that
has the highest recommendation score is selected as the best
path for generating the recommendation set for that cluster
(line 21-24). The first three children nodes of the last node
of the best path is used for producing the recommendation

set. The pages of these child nodes are recommended to the
active user.

1: ta ← Active User Session
2: if ta.length ≤ 2 then
3: Clusters = All Clusters
4: else
5: Clusters = Top−N Clusters
6: end if
7: for i = 0 to NumberOfClusters do
8: cl = Clusters[i]
9: Sim[cl] = 0

10: da ← {p
m
ta
} {Tpm

ta
}

11: Node← data table[cl](da).first node
12: path = null
13: while Node 6= null do
14: path = {path}+ {Node.data}
15: Parent Node← Node.Parent
16: while Parent Node 6= null do
17: path = {path}+ {Parent Node.Data}
18: Parent Node← Parent Node.Parent
19: end while
20: Sim(path) = sim(ta, path)∗ Node.count/S[cl]
21: if Sim(path) > Sim[cl] then
22: Sim[cl]← Sim(path)
23: BestPath[cl]← path
24: end if
25: path = null
26: Node← Node.next node
27: end while
28: end for
29: if ta.length = 2 then
30: Top−N Clusters← N Clusters with highest Sim[cl]

values
31: end if

Figure 2: Find Best Path Algorithm

3. EXPERIMENTAL RESULTS
In this research we use two different data sets prepared

for experiments as mentioned in Section 2. Approximately
30% of these cleaned sessions are randomly selected as the
test set, and the remaining part as the training set.

Given the visiting time of a page in the current session,
the model recommends three pages. We define the hit-ratio
metric and click-soon metric as proposed in [5] to evaluate
our method:

Hit-Ratio: A hit is declared if any one of the three rec-
ommended pages is the next request of the user. The
hit-ratio is the number of hits divided by the total
number of recommendations made by the system.

Click-Soon-Ratio: A Click-Soon is declared if any one of
the three recommended pages is requested by the user
during the active user session. The Click-Soon-Ratio is
the number of click-soon divided by the total number
of recommendations made by the system.

For each data set we conduct the experiment with a sin-
gle click-steam tree, without the use of any clusters of user
sessions, to compare the performance of the similarity met-
ric and clustering method. The results obtained by using a
single tree (see Table 2) gives us the upper bound of the pre-
diction accuracy. In that case we do not have any side effects

of the clustering algorithm or the assumptions we made for
assigning the active user session to a cluster since the en-
tire tree is searched (with significant run-time overhead, of
course).

Data Set NT UT Time(ms.)
H-R CS-R H-R CS-R

NASA 61.61 99.63 59.9 95 3.5
ClarkNet 55.76 100 51.29 92.25 2

Table 2: Results in % of the recommendation algo-
rithm with one tree. (NT = Normalized Time, UT
= Unity Time)

We repeat the experiments with different number of clus-
ters changing from 5 to 30 and N ranging from 1 to 3 after
the first 2 requests of the user. As mentioned in Section 2
there is a trade-off between the prediction accuracy and the
time spent for recommendation. When we determine the
top-N clusters after the first request of the user, the rec-
ommendation is faster, but the accuracy is about 4% lower.
Thus, we determine top-N clusters after the first 2 requests,
since the time spent for recommendation and the decrease of
accuracy are in an acceptable range. In order to study the
results we repeat the same experiments without considering
the normalized time (Unity Time). These experiments show
that normalizing time between 1 and 2 improves the predic-
tion accuracy. The same experiments are then performed by
normalizing time between 1 and 3, 1 and 5, and 1 and 10. In
the case when the time is normalized between 1 and 3, and
the number of clusters is 5, the method with time informa-
tion performs better for NASA data set. But in other cases
the method without time information outperforms. Since
our method for tree construction merges the page number
and time information for creating the data field of nodes,
the number of data items corresponding to the same page
increases if the values of normalized time changes in a wide
range. For example for the NASA data set, if the time is
normalized between 1 and 10, the number of data items be-
comes 920, since the number of pages is 92. Thus, for a page
we have 10 different data items. Since we only recommend
pages to the user, having different data items correspond-
ing to one page makes the recommendation inefficient. For
each experiment we register the average time spent to pro-
duce the recommendation set. Due to lack of space, we just
present the results of the experiments in which the normal-
ized time has a value between 1 and 2. All Experiments are
performed on a Pentium II, 333 MHz computer with a 512
MB main memory running Microsoft Windows 2000. The
programs are coded in Java.

No.Of Top-N
Clusters 1 2 3

H-R CS-R H-R CS-R H-R CS-R
5 57.41 96.47 59.22 98.80 59.79 99.65
10 54.68 91.10 56.15 93.15 57.18 94.53
15 52.61 88.15 54.65 91.15 55.95 92.43
20 50.79 84.45 52.47 86.37 53.51 87.85
25 49.59 81.47 52.17 85.28 53.11 86.50
30 48.75 80.06 51.29 84.92 52.15 85.77

Table 3: Results in % of the NASA data set. Visit-
ing time is normalized between 1 and 2.

No.Of Top-N
Clusters 1 2 3

H-R CS-R H-R CS-R H-R CS-R
5 56.19 91.17 57.23 92.82 57.95 93.89
10 53.92 88.31 55.07 89.9 56.01 91.27
15 52.3 86.36 53.77 88.21 54.68 89.36
20 48.96 80.69 50.58 83.01 52.10 84.20
25 48.67 80.15 50.02 82.45 50.42 82.98
30 48.33 79.50 49.37 81.17 50.58 82.74

Table 4: Results in % of the NASA data set. Time
information is ignored.

Table 3 shows the results of the NASA data set where
the visiting time of pages are normalized between 1 and 2.
The results in Table 4 are obtained without taking time
into consideration. Table 5 and Table 6 show the results of
ClarkNet data set with normalized time between 1 and 2,
and without time information respectively. Figure 3 and 4
present the average time spent to produce one recommen-
dation set using normalized time between 1 and 2. As can
be seen from the figures using clustering approach reduces
the time for producing the recommendation set whereas the
prediction accuracy decreases but is still acceptable. If we
do not use the time information, the data field of each node
in the click-stream tree consists of only the page number.
We perform the experiments for ClarkNet data set with dif-
ferent number of clusters from the experiments of NASA
data set. This is done to account for the lower number of
sessions and number of pages in the ClarkNet data set. As
can be seen from the tables, the method that incorporates
time information performs mostly better. Only in the case
of large number of clusters does the ClarkNet data set have
a lower prediction accuracy with time information. This is
likely due to the fact that ClarkNet data set is not cleaned
to the same extent as the NASA data set since ClarkNet
data set does not exists anymore.

0

0.5

1

1.5

2

2.5

3

3.5

0 10 20 30 40

Cluster Number

A
ve

. T
im

e(
m

s.
)

Top-1

Top-2

Top-3

Figure 3: Average time in ms. spent to produce one
recommendation set for the NASA data set

For evaluating the performance of our method, we run
the experiments with the same training and test examples
using 3 other recommendation methods proposed in [10, 11,
12] (these methods are discussed further in the next sec-
tion). Since the hit-ratio and click-soon-ratio metrics have
not performed well for the model in [10], we use the precision
metric as proposed in [10] for evaluation. The precision for
NASA data set is 4% and for ClarkNet data set 15%. For
the method in [11] we use a sliding window with a window

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 10 20 30 40

Cluster Number

A
ve

. T
im

e(
m

s.
)

Top1

Top2

Top3

Figure 4: Average time in ms. spent to produce one
recommendation set for the ClarkNet data set

No.Of Top-N
Clusters 1 2 3

H-R CS-R H-R CS-R H-R CS-R
4 53 100 53.84 100 54.07 100
6 50.53 97.64 50.81 97.86 51.40 98.72
8 49.65 97 50.01 97.20 50.95 97.86
10 48.22 94.07 48.65 94.86 49.01 94.82
20 39.9 76.9 41.51 78.85 42.13 79.50
30 35.65 68.34 37.74 71.75 39.19 73.57

Table 5: Results in % of the ClarkNet data set.
Visiting time is normalized between 1 and 2.

size 2. The hit-ratio and click-soon-ratio for NASA data
set is 47.84% and 84.41% respectively. The hit-ratio and
click-soon-ratio for ClarkNet data set is 49.30% and 92.7%
respectively. Since this method does not utilize clustering,
we can compare these experiments to our experiments in
which we use one tree. Clearly our method is superior. For
the last set of experiments we use first order Markov mod-
els. The parameters of the Markov model are learned us-
ing Expectation-Maximization algorithm. The hit-ratio and
click-soon-ratio for NASA data set are 52.6% and 86.3%
respectively. The ClarkNet data set has for 4 clusters a
hit-ratio of 50.08% and click-soon-ratio of 95.12%. These
results prove that our model performs better than the pre-
vious proposed models whether we use one click-stream tree
or cluster the data set.

Our model has a high click-soon-ratio, in some cases even
about 100%. Thus, the model is very useful for a cache
prefetching system. Besides this, the clustering approach
reduces the search space when working with sites with com-
plex architecture.

4. RELATED WORK
The major classes of recommendation services are based

on the discovery of navigational patterns of users. The main
techniques for pattern discovery are sequential patterns, as-
sociation rules, Markov models, and clustering.

There have been attempts to use association rules [11],
sequential patterns [1], and Markov models [12] in recom-
mender systems. These techniques work well for Web sites
that do not have a complex structure, but experiments on
complex, highly interconnected sites show that the stor-
age space and runtime requirements of these techniques in-
crease due to the large number of patterns for sequential pat-

No.Of Top-N
Clusters 1 2 3

H-R CS-R H-R CS-R H-R CS-R
4 49.94 91.38 51 92.95 51.09 92.96
6 48.69 90.13 49.86 92.19 50.4 92.53
8 48.42 90.05 49.63 92.17 50.22 92.79
10 47.18 88.16 48.64 90.78 48.97 91.32
20 40.95 79.22 43.25 81.80 44.45 83.58
30 37.69 73.29 38.48 74.76 41.23 77.12

Table 6: Results in % of the ClarkNet data set.
Time information is ignored.

tern and association rules, and the large number of states
for Markov models. It may be possible to prune the rule
space, enabling faster on-line prediction. Except higher or-
der Markov models, all of these techniques do not capture
the entire behavior of a user in a session. Because the num-
ber of parameters for higher order Markov models are high,
it is not feasible to learn higher order Markov models where
the number of Web pages in a site (i.e. the number of states
for the Markov model) is big. The compact structure of the
click-stream tree of our model makes it possible to keep the
entire structure of a user session without any information
loss like higher order Markov models (if the length of a user
session is n, like n−th order Markov models). Furthermore,
the similarity metric we propose in this paper capture both
the sequentiality and the time information of user sessions
where all of the previous models lack the time information.

The methods in [2] cluster user sessions based on a similar-
ity metric between each session. Our method for clustering
has a similar basic idea. However, our similarity metric is
different from these metric since it considers the distance
between matching pages. Furthermore, we extend our work
by representing each cluster by a click-stream tree to use
these clusters for predicting the user’s next request. Page
recommendations in [10] are based on clusters of pages found
from the server log for a site whereas the recommendations
in [11] are based on association rule discovery from usage
data. The crucial differences between our model and these
previous models are that we consider both the order of pages
and the time spent on that pages and our model enables
clustering of user sessions which reduces the search space
and thus the recommendation time. Furthermore, the click-
stream tree in our model represents the behavior of a user
from the beginning that a user enters to the Web site to
the end of her session in that site. Consequently, as the ex-
periments demonstrate, our model’s prediction accuracy is
superior.

5. CONCLUSION
We have considered the problem of modelling the behav-

ior of a Web user during a single visit to the Web site. We
introduce a similarity metric to find pair-wise similarities
between user sessions. This similarity metric compares two
user sessions by means of visited pages and visiting times.
The third significant element of that metric is that it also
reflects the distance between matching pages of two user
sessions. We partition user session based on that similarity
metric using a graph partitioning algorithm and propose a
tree construction for representing the clusters. The experi-
ments show that the model can be used on Web sites with
different structures. To confirm our finding, we compare our

model to three other recommendation models. Results show
that our model improves the efficiency and effectiveness sig-
nificantly.

6. REFERENCES
[1] R. Agrawal and R. Srikant. Mining sequential

patterns. In Proceedings of the International
Conference on Data Engineering (ICDE), March 1995.
Taipei, Taiwan.

[2] A. Banerjee and J. Ghosh. Clickstream clustering
using weighted longest common subsequences. In
Proceedings of the Wokshop on Web Mining, SIAM
Conference on Data Mining, pages 33–40, 2001.
Chicago, IL.

[3] K. Cahrter, J. Schaeffer, and D. Szafron. Sequence
alignment using fastlsa. In Proceedings of the
International Conference on Mathematics and
Engineering Techniques in Medicine and Biological
Sciences (METMBS’2000), pages 239–245, 2000.

[4] Cluto. http://www-
users.cs.umn.edu/ karypis/cluto/index.html.

[5] Dan Cosley, Steve Lawrence, and David M. Pennock.
REFEREE: An open framework for practical testing
of recommender systems using researchindex. In
Proceedings of 28th International Conference on Very
Large Databases, VLDB 2002, Hong Kong, August
20–23 2002.

[6] Chris Ding, Xiaofeng He, Hongyuan Zha, Minh Gu,
and Horst Simon. Spectral min-max cut for graph
partitioning and data clustering. 2001. Technical
Report TR-2001-XX, Lawrence Berkeley National
Laboratory, University of CaliforniaBerkeley, CA.

[7] O. Etzioni. The world wide web: Quagmire or gold
mine. Communications of the ACM, 39(11):65–68,
1996.

[8] ClarkNet WWW Server Log.
http://ita.ee.lbl.gov/html/contrib/ClarkNet-
HTTP.html.

[9] NASA Kennedy Space Center Log.
http://ita.ee.lbl.gov/html/contrib/NASA-HTTP.html.

[10] B. Mobasher, H. Dai, T. Luo, and M. Nakagawa.
Discovery of aggregate usage profiles for web
personalization. In Proceedings of the Web Mining for
E-Commerce Workshop (WebKDD’2000), 2000.

[11] B. Mobasher, H. Dai, T. Luo, and M. Nakagawa.
Effective personalization based on association rule
discovery from web usage data. In Proceedings of the
3rd ACM Workhop on Web Information and Data
Management, November 2001. Atlanta, USA.

[12] R. R. Sarukkai. Link prediction and path analysis
using markov chains. In Proceedings of the Ninth
International World Wide Web Conference, 2000.
Amsterdam.

[13] C. Shahabi, A. Zarkesh, J. Adibi, and V. Shah.
Knowledge discovery from users web-page navigation.
In Proceeding of the IEEE RIDE97 Workshop, pages
20–29, April 1997. Birmingham, England.

[14] J. Srivastava, R. Cooley, M. Deshpande, and P. N.
Tan. Web usage mining: Discovery and application of
usage patterns from web data. ACM SIGKDD
Explorations, 1(2):12–23, 2000.

