TIGUKAT: A Uniform Behavioral Objectbase Management System

M. Tamer (")zsu, Randal Peters, Duane Szafron,
Boman Irani, Anna Lipka, Adriana Munoz

Laboratory for Database Systems Research
Department of Computing Science
University of Alberta
Edmonton, Alberta
Canada T6G 2H1

Abstract

We describe the TIGUKAT objectbase management system that is under development at the Lab-
oratory for Database Systems Research at the University of Alberta. TIGUKAT has a novel object
model whose identifying characteristics include a purely behavioral semantics and a uniform approach
to objects. Everything in the system, including types, classes, collections, behaviors, functions as well
as meta-information, is a first-class object with well-defined behavior. In this way, the model abstracts
everything, including traditional structural notions such as instance variables, method implementation
and schema definition, into a uniform semantics of behaviors on objects. Our emphasis in this paper is
on the object model, its implementation, the persistence model and the query language. We also (briefly)
present other database management functions that are under development such as the query optimizer,
the version control system and transaction manager.

1 Introduction

The penetration of data management technology into new application areas with more demanding require-
ments than business data processing has generated a search for appropriate data models and system archi-
tectures to support these requirements. Some examples of these application areas are engineering design
systems, knowledge base system applications, office information systems, and multimedia systems. It is now
commonly accepted that relational database management systems (DBMSs), with their flat representation
of data, do not have sufficient power to fulfill these requirements. The fundamental difficulty relates to
the recognized semantic mismatch between the entities that are commonly encountered in these application
domains and the representation provided by the underlying DBMS.

Object-oriented technology is the topic of intense study as the major candidate to successfully meet the
requirements of advanced applications that use data management services. At the Laboratory for Database
Systems Research at the University of Alberta, we are engaged in the design and development of an objectbase
management sytem (OBMS)!, called TIGUKAT? which follows the object-oriented methodology in its own
design. Consequently, all database functionality is incorporated within an extensible object model. In
this paper, we provide a genral overview of TIGUKAT with special emphasis on its object model, its
implementation and the persistence model. Some of the novel features of TIGUKAT are the following:

1We prefer to use the terms “objectbase” and “objectbase management system” rather than the more popular “object-
oriented database” and “object-oriented database management system” since not only data in the traditional sense is managed,
but objects in general, which includes things like code in addition to data.

2TIGUKAT (tee-goo-kat) is a term in the language of the Canadian Inuit people meaning “objects.” The Canadian Tnuits,
commonly known as Eskimos, are native to Canada with an ancestry originating in the Arctic regions of the country.

Copyright @ VLDB 1995. To appear in VLDB Journal, 4(3), July 1995. 1

1. Tt has a purely behavioral object model where the user (a person or an application program) interacts
with the system only by applying behaviors to objects. In this way, full abstraction of modeled entities
is accomplished since the users do not have to differentiate between attributes and methods.

2. Tts object model is uniform. Everything in the system, including types, classes, collections, behaviors,
functions and meta-information, is a first-class object with well-defined behavior. Thus, there is no
separation between objects and values so the schema information is a natural part of the database that
can be queried just like other objects.

3. This uniformity extends to other system entities (e.g., queries, transactions, views) which are treated
as objects that can be created, stored, manipulated and queried like any other object.

Two different approaches have been followed in the development of OBMSs. The first approach is to
adopt the type system of an object-oriented programming language as the object model of the OBMS. For
example, ObjectStore [LLOW91] adopts the type system of C++ [Str86] while Gemstone [BOS91] follows the
type system of Smalltalk [GR83]. The second alternative is what is known as language-independent or generic
object models where the OBMS defines its own object model and appropriate mappings are provided from
languages to this object model. TIGUKAT follows the second approach as does, for example, Oy [Deu9l].
A database programming language is being designed that is tightly integrated with the TIGUKAT object
model. In addition, mappings will be provided from other programming languages.

TIGUKAT is an experimental system that is under constant development and revision. We have, there-
fore, chosen to follow an extensible system design approach. The uniformity of the model, which treats all
system entities as objects, is the basis of TIGUKAT’s extensibility. The general architecture of the system
is depicted in Figure 1. To date, most of the development and implementation work has concentrated on the
object model, the query model, and the implementation of query languages. The architectural framework of
the query optimizer has also been developed [Mun93], however the details of the optimizer (e.g., the full set
of transformation rules, the detailed cost functions) have yet to be implemented.

The organization of the paper is as follows. We start, in Section 2, with an overview of the TIGUKAT
object model, presenting the primitive type system. We include an example database application design
to demonstrate the features of TIGUKAT. Section 3 describes some of the more important implementation
design decisions and the approach we have taken. This is followed, in Section 4, with a description of
the persistence model of TIGUKAT. Section 5 presents the query model with emphasis on the user-level
languages. A more detailed description of the object and query models are given in [PLOS93a, Pet94].
In Section 6, we provide a brief overview of our approach to providing the common database management
functions such as query optimization, version management and transaction management. Finally, in Section 7
we end with a discussion of our future research directions.

2 Object Model

The TIGUKAT object model is defined behaviorally with a uniform object semantics. The model is behav-
toral in the sense that all access and manipulation of objects occurs through the application of behaviors
(operations) on objects. The model is uniform in that every concept within the model has the status of a
first-class object.

Uniformity in TIGUKAT is similar to the approaches of DAPLEX [Shi81] and its object-oriented coun-
terpart OODAPLEX [Day89]. However, our definition of uniformity is complete in that it unconditionally
extends over all forms of information, including the system components such as the schema, meta-information,
query model, query optimizer, view manager, transaction manager, and so on. We adopt another signif-
icant aspect of these models: their functional approach to defining behaviors. TIGUKAT enhances this
approach by providing a separation of behavior, which is a semantic notion, from function, which is a means
of implementing behavioral semantics.

The TTIGUKAT model defines a number of primitive objects that include: atomic entities (such as reals,
integers, strings, etc.); types for defining common features of objects; behaviors for specifying the semantics of

Copyright @ VLDB 1995. To appear in VLDB Journal, 4(3), July 1995. 2

TDL TQL I Ot}fler Programmatic
Interpreter | Compiler (P?r tg‘fvggfss) Interface
Schen.la View Query Transaction
Evolution Manager | Optimizer | Manager
&
Version Control Query Model
TIGUKAT Object Model
Storage Manager

Figure 1: The TIGUKAT System Architecture

the operations that may be performed on objects; functions for specifying the implementations of behaviors
over various types®: classes for the automatic classification of objects based on their type*; collections
for supporting general, heterogeneous, user-definable groupings of objects; and higher-level constructs to
uniformly represent meta-information (i.e., schema) as objects with well-defined behavior. This last feature
gives the system reflective capabilities [PO93]

The primitive type system of TIGUKAT is shown in Figure 2 with the type T_object as the root of the
lattice and type Tnull as the base. The type T_null defines objects that can be returned by behaviors
when no other result is known (e.g., null, undefined, etc.). These are necessary because the result of every
behavior application in TIGUKAT must be a reference to an object. There are no dangling references in
TIGUKAT.

As a notational convenience, the prefix T_ refers to a type, C_ refers to a class, L_ refers to a collection,
B_ refers to a behavior and F_ refers to a function. FEach prefix also has its own font variation for the
string following it. For example, T_city is a type reference, C_city is a class reference, L_historicSites is
a collection reference, B_population is a behavior reference, F_calcPopulation 1s a function reference and a
reference such as Edmonton without any prefix represents some other application specific object reference.

3 Associations between behaviors and functions form the support mechanism for overloading and late binding of behaviors.
4Types and classes are separate constructs in TIGUKAT.

Copyright @ VLDB 1995. To appear in VLDB Journal, 4(3), July 1995. 3

T_collection-class)

T_real D—C T_integer

Supertype Subtype

T_null

Figure 2: Primitive type system of TIGUKAT.

2.1 Behaviors and Functions

The access and manipulation of objects occurs exclusively through the application of behaviors. This is
similar to the message-based approach of Smalltalk [GR83] and OODAPLEX [Day89]. Appendix A lists the
signatures for the native behaviors defined by the primitive types of Figure 2.

We separate the definition of a behavior from its possible implementations, which are represented by
TIGUKAT functions (corresponding to methods in other models). The benefit of this approach is that
common behaviors over different types can have a different implementation in each of the types (known as
overloading the behavior). This gives the model the ability to dynamically bind behaviors to implementations
at run time (known as late-binding).

There are two kinds of implementations for behaviors. One is a computed function, which consists of
runtime calls to executable code and the other is a stored function, which is a reference to an existing object
in the objectbase. Stored functions eliminate the need for instance variables, which limit reuse [WBW89b].
The uniformity of TIGUKAT conceptually transforms each behavioral application into the invocation of a
function, regardless of whether the function is stored or computed. This allows designers to concentrate
on semantic responsibilities rather than on data attributes [WBW89a]. For example, the type designer is
free to develop a purely behavioral specification of a type while the type implementor decides whether the
behaviors are implemented by stored or computed functions.

The semantic definition of a behavior has many forms. A simple approach, common in other models, is a
stgnature expression consisting of a behavior name, parameter types and a return type. Signatures are useful
and necessary for describing the semantics of behaviors, but they are inadequate for characterizing the full
semantics. For now, we assume that a proper semantic specification mechanism exists. In the current model
design, a behavior is specified only by its signature. However, the extensibility of the model makes it easy to
incorporate a more complete semantic specification when one is developed. The only extension required 1s
to modify the implementation of the B_semantics behavior on T_behavior to correspond to the new, more

Copyright @ VLDB 1995. To appear in VLDB Journal, 4(3), July 1995. 4

complete semantics. We are currently investigating specification techniques and denotational semantics as a
complete semantic description mechanism for behaviors.

Behaviors are applied to objects. The application of a behavior, say B_population, to an object, say
Edmonton, using some arguments, say ai, ..., a,, can be denoted by (B_population(Edmonton))(a1,...,a,)
or by use of the dot notation Edmonton.B_population(ay,...,a,). In either case, the object Edmonton is
called the receiver of the behavior.

Behaviors are instances of the type T_behavior and functions are instances of the type T_function. We
use an arrow “—” in function type specifications and curry multiple argument functions. A function type is
of the form A — R where A represents the argument type expression of the function and R represents the
result type. In general, the argument and result types may be any type specification, including a function
type. Then, by currying, multiple argument functions may be specified.

As defined in more detail in Section 2.3, types are related to each other via subtyping (also referred to as
behavioral inheritance). A behavior defined on a type T_x is inherited in the type if and only if the behavior
is defined in a supertype of Tx. A behavior defined on a type T_x is native in the type if and only if the
behavior is not defined in any supertype of T x.

Inherited behaviors do not necessarily borrow their implementation from their supertypes (although this
can be set as the system default). Therefore, we define a separate reuse mechanism for implementations
called implementation inheritance. An implementation of a behavior in a type T_x is tnherited if and only
if the behavior i1s inherited and the function implementing the behavior in T_x is the same as a function
implementing the behavior in a supertype of T_x. Otherwise, the implementation of the behavior is redefined
(or overridden) in T_x.

TIGUKAT supports multiple subtyping. However, the separation of behaviors from functions introduces
the need for separating behavioral inheritance from functional inheritance and defining separate conflict
resolution schemes for both. Implementation inheritance conflicts are resolved using an approach similar to
the one used in Modular Smalltalk [WBW&8]. Specifically, it is an error for a type to inherit two different
implementations (i.e., two instances of T_function) for the same inherited behavior. The error is resolved by
explicitly redefining® the T_function for that behavior. Note that one choice for redefinition is one of the two
conflicting T_functions. No separate mechanism is required to solve inheritance conflicts between instance
variables because there are no instance variables. Stored function conflicts are resolved in the same uniform
manner as computed function conflicts. Furthermore, in the context of a complete behavioral semantics,
there are no behavioral inheritance conflicts. That is, the inherited behavior in the multiple supertypes will
be semantically equivalent or not. When they are equal, only one behavior is defined in the subtype. When
they are not equal, multiple behaviors are defined in the subtype.

2.2 Objects

An object 1s a fundamental primitive in TIGUKAT because the conceptual level of the model deals uniformly
with objects. Objects are defined as unique (identily, state) pairs where identity represents a unique,
immutable system managed object identity (or oid) and state represents the information carried by the
object. There are system defined mappings oid(o) and state(o) that accept an object o and return the oid
or state of o, respectively. These are internal mappings used only by the system and are not visible to the
user. The existence of unique oids does not preclude application environments such as object programming
languages from having many references (or denotations) to objects, which need not necessarily be unique
and may even change depending on the scoping rules of the application.

In TIGUKAT, every object can be viewed as a composite object, meaning every object has refer-
ences/relationships (not necessarily implemented as pointers) to other objects. These other objects are
returned as results of behavior applications, but it does not matter whether the behaviors are implemented
by stored or computed functions. For example, even integers are composite objects since they have behaviors
that return objects.

5Redefinition may be the explicit writing of a new function or simply choosing an existing function.

Copyright @ VLDB 1995. To appear in VLDB Journal, 4(3), July 1995. 5

Object existence, access, and manipulation in TIGUKAT is based on the notions of reference, scope and
lifetime. This is similar to other model proposals (e.g., [Sny90, Ken90, FKMT91]) in that the only user-
expressible representation of an object is a reference within a particular scope. A scope defines the visibility,
access paths, and lifetime of object references. The lifetime of an object is independent of the lifetime of
a reference to that object within a particular scope. That is, when a reference to an object disappears
at the end of a scope, the object being referenced does not necessarily disappear along with it. This can
depend on the definition of the scope and the persistence of the object. From the database perspective there
is also the issue of explicit deletions and the dangling reference problem that follows. That 1s, when an
object is explicitly deleted, all references to that object should no longer point to the object and somehow be
invalidated. In TIGUKAT, every behavior application is a reference to an object. Thus, we do not invalidate
references, but rather bind them to an object whose type is Tnull. That is, when an object is explicitly
deleted, the object is changed to an instance of type T-null (called undefined) so that all references to it
remain valid. Garbage collection is used to reclaim the storage of deleted objects. The deletion semantics
is explained in more detail in Section 4 since a similar approach is used when a persistent object is made
transient. The similarity stems from the fact that subsequent programs will not see the persistent object
that was made transient and it will appear as though the object was deleted. Another condition for object
deletion and storage reclamation is if an object no longer has references through its class.

Operations on objects are performed through behaviors and object access is specified through references.
Therefore, an operation on an object reference in a particular scope represents the application of a behavior
to the actual object that is referenced. We define several behaviors on the type T_object that are inherited
by all types and, therefore, are applicable to every object. A mechanism is required to determine if two
object references refer to the same object. This requirement is met by the behavior B_equal. For any two
object references R; and R;, the result of (B_equal(R;))(R;) is true if and only if 0id(R;) and oid(R;) map
to the same object identity. The above operation is more commonly specified as R; = R;.

This is the only kind of equality that the primitive model defines. It is quite strong in that the only way
two object references are equal is if they refer to the same object (with the same identity). Our notion of
object equality is the same as “identity equal” defined in [KC86] or “0-equality” defined in [LRV88]. We do
not define, at this level, any notions of shallow or deep equality found in other models [KC86, LRV88, Osb88]
or extended versions of these, which determine equality at various levels [SZ90]. These notions can be defined
as equivalence relationships on the behavioral characteristics of objects and, therefore, should be left to
customized interpretations at the behavioral level rather than being part of the primitive model definition.
For example, one may define person equality based on the equality of their social insurance numbers. The
implementation of B_equal in a type T_person can be overridden to implement this semantics.

Objects in the model are strongly-typed® in the sense that each object is associated with a single type.
A type defines all the behaviors applicable to the objects of the type. The B_mapsto behavior, when applied
to object o, returns the type of that object. It is important in type-checking and query processing to know
the type of an object [SO90b)].

Another behavior defined on T_object is the identity mapping behavior B_self, which maps every object
to itself. That is, for any object o, B_self(0) = 0. There are additional behaviors whose presentation depends
on other primitive concepts. We introduce them as these concepts are defined.

2.3 Types

A type defines behaviors and encapsulates hidden behavioral implementations (including state) for objects
created using the type as a template. The behaviors defined by a type describe the interface for the objects
of that type. Types are organized into a lattice structure using the notion of subtyping which promotes
software reuse and incremental type development. Since TIGUKAT supports multiple subtyping, the type
structure is potentially a directed acyclic graph (DAG). However, this DAG is transformed to a lattice by
rooting it at T_object and lifting with the primitive type Tnull.

6Note that this differs from another common meaning of strong typing that refers to static type-checking.

Copyright @ VLDB 1995. To appear in VLDB Journal, 4(3), July 1995. 6

The uniformity of TIGUKAT implies that types are also objects with their own state and identity along
with their own type. The type which describes all type objects is T_type and it is accessible in the same
manner as any object. Thus types, in addition to serving as descriptions of objects, are objects themselves
and the type T_type serves as a description for all other types, including itself. This is known as the
type:type property [Car86] in programming languages. The state of a type object consists of a structural
specification of its instances (a template), references to the encapsulated behaviors it defines, references to
its subtypes and supertypes, and a reference to its associated class.

Two relationships on types have been identified [OSP94]. One is the concept of a type specializing
another type in a manner similar to what is described in [MZO89]. The other is the more popular, and
stronger, notion of explicitly creating a type to be a subtype of another type [Car84]. A type T_1 specializes
a type T_2 if T_1 defines all the behaviors of T2 (and possibly more). A type T_1 is explicitly created as a
subtype of a type T_2 which means T_1 specializes T_2 and all the instances of T_1 are also instances of T_2.
Thus, subtyping implies specializes and defines a subset inclusion relationship on type extents. Conversely,
specializes does not imply subtyping. Furthermore, subtyping supports IS-A relationship between types
whose consequence is substitutability[SZ90]. Accordingly, an object of type T_x can be used (substituted) in
any context specifying a supertype of T_x. Specialize on its own does not support substitutability. Specialize
is a semantic property derived from the behaviors defined on types, while subtyping is an explicit use of this
property to define a partial order on types and a subset inclusion relationship on their extents.

A behavior 1s required on types that determines the class of a given type. In order to create objects of
a particular type, there must be a class associated with the type to manage its instances. However, types
do not require an associated class if there are no instances of that type (e.g., abstract types). T_type defines
behavior B_classof for accessing the unique class (if it exists) associated with a particular type. Primitive
types such as T_integer and T_real also have associated classes. We refer to [Pet94] for a discussion of
these classes are supported.

2.4 Classes and Collections

A class ties together the notions of type and object instances. The entire group of objects of a particular
type, including its subtypes, is known as the eztent of the type and is managed by its class. We refer to this
as the deep extent and introduce a shallow extent that refers only to those objects created from the given
type without considering its subtypes. The deep extent imposes a subset inclusion relationship on classes.
We refer to this as subclassing, which has a direct relationship to subtyping on types. That is, a class C_x
is a subclass of a class C_y, meaning the deep extent of C_x is a subset of the deep extent of C_y, if and
only if the type associated with C_x 1s a subtype of the type associated with C_y.

Objects of a particular type cannot exist without an associated class and every class is uniquely associated
with a single type. Another feature of classes is that object creation occurs only through a class using its
associated type as a template for the creation. Thus, a fundamental notion of TIGUKAT is that objects
imply classes which imply types. Defining object, type, and class in this manner introduces a clear separation
of these concepts. This separation is important in schema evolution which manipulates type objects into
new subtype relationships and need not be concerned with the overhead of classes. Furthermore, many
object-oriented systems include abstract types whose sole purpose is to serve as placeholders for common
behaviors of subtypes and are never intended to have any instance objects. In these cases, there is no reason
to manage classes for abstract types, because there are no instances of these types.

We define a collection as a general user-definable grouping construct (other constructs include bags for
maintaining duplicates, posets for partially ordered collections, and lists that encompass both properties).
A collection is similar to a class in that it groups objects, but i1t differs in the following respects. First,
object creation may not occur through a collection; object creation occurs only through classes. This means
that collections only form user-defined groupings of existing objects. Second, an object may exist in any
number of collections, but 1s a member of the shallow extent of only one class. Third, the management of
classes is implicit in that the system automatically maintains classes based on the type lattice whereas the
management of collections is ezplicit, meaning that the user is responsible for their extents. Finally, a class

Copyright @ VLDB 1995. To appear in VLDB Journal, 4(3), July 1995. 7

groups the entire extension of a single type (shallow extent), along with the extensions of its subtypes (deep
extent). Therefore, the elements of a class are homogeneous up to inclusion polymorphism. A collection is
heterogeneous in the sense that it can contain objects of types unrelated by subtyping. Furthermore, there
is no distinction between shallow and deep extents for collections.

In TIGUKAT, we define T_class as a subtype of T_collection, which introduces a clean semantics
between the two and allows the model to utilize them in an uniform way. For example, the targets and
results of queries are typed collections of objects and since classes are a subtype of collection, they may be
used in queries as well. This approach provides flexibility and expressiveness in formulating queries and gives
closure to the query model, which is often regarded as an important feature [Bla91, YO91].

2.5 Higher Level Constructs and Reflection

The types T_class-class, T_type-class, and T_collection-class in Figure 2 make up the meta type
system. Their placement within the type lattice is in direct support of the extensibility of the model.
Identifying characteristics of the meta-model are its ability to uniformly represent meta-information as
first-class objects with well-defined behavior and to maintain the behavior application abstraction on these
constructs. This means that all properties of the model apply to this higher-level information uniformly.
This property has been referred to as reflectizon [PO93]

The higher-level objects are called meta-objects because they provide support for other objects. For
example, T_type provides support for types and C_class manages the class objects in the system. These
meta-objects are uniformly managed by means of the primitives. This is possible through the introduction
of higher level constructs called meta-meta-objects. Our model defines a three tiered structure for managing
objects as depicted in Figure 3. Each box in the figure represents a class and the text within the box is the
common reference name of that class. The dashed arrows represent instance relationships with the head of
the arrow being the instance and the tail being the class it belongs to.

‘ C_class-class

«- " >
‘ C_type-class ‘ ‘ C_collection—class‘ m2-objects

; ¥y ;
Class object Lobi
O C_collection | ™mrobjects
Instances i
¥ oy N ¥ov N ¥y A
.) O i
T.ype object Persons 1 Behavion negers Colle.ctlon mU-objects
instances Reals . object
Real World Objects instances
Geometric Shapes Zones Maps

Strines Dwellings Functions
trings

Figure 3: Three tiered instance structure of TIGUKAT objects.

The lowest level of our instance structure consists of the “normal” objects that depict real world entities
such as integers, dwellings, maps, behaviors and so on. Type and collection objects also reside at this level,
which illustrates the uniformity in TIGUKAT. We define this level as m" and classify its objects as m®-
objects. The second level defines the class objects whose associated types maintain schema information for
the objects below it. These include C_type, C_collection and most other classes in the system. This level
is denoted as m'! and its objects are m!'-objects. The reasons for placing the classes at this level are that
classes maintain the objects of the system (objects cannot exist without classes) and classes are associated

Copyright @ VLDB 1995. To appear in VLDB Journal, 4(3), July 1995. 8

with types that define the schema information of their instances (classes cannot exist without types). Thus,
classes represent the binding management between objects and the operations that can be performed on them
as defined by their type. The upper-most level consists of the meta-meta-information (labeled m?), which
defines the functionality of the m'-objects and is used to give definitional properties to these objects. The
structure is closed off at this level because the m2-class C_class-class is an instance of itself as illustrated
by the looped instance edge.

In the following discussion, we show the interactions among the various levels of the structure and how
they contribute to the uniformity of TIGUKAT, which in turn forms the foundation for reflection. We refer
the reader to the primitive type lattice in Figure 2 and a portion of its companion primitive class lattice
shown in Figure 4. Each C_x class in Figure 4 is associated with the corresponding T_x type in Figure 2.

____, Instance edges to
! type objects

Instance edges to ‘ C_type-class ‘
other clas; objects x

C_collection %‘ C_class ‘C_class—class % .
- X X — ,
¥ R) Y
Instan(?e edgﬁ,s to ‘C_collection-class ‘
collection objects ~
Superset o Subset
Class -------------- > Instance

Instance edge

Figure 4: Subclass and instance structure of m! and m? objects.

Figure 4 illustrates the subset inclusion and instance structure of some of the m®, m!, and m?-objects
in relation to one another. Starting from the left-side of the lattice structure, we explain the relationships
between these classes and their instances. The class C_object is an m!'-object that maintains all the objects
in the objectbase (i.e., every object is in the deep extent of class C_object). Two other m'-objects in
the figure are subclasses of C_object, namely, C_type and C_collection. These two classes maintain the
instances of types and collections, respectively. Class C_collection is further subclassed by the m2-object
C _class because every object that is a class is also a collection of objects. For example, the class C_city is an
instance of the class C_class and C_city is a collection of city objects. The deep extent of C_class manages
all classes in the system such as C_object, C_type, C_city, and so on. Finally, C_class is subclassed
by m?-objects C_type-class, C_class-class, and C_collection-class. Intuitively, C_type-class is a class
whose instances are classes that manage type objects. Similarly, C_class-class is a class whose instances are
classes that manage class objects and C_collection-class is a class whose instances are classes that manage
collection objects.

This meta-architecture is sufficient for managing all objects, including meta-information, in a uniform way.
This provides the foundation for reflective capabilities such as the support for class behaviors and reflective
queries. To support class behaviors, each class can be made an instance of its own meta-class instead
of the common meta-class C_class. For example, to define a class behavior B_averageAge on C_person
that computes the average age of the persons, we can uniformly extend the meta-model by creating a
type T_person-class as a subtype of T_class, defining the behavior B_averageAge on T_person-class,
creating an m?-class C_person-class as the associated class of T_person-class, and creating C_person
as an instance of C_person-class. Now, we can create person instances of C_person in the usual way and
B_averageAge is applicable to C_person and returns the average age of all persons in C_person. We can
define many other class behaviors on T_person-class, including various object creation and initialization

Copyright @ VLDB 1995. To appear in VLDB Journal, 4(3), July 1995. 9

behaviors. This approach is in contrast to the usual way of making C_person a direct instance of C_class.
If this is done, it 1s difficult to define class behaviors for C_person since C_class typically has many class
instances and any class behavior defined on T_class would apply to all class objects. Our approach is
superior to an approach that defined an extra m?-class for every class (e.g., Smalltalk), since it has smaller
space overhead.

More powrful extensions are also possible. For example, although C_person-class is a separate m?-class
for C_person, it can be used to group other related classes such as C_student, C_employee, etc., simply
by creating them as instances of this class. Behavior B_averageAge would then be applicable to all these
additional classes. Our approache provides a good balance between the flexibility of defining class behaviors
with the efficiency of grouping common classes under a single m?-class.

Reflective queries can be expressed naturally in TIGUKAT without any meta-level extensions to the query
languages. The reason is that the query model incorporates the behavioral paradigm of the object model and
since the meta-system 1s uniformly represented by objects with well-defined behaviors, the meta-objects can
be used in queries just like any other objects. For example, it is natural (through behavior applications) to
express a query that returns the types that define a behavior B_age with the same implementation as one of
its supertypes. Additional examples include a query that returns a collection of all types that don’t have an
associated class (i.e., all abstract types), a query that returns types that define a certain implementation for
a certain behavior, a query that returns the classes that have a greater cardinality than all other collections
in the system, and so on. Moreover, we can use reflection to infer the result type of a query during its
execution. An example reflective query 1s given in Section 5.

Our meta-class structure is similar to ObjVlisp [Coi87] and is a generalization of the one-to-one class/meta-
class architecture of Smalltalk [GR89]. The generalization of Smalltalk stems from the fact that we do not
necessarily define an m?-class for every class, which is required in Smalltalk. We can group several classes
under a common m?-class. Full details of the reflective features of TIGUKAT and its comparison with other
meta-models are presented in [PO93].

The introduction of the m?-objects adds a level of abstraction to the model that encapsulates the schema
as first-class objects. The benefit of this approach is that the entire model is consistently and uniformly
defined within itself. Every object has well-defined behavior and, therefore, we can uniformly apply behaviors
to the higher-level objects.

2.6 Temporality

Temporality is introduced into TIGUKAT through an extensible set of primitive t¢me types. A rich set of
behaviors are defined on these types to model the various notions of time elegantly [GM93].

We use the concept of a tsmeline to represent an axis over which time can be specified. A timeline is
comprised of a collection of time references. A time reference is a means by which time can be specified
(e.g., b seconds, t3, July 31, [1967,1968], 3 years, 9:17:54:20). We have identified three basic types of time
references: a time instant (moment, chronon, etc.), a time span (duration), and a time interval. These are
used to construct instant timelines, span timelines, and interval timelines.

We can model different kinds of timelines depending on (i) their domain (discrete, dense, or continuous),
(ii) their boundedness (bound or infinite), and (iii) their ordering (linear orbranching). Any combination of
these three features is possible in forming a timeline. This gives applications built on TIGUKAT substantial
flexibility in choosing timelines to suit their needs.

Behavior histories are used to manage the properties of objects over time. A subtype of T_behavior is
introduced to specialize behaviors with temporal qualities for managing histories. Instances of this subtype
are called temporal behaviors. Temporal behaviors specialize non-temporal ones and, thus, encompass all the
functionality of non-temporal behaviors. This introduces temporal transparency in the sense that a temporal
behavior can be used anywhere a non-temporal behavior i1s expected. In other words, a user unconcerned
with temporality can use temporal behaviors as if they were non-temporal. This has the benefit of integrating
temporal applications smoothly into an existing system.

Temporal behaviors have the ability to manage valid time histories (when a value for the behavior is valid)

Copyright @ VLDB 1995. To appear in VLDB Journal, 4(3), July 1995. 10

and transaction time histories (when a value for a behavior is committed to the objectbase) independently.
Our approach adheres to the well recognized orthogonal nature of the these two times [SA85] and allows us
to support valid time, transaction time, and bitemporal models.

2.7 An Example System Design

In this section, we present the design of a simplified geographic information system (GIS). This example
is used throughout this paper to demonstrate various features of TIGUKAT. The GIS example 1s selected
because it is usually listed among the application domains which require the advanced features offered by
object-oriented technology.

/T_ObJeCt
T_person T_dwelling T_location| T_geometricShape
T_function T_collection
T house T dlsplayOb]ect T zone atomic T_behavior T_type
T qu \\ T_date
T map T land T Water T transport T_altitude
T_forest T_clear T_pond T river T road

T_developed

N\

T null

Figure 5: Type lattice for a simple geographic information system.

A type lattice for a simplified GIS is given in Figure 5. The example includes the root types of the various
sub-lattices from the primitive type system to illustrate their relative position in an extended application
lattice. The GIS example defines abstract types for representing information on people and their dwellings.
These include the types T_person, T_dwelling and T house. Geographic types to store information about
the locations of dwellings and their surrounding areas are defined. These include the type T location,
the type T_zone along with its subtypes which categorize the various zones of a geographic area, and the
type T-map which defines a collection of zones suitable for displaying in a window. Displayable types for
presenting information on a graphical device are defined. These include the types T_-displayObject and
T_window which are application independent, along with the type T-map which is the only GIS application
specific object that can be displayed. Finally, the type T_geometricShape defines the geometric shape of
the regions representing the various zones. For our purposes we will only use this general type, but in more
practical applications this type would be further specialized into subtypes representing polygons, polygons
with holes, rectangles, squares, splines, and so on. Table 1 lists the signatures of the behaviors defined on
GIS specific types.

Copyright @ VLDB 1995. To appear in VLDB Journal, 4(3), July 1995. 11

Type Signatures
T_location B_latitude: T_real
B_longitude: T_real
T_displayObject B_display: T_displayQObject
T_window B_resize: T_window
B_drag: T_window
T_geometricShape
T_zone B_title: T_string
B_origin: T_location
B_region: T_geometricShape
B_area: T_real
B_proximity: T_zone — T_real
T_map B_resolution: T_real
B_orientation: T_real
B_zones: T_collection(T_zone)
T_land B_Pollutants: T_collection(T string)
T_water B_volume: T_real
B_Pollutants: T_collection(T string)
T_transport B_efficiency: T._real
T_altitude B_low: T_integer
B_high: T_integer
T_person B_name: T_string
B_birthDate: T_date
B_age: Tmatural
B_residence: T_dwelling
B_spouse: T_person
B_children: T_person — T_collection(T person)
T_dwelling B_address: T_string
B_inZone: T_land
T _house B_inZone: T_developed”
B_mortgage: T_real

“Behavior was refined from supertype T_dwelling.

Table 1: Behavior signatures pertaining to example specific types of Figure 5.

3 Implementation Considerations

The persistence issues related to the implementation of TIGUKAT are discussed in the next section. In this
section, we discuss some of the other issues that arise in the implementation of a uniform and generic object
model such as TIGUKAT. There are three issues that we discuss: the implementation of the primitive type
system, behavior application, and the implementation of behavioral and implementation inheritance. For
more details, the reader is referred to [Ira93].

3.1 Implementation of Primitive Type System

TIGUKAT is implemented in g+-+ which is GNU’s implementation of C4++. However, since TIGUKAT has
a generic object model, there is no one-to-one mapping between TIGUKAT types and C++ classes (i.e., we
do not create a C+—+ class for each TIGUKAT type that is defined). Tnstead, there exists a single foundation
C++ class, TgObject, which is the principal template for instantiation of all TIGUKAT objects. That
is, every TIGUKAT object (type object, class object, behavior object, collection objects, function object,
instance object, atomic object, and other primitive or user-defined object) is an instance of this fundamental
C++ class. This approach ensures the uniform representation of all objects in the system since they may

Copyright @ VLDB 1995. To appear in VLDB Journal, 4(3), July 1995. 12

each be treated as an instance of TgObject. The TIGUKAT type, class, etc. semantics is embedded within
the TgObject structure. Following this approach, the TIGUKAT model is implemented within itself.

From the structural viewpoint, every instance of TgObject comprises of an array of records as depicted
in Figure 6. These can be thought of as the attribuies (data fields) of that particular instance. TgObject
is a dynamic array where each element is either an integer, a character, or TgObject. Integers, reals and
characters are stored directly while all other objects, including the atomic objects such as sets, strings, bags,
lists and posets, have only references to them stored in the slots. This decision was made to ensure efficient
use of memory. For any object, the first slot always contains a pointer to that object’s type which was the
template used for its creation. Thus, in line with the model, every object carries knowledge about its type.

TgObject |
Reference Pointer to the object’s type
String
Set
Integer
Character

Figure 6: Representation of the Generic TgObject Structure

To implement uniform treatment of everything as first-class objects, we have implemented different kinds
of C++4 object instances in the system viz. {ype objects, class objects, object objects, behavior objects,
function objects, collection objects and atomic objects. Although these template instances all all TgObjects,
they differ in their structural contents. For example, a type object has a fixed number of slots dedicated
for maintaining information such as its corresponding class (implemented as a reference to another C++
instance which is a class object), its subtypes set (reference to a C4++ set instance), its supertypes, etc.
We do not discuss the detailed data structures of each of these objects; we will only discuss the structure
of type objects since this information is relevant to the subsequent discussion on behavior application and
inheritance implementation.

3.2 Behavior Application

Dispatching is the process by which the application of a behavior on an object (message sending) is bound
to a particular function (implementation of that behavior). In the event that the applied behavior’s imple-
mentation is not clearly evident (as a result of subtyping), the right function associated with that applied
behavior for the type of the receiver object must be invoked. This requires what 1s called dynamic binding.
Behavior application thus involves the retrieval and application of an appropriate piece of binary code that
is contingent on the receiver’s type and the selector for that behavior.

Dispatching may be considered as a special case of what is called resolution [ZM90]. Resolution has been
defined as a runtime interpretation process that selects a particular value from a possibly ambiguous set

Copyright @ VLDB 1995. To appear in VLDB Journal, 4(3), July 1995. 13

TgObject Ea—
Reference 0 T_type
1 Dispatch Cache
2 | Cache Row
3 Corresponding Class
4 SubTypes Set
5 SuperTypes Set
6 SubLattice Set
7 SuperLattice Set
8 Native Behaviors Set
9 Inherited Behaviors Set
10 Slots

Figure 7: The Type Object’s Structure

of values. Method dispatch (behavior application), hence, seeks to select an appropriate function object
(method) whose code needs to be executed, from a set of function objects each of which implement the
same named behavior object over different types. In order to correctly make this decision some additional
information (actual type of the receiver and the method selector) relevant to the context is required.

Since behavior application is such a fundamental operation in TIGUKAT, it is important to have an
efficient dispatch implementation. We have opted for a relatively simple but fast mechanism at the cost of
bearing the consequential memory overhead. The system maintains a dispatch cache which consists of a slot
for each behavior-type pair that exists in the system. This cache is a statically allocated volatile structure
which needs to be reinitialized on program startup. The size of this lookup table is accordingly proportional
to the total number of unique behaviors in the system and the total number of types in existence. We
sacrifice memory usage for quick response time during execution, but as proposed in [AR92, DMSV89],
an incremental coloring algorithm could be used to drastically reduce memory consumption. We have not
implemented this optimization in the current version of TIGUKAT.

Each entry in the dispatch cache is a function pointer to some executable code which implements that
behavior (column) for the concerned type (row). FEvery unique behavior has a unique integer mapping
associated with it. We call this integer mapping the method selector. The method selector provides access
to the appropriate column of the cache. That column is said to “belong” to the behavior. The addresses
stored in the slots of this column may be different or identical, depending on which of the subtypes have
inherited the same implementation of that behavior and which have had that behavior redefined, overridden

Copyright @ VLDB 1995. To appear in VLDB Journal, 4(3), July 1995. 14

or reassociated (associated with a different function). The process of filling the cache row with appropriate
values during the creation of a new type has been termed implementation inheritance and our system handles
it automatically up to a certain degree of complexity as discussed in the next subsection.

Behaviors may be reassociated with functions at any time (redefinition of behaviors) and this makes it
imperative that we support the dynamic binding of behaviors and perform dispatch on the fly. Although it
is evident that static (compile time) dispatching is more efficient [Cat91], this will seldom be possible in our
system. The reference to an object of a particular type may potentially be referencing an object of any of
this type’s subtypes. The ambiguity about which function should be invoked can only be resolved at runtime
when knowledge about which type’s instance is being referenced becomes available. Thus, the actual type of
a receiver object needs to be identified prior to function execution. We note that although dynamic binding
might render static type checking difficult it does not entirely preclude it.

Behavior Application
. . Executable Code
recObj Behavior ——— methodSelector
— 7 Type
| slot-1 | _slot-1 /
| slot-n
_ | slot-n
recObj’s Structure Dispatch Cache

recType’s Structure

Figure 8: The Behavior Application Process

The behavior application process for computed functions in TIGUKAT involves the following procedure.
With reference to Figure 8, given an object, say recObj, as the receiver of a particular message, we extract
its type, say rec Type, which is readily available since every object knows its type. All types have knowledge
of their unique cache row (See Figure 7). From the applied behavior object we extract the method selector,
methodSelector. This integer value indexes into a unique column in the dispatch cache. The slot in the
determined row and column contains the address of the function code to be executed. The list of arguments
passed to the behavior is supplied to the function after relevant type checking is done. Behavior application
is conveniently reduced to the execution of a single line of code:

JMP(recObj — recType — dispatchCache[methodSelector])
where recObj is a pointer to the object on which the behavior is to be applied (receiver object reference),
recT'ype is the receiver object’s type, dispatchCache is the matrix of executable addresses and methodSelector
gives access to the appropriate column in the dispatch cache. Therefore, the two basic requisites for binding
an executable piece of code to the applied behavior at runtime are the type of the receiver object and the
method selector for the behavior.

Copyright @ VLDB 1995. To appear in VLDB Journal, 4(3), July 1995. 15

3.3 Behavioral and Implementation Inheritance

As indicated in Section 2.1, two kinds of inheritance are supported by TIGUKAT: behavioral and implemen-
tation inheritance. The implementation strategy for behavioral inheritance (subtyping) involves taking the
union of the interface sets of all the types declared as immediate supertypes of the new type being created.
This set forms the contents of the new type’s inherited set and comprises the minimum set of behaviors
that all objects of this type should conform to. The nature of the functions that these behaviors have been
associated with is of no consequence to the behavioral inheritance mechanism. The implemented algorithm
iterates through the relevant interfaces and selects all the behaviors with unique signatures as candidates for
insertion into the new type’s inherited set. This is a relatively straightforward technique.

Implementation inheritance facilitates code reuse by ensuring that all code is at a level where the maxi-
mum number of types can share it [ABD*89]. If only single inheritance is present, the inherited set of the
new type is precisely the contents of the interface set of its sole supertype. No conflict resolution is necessary
and all entries in the dispatch cache and the supplementary cache are merely duplicated in the row allocated
for the new type for the complete set of inherited behaviors. This implies that all implementations (function
addresses) for the inherited set of behaviors are inherited too. However, the type implementor” has the
liberty to reassociate any or all of these inherited behaviors.

With multiple inheritance, the situation is more complex since conflict resolution has to take place.
Figure 9 depicts an inheritance graph with multiple subtyping. The arrows indicate a subtyping relationship
from the tail to the head and the dotted arrow indicates an instance of the type. The dashed boxes contain
the interface sets of the corresponding types while the matrices shown as DC and SC are the dispatch cache
and the auxiliary cache, respectively. The auxiliary cache SC is a bit cache that records whether a function is
stored or computed. Execution of the stored function simply sets or gets the contents of one of the receiver’s
slots without executing any code. In this case, the slot number, rather than the function address, is stored
in DC.

Consider the GIS example that we introduced earlier. We create a new type Tmarsh, as a subtype
of T_land and T_water, with the native behaviors B_drainageRate (to calculate the rate of water leaving
or entering the marsh) and B_DuckPop (to store the population of ducks in the marsh). This inheritance
structure has a clash in behaviors that the system is unable to resolve automatically and requires the
type implementor’s intervention. The conflict resolution policy fails because the behaviors B_set Pollutants
and B_getPollutants are defined in the interfaces of both the direct supertypes (T_-land and T_water are
immediate supertypes of Tmarsh and have conflicting implementations associated in each of these types,
being computed in T_water but stored in T_-1land (as depicted in auxiliary cache SC). We have assumed that
the type implementor opted for the stored implementations to be inherited and therefore each instance of
T_marsh requires a total of three slots: slot 0 holds the reference to the type, slots 1 holds the reference to
the collection of pollutants, and slot 2 holds the value of the duck population.

We iterate over each of the behavior objects in the inherited interface of T_marsh generated during behav-
ioral inheritance. If a behavior exists in only one supertype’s interface, this signifies a conflict-free condition;
thus no conflict resolution is required. The implementation for that behavior may be safely inherited to-
gether with its associated function (stored or computed). The appropriate entry in the supplementary cache,
indicating a stored or computed association, is inserted. If the association is with a computed function then
the address of that function is also inserted into the dispatch cache. All the stored functions will possess a
NULL entry in the dispatch cache until class creation time. At that time, slots will be assigned to all the
stored functions, one slot per pair of set-get accessors. This may require a reallocation of slots to behaviors
which is entirely system managed.

For each conflicting behavior, the conflict resolution policy has to be applied. The supplementary cache
values for that behavior are examined. If they happen to indicate a computed function for all the conflicting
supertypes, the values of the addresses of the functions from the dispatch cache are examined. If these are

"We identify three classes of users. The type specifier is the person who designs the inheritance hierarchy for the user
application. The type implementor is the one who actually implements this required hierarchy using TDL. The end user refers
to the person or application program that may query the existing system and instantiate new objects, but may not be authorized
to modify the existing type structure.

Copyright @ VLDB 1995. To appear in VLDB Journal, 4(3), July 1995. 16

: [1] B_setPollutants

I [2] B_getPollutants 2] B_getPollutants
|

3] B_volume

—_, —. .

}’ [4] B_drainageRate | ._
' 5] B_setDuckPop 1 0| "
| [6] B_getDuckPop | 1
(S I 2

T_marsh’s instance

1 23 456 1 23 45 6
T_zone
T_land 111 s |s
T_water c|c|c
T marsh |1 |1 212 s|s|c|c|s |s
DC SC

Figure 9: Implementation Inheritance Requiring Conflict Resolution

identical for each of the types in the set of conflicting supertypes, then this behavior’s implementation is
safely inherited and the corresponding address is inserted into the dispatch cache. A computed indication is
placed in the supplementary cache.

If the conflicting behavior is implemented by a stored function in all the entries for the supertypes, the
corresponding value of T_function is examined for each type. If these match, then a stored indicator is
placed in the supplementary cache and a NULL is entered into the dispatch cache. Recall that for all the
stored functions, the dispatch cache will hold the corresponding slot number to access (an identical value for
each paired set-get) instead of the address of the executable code. These slot numbers will only be inferred
and allocated during class creation, at which time it will be possible to determine the total number of all
the associated stored functions.

In the event that an inherited behavior is associated with a stored function in one of the supertypes and
a computed function in another, or there is mismatch in the values of function pointers, then no conflict
resolution is possible by the system and a NULL is entered in both caches. It is the type implementor’s
responsibility to associate this behavior with an appropriate implementation of his choice or to specify which
of the supertype’s implementations is to be inherited. A message requesting intervention will be displayed.
The cache values for this behavior must be inserted (i.e. each behavior must be associated with some
function) before class creation in order that the newly established type be considered functionally complete.

Copyright @ VLDB 1995. To appear in VLDB Journal, 4(3), July 1995. 17

4 Persistence Model

A fundamental decision governing the implementation of an OBMS is the strategy employed for managing
persistent objects. Persistence is defined as the ability of an object to survive across multiple application
program executions and a persistent object is one that has this property. The persistence model of TIGUKAT
adheres to the following principles:

1. Persistence is transparent to the user. TIGUKAT Query Language (TQL) and TIGUKAT Control
Language (TCL) provide a declarative specification for indicating that an object is persistent. Users
do not perform any explicit input/output operations, nor do they open and close files. TIGUKAT
coordinates with the low-level storage manager to provide persistence transparently.

2. Persistence is orthogonal to the type of an object [AB8T]. A type can be made persistent or transient.
The instances of a type can be either persistent and transient. The only dependency is that if an object
is made persistent, then its type must also be made persistent because an object cannot exist without
a type. These are described as persistence side-effects (PSEs) below.

3. Persistence is independent of the query model [AB87]. Queries do not differentiate between transient
and persistent objects. Both are queried in a uniform way using the same language constructs. This
principle 1s followed in the development of a programming language interface to TIGUKAT.

Five basic approaches to persistence have been identified [ZM90]. The first strategy requires that a
decision about persistence be made prior to object creation. Depending on whether a persistent or transient
object is needed, an appropriate object creation routine is invoked on the object. Thus, there are separate
routines for creating transient and persistent objects.

The second approach is called reachability based persistence. This methodology, pioneered in PS-Algol
[ABC*83] and incorporated by Oy [BDK92], requires that persistent objects hang off a persistent root via
a direct or indirect reference. When an object o is made persistent, all objects in the transitive closure (i.e.,
reachable from o) are made persistent. Object o becomes a root for persistence. In this scheme, every object
reachable from a root is made persistent or transient when the root is made persistent or transient.

The third approach is allocation based persistence. This approach restricts the persistence of an object by
requiring it to be allocated within a persistent container (collection) during object creation. This requires the
existence of a persistent storage space with variables naming locations within that space. Objects written
into persistent variables are guaranteed to be persistent as long as they are maintained in the persistent
variable. ObjectStore [LLOW1] takes this approach, although it renders garbage collection difficult due to
the dangling references problem.

The fourth approach is type-based persistence where some types are declared to be persistent and an
object is persistent if it is an instance of a persistent type. The E language [RC89, SCD90, RCS89] uses a
similar approach and maintains a parallel hierarchy of persistent and corresponding non-persistent types.

The fifth approach (which we follow) associates persistence with individual objects and requires explicit
declaration of persistence, which may occur anytime during an object’s existence. We define a primitive
behaviors B_persistent and B_transient on T_object that are applicable to all objects in the system. This
behaviors coerce the receiver object to be persistent or transient, respectively. The TIGUKAT user languages
provide declarative constructs for making individual objects or collections of objects persistent or transient.
The system translates these requests to applications of B_persistent or B_transient on the affected objects.

We opted for object based persistence because it best maintains the uniformity of object access and does
not restrict the use of types for persistent or non-persistent purposes. Any object created during a session
(either a query session or an application program execution session encapsulated as a transaction) can be
explicitly made persistent (or transient) at any time during the session. Thus, all TIGUKAT objects are
potentially persistent.

The support for persistence is a behavioral extension to the model. Behaviors B_persistent and B_transient
are added to the type T_object and, thus, are applicable to any object. This clarifies the fact that all objects

Copyright @ VLDB 1995. To appear in VLDB Journal, 4(3), July 1995. 18

are potentially persistent (or transient) in TIGUKAT. The language constructs for persistence in TQL and
TCL invoke these behaviors.

TIGUKAT queries operate on collections and return collections as results. Since collections are objects,
we permit the existence of persistent as well as transient collections. Transient and persistent collections can
contain a mixture of both transient and persistent member objects. The transient members of a collection
must cease to exist at the end of a particular session, even if the collection is persistent. On the other
hand, the persistent members of a collection must continue to exist in their respective class extents after a
particular session ends. This is true even if the collection is transient and ceases to exist at the end of a
session. This does not cause a problem since the persistent objects in a transient collection reside in the
(persistent) class associated with the type of these objects. Thus, these objects are available following the
session even if the collection is not. All collections generated as a result of query execution are initially
transient. The semantics of handling each case of transience and persistence of objects, collections, classes,
and types are described by implementations for the B_persistent and B_transient behaviors, which we discuss
below.

Coercing an object to be persist might result in persistence side-effects (PSEs), which propagates per-
sistence to type and class objects related to the original object. The persistence matriz shown in Figure 10
depicts the various alternative strategies involved in making a TIGUKAT object persistent. Reading across
rows, a “+” entry indicates a PSE while a “—” entry indicates PSE-free persistence (the diagonal entries are
not a concern and, therefore, are PSE-free). Making a type persistent is PSE-free. Tts corresponding class and
instances, if they exist, are not required to be persistent. If a class object is made persistent, a PSE occurs
which makes its corresponding type persistent as well. However, the instances of this class do not need to be
made persistent. The final case is when a particular instance object is made persistent. This causes PSEs
that make both its class and its corresponding type persistent. This protects against the object being stored
as a persistent instance of a transient type and sometime later being erroneously accessed as an instance of a
non-existent type (if its transient type disappears in the meantime). The primitive types, classes, behaviors,
and functions are by default perpetually persistent and cannot be deleted. This is necessary for the integrity
of the system.

Type| Clasg Inst

Type| X - -
Clasqd + X -
Inst + + X

Figure 10: The persistence matrix.

The compliment of the persistence matrix is the transience matriz (not shown). This matrix derives the
repercussions of making persistent objects transient (by applying a behavior B_transient defined on T_object
for example). The effects are precisely the opposite of those described in the persistence matrix (i.e. making
an instance transient will not effect 1ts type or class, making a class transient does not effect its corresponding
type but all its instances will be made transient, and making a type transient will make its corresponding
class and all its instances transient).

This model of persistence is fairly low-level and the referential integrity between objects is a problem
to consider. In particular, when a transient object disappears, how are dangling references to this object
handled?

One approach is to offload the responsibility onto the application programmer who must update references
to transient objects before the end of a session. This approach is unacceptable for obvious reasons. Another

Copyright @ VLDB 1995. To appear in VLDB Journal, 4(3), July 1995. 19

approach is to use reachability persistence, which disallows persistent objects to reference transient ones,
since, when an object 18 made persistent, the transitive closure of all objects reachable from that object
are made persistent as well. Reachability-based persistence is not useful in a uniform model like TIGUKAT
because conceptually, all objects in the entire objectbase are reachable from any object. Consider an arbitrary
object. Since every object knows its type, the type of the object is reachable and must be made persistent.
Every type knows its class and, therefore, the class is reachable and should be made persistent. Every class
knows its instances and all instances of that class are made persistent. Every type knows it supertypes and
subtypes and, thus, the class/instance persistence propagates over the entire lattice and makes all objects
persistent.

The approach that we use has the net effect of transforming transient objects into perpetually persistent
undefined objects at the end of a session (or transaction). This is always safe because undefined is an instance
of Tmnull, which is a subtype of all types. The substitutability property allows us to use undefined anywhere
an instance of a supertype is used.

Operations on a TIGUKAT objectbase occur within a given user session (which will be modeled as a
transaction when the programming language is developed). A session defines a scope for the transience
of objects. There are save (commit) and quit (abort) statements that can be used in a session. In this
sense, a session serves as a simple, flat transaction model. At the end of a session, all transient objects are
logically replaced by the perpetually persistent undefined object. This can be efficiently implemented by
pointer swizzling. That is, we modify the oid mapping so that it appears as though the transient object was
written to stable storage at the location where the persistent undefined object exists. Then, all persistent
objects that referenced the transient object will now reference the persistent undefined object and there will
be no dangling references.

In this approach, there is the potential for wasted stable storage when a persistent object 1s made
transient. The transformation to the persistent undefined object occurs as usual, but we must somehow
reclaim the storage occupied by the object when it was persistent. With a central oid to disk address
mapping we can simply update this mapping and reclaim the storage immediately. If, however, objects hold
the disk addresses directly, then there may be other persistent objects that reference the old disk address
and we cannot simply reclaim the space without updating these references. In this case, a garbage collector
can be used to manage reference counts and reclaim the storage after all references have been updated. In
the meantime, the storage must be transformed into a persistent undefined object so that objects referencing
it will not see the old persistent object, but rather the undefined object. This transformation is easily
implemented by encoding the information in the header of the old object on disk.

Our approach to single object persistence and the maintenance of the PSEs are described in the F_makePersistent
and F_makeTransient functions below that serve as implementations for the B_persistent and B_transient
behaviors defined on T_object.

F_makePersistent(o)
This is the implementation of the B_persistent behavior defined on T_object.
INPUT: An object o to be made persistent.

if object o is transient then

Call storage manager to write o to stable storage and update log

Apply B_persistent to the type and class of o:
o.B_mapsto.B_persistent
o.B_mapsto.B_classof . B_persistent

if object o is a class then
Apply B_persistent to the associated type of the class:

0.B_typeof . B_persistent
endif

Copyright @ VLDB 1995. To appear in VLDB Journal, 4(3), July 1995. 20

endif

The recursion of the F_makePersistent implementation is ended by making primitive T_type and primitive
classes C_type and C_class-class perpetually persistent. T_type and C_type represent the end of the type
chain while C_class-class represents the end of the meta-class chain. Note that these are the minimal
primitive persistent objects. In practice, the recursion is ended much sooner because many more primitive
objects are perpetually persistent (like C_class, for example).

At commit time (or the end of a session), the transaction management facility ensures that persistent
objects are written out to stable storage. No changes are made to persistent objects with respect to references
to transient objects. Dangling references are avoided by the transformation described above.

The implementation for the B_transient behavior is as follows:

F_makeTransient(o)
This is the implementation of the B_transient behavior defined on T_object.
INPUT: An object o to be made transient.

if object o is persistent then
Call the storage manager to mark object o transient and update log
if object o is a class then
Apply B_transient to every member in the shallow extent of the class
endif
if object o is a type then
Apply B_transient to the associated class of the type:
0.B_classof . B_transient
endif
endif

At commit time, all transient objects are replaced by the persistent undefined object. This ensures that
there will be no dangling references to the transient objects because persistent objects that reference the
transient object will now reference the persistent undefined object. Implementation issues of this approach
are discussed above.

The explicit deletion semantics for persistent and transient objects are closely related to the F_makeTransient
implementation and the transient-to-undefined object transformation. The reason is that when an object is
explicitly deleted, there is still the problem of dangling references to consider. The B_drop behavior defined
on T_object can be used to explicitly delete an object. The deletion semantics is related to schema evolution
when the object to be dropped is part of the schema (i.e., a type, class, collection, behavior, or function).
Schema evolution is beyond the scope of this paper, but is addressed in [Pet94].

The only difference in the transient object and deleted object semantics is the timing of events. When an
object is deleted (whether it be transient or persistent), it is immediately replaced by the persistent undefined
object, rather than at the end of a session as is the case for transient objects. A simplified implementation
of the B_drop behavior for deleting objects is defined as follows and the similarities to F_makeTransient are
apparent:

F_deleteObject(0)
A simplified implementation of the B_drop behavior defined on T_object.

INPUT: An object o to be deleted.

Copyright @ VLDB 1995. To appear in VLDB Journal, 4(3), July 1995. 21

Call the storage manager to mark object o as deleted and update log
if object o is a class then

Apply B_drop to every member in the shallow extent of the class
endif
if object o0 is a type then

Apply B_drop to the associated class of the type:

0.B_classof .B_drop

endif

Perform schema evolution operations if o is a schema object

The single object persistence approach can be transitively applied to all objects referenced by the object
being made persistent. This can proceed any number of levels until the transitive closure is reached. Thus,
we can identify the boundaries for the transitive application of persistence. The lower bound is when only
a single object is made persistent (our approach). The upper bound is when all objects in the transitive
closure are made persistent (reachability persistence). In a finite objectbase, there are a finite number of
levels between these two boundaries. We call the lower limit 0-persistence, the upper limit n-persistence,
and any level between these two i-persistence. For example the persistent all construct of TQL and TCL
performs I-persistence on a collection argument. That is, the collection and all of its members (1 level of
reference) are made persistent. We showed that in a uniform model like TIGUKAT, the transitive closure
from any object is the entire objectbase and so n-persistence is not useful.

5 Query Model and Language

An identifying characteristic of the TIGUKAT query model is that it is a direct extension to the object
model. In other words, it is defined by type and behavior extensions to the primitive model. We define a
type T_query as a subtype of T_function in the primitive type system. This means that queries have the
status of firsi-class objects and inherit all the behaviors and semantics of objects. Moreover, queries are
functions and can be used as implementations of behaviors, they can be compiled, they can be executed,
and so on.

Incorporating queries as a specialization of functions is a natural and uniform way of extending the object
model to include declarative query capabilities. The major benefits of this approach are as follows:

1. Queries are first-class objects, meaning they support the uniform semantics of objects, they are main-
tained within the objectbase as another kind of object and they are accessible through the behavioral
paradigm of the object model.

2. Since queries are objects, they can be queried and can be operated on by other behaviors. This is
useful in generating statistics about the performance of queries and in defining a uniform extensible
query optimizer.

3. Queries are uniformly integrated with the operational semantics of the model and, thus, queries can be
used as implementations of behaviors (i.e., the result of applying a behavior to an object can trigger
the execution of a query).

4. The query model can be extended by subtyping T_query. This can be used to specialize the notion
of queries into additional types that can be incrementally introduced and developed as new kinds of
queries are discovered. For example, we subtype T_query into T_adhocQuery and T_productionQuery
and then define different evaluation strategies for both in the query optimizer. Ad hoc queries may be
interpreted without incurring high compile-time optimization strategies while production queries are
compiled once and executed many times.

Copyright @ VLDB 1995. To appear in VLDB Journal, 4(3), July 1995. 22

The languages for the query model include a complete object calculus, an equivalent object algebra, and
an SQL3-like user language. The TIGUKAT object calculus is a first-order predicate language. Predicates
of the calculus are defined on collections (essentially sets) of objects and a calculus expression returns a
collection of objects as a result. This gives the language closure. The calculus includes a function symbol
for behavior evaluation in order to incorporate the behavioral paradigm of the object model. This allows the
specification of path expressions (or implicit joins) in calculus formulas. The calculus is object-creating and
supports a controlled creation and integration of new collections, classes, types, and objects into the existing
schema.

The safety of the calculus is based on the evaluable class of queries [GT91], which is arguably the
largest decidable subclass of the domain independent class [Mak81]. We extend this class by making use of
equivalence (=) and membership (€) operators in queries for object generation. This alleviates the need of
explicit range specifications for those variables that can be generated from the given operators.

The TIGUKAT object algebra has a behavioral /functional basis as opposed to the logical foundation of
the calculus. Algebraic operators are modeled as behaviors on the primitive type T_collection. Like the
calculus, the algebra is closed in that every algebraic operator works on collections and returns a collection
as a result.

The operators of the algebra include typical set operations, a collapse operator for flattening nested
collections, a select for returning objects that satisfy a predicate, an operator for applying a series of behaviors
to a collection of objects, an operator to project behaviors, an operator for unconditionally combining objects,
a join for combining objects based of a join predicate, a generating join for producing objects from other
objects and joining the generated objects with the ones from which they were generated, and a reduction
operator for separating joined objects into their original components.

The first-order expressiveness of the calculus, its safety, as well as the equivalence of the calculus and
algebra are proven elsewhere [Pet94, PLOS93b]. In this context, a calculus expression is considered safe if
it can be evaluated in finite time and produces finite output [OW89, Pet94]. The remainder of this section
describes the user language of TIGUKAT, with a focus on its constructs for managing persistence and for
querying the objectbase.

The main function of the TIGUKAT language is to support the definition, manipulation, and retrieval
of persistent (and transient) objects in an objectbase. The language consists of three parts: the TIGUKAT
Definition Language (TDL), which supports the definition of meta-objects (i.e., types, collections, classes,
behaviors, and functions), the TIGUKAT Query Language (TQL), which is used to manipulate and retrieve
objects, and the TIGUKAT Control Language (TCL), which supports the session specific operations (open,
close, save etc.). We focus on TQL and TCL in this paper; the complete specification of all three languages
is given in [PLOS93b, Lip93].

The TIGUKAT query language (TQL) has a syntax based on the SQL3 select-from-where structure and
a formal semantics dictated by the TIGUKAT object calculus. Thus, TQL combines the power of declarative
query languages with object-oriented features in the forum of the international data-speak of SQL. The broad
acceptance of SQL as a standard query language in relational databases, together with the current efforts
on SQL3 to extend the syntax and semantics with object-oriented features [Gal92] are the main motivations
for our SQL basis.

The semantics of TQL 1s defined in terms of the object calculus. In fact, there is a complete reduction from
TQL to the object calculus [Lip93]. In addition, TQL accepts path expressions (implicit joins [KBC*89]) in
the select, from, and where clauses. Object equality is defined on the primitive type T_object, thus explicit
joins are also supported by TQL. The results of queries can be queried, since queries operate on collections
and always return a finite collection as a result. Queries can be used in the from and where clauses of other
queries (i.e., nested queries). Objects can be queried regardless of whether they are persistent or transient.

Note that the syntax for the application of aggregate functions is not explicitly supported in the current
implementation of TQL. However, as the underlying model is purely behavioral, these functions are defined
as behaviors on the T_collection primitive type, and can be applied to any collection including those
returned as a result of a query.

TQL consists of the four basic operations: select, insert, delete, and update, along with three binary

Copyright @ VLDB 1995. To appear in VLDB Journal, 4(3), July 1995. 23

operations: union, minus, and intersect. In this paper, we only discuss the select, union, minus, and
intersect statements.
The basic query statement of TQL is the select statement, which has the following syntax®:

(select statement) : select {(object variable list)
[into [persistent [all]] (collection name)]
from (range variable list)
[where (boolean formula)]

The select clause in this statement identifies objects to be returned in a new collection. There can be
one or more object variables of different formats (constant, variables, path expressions or index variables) in
this clause. They correspond to the free variables in an object calculus formula. The into clause declares a
reference to a new collection that will hold the result. This collection can optionally be made persistent by
specifying the persistent keyword. This does not make the members of the collection persistent. In order
to do this, the all keyword must be specified as well. If the into clause is not specified, a new transient
collection is created. There 1s no reference to this collection and 1t disappears at the end of a query. In
this case, the result cannot be retained for later use by another query. It can only be printed to the screen,
for example. The from clause declares the ranges of object variables in the select and where clauses. Every
object variable can range over an existing collection or a collection returned as the result of a subquery. A
subquery is a nested select-from-where clause that can be given explicitly or specified as a reference to an
existing query object. A range variable statement in the from clause is as follows:

(range variable) : (identifier list) in {collection reference) [-]
(collection reference) : (term) | ({query statement))

The collection reference in the range variable definition can be followed by a minus ‘-’. The minus refers
to the shallow extent of a class, which is a collection of objects®. The default is the deep extent for classes.
The term in the collection reference definition 1s either a constant reference, or a variable reference, or a
path expression.

The where clause defines a boolean formula that must be satisfied by the objects returned by a query.
Boolean formulas have the following syntax:

(boolean formula) : {atom)
| not{boolean formula)
| (boolean formula) and (boolean formula)
| (boolean formula) or {(boolean formula)
| ({boolean formula))
| (exists predicate)
| (forAll predicate)
|

boolean path expression)
where an atom is defined as follows:
(atom) : (term) = (term) | (identifier) € (term)

and a term 1is either a variable reference, a constant reference, or a path expression.

8 The notation used throughout this section is as follows: all bold words and characters correspond to terminal symbols of the
language (keywords, special characters, etc.). Nonterminal symbols are enclosed between ‘(" and ‘)’. Vertical bar ‘|’ separates
alternatives. The square brackets ‘[’, ‘]’ enclose optional material which consists of one or more items separated by vertical
bars.

9Tn earlier papers, we used the plus ‘+’ sign for the shallow extent. However, it was pointed to us by the referees that
this was counter-intuitive as the shallow extent actually reduces the cardinality of the range. We have, therefore, changed the
symbol to ‘-¢.

Copyright @ VLDB 1995. To appear in VLDB Journal, 4(3), July 1995. 24

Two special predicates are added to TQL boolean formulas to represent existential and universal quan-
tification. The existential quantifier 1s expressed by the exists predicate of the form:

(exists predicate) : exists {(collection reference)

The exists predicate is true if the referenced collection is not empty. The universal quantifier is expressed by
the forAll predicate, which has the following structure:

(for All predicate) : forAll (range variable list) (boolean formula)

The syntax of the range variable list 1s the same as in the from clause of the select statement. It defines
variables that range over specified collections. The boolean formula is evaluated for every possible binding
of the variables in this list. Thus, the entire forAll predicate is true, if for every element in every collection
in the range variable list, the boolean formula is satisfied.

The last component of the boolean formula definition is the boolean path expression defined simply as:

(path expression)= TRUE/FALSE

To avoid such an artificial construct, we include a boolean path expression in the definition of a TQL
formula under two conditions. First, all invoked functions are assumed to be side-effect-free (which is a
common assumption in many object query models), and, second, the result type of the entire path expression
must be a boolean type.

We do not provide a detailed discussion of the sizeable literature on object query models and languages.
This continues to be an active area of research with many language and query model definitions. We refer
the interested reader to [MZD93] for an overview of these languages and models.

The following queries on the GIS example objectbase illustrate the expressive constructs of TQL and
how the persistence of results are specified.

Example 5.1 Return the zones that are part of some map and are within 10 units from water. Project the
result over B_title and B_area. Place the result into a persistent collection called L_floodZones and make
all members persistent.

select o[B_title, B_area)

into persistent all L_floodZones

from p in C_map, o in p.B_zones(), ¢ in C_water
where o.B_proximity(q) < 10

Example 5.2 Return pairs consisting of a person and the title of a map such that the person’s dwelling is
in the map. The result is a transient collection that disappears at the completion of the query.

select p, ¢.B_title()
from p in C_person, ¢ in C_map
where p.B_residence().B_inZone() € q.B_zones()

The following is an example of a reflective query and illustrates that no new constructs are needed in the
language to query the schema.

Example 5.3 Return the types that define the behavior B_age with the same implementation as one of its
supertypes. Place the result into a persistent collection called L_inheritedAgeTypes, but do not make the
members persistent.

select ¢
into persistent L_inherited AgeTypes
from ¢ in C_type, r in t.B_supertypes()
where B_age € t.B_interface() and B_age € r.B_interface()
and B_age.B_implementation(t) = B_age.B_implementation(r)

Copyright @ VLDB 1995. To appear in VLDB Journal, 4(3), July 1995. 25

TQL also supports three binary operations: union, minus, and intersect. The syntax of these state-
ments is specified below. The {collection reference) field can be specified as a subquery or as a reference to
an existing (transient or persistent) collection.

(collection reference) union {collection reference)
(collection reference) minus (collection reference)
(collection reference) intersect (collection reference)

TQL has a proven equivalence to the formal languages making it easy to perform logical transformations
and argue about its safety. The theorems and proofs of equivalence are given in [Lip93].

The TIGUKAT control language (TCL) defines statements for controlling operations within an objectbase
session. In the absence of a computationally complete programming language, TCL serves to provide a scope
for execution and interaction with a TIGUKAT objectbase.

Since everything in TIGUKAT is treated as a first-class object, sessions are also represented by objects.
Specifically, session objects are instances of T_session type which is a direct subtype of T_object. Every
TIGUKAT user has at least one instance of T_session which is referred to as a root session. Other sessions
can be opened and manipulated from this session by issuing session-specific TCL operations: open, close,
save (commit), and quit (abort). TCL also provides an assignment statement for creating object references
as well as two forms of a persistent operation whose syntax is as follows:

1. persistent <object reference list>

2. persistent all <collection reference>

The semantics of the first form i1s to make every object in the given object reference list persistent
according to the rules defined in Section 4. The second form requires the argument to be a collection. The
semantics is to make the collection persistent and all of its members persistent as well.

The inverse operations of the persistent statements are the transient statements whose syntax is as
follows:

1. transient <object reference list>

2. transient all <collection reference>

6 Other DBMS Functionalities

In addition to the powerful object and query models that TIGUKAT provides, the system is enhanced by a
number of other functions commonly associated with DBMSs. In this section, we provide a brief overview
of three functions that have been under development: query optimizer, the versioning scheme, and the
transaction manager.

6.1 Query Optimizer

The goal of query optimization is the choice of the “optimum” execution plan for a query from a set of
equivalent execution plans specified as algebraic expressions. The set of equivalent execution plans are
obtained by the application of algebraic transformation rules and the optimum strategy is the one with the
lowest cost according to a cost function. Thus, in order to characterize a query optimizer, three things need
to be specified:

1. the transformation rules that generate the alternative query expressions which constitute the search
space;

Copyright @ VLDB 1995. To appear in VLDB Journal, 4(3), July 1995. 26

2. a search algorithm that allows one to move from one state (i.e., execution plan) to another in the search
space; and

3. the cost function that is applied to each state.

The TIGUKAT query optimizer [Mun93] follows the philosophy of representing system concepts as objects
and is along the lines of [LV91]. The search space, the search strategy and the cost function are modeled
as objects (see Figure 11). The incorporation of these components of the optimizer into the type system
provide extensibility via the basic object-oriented principle of subtyping and specialization.

T_object
T_function T_Rule T_behavior
cee ‘ ‘ ‘ cee T AlgEqRule .o .4‘—’7 coe
T_query T_CostFunc T_SearchStrat T_Context T_Algebra
T_ActiveRule
oo h \1 ST T T \1
T_AdHoc : F_ScanSelect ! T_EnumSS ‘ B_Select I
N ! T_AlgOp N !
,,,,,,, J_ S
! | ! |
T_Production : F_HashJoin J T_RandomSS ‘ B_Join J

Figure 11: Optimizer as part of the type system

The states in the search space are modeled as processing trees (PT) whose leaf nodes are references to
collections and non-leaf nodes denote behavior applications whose results are other objects. Those nodes
which correspond to algebraic operator behaviors return temporary collections as result.

Algebraic operators (e.g., B_Select, B_Join) are defined as behaviors of the T_collection type. They
are modeled as instances (shown as dashed boxes in Figure 11) of type T_algebra which is a subtype of
type T_behavior. The implementation (execution) algorithms for these algebraic operators are modeled as
function objects (e.g., F_HashJoin, F_ScanSelect). These implementation functions cannot be used as nodes
of a PT, since these nodes should represent execution functions all of whose arguments have been marshalled.
Therefore, T_A1gOp type is defined whose instances are functions with marshalled arguments and represent
nodes of a PT. In this fashion, each node of a PT represents a specific execution algorithm for an algebra
expression.

Search strategies are similarly modeled as objects, but separate from the search space. T_SearchStrat is
defined as a subtype of type T_function, and it can in turn be specialized. Figure 11 shows the specialization
of T_SearchStrat into enumerated search strategies T_EnumSS and randomized search strategies T_RandomSS.
The algebraic transformation rules that control the movement of the search strategy through the search space
are implemented as instances of T_A1gEqRule which is a subtype of T_Rule.

Cost functions (instances of T_CostFunc) are defined as special types of functions, making them first-class
objects. Each function is associated a cost through the behavior B_costFunction. Application of this behavior
to a function object f (i.e., f.B_cost Function) returns another function object g of type T_CostFunc that
implements the computation of the cost of executing function f. This allows definition of parameterized cost
functions whose values are dependent upon a number of factors.

Copyright @ VLDB 1995. To appear in VLDB Journal, 4(3), July 1995. 27

Modeling the building blocks of a cost-based optimizer as objects provides the query optimizer with the
extensibility inherent in object models. The optimizer basically implements a control strategy that associates
a search strategy and a cost function to each query.

6.2 Versioning

Traditionally, a wversion of a particular modeled entity (e.g., object, type, schema, objectbase, etc.) is
perceived as a state of that entity as it existed at a particular time during its evolution. Version control is the
ability to effectively and selectively manage versions of entities. For example, engineering design applications
may track versions of components that have been put into production, stock market and taxation analysis
applications may use versions of a futures model to evaluate “what if” scenarios and provide alternate futures
scenarios, collaborative systems may have different design teams working on different versions of an overall
design, and a system may even version the schema as i1t evolves so that old and new objects can coexist in the
system without having to perform conversions on the instances of the schema [SZ86]. Some work [Sci94] have
separated user-level versions from system-level versions and then limited the version model to encompass
user-level versions only. With uniform object models such as TIGUKAT, both user-level and system-level
versions can seamlessly coexist, and a single version model suffices to support both. The version model
developed for TIGUKAT [PGO] uniformly supports both user-level and system-level versions.

Temporal behaviors and branching time (i.e., branching behavior histories) are the framework for version
support in TIGUKAT. A behavior can be temporal or non-temporal. The non-temporal behaviors maintain
the most recent (i.e., snapshot) result while the temporal behaviors maintain a history of results as the
behavior changed over time. This history may be represented by a linear time-model or a branching time-
model. We propose to use the latter where each branch represents an alternate future (or version) of the
behavior history. The unique aspects and advantages of our approach are the following:

1. The model is general in that it can be applied to any history tracking system that incorporates branch-
ing time. For example, it can be used on both valid time and transaction time as long as (i) they
are modeled as histories and (ii) branching time is supported. Other systems that support valid and
transaction time histories include [DW92, RS91], however, branching time is not directly supported
in these systems (branching time is supportable in the model discussed in [DW92], but the burden of
developing a branching model is left up to the user).

2. A portion of a behavior history (called a version slice) can be defined by specifying a start time and
an end time on the history timeline. A version slice denotes the initial history of a temporal behavior
for a given version and only that portion of the original behavior history is visible in the version. This
is useful for excluding parts of the behavior history from the version. Version slicing is unique in that
other temporal versioning models define a version based on the entire behavior history up to a certain
end time.

3. Each version slice can spawn an independent branch on the timeline after the end of a slice. This is
useful since it allows the behavior to temporally evolve along this branch independent of any other
versions. We are unaware of any other model that allows version slices and versions to temporally
evolve independent of other versions in this manner.

4. A version slice can mirror or copy the portion of the history on which it is defined. A mirrored slice
reflects all changes to the slice in both the original and the version (i.e., updates to the version or
the original within the slice are visible to both). A copied slice is a separate independent copy of the
original behavior history that becomes part of the new version (i.e., the original and the version have
their own copy of the slice and updates to the version or the original within the slice are not visible in
the other).

5. The version model 1s general and when incorporated into a uniform object model like TIGUKAT,
system-level versions such as versions of schema and versions of the entire objectbase can be modeled

Copyright @ VLDB 1995. To appear in VLDB Journal, 4(3), July 1995. 28

in addition to user-level versions without the need for extensions. This unifies user-level versions and
system-level versions within a single framework.

We have completed the design of the branching time version model, defined a uniform behavioral repre-
sentation of this model within TIGUKAT, and developed user language support for managing versions. The
versioning approach has been mapped to other approaches such as versions of types, versions of schema, and
versions of the entire objectbase, which are useful for schema evolution. This signifies the uniform feature
of the version model as an underlying framework to support all types of versioning approaches. We are
currently undertaking the implementation of the version model.

6.3 Transactions

Conventional transaction management involves the synchronization of simple read/write access to a shared
database in an environment that is not failure-free. Both the transaction models and the synchronization
principles that are used in these environments are simple compared to those that are needed in OBMSs.
The complexity of the application domains that the OBMS technology is expected to serve is reflected in the
type of transaction management support that they require. In these systems there is a recognized need for
more general and powerful transaction models [Elm92]. An overview of transaction management concerns
in OBMSs is given in [0zs94].

One important characteristic of the relational data model — which is the basis of most current commercial
systems — 1s its lack of a clear update semantics. The model, as it was originally defined, clearly spells out
how the data in a relational database is to be retrieved (by means of the relational algebra operators), but
does not specify what it really means to update the database. The consequence i1s that the consistency
definitions and the transaction management techniques are orthogonal to the data model. It is possible —
and indeed it is common — to apply the same techniques to non-relational DBMSs or even to non-DBMS
storage systems.

The independence of the developed techniques from the data model may be considered an advantage
since the effort can be amortized over a number of different applications. Indeed, the existing transaction
management work on OBMSs have exploited this independence by porting the well-known techniques over
to the new system structures. During this porting process the peculiarities of OBMSs such class (type)
lattice structures, composite objects and object groupings (class extents), but the techniques are essentially
the same.

In TIGUKAT, we are taking a different approach. It is our claim that in OBMSs, it is not only desirable
to model update semantics within the object model, but that it is indeed essential for the correct operation
of these systems. The arguments are as follows:

1. Tn OBMSs, what is stored are not only data but operations on data (which are called methods, be-
haviors, operations in various object models). Queries that access an object-oriented database refer
to these operations as part of their predicates. In other words, the execution of these queries invoke
various operations defined on the classes (types). To guarantee the safety of the query expressions,
existing query processing approaches restrict these operations to be side-effect free, in effect disallowing
them to update the database. This is a severe restriction that should be relaxed by the incorporation
of update semantics into the query safety definitions.

2. Transactions in OBMSs effect the type (class) lattices. Thus, there is a direct relationship between
dynamic schema evolution and transaction management. Many of the conventional techniques employ
locking on this lattice to accommodate these changes. However, locks (even multi-granularity locks)
severely restrict concurrency. Definition of what it means to update an objectbase and the definition
of conflicts based-on this definition of update semantics would allow more concurrency.

Tt is interesting to note again the relationship between changes to the type (class) lattice and query
processing. In the absence of a clear definition of update semantics and its incorporation into the query

Copyright @ VLDB 1995. To appear in VLDB Journal, 4(3), July 1995. 29

processing methodology, most of the current query processors assume that the database schema (i.e.,
the type (class) lattice) is static during the execution of a query [SO90a].

3. Since TIGUKAT treats all system entities, including the database schema (i.e., meta-objects) and
queries, as objects that can themselves be queried, it is only natural to model transactions as objects.
However, since transactions are basically constructs that change the state of the database, their effects
on the database need to be clearly specified.

Within this context, it should also be noted that the application domains that require the services
of OBMSs tend to have somewhat different transaction management requirements both in terms of
transaction models and in terms of consistency constraints. Modeling transactions as objects enables
the application of the well-known object-oriented techniques of specialization and subtyping to create
various different types of transaction managers. This gives the system extensibility.

4. Some of the requirements require rule support and active database capabilities. Rules themselves
execute as transactions which may spawn other transactions. It has been argued that rules should be
modeled as objects [DBM88]. If that is the case, then certainly transactions should be modeled as
objects too.

Consequently, we are now working to define the update semantics of the TIGUKAT object model and are
investigating a powerful transaction model (which may better be called a workflow following more current
terminology) that meets the requirements of the application domains that OBMSs are likely to serve and
is modeled in the system as objects. The concurrency control algorithms that are appropriate for these
models exploit the semantics of operations and provide flexibility to the type implementors in defining the
concurrent execution semantics. Qur work in this area is relatively recent and more concrete results will be
reported in future papers.

7 Conclusions and Future Directions

In this paper, we provide an overview of the TIGUKAT objectbase management system under development
at the Laboratory for Database Systems Research at the University of Alberta. TIGUKAT has a uniform
behavioral object model where everything is a first-class object and the only means of accessing the objectbase
is through behavior application.

We have defined a query model for the system complete with an object calculus, an object algebra and
a user language. The user-language consists of a definition language, a session language and an SQL-based
query language. The interpreters for the first two and the compiler for the last one have been implemented.
An extensible query optimizer has been defined and a type system to support this architecture has been
implemented. The optimizer is being developed as a uniform extension to the object model and will therefore
be integrated with the model just like the query model has been.

Current work on the system is progressing along five lines: (1) the incorporation of time into the object
and query models, (2) the definition of the update semantics for the model, (3) the development of a
view manager, (4) the development of storage structures to support query optimization (i.e., indexing and
clustering issues), and (5) the definition of a transaction model and its incorporation into the model.

Acknowledgements

This research is supported by the Natural Sciences and Engineering Research Council (NSERC) of Canada
under reserach grants OGP0951 and OGP8191 as well as by the Canadian Institute for Telecommunications
Research (CTTR), a federally funded Centre of Excellence.

The authors thank the anonymous referees as well as Malcolm Atkinson for numerous suggestions that
improved the paper significantly.

Copyright @ VLDB 1995. To appear in VLDB Journal, 4(3), July 1995. 30

Technical reports and papers related to TIGUKAT are available via the World Wide Web at the following
URL: http://web.cs.ualberta.ca/ database/tigukat.html.

References

[AB87]

[ABC+83]

[ABD*89]

[AR92]

[BDKY92]

[Bla91]

[BOS91]

[Car84]

[Car86]

[Cat91]
[Coi8T]

[Day89]

[DBMSS]

[Deudl]

[DMSV8Y]

[DW92]

[Elm92]

M. Atkinson and P. Buneman. Types and persistence in database programminglanguages. ACM

Computer Surveys, 19(2):105-190, June 1987.

M. P. Atkinson, P. J. Bailey, K. J. Chisholm, P. W. Cockshott, and R. Morrison. An approach
to persistent programming. The Computer Journal, 26(4):360-365, 1983.

M. Atkinson, F. Bancilhon, D.J. DeWitt, K. Dittrich, D. Maier, and S. Zdonik. The object-
oriented database system manifesto. In Proc. 1st Int. Conf. on Deductive and Object-Oriented
Databases, pages 40-57, 1989.

P. André and J. Royer. Optimizing Method Search with Lookup Caches and Incremental Col-
oring. In OOPSLA 92 Conf. Proc., pages 110-123, 1992.

F. Bancilhon, C. Delobel, and P. Kanellakis. Building an Object-Oriented Database System, The
Story of Oy. Morgan Kaufmann, 1992.

J.A. Blakeley. DARPA open object-oriented database preliminary modeule specification: Object
query module. Technical report, Texas Instruments, December 1991.

P. Butterworth, A. Otis, and J. Stein. The Gemstone object database management system.
Comm. of the ACM, 34(10):64-77, October 1991.

L. Cardelli. A semantics of multiple inheritance. In G. Kahn, D. MacQueen, and G. Plotkin,
editors, Semantics of Data Types, volume 173 of Lecture Notes in Computer Science, pages

51-67. Springer Verlag, 1984.

L. Cardelli. A polymorphic A-calculus with Type:Type. Research Report 10, DEC Systems
Research Center, May 1986.

R. G. Cattell. Object Data Management. Addison Wesley, 1991.

P. Cointe. Metaclasses are first class: The ObjVlisp model. In OOPSLA ’87 Conf. Proc., pages
156-167, October 1987.

U. Dayal. Queries and views in an object-oriented data model. In Proc. 2nd Int. Workshop on
Database Programming Languages, pages 80-102. Morgan Kaufmann, 1989.

U. Dayal, A. Buchmann, and D. McCarthy. Rules are objects too: A knowledge model for an
active object-oriented database system. In Proc. of the 2nd Int. Workshop on Object-Oriented
Database Systems, pages 129-143, 1988.

Deux, O. et al. The Oy system. Comm. of the ACM, 34(10):34-48, October 1991.

R. Dixon, T. McKee, P. Schweizer, and M. Vaughan. A Fast Method Dispatcher for Compiled
Languages with Multiple Inheritance. In OOPSLA ’89 Conf. Proc., pages 211-214, 1989.

U. Dayal and G. Wuu. A Uniform Approach to Processing Temporal Queries. In Proc. 8th Int.
Conf. on Data Engineering, pages 407-418, August 1992.

A K. Elmagarmid (ed.). Transaction Models for Advanced Database Applications. Morgan Kauf-
mann, 1992.

Copyright @ VLDB 1995. To appear in VLDB Journal, 4(3), July 1995. 31

[FKMT91]

[Gal92]

[GM93]

[GR83]

[GRS9]

[GTI1]

[Tra93]

[KBC+89]

[KC86]

[Ken90]

[Lip93]

[LLOW91]

[LRVSS]

[LVO1]

[Mak81]

[Mun93]

[MZD93]

E. Fong, W. Kent, K. Moore, and C. Thompson. X3/SPARC/DBSSG/OODBTG Final Report.
Technical report, NIST, September 1991.

I..J. Gallagher. Object SQL: Language Extensions for Object Data Management. In Proc. 1st
International Conference on Information and Knowledge Management, pages 17-26, November

1992.

I. Goralwalla and M.T.Ozsu. Temporal extensions to a uniform behavioral object model. In
Proc. 12th Int. Conf. on Entity-Relationship Approach, pages 115-127, December 1993.

A. Goldberg and D. Robson. Smalltalk-80: The Language and its Implementation. Addison
Wesley, Reading, Mass., 1983.

A. Goldberg and D. Robson. Smalltalk-80: The Language and its Implementation. Addison-
Wesley, 2 edition, 1989.

A.V. Gelder and R.W. Topor. Safety and translation of relational calculus queries. ACM
Transactions on Database Systems, 16(2):235-278, June 1991.

B.B. Irani. Implementation of the TIGUKAT object model. Master’s thesis, Department of
Computing Science, University of Alberta, Edmonton, Alberta, Canada, 1993. Available as
University of Alberta Technical Report, TR93-10.

W. Kim, N. Ballou, H.T. Chou, J.F. Garza, and D. Woelk. Features of the ORION Object-
Oriented Database System. In W. Kim and F.H. Lochovsky, editors, Object-Oriented Conceptis,
Databases, and Applications. Addison Wesley, 1989.

S. N. Khoshafian and G. P. Copeland. Object identity. In OOPSLA ’86 Conf. Proc., pages
406-416, September 1986.

W. Kent. A Rigorous Model of Object Reference, Identity and Existence. Technical Report
HPL-90-31, Hewlett Packard Labs, April 1990.

A.P. Lipka. The design and implementation of TIGUKAT user languages. Master’s thesis,
Department of Computing Science, University of Alberta, Edmonton, Alberta, Canada, 1993.
Available as University of Alberta Technical Report TR93-11.

C. Lamb, G. Landis, J. Orenstein, and D. Weinreb. The ObjectStore database system. Comm.
of the ACM, 34(10):50-63, October 1991.

C. Lecluse, P. Richard, and F. Velez. O3, an Object-Oriented Data Model. In Proc. ACM
SIGMOD Int. Conf. on Management of Data, pages 424-433, September 1988.

R. Lanzelotte and P. Valduriez. Extending the search strategy in a query optimizer. In Proc.
17th Int. Conf. on Very Large Databases, pages 363-373, 1991.

J.A. Makowsky. Characterizing Data Base Dependencies. In Proc.8"" Colloquium on Automata,
Languages and Programming. Springer Verlag, 1981.

A. Munoz. Extensible query optimizer architecture for TIGUKAT. Master’s thesis, University
of Alberta, Edmonton, Alberta, Canada, 1993. Available as University of Alberta Technical
Report TR94-01.

G. Mitchell, Z.B. Zdonik, and U. Dayal. Optimization of object-oriented query languages:
Problems and approaches. In A. Dogac, M. T. Ozsu, and A. Biliris, editors, Advances in Object-
Oriented Database Systems, pages 119-146. Springer Verlag, 1993.

Copyright @ VLDB 1995. To appear in VLDB Journal, 4(3), July 1995. 32

[MZ089]

[Osh38]

[OSPY4]

[OW89]

[O2s94]

[Pet94]

[PGO]

[PLOS93a]

[PLOS93b]

[PO93]
[RC89]
[RCSRY]

[RS91]

[SA85]

[SCDY0]

[Sci94]

D. Maier, J. Zhu, and H. Ohkawa. Features of the TEDM object model. In Proc. 1st Int. Conf.
on Deductive and Object-Oriented Databases, pages 476-495, 1989.

S. L. Osborn. Identity, equality and query optimization. In K. R. Dittrich, editor, Advances
wm Object-Oriented Database Systems, volume 334 of Lecture Notes in Computer Science, pages
346-351. Springer Verlag, 1988.

M.T. Ozsu, D.D. Straube, and R. Peters. Query processing issues in object-oriented knowledge
base systems. In F.E. Petry and L.M. Delcambre, editors, Volume 1 - Intelligent Database
Technology: Approaches and Applications, Advances in Databases and Artificial Intelligence,
pages 79-144. JAT Press, 1994.

G. Ozsoyoglu and H. Wang. A relational calculus with set operators, its safety, and equivalent
graphical languages. TEEFE Transactions on Software Eng., SE-15(9):1038-1052, September
1989.

M.T. Ozsu. Transaction models and transaction management in object-oriented database man-
agement systems. In A. Doga¢, M. T. Ozsu, A. Biliris, and T. Sellis, editors, Advances in
Object-Oriented Database Systems. Springer Verlag, 1994.

R.J. Peters. TIGUKAT: A uniform behavioral objectbase management system. PhD thesis,
University of Alberta, Edmonton, Alberta, Canada, 1994. Available as University of Alberta
Technical Report TR94-06.

R.J. Peters, 1. Goralwalla, and M.T. Ozsu. A Unified Version Model Based on Branching Time.
In preparation.

R.J. Peters, A. Lipka, M.T. Ozsu, and D. Szafron. An extensible query model and its languages
for a uniform behavioral object management system. In Proc. 2nd Int. Conf. on Information
and Knowledge Management, pages 403-412, November 1993.

R.J. Peters, A. Lipka, M.T. Ozsu, and D. Szafron. The query model and query language
of TIGUKAT. Technical Report TR93-01, Department of Computing Science, University of
Alberta, January 1993.

R.J. Peters and M.T. Ozsu. Reflection in a Uniform Behavioral Object Model. In Proc. 12th
Int. Conf. on Entity-Relationship Approach, pages 37-49, December 1993.

J. Richardson and M. Carey. Persistence in the E language: Issues and implementation. Software
— Practice & FEzperience, 19(12):1115-1150, December 1989.

J. Richardson, M. Carey, and D. Schuh. The Design of the E Programming Language. Technical
Report 824, University of Wisconsin, February 1989.

E. Rose and A. Segev. TOODM - A Temporal Object-Oriented Data Model with Temporal
Constraints. In Proc. 10th Int. Conf. on Entity-Relationship Approach, pages 205-229, October
1991.

R. Snodgrass and I. Ahn. A Taxonomy of Time in Databases. In Proc. ACM SIGMOD Int.
Conf. on Management of Data, pages 236-246, May 1985.

D. T. Schuh, M. J. Carey, and D. J. DeWitt. Persistence in E Revisited - Implementation
Experiences. In Implementing Persistent Object Bases: Principles and Practice. Proc. Fourth
Int. Workshop on Persistent Object Systems, pages 345-359, 1990.

E. Sciore. Versioning and Configuration Management in an Object-Oriented Data Model. The
VLDB Journal, 3(1):77-106, January 1994.

Copyright @ VLDB 1995. To appear in VLDB Journal, 4(3), July 1995. 33

[Shig1]

[Sny90]
[SO90a]
[SO90b]

[Str86]
[S7.86]

[S790]
[WBWSS]
[WBW89a]
[WBWS89b]
[YO91]

[ZM90]

D. W. Shipman. The functional data model and the language DAPLEX. ACM Transactions on
Database Systems, 6(1):140-173, March 1981.

A. Snyder. An Abstract Object Model for Object-Oriented Systems. Technical Report HPL-90-
22, Hewlett Packard Labs, April 1990.

D.D. Straube and M.T. Ozsu. Queries and query processing in object-oriented database systems.
ACM Transactions on Information Systems, 8(4):387-430, October 1990.

D.D. Straube and M.T. Ozsu. Type consistency of queries in an object-oriented database system.

In Proc. ECOOP/OOPSLA 90 Conference, pages 224-233, 1990.
B. Stroustrup. The C++ Programming Language. Addison Wesley, 1986.

A.H. Skarra and S.B. Zdonik. The Management of Changing Types in an Object-Oriented
Database. In OOPSLA ’86 Conf. Proc., pages 483-495, September 1986.

G. Shaw and S. Zdonik. A query algebra for object-oriented databases. In Proc. 6th Int. Conf.
on Data Engineering, pages 154-162, February 1990.

A. Wirfs-Brock and B. Wilkerson. An Overview of Modular Smalltalk. In OOPSLA 89 Conf.
Proc., pages 123-134, September 1988.

A. Wirfs-Brock and B. Wilkerson. Object-Oriented Design: A Responsibility-Driven Approach.
In OOPSLA ’89 Conf. Proc., pages T1-75, October 1989.

A. Wirfs-Brock and B. Wilkerson. Variables Limit Reusability. Journal of Object-Oriented
Programming, 2(1):34-40, May/June 1989.

L. Yu and S.L.. Osborn. An evaluation framework for algebraic object-oriented query models.
In Proc. 7th Int. Conf. on Data Engineering, pages 670-677, 1991.

S. Zdonik and D. Maier. Fundamentals of Object-Oriented Databases. In S. Zdonik and D. Maier,
editors, Readings in Object-Oriented Databases, pages 1-36. Morgan-Kaufman, 1990.

A Primitive Type System

The following tables show the signatures of the behaviors for the non-atomic types (except the container
types), the signatures of the behaviors for the container types and the signatures of the behaviors for the
atomic types. The receiver type of a behavior is excluded because the receiver must be an object of a type
that is compatible with the type defining the behavior. The notation T_collection(T) is used to define a
collection type whose members are of type T. The type specifications for the behaviors are the most general
types. Types for some of the behaviors are revised in the subtypes. For example, the result type of B_self
is always the type of the receiver object and the result type of B_new is always the membership type of the
receiver class.

Copyright @ VLDB 1995. To appear in VLDB Journal, 4(3), July 1995. 34

| Type Signatures
T_object B_self: T_object
B_mapsto: T_type
B_conformsTo: T_type — T_boolean
B_equal: T_object — T_boolean
B_notequal: T_object — T_boolean
B_persistent: T_object
B_transient: T_object
B_newprod: T1ist(T_object) — T_list(T_set(T behavior))
— T_object
T_type B_interface: T_set(T_behavior)
B_native: T_set(T_behavior)
B_inherited: ~ T_set(T_behavior)
B_specialize: T_type — T_boolean
B_subtype: T_type — T_boolean
B_subtypes: T_set(T_type)
B_supertypes: T_set(T_type)
B_sub-lattice: T_poset(T_type)
B_super-lattice: T_poset(T_type)
B_classof: T._class
B_tmeet: T_set(T_type) — T_type
B_tjoin: T_set(T_type) — T_type
B_tproduct: T_1list(T_type) — T_type
T_product B_compTypes: T_list(T_type)
T_behavior B_name: T._string
B_argTypes: T_list(T_type)

B_resultType:
B_semantics:
B_associate:
B_implementation:
B_primitiveApply:

T_type — T_type

T_object

T_type — T_function — T_behavior
T_type — T_function

T_object — T_object

B_primitiveExecute:
B_basicExecute:
B_execute:
B_compile:
B_executable:

B_apply: T_object — T list — T_object
B_defines: T_set(T_type)
T_function B_argTypes: T_list(T_type)
B_resultType: T_type
B_source: T_object

T_object — T_object
T list — T_object

T list — T_object
T_object

T_object

Table 2: Behavior signatures of the non-atomic types of the primitive type system.

Copyright @ VLDB 1995. To appear in VLDB Journal, 4(3), July 1995.

35

Type

Signatures

T_collection

B_memberType:
B_union:

B_diff :
B_intersect:
B_collapse:
B_select:
B_project:
B_map:
B_product:
B_join:
B_genjoin:
B_setEqual:
B_containedBy:
B_cardinality:
B_elementOf:

T_type

T_collection — T_collection
T_collection — T_collection
T_collection — T_collection
T_collection

T_string — T_list(T_collection) — T_collection

T_set(T _behavior) — T_collection

T_string — T_list(T_collection) — T_collection

T_set(T_collection) — T_collection

T_string — T_list(T_collection) — T_collection
T_string — T_list(T_collection) — T_collection

T_collection — T_boolean
T_collection — T_boolean
Tmnatural

T_object — T_boolean

B_insert: T_object — T_collection
B_delete: T_object — T_collection
T bag B_occurrences: T_object — Tmatural
B_count: Tomatural
Inherited behaviors refined to preserve duplicates
T_poset B_ordered: T_object — T_object — T_boolean
B_ordering: T behavior
Inherited behaviors refined to preserve ordering
Tlist B_first: T_object
B_last: T_object
B_next: T_object
B_previous: T_object
Inherited Behaviors refined to preserve duplicates and ordering
T_class B_deepExtent: T_collection
B_new: T_object
T_class-class B_new: T_type — T_class
T_type-class B_new: T_set(T_type) — T_set(T behavior)
— T_type
T_collection-class B_new: T_type — T_collection
T_product-class B_new: T_list(T_object) — T_object

Table 3: Behavior signatures of the container types of the primitive type system.

Copyright @ VLDB 1995. To appear in VLDB Journal, 4(3), July 1995.

36

| Type Signatures
T_atomic
T_boolean B_not: T_boolean
B_or: T_boolean — T_boolean
B_if: T_object — T_object — T_object
B_and: T_boolean — T_boolean
B_xor: T_boolean — T_boolean
T_character B_ord: Tmatural
T_string B_car: T_character
B_cdr: T_string
B_concat: T_string — T_string
T_real B_succ: T_real
B_pred: T_real
B_add: T_real — T_real
B_subtract: T_real — T_real
B_multiply: T_real — T_real
B_divide: T_real — T_real
B_trunc: T_integer
B_round: T_integer
B_lessThan: T_real — T_boolean
B_lessThanEQ: T_real — T_boolean

B_greaterThan:
B_greaterThanEQ:

T_real — T_boolean
T_real — T_boolean

T_integer

Behaviors from T_real refined to work on integers

T_naturals

Behaviors from T_integer refined to work on naturals

Table 4: Behavior signatures of the atomic types of the primitive type system.

Copyright @ VLDB 1995. To appear in VLDB Journal, 4(3), July 1995.

37

