
An Axiomatic Model of Dynamic Schema
Evolution in Objectbase Systems
RANDAL J. PETERS
University of Manitoba
and
M. TAMER ÖZSU
University of Alberta

The schemaof a database system consists of the constructs that model the entities of data. Schema evolution is the
timely change of the schema and the consistent management of these changes. Dynamic schema evolution (DSE)
is the management of schema changes while a database management system is in operation. DSE is a necessary
facility of objectbase systems (OBSs) because of the volatile application domains that OBSs support. We propose
a soundand complete axiomaticmodel forDSE in OBSs that supports the fundamental concepts of object-oriented
computing such as subtyping and property inheritance. The model can infer all schema relationships from two
identified input sets associated with each type called the essential supertypes and essential properties. These
sets are typically specified by schema designers, but can be automatically supplied within an OBS. The inference
mechanism performed by the model has a proven termination.
The axiomatic model is a formal treatment of DSE in OBSs, which distinguishes it from other approaches

that informally define a number of schema invariants and the rules that enforce them. An informal approach
leads to multiple DSE mechanisms because of the differences in object models and the choices made by system
designers. The lack of a common object model makes comparison of OBSs more difficult. The axiomatic model
provides a solution for DSE in OBSs by serving as a common, formal underlying foundation for describing DSE
of existing systems, which makes comparison of these systems much easier. A design space for OBSs based on
the inclusion/exclusionof axioms is developedand can be used to classify, compare, and differentiate the features
of OBSs. To test the expressibility of the model, the DSE of several OBSs are reduced to the axiomatic model
and compared.

Categories and Subject Descriptors: H.2.1 [Database Management]: Logical Design—Schemaand subschema

General Terms: Algorithms, Design, Management, Theory

Additional Key Words and Phrases: Dynamic schema evolution, object databasemanagement systems

1. INTRODUCTION
Object-oriented computing is emerging as the predominant technology for providing
database services in advanced application domains such as engineering design, CAD/CAM
systems, multimedia, medical imaging, and geo-information systems, to name a few. An
important characteristic of these applications is that the schema changes frequently and
dynamically. For example, in an engineering design application many components of an
overall design go through several modifications before a final product design is produced.
These kinds of changes require modifications to the way in which data components are

This research is supported by the Natural Science and Engineering Research Council (NSERC) of Canada under
operating grants OGP0173259 and OGP0951. This work was performed as part of the first author’s Ph.D.
dissertation at the University of Alberta.
Authors’ Addresses: Randal J. Peters, Department of Computer Science, University of Manitoba, Winnipeg,
Manitoba, Canada R3T 2N2, Email: randal@cs.umanitoba.ca; M. Tamer Özsu, Department of Computing
Science, University of Alberta, Edmonton, Alberta, Canada T6G 2H1, Email: ozsu@cs.ualberta.ca

2 Randal J. Peters and M. Tamer Özsu

modeled (i.e., changes to the schema). Furthermore, the evolutionary characteristic of
the applications require sophisticated mechanisms for managing changes in schema and
ensuring the overall consistency of the system. These mechanisms constitute the dynamic
schema evolution component of database management systems.
The schema (or meta-information) of an objectbase system (OBS) is the information

that describes the structure and operations of object instances stored in an objectbase and
managed by an objectbasemanagement system (OBMS). For example, the types (or classes)
of an objectmodel, togetherwith theirproperties (e.g., attributes, methods, behaviors) form
the schema of anOBS.Dynamic schema evolution (DSE) is the process of applying changes
to the schema in a consistent fashion and propagating these changes to the object instances
while the OBS is in operation. The majority of published approaches to DSE informally
define a number of invariants and specify a set of rules for maintaining them. Invariants
describe constraints on the schema and relationships between schema elements, while
the rules define procedures that enforce the invariants. Orion [Banerjee et al. 1987], for
example, defines five invariants and twelve rules. Other systems differ in the number and
semantics of the invariants and rules they define. With the lack of a formal basis, the
management of DSE becomes ad hoc and comparing different approaches can be difficult.
In this paper, we propose a sound and complete axiomatic model for DSE in OBSs.

The main benefit of the model is the formalization of DSE characteristics into a well-
defined set of axioms. The axioms automatically maintain complex schema relationships
and properties from two input sets associated with each type in a schema. The elements
of these sets can be provided by the user, schema designer, system, or a combination of
sources. One set is called the essential supertypes and contains the types that must be
maintained as supertypes of a type for as long as it is consistently possible. The other set
is called the essential properties and contains the properties that must be maintained in
the type for as long as it is consistently possible. The correct properties and relationships
within the schema are automatically derived by the axiomatic model using the essential
supertypes and essential properties as a basis. The derivations performed by the axiomatic
model have a proven soundness, completeness, and termination. The inclusion/exclusion
of axioms in the model leads to a design space that categorizes OBSs into object-based,
type-based, and object-oriented systems. The last category is further refined into several
distinct subcategories that vary in functionality and expressiveness. To illustrate the power
and practical usefulness of the model, the DSE operations of several existing OBSs are
reduced to the axiomatic model and compared within this common framework.
In recent years, researchers have addressed the problem of defining DSE policies for

OBSs. These studies approach the issue from the perspective of individual systems. The
axiomatic model is unique in this respect in that it captures and formalizes the salient
features of DSE in OBSs and can be adopted as a common underlying foundation of
individual systems.
In order to clarify and illustrate the expressiveness of the axiomatic model, the DSE

policies of the Tigukat1 OBS [Özsu et al. 1995; Peters 1994] are presented as an example.
DSE in Tigukat is reduced to the axiomatic model and compared to the axiomatization
of Orion. Tigukat is being developed at the Laboratory for Database Systems Research

1Tigukat (tee-goo-kat) is a term in the language of the Canadian Inuit people meaning “objects.” The Canadian
Inuits, commonly known as Eskimos, are native peoples of Canada with an ancestry originating in the Arctic
regions of the country.

Axiomatic Model of Dynamic Schema Evolution in Objectbase Systems 3

of the University of Alberta. There are complementary research and prototyping efforts
addressing dynamic schema evolution and view management at the Advanced Database
Systems Laboratory of the University ofManitoba. An identifyingcharacteristic of Tigukat
is its uniform, extensible objectmodel that is capable of supportingdatabase services within
a single underlying framework. In keeping with Tigukat’s modeling capability, the DSE
policies are defined as uniform extensions to the base system. The schema changes
advocated in Tigukat are similar to those of Orion, but vary to deal with complete model
uniformity, which is not fully supported in Orion.
The main contributions of the paper are as follows:

(1) It introduces an axiomatic model for DSE in OBSs with the following benefits:
(a) the model is a formal specification of DSE in OBSs,
(b) the model has a proven soundness, completeness, and termination for the deriva-

tions performed,
(c) the model is powerful enough to express DSE of existing OBSs, and
(d) the model can be used in practice by serving as a common foundation for charac-

terizing and comparing DSE of various systems.
(2) It develops a design space for OBSs based on the inclusion/exclusion of axioms.
(3) It presents the uniform, extensible DSE policies of the Tigukat OBS.
(4) It formalizes and compares the DSE policies of Tigukat and Orion through their

reduction to the axiomatic model.

The remainder of the paper is organized as follows. The axiomatic model of DSE in
OBSs is defined in Section 2, together with the proofs of soundness, completeness and
termination. A design space for OBSs based on the inclusion/exclusion of axioms is
presented in Section 3. An overview of the Tigukat object model and the definition of
DSE in Tigukat in terms of the axiomatic model is presented in Section 4. The reduction
of Orion to the axiomatic model is presented in Section 5, along with a comparison of
the axiomatization of Tigukat and Orion. Related work is discussed in Section 6 with a
particular focus on how systems propagate schema changes to object instances. Finally,
Section 7 contains concluding remarks and a discussion of future work.

2. AXIOMATIC MODEL OF DSE
Typical schema changes in an OBS include adding and dropping types, adding and dropping
sub/supertype relationships between types, and adding and dropping properties of a type.
A fairly extensive classification of widely accepted schema changes is given as part of
Orion [Banerjee et al. 1987]. A typical schema change can affect many aspects of a system.
There are two fundamental problems to consider:

(1) Semantics of change: This refers to the effects of the schema change on the overall
way in which the system organizes information (i.e., the effects on the schema);

(2) Change propagation: This refers to the method of propagating the schema change to
the underlying objects (i.e., to the existing instances).

For the first problem, the basic approach is to define a number of invariants that must
be satisfied by the schema and then to define rules and procedures for maintaining these
invariants for each possible schema change. The invariants, and the rules for ensuring their
compliance, depend on the underlying object model. Since object models differ, the DSE

4 Randal J. Peters and M. Tamer Özsu

policies of various systems based on this approach differ as well. Furthermore, the lack of
a formal semantics makes systems difficult to compare. The axiomatic model captures the
underlyingmechanism of DSE and is powerful enough to describe the semantics of change
in various systems so that they can be compared.
For the second problem, one solution is to explicitly coerce objects to coincide with the

new definition of the schema. This technique updates the affected objects, changing their
representation as dictated by the new schema. Unless a versioning mechanism is used in
conjunction with coercion, the old object representations are lost. Screening, conversion,
and filtering are techniques for defining when and how coercion takes place. The scope of
this paper is limited to the specification of an axiomatic model for the semantics of change.
However, the handling of change propagation in various systems is discussed in Section 6.
In this section, we present a formal axiomatic model of DSE in OBSs to deal with

the semantics of change problem. This is followed by proofs of the model’s termination,
soundness, and completeness.

2.1 Axiomatization of Schema Changes
A type in an object model (called a class in some models) defines properties of objects.
Existing systems use attributes, methods, and behaviors to represent properties. We use
the term property generically as encompassing all of these. Types are used as templates for
creating objects. The set of all objects created from a particular type is called the extent of
that type. We use type to denote the construct that defines object properties and class to
denote the type extent.
Subtyping is a facility of object models that allows types to be built incrementally from

other types. We use to represent a reflexive, transitive, and antisymmetric subtype
relationship where means type is a subtype of type , or equivalently, is a
supertype of . Diagrammatically, we use a directed arrow from a subtype (the tail) to its
supertype (the head) to represent a subtype relationship in a diagram. A subtype inherits
all the properties of its supertype and can define additional properties that do not exist
in the supertype. If a subtype has multiple supertypes, it inherits the properties of all
the supertypes. This is known as multiple inheritance and results in a graph of subtype
relationships.
A type lattice (or simply lattice) consists of a set of types together with

a partial order of the elements of based on the subtype relationship (). The term
lattice (or semi-lattice) are commonly used in object-oriented literature to denote a typing
structure that supports multiple inheritance. Although this meaning does not correspond to
lattice in the strict mathematical sense because the notions of least upper bound and greatest
lower bound are relaxed, we use the term throughout the paper with the understanding that
its object-oriented meaning applies. A type lattice can be represented as a directed acyclic
graph with types as vertices and subtype relationships as directed edges.
The notation for the axiomatic model is shown in Table I. The terms denote various

arrangements of types and properties that can be represented in virtually any object model.
We address each of these terms and use the simple example type lattice2 in Figure 1
to clarify their semantics. The example is kept simple so that the functionality of the
axiomatic model can be more easily presented and understood. It will become apparent
from the following discussion that the model scales up to type lattices of more complex

2The prefix “T ” in Figure 1 indicates a type.

Axiomatic Model of Dynamic Schema Evolution in Objectbase Systems 5

application environments such as those mentioned in the introduction.

Term Description
The set of all types of a system.
The type lattice of a system.
Type elements of .
Immediate supertypes of type .
Essential supertypes of type .
All supertypes of type .
Supertype lattice of type .
Native properties of type .
Inherited properties of type .
Essential properties of type .
Interface of type .
Apply-all operation.

Table I. Notation for axiomatic model.

The set of types represents all the types in the system on which DSE operations are
performed. The set consisting of all types shown in Figure 1 forms in this example. A
type lattice is formed from the set and the subtype relationships maintained by the
immediate supertypes, , for all types . The immediate supertypes of a type are
those types that cannot be reached from , transitively, through some other type. In other
words, their only link to is through a direct subtype relationship.

T_object

T_person T_taxSource

T_student T_employee

T_teachingAssistant

T_null

Fig. 1. Simple type lattice.

DEFINITION 1. Immediate Supertype: Given two distinct types where ,
is an immediate supertype of (equivalently, is an immediate subtype of) if and only

if there does not exist an such that and .

For example, if we let T teachingAssistant, then the immediate supertypes of are
T student and T employee. Hence, T teachingAssistant T student T employee .
The other supertypes of T teachingAssistant (i.e., T person, T taxSource, and T object)
can be reached transitively through T student or T employee.
The essential supertypes, , are the types identified as being essential to the con-

struction and existence of type . Essential supertypes must be maintained as supertypes
of for as long as consistently possible during the evolution of the schema. The only way

6 Randal J. Peters and M. Tamer Özsu

to break a link from to an essential supertype is to explicitly remove from by
either dropping the subtype relationship between and or by dropping entirely. Note
that , which means that immediate supertypes are essential.
An OBS can impose constraints that force every newly created type to be a subtype of

certain system primitive types. In other words, these primitive types are essential supertypes
of every type. For example, Tigukat defines a primitive root type “T object” that must be a
supertype of all types, either directly or transitively through some other type. Upon creation
of a new type , the system can initialize to T object . Orion also defines a primitive
root type “OBJECT” and could operate similarly. In addition to system supplied types,
the schema designer can provide elements of that represent the essential inheritance
constructs of a particular application domain. In a typical environment, the system would
provide essential supertypes based on known constraints and the schema designer would
provide essential supertypes based on his/her expertise in the particular application domain
being modeled.
In Figure 1, assume the system provides the root type T object and assume the schema

designer has specified the remaining essential supertypes of T teachingAssistant as:

T teachingAssistant T student T employee T person T object

If T student and T employee are dropped as immediate supertypes of T teachingAssistant,
then T person would be established as an immediate supertype because it is essential.
However, T taxSource would be lost as a supertype because it is not declared as essential.
The supertype lattice of a type consists of a set which includes
and all supertypes (immediate, essential, or otherwise) of together with a partial order
such that if in then in .

DEFINITION 2. Supertype Lattice Types: Given type , the supertype lattice types
of is the set of types defined as .

For example, if we let T employee, then the supertype lattice types of is given as:

T employee T employee T person T taxSource T object

The native properties, , of a type are those properties that are not defined in any
of the supertypes of . That is, they are not inherited from a supertype, but instead are
natively defined in . Note that the native properties of one type may be defined by other
types not in a subtype relationshipwith the former type. For example, the type T employee
may have a native “salary” property that is not defined on any of its supertypes. Moreover,
T person and T taxSource may both have native “name” properties defined because they
are not in a subtype relationship with one another.
When two common properties are inherited from multiple supertypes (e.g., T employee

inherits the “name” property from both T person and T taxSource) a conflict can arise and
some form of conflict resolutionmust be performed. We consider conflict resolution at two
levels: behavioral and functional.
Behavioral resolution resolves conflicts based on the semantics of properties. With

an accepted semantic specification of properties and a notion of semantic equivalence,
behavioral resolution is fairly simple to support. For example, the semantics of “name” in
T person and T taxSource are equivalent and, thus, the semantics of “name” in T employee
shouldmatch this semantics. In effect, there is no conflict between “name” at the behavioral
level because the semantics of the “name” is equivalent in all places where it appears.

Axiomatic Model of Dynamic Schema Evolution in Objectbase Systems 7

Currently, the most widely used notion of property semantics are signatures. In general,
a signature consists of a name, a list of argument types, and a result type. The name is
used to apply the property to an object (e.g., sending a message to the object) with a list of
arguments. The result corresponds to the result type given in the signature. Approaches
such as co-variance and contra-variance can be used to identify semantic equivalence.
Behavioral resolution relies on an acceptable semantic specification for properties, but
once defined, it is fairly simple to support. Signatures provide a first step in semantic
specification, but in general are inadequate for most applications. A reasonably sufficient
semantics for type properties is an open research problem.
Functional resolution resolves conflicts based on the implementations of property se-

mantics. The semantics of a property must be implemented at each type that defines it.
Implementation can be in the form of stored attributes or computed methods. A sin-
gle semantic property may be implemented differently in the types where it is defined.
For example, “name” may be implemented as a length encoded string in T person and a
null terminated string in T taxSource. Furthermore, an “age” property in T person and
T taxSource may be implemented as a stored attribute in one type and a computed method
in the other. Although “name” and “age” are semantically equivalent in the two types,
they are implemented differently. In this case, the implementation of “name” and “age” in
T employee is not clear. The typical choices are to select the implementation in T person,
the implementation in T taxSource, or to completely redefine the implementation. The
focus of this paper is on DSE at the semantic (or behavioral) level rather than the imple-
mentation (or functional) level and, thus, we do not discuss functional conflict resolution
techniques. For our purposes, we assume that when a functional conflict occurs the schema
designer is asked to resolve it by choosing an implementation from the list of conflicting
ones or redefining the implementation entirely.
The inherited properties, , of a type is the union of the properties defined by

all supertypes of . The native and inherited properties are disjoint. For example, the
inherited properties of T employee is the union of the properties defined on T person,
T taxSource, and T object. In contrast, the native properties of T employee are those
defined on T employee, but not defined on any of T person, T taxSource, or T object.
The essential properties, , are those properties identified as being essential to the

construction and existence of type . Essential properties must be maintained as part of the
definition of for as long as consistently possible during the evolution of the schema.
The essential properties of a type consist of all properties natively defined by the type

(i.e.,) and may contain properties inherited from its supertypes. The
schema designer has the expertise to understand the properties that types within a particular
application domain must support and can declare these properties as being essential to the
types by including them in the specification for each type . Additionally, the system
may require all types to support various primitive properties for object instances such as
object identity retrieval and object equality. At type creation time, the system can initialize

with the appropriate primitive properties. The synergy between schema designer
and system primitives goes hand in hand in both the definition essential properties, ,
and essential supertypes, .
Schema evolution and essential property specifications may require inherited properties

of a type to be adopted as native properties if the supertype defining those properties natively
is removed. For example, assume there is a “taxBracket” property defined on T taxSource
that is declared as essential in T employee. This property is inherited by T employee, but

8 Randal J. Peters and M. Tamer Özsu

if T taxSource is deleted, then the “taxBracket” property would be adopted by T employee
as a native property. The derivations by the axioms automatically make these adjustments
in the type lattice.
The interface, , of a type is the union of native and inherited properties of . This

term simply serves as a specification of all properties of to which the object instances of
will respond.
Table II depicts the axioms of DSE using the various types and properties in Table I.

The derivation of the various sets in the axioms are based on the and terms.
All DSE operations can be handled through these two terms, which eases the burden on the
schema designer and makes the system more manageable. However, the effects of schema
changes on subtyping relationships and property inheritance must be closely scrutinized in
order to maintain system integrity, as well as the intentions of the schema designer. The
axiomatic model provides a consistent, automatic mechanism for deriving the entire type
lattice structure after a change to either or . Changes to these two components
are fundamental to the evolution of the schema. The axiomatic model has the flexibility
to handle variations on type and property arrangements depending on the defaults imposed
by individual systems. This results in a powerful model that can be used to describe DSE
in OBSs that support subtyping and property inheritance.
The specification and management of and can be a shared responsibility between

the system and the user. For example, when a new type is defined, the system may
open a dialog with the schema designer to determine all supertypes and properties that
are essential to the new type. Alternatively, the system may make a default assumption
that all supertypes and properties (including inherited properties) are essential in a given
type, or that only the immediate ones are essential. Current systems vary in the semantics
defined for the notions of subtyping, inheritance, and nativeness. Our formalization of
these concepts gives a common basis that allows systems the flexibility to build their own
customized notions on top of them, while remaining rooted at the formal model.
It is likely that some combination of user and system managed control would be most

effective. For example, the system may assume that only the initial supertypes and prop-
erties defined on a type are essential. By default, none of the inherited properties would
be assumed to be essential. A schema designer may evolve the schema by adding and
dropping properties, and adding and dropping subtype relationships. These operations are
noted in and as essential properties and types. The operations may not be fulfilled
in and because of other inheritance links that may be present. For example, defining
an already inherited property on a type would not include the property in , but would
include it in . Furthermore, adding a subtype relationship between types and
always includes in , but is added to if and only if is not already a supertype
of (i.e.,). In this way, maintains the minimum properties that must be
defined in and maintains the minimum supertypes of . This minimality is beneficial
for the efficiency of the system.
We assume the availability of an apply-all operation in the axiomatic model. This

operation, denoted , applies the unary function to the elements of a set of
types . The function is defined over the single variable , which is shown as
the subscript of the operator. Other variables appearing within the parenthesis of the
operation are substituted with their values prior to execution and they remain constant

throughout the apply-all operation.
The semantics of apply-all will let range over the elements of and for each type

Axiomatic Model of Dynamic Schema Evolution in Objectbase Systems 9

bound to , is evaluated and the answer is included in the final result set. If is
empty, the empty set is returned. In functional notation, the operation applies the lambda
function to every element of and returns a set containing the results.

(1) Axiom of Closure
(2) Axiom of Acyclicity
(3) Axiom of Rootedness
(4) Axiom of Pointedness
(5) Axiom of Supertypes
(6) Axiom of Supertype Lattice
(7) Axiom of Interface
(8) Axiom of Nativeness
(9) Axiom of Inheritance

Table II. Axiomatization of subtyping and property inheritance for DSE in OBSs.

Table II summarizes the axiomatization of subtyping and property inheritance for DSE
in OBSs. Each apply-all operation in the table returns a set of sets as its result. The
union operator immediately preceding each operator performs an extended union over
the members of the result set, which has the effect of unnesting the result into a single level
set of types. We define the extended union of the empty set as the empty set. Each axiom
in Table II is discussed below:

Axiom of Closure. All types in have supertypes in , giving closure to . Note that
the root has no essential supertypes, but this empty set is a proper subset of .
Axiom of Acyclicity. There are no cycles in the type lattice formed from and its partial

order. This axiom disallows any element of from appearing in the supertype lattice types
of any of its immediate supertypes, which would form cycles.
Axiom of Rootedness. There is a single type in that is the supertype of all types in
. The type is called the root or least defined type of . This axiom can be relaxed in

which case the type lattice has many roots and is known as a forest.
Axiom of Pointedness. There is a single type in that is the subtype of all types in
. The type is called the base ormost defined type of . The lattice is said to be pointed

at . This axiom can be relaxed in which case the lattice has many leaves.
Axiom of Supertypes. The set of immediate supertypes of a type is exactly the subset

of the essential supertypes that cannot be reached transitively through some other type.
This axiom provides a means to automatically instantiate the immediate supertypes of a
type based on the essential supertypes of that type.
Axiom of Supertype Lattice. The supertype lattice of a type includes itself and recur-

sively all types in the supertype lattices of its immediate supertypes. This axiom provides
a means to automatically instantiate the supertype lattice types of a type.
Axiom of Interface. The interface of a type consists of the union of the native and

inherited properties of that type. This axiom provides a means to automatically instantiate
the interface of a type.

10 Randal J. Peters and M. Tamer Özsu

Axiom of Nativeness. The native properties of a type are the subset of the essential
properties that are not inherited. This axiom provides a means to automatically instantiate
the native properties of a type based on the essential properties of that type.
Axiom of Inheritance. The inherited properties of a type is the union of the interfaces

of its immediate supertypes. This axiom provides a means to automatically instantiate the
inherited properties of a type.

There are several simplifications that can be made to the axioms in order to reduce the
amount of mutual recursion among them. Recall that , which can be easily
verified by observing the set difference operation in the Axiom of Supertypes. This means
that contains at least the information of . We also point out that all types in

are supertypes of at least one type in . That is, they are reachable
from , transitively, through a type in . The significance of this point is that any
properties defined on types in are inherited by at least one type in .
This means that does not contain any more property information than . We
can, therefore, declare that can be safely substituted for wherever supertype
lattices and property inheritance is concerned. Thus, Axioms 2, 6, and 9 can be expressed
as follows:
2*. Axiom of Acyclicity*
6*. Axiom of Supertype Lattice*
9*. Axiom of Inheritance*

Furthermore, by substituting the equation for in the formula for in Axiom 7
and then reducing, a simpler equation based on rather than can be derived for

. The derivation is as follows:

7*. Axiom of Interface*

To illustrate the expressiveness of the axioms, consider again the simple type lattice
in Figure 1. Axioms 1 and 2* are satisfied by the lattice. Axiom 3 holds when
T object and Axiom 4 holds when T null. Assume the essential supertypes of
T teachingAssistant are defined as follows:

T teachingAssistant T student T person T employee T object

That is, it is essential that a teaching assistant is a student, person, employee, and object,
but not essential that it is a tax source. Note that teaching assistants are tax sources by
inheritance throughT employee. Themeaningof this separation is that if teaching assistants
cease to be employees, by removing the subtype relationship, they automatically cease to
be taxable sources. Axiom 5 instantiates the immediate supertypes of T teachingAssistant
as T student T employee . Now, if T student is dropped from T teachingAssistant ,
then the new instantiation of the immediate supertypes would only include T employee.
The properties inherited from T student would be lost in T teachingAssistant, except for
those declared in T teachingAssistant . Moreover, if T employee is now dropped
as an essential supertype, then Axiom 5 instantiates T person as the only immediate
supertype of T teachingAssistant. The properties of T employee and T taxSource are lost
in T teachingAssistant (except again for the declared essential properties).

Axiomatic Model of Dynamic Schema Evolution in Objectbase Systems 11

The axiomatic model scales to more complex type lattices such as those required by
geo-information systems, CAD/CAM, multimedia systems, and so on. This is supported
by the ability to view each type in isolation and only decide on its essential supertypes and
properties, while the model provides the automatic derivation of the complete subtype and
property relationships.

2.2 Termination, Soundness, and Completeness
In this section, we prove the termination, soundness, and completeness of the axioms.
Termination guarantees that the axioms eventually complete all derivations performed.
Termination is directly related to the structure of the type lattice and the specifications of
essential supertypes and essential properties. The Axiom of Acyclicity guarantees that
there are no cycles in the type lattice – the remaining axioms traverse the lattice from
any given type towards the root where they eventually terminate and “bottom out” on
the essential supertype and property sets. Soundness guarantees that only valid schema
objects, properties, and relationships are derived by the axioms. Soundness is important
to ensure that no erroneous results are produced by the axioms. On the other hand,
completeness guarantees that all valid schema objects, properties, and relationships are
derived. Completeness is important to ensure that nothing is missed by the axioms.
We define as the maximal path length (MPL) in the type lattice from type to type
. The maximal path length is the longest possible path of immediate supertype links from
to . For example, in Figure 1 if we let T null and T object, then 4.

Furthermore, we define as . That is, is the complete
set of types whose MPL to the root type is less than or equal to .
A dependency graph of the derivations performed by the simplified set of axioms is

shown in Figure 2. For reference, axiom numbers are shown in square brackets. The
calculation of an axiom at the tail of a directed edge uses (or depends on) the axiom at the
head of that edge. A dotted edge indicates that the calculation of the axiom at the tail uses
the axiom at the head on supertypes of the type . The semantics of the dotted edges are
that they traverse the type lattice towards the root. The significance of this graph is that it
illustrates two recursive calculations (denoted by cycles in the graph) of the axioms. The
one cycle is between and , and the second cycle is on . These must be
carefully considered when proving the termination of the axioms.

P(t)

Pe(t)

H(t) PL(t)

N(t)

Ne(t)

I(t)[7*] [8]

[9*] [5] [6*]

Fig. 2. Axiom dependencygraph.

Intuitively, the termination of the axioms is mostly straightforward from the dependency

12 Randal J. Peters and M. Tamer Özsu

graph. The cycles in the graph are the only factors that represent the potential for non-
termination. If we prove the termination of each cycle, then we prove the termination of the
axioms. In the cycle there is a dotted edge from to , which represents
a “shift up” in the type lattice. That is, uses in its calculation and uses
where the ’s are all supertypes of . Subsequently, the calculation of uses ,
which uses where the ’s are all supertypes of . Following this pattern leads to the
root type , which has no supertypes and terminates the calculation.
Termination of the cycle is proven similarly. The calculation of uses

where the ’s are all supertypes of , and so on. This again leads to the root type
which has no supertypes and terminates the recursion. There are several opportunities for
optimization in an actual implementation. For example, the inherited properties could be
stored in each type to avoid recursion. This section is only concerned with theoretical
proofs of the axiomatic model and does not imply an implementation strategy. The formal
proofs of termination, soundness, and completeness follow.

THEOREM 1. The schema evolution axioms are terminating.
Proof: Assume and are terminating by being fixed sized sets. Since these are
typically supplied by the schema designer and through system constraints, it is reasonable
to assume these are of fixed size.
Axioms 1, 2*, 3, and 4 assert a condition on the types . If the components they rely on

are terminating, then they are terminating as well. Axiom 1 is terminating because
is a fixed set. We now turn attention to proving the termination of Axioms 5, 6*, 7*, 8, and
9* on which Axioms 2* through 4 depend. Termination of Axioms 5, 6*, 7*, 8, and 9* is
proved by induction on MPLs in the type lattice.

Basis. Root type. We show that Axioms 5, 6*, 7*, 8, and 9* are terminatingwhen ,
the root type.
Axiom 5. Since , the operation terminates with and, thus,

terminates.
Axiom 6*. Since , the operation terminates with and, thus,

terminates.
Axiom 9*. Since , the operation terminates with and, thus,

terminates.
Axiom 8. Since terminates and is fixed, terminates.
Axiom 7*. Since terminates and is fixed, terminates.
Induction. Assume Axioms 5, 6*, 7*, 8, and 9* are terminating . Choose

1 such that 1. We now show that Axioms 5, 6*, 7*, 8, and 9* are
terminating for .
Axiom 5. is a finite set of types and is terminating because

. Therefore, the operation is terminating and, thus, terminates.
Axiom 6*. Again, since is finite and is terminating , the

operation is terminating and, thus, terminates.
Axiom 9*. Similarly, since is finite and is terminating because

, the operation is terminating and, thus, terminates.
Axiom 8. Since terminates and is fixed, terminates.
Axiom 7*. Since terminates and is fixed, terminates.

The proof follows by induction.

Axiomatic Model of Dynamic Schema Evolution in Objectbase Systems 13

QED. Since Axioms 2* through 4 rely solely on terminating Axioms 5 through 9* and
the fixed set , they are terminating.

THEOREM 2. The schema evolution axioms are sound.
Proof: Assume and are sound. Since these are typically supplied by the
schema designer and through system constraints, it is important that these be vacuously
sound.
Axioms 1, 2*, 3, and 4 assert a condition on the types . If the components they rely on

are sound, then they are sound as well. Axiom 1 is sound because is a sound set for
each type . We now turn attention to proving the soundness of Axioms 5, 6*, 7*, 8,
and 9* on which Axioms 2* through 4 depend.

Axiom 5. For to be unsound we must have a type in that is not an immediate
supertype of , but instead is transitively linked to through some other type. Formally,
we must have a type such that there exists a distinct type such that .
Observe that in order to satisfy this transitive relationship either or there exists
a type such that . Choose in such a way that . Due to the
set difference operation, in order for to have any chance in being included as an element
of we must have .
Now, when the variable in the operation is bound to we have

in the right hand side of Axiom 5. Since we must have and because
the result of this equation and, hence, the extended union over all other

opertions, is a set containing . However, the set difference with minuend removes
from the result and we have . We have shown that the unsound type cannot

exist in . Thus, for all types we must have such that there does
not exist a distinct type such that . In other words, every type is an
immediate supertype of . This satisfies the definition of immediate supertypes and is
sound.
Axiom 8. For to be unsound we must have a property in that is not defined

natively, but instead is inherited. Formally, we must have a property such that
as well. Due to the set difference operation, in order for to have any chance in

being included as an element of we must have . However, if we have both
and then we must have . We have shown that the unsound

property cannot exist in . Thus, for all properties we must have
and . That is, all native properties are essential and not inherited. This satisfies
the definition of nativeness and is sound.
Axiom 9*. The proof that the Axiom of Inheritance is sound is based on induction of

MPLs.
Basis. Root type. We show that is sound. Since
, the operation results in the empty set and, thus, , which is sound.

Induction. Assume is sound . Choose 1 such that 1.
We now show that is sound. Note that is sound and , is
sound and is sound because . Each set is sound because it is the union
of two sound sets, namely and , and these are the only contributing factors to

. Now, since is the extended union over the sound sets, it is sound. The
proof follows by induction.

14 Randal J. Peters and M. Tamer Özsu

Axiom 7*. The set is sound because it is the union of two sound sets, namely
and , and these are the only contributing factors to .
Axiom 6*. The proof that the Axiom of Supertype Lattice is sound is based on induction

of MPLs.
Basis. Root type. We show that is sound. Since

, the operation results in the empty set and, thus, , which is
sound.
Induction. Assume is sound . Choose 1 such that 1.

We now show that is sound. Note that is sound and by definition
of subtyping and MPLs. Therefore, , is sound because . The
extended union over the sound sets results in a sound set and the union of this result
with produces a sound result for . The proof follows by induction.
QED. Since Axioms 2* through 4 rely solely on sound Axioms 5 through 9* and the

sound set , they are sound.

THEOREM 3. The schema evolution axioms are complete.
Proof: Assume and are complete. Since these are typically supplied by the
schema designer and through system constraints, it is important that these be vacuously
complete.
Axioms 1, 2*, 3, and 4 assert a condition on the types . If the components they rely

on are complete, then they are complete as well. Axiom 1 is complete because is a
complete set for each type . We now turn our attention to proving the completeness
of Axioms 5, 6*, 7*, 8, and 9* on which Axioms 2* through 4 depend.

Axioms 5 and 6*. The proof of completeness for axioms and are done in
parallel and are based on induction of MPLs.
Basis. Root type. We show that

and are complete. Since , then
, which is complete. Since , the operation in results

in the empty set and, therefore, , which is complete. These satisfy the
definitions of immediate supertypes and supertype lattice.
Induction. Assume and are complete . Choose 1 such

that 1. We now show that and are complete.
is complete because is complete and the subtrahend removes all the non-

immediate supertypes of resulting in a complete set of direct supertypes .
To prove is complete, note that is complete and is

complete because . Now, the extended unionover the complete sets together
with the union of results in a complete set of supertype lattice types . The proof
follows by induction.
Axioms 7* and 9*. Completeness of and are proved in parallel based on

induction of MPLs.
Basis. Root type. We show that and are complete.
To show that is complete note that resulting

in the empty set for the operation. Thus, , which is complete. Furthermore,
is complete because it is the union of two complete sets

and . These satisfy the definitions of inherited properties and type interface.

Axiomatic Model of Dynamic Schema Evolution in Objectbase Systems 15

Induction. Assume and are complete . Choose 1 such that
1. We now show that and are complete.

To prove is complete, note that is complete and is complete
because . The extended union over the complete sets results in the complete
set .

is complete because it is the union of two complete sets, namely and ,
and these are the only contributing factors to . The proof follows by induction.
Axiom 8. Assume is not complete. This means there exists a native property

defined on such that . Since is defined on it is supported in the interface
of and we must have . Moreover, since is a native property it is not inherited
from a supertype of and we must have . In order for and to
be satisfied, our initial assumption must be incorrect and we must have making

complete.
QED. Since Axioms 2* through 4 rely solely on complete Axioms 5 through 9* and the

complete set , they are complete.

3. AXIOMATIC DESIGN SPACE FOR DSE
Wegner [Wegner 1987] describes a design space of object language paradigms with respect
to interesting subsets of features such as objects, classes, and inheritance. Following a
similar process, we identify interesting subsets of the DSE axioms, relate them to the
object-based paradigms given by Wegner, and examine OBS issues in each of the various
classifications. This offers a design space for DSE in OBSs based on the axiomatic model
and indicates which axioms contribute to the various kinds of expressibility in an OBS.
According toWegner, objects are autonomous entities that consist of a set of “operations”

and a “state”. Objects respond to operations applied to them and the operation on an object
may update the state and return results dependent on the object state. The paradigm of
object-based language is identified as a language that supports the notion of objects.
A class (or type) classifies objects according to their common operations. A class acts

as a template from which objects can be created. Objects created from the same class have
common operations. The paradigm of class-based language is identified as an object-based
language where every object is supported by a class.
Inheritance serves to categorize classes/types by their shared operations. A class/type

may inherit operations of superclasses/supertypes and in turn may have its operations
inherited by subclasses/subtypes. Single or multiple inheritance may be supported. The
paradigm of object-oriented language is identified as a class-based language where a
hierarchy of classes/types may be incrementally defined by an inheritance mechanism.
The collection of object-oriented languages are a proper subset of class-based languages

which are a proper subset of object-based languages. The three paradigms are summarized
in Table III.

Paradigm Supports
object-based language objects
class-based language objects + classes (or types)
object-oriented language objects + classes (or types) + inheritance

Table III. Summary of object language paradigms.

16 Randal J. Peters and M. Tamer Özsu

Object-based languages support the functionality of objects, but object management
must be handled outside the language. Class-based languages provide some degree of
object management by collecting shared operations in a common place, but do not provide
a mechanism to support the management of classes. Object-oriented languages are known
as “wide-spectrum languages” because they allow both objects and classes to be managed
within the language, thereby providing a uniformmechanism for both high-level design of
class hierarchies and low-level implementation of objects.
Following this taxonomy, we relate the inclusion/exclusion of DSE axioms in an OBS

to object-based, type-based, or object-oriented paradigms. An OBS that supports the
definition of properties for each object on an individual basis fits into the object-based
paradigm. Object-based OBSs do not support any of the axioms and do not even support
the definitions of and because there is no notion of type. A new definition
based on objects instead of types must be introduced for object-based OBS to denote native
properties. For example, we could introduce a set, , for each object that defines
the native properties of that object. Each object maintains its own independent set of
native properties, which also serves as the complete interface of the object. If different
objects need to support common properties, then the properties must be duplicated across
the objects. Native properties on a per object basis is the only notion supported by object-
based OBSs. Changes to the native properties of objects is the responsibility of the object
designer, with the exception that the system could propagate a change to the corresponding
object. DSE in object-based OBSs is simple to manage because any schema change to any
object is isolated to the set of , meaning no other objects need be considered. As
a result, these systems lack in semantic richness because there are no inherent semantic
relationships between objects.
An OBS that supports the notion of fits into the type-based paradigm because the

common properties of all objects of a type are recorded by . This paradigm identifies
the need and reason for introducing into the axiomatic model. None of the axioms
are supported for DSE in type-based OBSs because all the axioms rely on inheritance in
one form or another. The management of semantics of change is simple in type-based
OBSs because any schema change to any type is isolated to the set of , meaning
no other types need be considered. However, the result of a schema change may have to
be propagated to the objects of the type and, thus, many of the issues concerning change
propagation such as “when to propagate the change” (e.g., screening, conversion) need to
be addressed in type-based OBSs.
A type-basedOBS that supports belongs to the object-oriented paradigm. Since the

object-oriented paradigm supports inheritance, the Axiom of Inheritance* (Axiom 9*) is
supported by object-orientedOBSs. As a consequence, theAxiom of Interface* (Axiom 7*)
must also be supported so that types can form a complete interface based on native and
inherited properties. This represents the minimum requirements for an OBS to fit into the
object-oriented paradigm.
Table IV illustrates various classifications of OBS paradigms and the features that each

supports. Object-orientedOBSs are further classified intomore refined subsets that support
additional axioms. These subclassifications are discussed below and can be used to compare
and differentiate OBSs from one another.
OBSs are typically not concerned with information that is not modeled and stored in

the objectbase (i.e., information outside the universe of discourse). As a result, many
OBSs support a notion of closure that limits management to the information currently in

Axiomatic Model of Dynamic Schema Evolution in Objectbase Systems 17

Paradigm Supports
object-based OBS objects,
type-based OBS objects + types,
object-oriented OBS objects + types + inheritance, ,

Minimal Axiom of Inheritance*, Axiom of Interface*
Closed Minimal + Axiom of Closure
Native Minimal + Axiom of Nativeness
Lattice Minimal + Axiom of Supertype Lattice*

Direct supertyped Lattice + Axiom of Supertypes
Acyclic Lattice + Axiom of Acyclicity*
Rooted Lattice + Axiom of Rootedness
Pointed Lattice + Axiom of Pointedness

Table IV. Summary of OBS design space based on the axiomatic model.

the objectbase. OBSs that support the Axiom of Closure are classified as closed systems.
Closure is supported by many OBSs and because of its widespread use it could be included
as part of the minimal requirements for object-oriented OBSs. However, we leave this as
an open design choice and allow the Axiom of Closure to serve as a differentiating factor
when comparing systems.
Systems that supportnative properties have a clean separation between properties defined

by each type and those inherited by the type. This can be used to improve efficiency in
searching for implementations of properties during dynamic dispatching and for reducing
the number of implementations that need to be considered when resolving conflicts at the
implementation level (i.e., during functional resolution).
The support of a lattice of supertypes based on each type is a simple extension to the

support of an overall type lattice in object-oriented OBSs. It simply involves maintaining
subsets of the type system along with subsets of the partial ordering based on the subtype
relationships. Supertype lattice support can be useful for interoperability of systems when
portions of the schema need to be integrated with other schemas or exported to participate
in a federation of OBSs. It can also serve to help determine the closure of views in OBSs
with view management support.
Supertype lattices lead to additional classifications of object-oriented OBSs. Systems

that support direct supertypes give a type lattice where each type maintains only the mini-
mum number of supertype links. This can simplify dynamic dispatching in some OBSs by
reducing the number of supertypes that need to be inspected for inherited properties that
inherit implementations from the supertypes as well. For example, GemStone performs
Smalltalk-like dynamic dispatching that inspects supertypes of a typewhen an implementa-
tion for a property is not found at that type. Direct supertypesminimize the number of types
that need to be inspected. They can also simplify functional resolution because examining
only direct supertypes guarantees that the minimal number of types that could contribute
to a conflict are being considered. With respect to graphical type browsers, displaying only
direct supertype links offers the complete type lattice in the most concise form.
Like closure, an acyclic type system is a common feature of OBSs. The obvious

advantages lie in the reduced overall complexity of the type system and the polynomial
computational complexity of graph based algorithms for searching through the type system.
A rooted type system offers a reasonable environment to support uniformity where

everything in the system is an object and shares the common interface of the root type. If
the root type describes the properties of objects in general, then this description becomes

18 Randal J. Peters and M. Tamer Özsu

part of the type system and an external notion of object is not required. Since all other types
must inherit the properties of the root, they must inherit and support the general notion of
objects. If the system itself is defined in terms of types that inherit from the root type, then
everything in the system, including the schema, can be modeled as objects.
A pointed type system is fairly easy to support and offers some advantages in OBSs.

Any type system can be made pointed by lifting with a bottom type . The bottom type
need not be physically stored, but instead can be managed under the semantic notion that
is the subtype of all other types and supports the properties of all types. A bottom type

can be useful for defining primitive null and error objects that can be returned as the result
of any operation on any object, and subsequently can have any operation applied to them.
These objects can be safely used to initialize properties of other objects and to return error
conditions on objects as the result of operations. They can subsequently have any property
applied to them without encountering the don’t understand message scenario in Smalltalk
or type-checking errors as in C++.

4. EXAMPLE AXIOMATIZATION – DSE IN TIGUKAT
In this section, we give a brief overview of the Tigukat object model, define the dynamic
schema evolution policies of Tigukat, and indicate how these policies can be described
using the axiomatic model presented in Section 2.1. Since the focus of this paper is the
effects of changes at the schema level, we limit our discussion to the definition of the
semantics of schema changes and exclude change propagation because the latter deals
with the effects at the object instance level. See [Peters 1994] for a discussion of change
propagation in Tigukat that uses the temporality of the object model [Goralwalla et al.
1995].

4.1 Object Model Overview
The Tigukat object model [Özsu et al. 1995; Peters 1994] is purely behavioral with a
uniform object semantics. The model is behavioral in that all access and manipulation of
objects is based on the application of behaviors. Behaviors in the Tigukatmodel correspond
to the generic concept of properties discussed in Section 2.1. The model is uniform in that
every component of information, including its semantics, is modeled as a first-class object
with well-defined behavior. This means that in addition to the usual application specific
objects (e.g., persons, employees, etc.) the system also manages information about itself
(i.e., types, behaviors, classes, etc.) as objects. This results in a self-managed system with
reflective capabilities [Peters and Özsu 1993].
The primitive type system of Tigukat is shown in Figure 3. Types define behaviors that

are applicable to their instances. The type T object is the root of the type system and T null
is the base. We concentrate on the shaded types in the figure, which are used to uniformly
model the schema, and describe their role in supporting DSE in terms of the axiomatic
model. For a complete model definition, including primitive behaviors, see [Peters 1994].
The primitive objects of Tigukat include: atomic entities (reals, integers, strings, etc.);

types for defining common features of objects; behaviors for specifying the semantics
of object properties; functions for specifying implementations of behaviors; classes for
automatic classification of objects based on their type3; and collections for general hetero-
geneous groupings of objects. In this paper, a reference prefixed by “T ” refers to a type,

3Types and their extents are separate constructs in Tigukat.

Axiomatic Model of Dynamic Schema Evolution in Objectbase Systems 19

T_object

T_type

T_function

T_class

T_poset

T_bag

T_boolean

T_character

T_string

T_real T_integer T_natural

T_class-class

T_type-class

T_collection-class

T_null

Supertype Subtype

T_collection

T_atomic

T_listT_behavior

Fig. 3. Primitive type system of the Tigukat object model.

“C ” a class, and “B ” a behavior. For example, T person refers to a type, C person its
class, and B age one of its behaviors. A reference such as David, without a prefix, denotes
some other application specific reference.
Objects consist of a unique identity and an encapsulated state. Access and manipulation

of objects occurs exclusively through the application of behaviors. We clearly separate
the definition of a behavior from its possible implementations (functions/methods). This
supports overloading and late binding of implementations to behaviors.
One component of every behavior is its semantics. We use signatures to denote a partial

semantics of behaviors. A complete semantic specification mechanism is currently under
development. A signature includes a name that is used to apply the behavior, a list of
argument types, and a result type. The object to which a behavior is applied is called the
receiver. We use the dot notation to denote the application of behavior

to the receiver object .
A type defines behaviors and encapsulates behavior implementations and state repre-

sentation for objects created using that type as a template. Tigukat supports multiple
inheritance, so the type structure forms a lattice. The lattice is rooted by the type T object
and liftedwith the base type T null to form a pointed lattice. The type T null defines objects
that can be assigned to behaviors when no other result is known (e.g., null, undefined,
etc.). The set of behaviors defined by a type denote the interface for the objects of that
type.
Types are the foundation of schema in most object models, including Tigukat. The

fundamental schema evolution operations on types are to add and drop types, add and
drop subtype relationships between types, and add and drop behaviors (i.e., properties) of
types. In order to illustrate the principles of Section 2.1, we define the modeling of types
in Tigukat in terms of the axiomatic model.
The uniformity of Tigukat dictates that types are modeled as objects. The primitive

20 Randal J. Peters and M. Tamer Özsu

type T type defines the behaviors of type objects. The behaviors of types that are related
to schema evolution include B supertypes, B super-lattice, B interface, B inherited, and
B native. These correspond exactly to , , , , and , respectively, in
the axiomatic model. The B supertypes behavior returns the immediate supertypes of the
receiver type. A type is not an immediate supertype of itself. The B super-lattice behavior
returns a partially ordered collection of types representing the supertype lattice, which is
pointed at the receiver type and rooted at T object. In this way, every type is the base type
of its supertype lattice. Behaviors B interface, B inherited, and B native represent the
collections of behaviors related to the various interface components of types. Furthermore,
each type also includes a B essSupertypes and B essBehaviors that maintain the essential
supertypes, , and essential properties, , respectively. This is sufficient to model
DSE in Tigukat in terms of the axiomatic model. There are other aspects of Tigukat related
to the change propagation aspect of DSE. These are briefly discussed below.
A class ties together the notions of type and object instances. A class is a supplemental,

but distinct, construct responsible for managing all instances of a particular type (i.e., the
type extent). In this way, the model clearly separates types from their extents. When a
schema change occurs to a particular type, the changes must be propagated to the type
extent (i.e., to its associated class).
Collections are heterogeneous grouping constructs as opposed to classes which are

homogeneous up to inclusion polymorphism. Object creation occurs exclusively through
classes; thus, classes are extents of types and are managed automatically by the system.
Collections on the other hand are managed explicitly by the user. An object cannot exist
in Tigukat without its existence in some class. Thus, change propagation on collections is
unnecessary because any changes will be performed through the class of the object instead.
The types T class-class, T type-class, and T collection-class are part of the extended

meta type system. Their placement within the type lattice directly supports the uniformity
of the model and brings the definition of the meta-model within the model itself. For a
discussion on the architecture of the meta-model and the features it provides (e.g., class
behaviors, reflective queries), see [Peters and Özsu 1993].

4.2 Definition of Schema
There are various kinds of objects modeled by Tigukat, some of which are classified as
schema objects. All objects in Tigukat fit into one of the following categories: type, class,
behavior, function, collection or other. These categories are used to distinguish the schema
objects from the other objects so that the changes that affect them can be identified as
schema evolution operations. A formal definition of schema objects is presented below.
This is followed by the definition of what constitutes the “schema” of a Tigukat OBS.

DEFINITION 3. Schema Objects: The following general classifications of objects form
the schema objects of Tigukat:

—Types are schema objects. The classC type forms the set of type schema objects denoted
as . This is equivalent to in the axiomatic model.

—For all types , the extended union over the interface sets of these types (i.e.,
B interface) forms the set of behavior schema objects denoted as . Only those

behaviors defined in the interface of some type are considered to be behavior schema
object, which means C behavior. represents the set of all properties in
the axiomatic model, which is represented by .

Axiomatic Model of Dynamic Schema Evolution in Objectbase Systems 21

—For all behaviors and for all types , the extended union over the
implementations of these behaviors (i.e., B implementation) forms the set of
function schema objects denoted as . Only those functions defined as the imple-
mentation of some behavior for some type are considered to be function schema objects,
which means C function. Functions objects denote the implementations of
properties in the axiomatic model, which can be represented as attributes, methods, ex-
ecutable code, and so on. The axiomatic model is high-level and does not directly deal
with implementations or the conflict resolution strategies associated with them. Conflict
resolution of properties is at a semantic level in which the semantics of a property is
unique and, therefore, simple set operations can be used to resolve conflicts.

—The class C collection forms the set of collection schema objects denoted as .
Collections represent a flat space of heterogeneous, user-defined and managed object
groupings. The axiomatic model does not impose any restrictions on the management
of collections.

—The class C class forms the set of class schema objects denoted as . Note that
because every class is a collection. Classes in Tigukat mirror types in

that a class is responsible for managing the entire extent of a type. Thus, the subset
inclusion structure of classes is directly related to the subtyping lattice in the axiomatic
model. Not every type requires a class, only those that have actual objects in their extent
need a class. This allows the formation of abstract types, which just define properties of
objects and do not allow the creation of objects of that type.

—Any other object is not a schema object and is identified by the other object category.

DEFINITION 4. Schema: The schema of a Tigukat OBS is the union of all schema
object sets:

schema

Recall that , but it is included here for completeness.

There are three basic operations that can be performed on objects: add, drop, andmodify.
Table V shows the combinations between the various object categories and the different
kinds of operations that can be performed. The bold entries represent combinations that
imply schema evolution modifications, while the emphasized entries denote other changes
that are not considered to be part of the schema evolution problem.

Operation
Objects Add (A) Drop (D) Modify (M)
Type (T) subtyping type deletion add behavior(AB)

drop behavior(DB)
add subtype relationship(ASR)
drop subtype relationship(DSR)

Class (C) class creation class deletion extent change
Behavior (B) behavior definition behavior deletion change association(CA)
Function (F) function definition function deletion implementation change
Collection (L) collection creation collection deletion extent change
Other (O) instance creation instance deletion instance update

Table V. Classification of schema changes.

22 Randal J. Peters and M. Tamer Özsu

4.3 Semantics of Change
In this section the modifications that affect the schema (i.e., the bold entries of Table V)
and their axiomatization are described. The basic operations affecting the schema include
adding behaviors to a type definition, dropping behaviors from a type definition, chang-
ing the implementation of a behavior in a type, and adding and dropping classes. The
other schema changes, namely, adding and dropping types, adding and dropping subtype
relationships, dropping behaviors and dropping functions can be defined in terms of the
type-related basic operations.
TheMT-AB (Modify Type - Add Behavior) operation adds a behavior as an essential

component of a type. To add behavior to type , is added to and the sets
, , are derived. The results are reflected in , , and

, respectively.
TheMT-DB (Modify Type - Drop Behavior) operation drops a behavior as an essential

component of a type. To drop behavior from type , is removed from and the sets
, , are derived. The resulting sets are reflected in , ,

and , respectively. Note that thismay not actually remove from the interface
of because may be inherited from one or more supertypes of . However, if eventually
the links to all supertypes defining are removed, then will no longer be part of .
TheMT-ASR (Modify Type - Add Subtype Relationship) operation adds a type as an

essential supertype of another type, which effectively adds a subtype relationship between
the two types. To add type as a supertype of type , is added to and the sets ,

, , , and are derived. The results of any lattice change are reflected in
. Due to the axiom of acyclicity, the addition of a type as a supertype of

another type is rejected if it introduces a cycle into the lattice.
The MT-DSR (Modify Type - Drop Subtype Relationship) operation drops a type

as an essential supertype of another type, which effectively drops a subtype relationship
between the two types. To drop type as a supertype of type , is removed from and
the sets , , , , and are derived. The results of any lattice change
are reflected in . Due to the axiom of rootedness, which Tigukat obeys, a
subtype relationship to T object cannot be dropped because it is always essential.
The AT (Add Type) operation creates a new type and integrates it with the existing

lattice. Creating a type adds it to (in the axiomatic model), which in turn adds it to
the schema. Type creation is supported through regular subtyping, which is an operation
provided by the primitive model. A B new behavior is defined as part of the meta-system
that accepts a collection of supertypes and a collection of behaviors. The result of creating
a new type as the subtype of types 1 with essential behaviors 1 adds
1 to , 1 to , and the sets , , , , and
are derived. If no supertypes are specified, T object is assumed. Due to the axiom of
pointedness, which Tigukat obeys, the new type is added to T null because all types
are essential supertypes of this base type.
The DT (Drop Type) operation drops a given type by removing it from , which

removes it from the schema. To drop a type , the type is removed from C type (in
axiomatic model) and from the of all subtypes of . The axiomatic model does not
specifically define a subtypes property, but this is trivial to define as the inverse operation
of the supertypes property. Tigukat does define a B subtypes behavior for types, so finding
all subtypes of a dropped type is an easy task.

Axiomatic Model of Dynamic Schema Evolution in Objectbase Systems 23

In Tigukat, there is the restriction that the primitive types of the model (i.e., those in the
primitive type system of Figure 3) cannot be dropped. When a type is dropped, the type’s
associated class and all the instances in the shallow extent of the class are dropped as well.
With the use of object migration techniques, the instances can be migrated to some other
type prior to being dropped in order to preserve their existence. Object migration is outside
the scope of this paper.
TheAC (AddClass) operation creates a class and uniquely associates it with a particular

type to manage its extent. Creating a class adds it to , which in turn adds it to the
schema. The creation of a class allows instances of its associated type to be created.
The DC (Drop Class) operation drops the associated class of a type, which removes it

from and from the schema as well. The instances of a dropped class are also dropped.
As mentioned above, object migration techniques can be used to migrate objects to another
class before dropping the class in order to preserve the objects.
Since explicitly droppingbehaviors froma type definition (operationMT-DB) is a schema

change, dropping a behavior in its entirety is also a schema change because the behavior
may be defined on several types and, thus, needs to be dropped from these types.
TheDB (DropBehavior) operation drops a given behavior,which could possibly remove

it from and, therefore, from the schema as well. A dropped behavior is dropped
from all types that define the behavior as essential. The semantics of this operation follows
dropping behaviors from types (operation MT-DB) defined above (i.e., it is dropped from
all containing the behavior).
The MB-CA (Modify Behavior - Change Association) operation changes the imple-

mentation of a behavior by associating itwith a different function. This is an implementation
based schema change that is outside the scope of the high-level axiomatic model. We have
defined a complete set of possible implementation changes and conflict resolution proce-
dures for these changes. Details are given in [Peters 1994]. Conflict resolutionof high-level
behaviors (or properties) is based on their semantics, which is a unique description of the
behavior and, thus, set operations can be used.
Since changing the association of a function with a behavior is considered a schema

change, dropping a function in its entirety must also be a schema change because the
function may be associated as the implementation of a behavior in some type.
TheDF (Drop Function) operation drops a given function, which could possibly remove

it from and, therefore, from the schema as well. The operation is rejected if the
function is associated as the implementation of a behavior in a type that has an associated
class.
Collections are heterogeneous, user-defined and managed object groupings and the ax-

iomatic model does not interfere with this flexibility. They are included here for complete-
ness.
TheDL (Drop Collection) operation drops a given collection, thereby removing it from
and from the schema as well. Unlike classes, dropping a collection does not drop its

members. That is, the instances of a dropped collection are not affected.
TheAL (Add Collection) operation adds a new empty collection to the schema. Collec-

tion addition is collection creation as defined by the primitive model. Creating a collection
adds it to , which in turn adds it to the schema. The behavior B new defined classes
can be applied to C collection to create a new collection object.
The remaining entries in Table V represent changes that are not considered part of the

schema evolution problem. Creating, dropping, and updating object instances (operations

24 Randal J. Peters and M. Tamer Özsu

AO,DO, andMO)other than the ones discussed above clearly are operations concernedwith
the real-world concepts modeled in the objectbase and, therefore, do not affect the schema.
Defining a new behavior (operationAB) does not affect the schema because behaviors don’t
become part of the schema until after they are added to the essential behaviors of some
type. Defining a new function (operationAF) does not affect the schema because functions
don’t become part of the schema until after they are associated as the implementation of a
behavior defined on some type. Modifying a function (operation MF) does not affect the
semantics of the behaviors it may be associated with and, therefore, this operation does not
affect the schema. Collections are groupings of objects that are defined and maintained
by the user. Modifying a collection involves changing the membership of its extent and
changing itsmembership type. These operations are related to the contents of the collection
and, therefore, are not part of the schema evolution problem.

5. DISCUSSION AND COMPARISON
One advantage of the axiomatic model presented in this paper is the precision that it offers
in specifying DSE in OBSs. Another important advantage is the possibility of using the
axiomatic model in practice to compare and evaluate OBSs based on a common framework
that the model provides. In this section, we compare the DSE operations in Tigukat and
Orion based on their reductions to the axiomatic model. The end result allows certain
judgements to be made about the functionality and expressibility of each system, which
serves to illustrate a practical use for the axiomatic model.
Eight fundamental DSE operations are defined in Orion and the authors state that these

are inclusive of all “interesting” schema changes. The soundness and completeness of a
thorough taxonomy of schema change operations are proven using these eight operations.
Soundness in Orion shows that the schema operations generate only valid class lattices,
while completeness shows that every legal class lattice is attainable through the schema
operations they define. The notions of soundness and completeness used in Orion differ
from those used in Section 2.2. Orion deals with its specific identified taxonomy of
schema change operations, while Section 2.2 deals with how general schema operations
are carried out. We show how the semantics of the eight fundamental operations in Orion
can be represented by the axiomatic model. As a result, both notions of soundness and
completeness are preserved by the mapping. For the purpose of comparison, in this section,
parallels are made between the Orion terminology of class, subclass, and superclass and
the Tigukat terminology of type, subtype, and supertype, respectively.

5.1 Axiomatization of Orion
In mapping the Orion class structure to the axiomatic model, represents the superclasses
of an Orion class. There is no notion of a set of minimal superclasses, , in Orion so it
can be ignored. There are also no explicit superclass lattices in Orion, but one is implied
by the superclass relationships formed among classes.
The superclasses inOrion are ordered to guide conflict resolutionand it is trivial to define

a total ordering on for this purpose. The ordering is external to the axiomatic model,
but this does not adversely affect the axiomatization of Orion because conflict resolution
does not alter the interface of a class – only the underlying encapsulated implementations
are changed. That is, conflict resolution is at a lower level than the high-level semantics
captured by the axioms. The members of are the same in Orion regardless of whether
the set is ordered or not. For the sake of completeness, an ordered and conflict resolution

Axiomatic Model of Dynamic Schema Evolution in Objectbase Systems 25

are considered in the axiomatization of Orion.
In mapping properties, represents the defined or re-defined properties of an Orion

class. There is no notion of the minimal native, , or inherited, , properties in Orion.
Inherited properties of a class inOrion can be expressed as in the axiomatic
model. The interface, , of a class has the same meaning in Orion and in the axiomatic
model. Properties in Orion have names and domains, which are used in conflict resolution.
The axiomatic model assumes that properties have a given semantics. Names and domains
can be part of the semantics, which in turn can be used for conflict resolution.
The Axiom of Closure is not explicitly stated in Orion, but is implied by the connected

nature of the class structure. The Axiom of Acyclicity, on the other hand, is strictly
enforced. Furthermore, the Axiom of Rootedness is obeyed with OBJECT and the
Axiom of Pointedness is relaxed since there is no single class as a base. Note that for
comparison purposes the Orion class structure can be lifted with a base class NULL,
for example.
The eight fundamental operations of Orion and their semantics can be expressed in terms

of the axiomatic model as follows:

OP1. Add a new property to a class : Add to . Perform Orion conflict
resolution as necessary. The same operation is performed whether is an attribute or a
method.
OP2. Drop an existing property from a class : Remove from . Perform

conflict resolution as necessary. The same operation is performed whether is an attribute
or a method.
OP3. Add an edge to make class a superclass of class : Add to the end of

ordered . Perform conflict resolution as necessary. If the Axiom of Acyclicity is
violated, the operation is rejected.
OP4. Drop an edge to remove class as a superclass of class : Remove from

unless is the last superclass of in which case is linked to the superclasses of
(i.e.,). The operation is rejected if is the last superclass of and is the class

OBJECT. The following algorithm illustrates the procedure:

if then // Is the last superclass of ?
if = OBJECT then REJECT operation // If last superclass is OBJECT, then reject.
else // Else link to superclasses of .

else remove from // can be safely removed as a superclass.

OP5. Change the ordering of superclasses of a class : Simply change the ordering
of classes in . Perform conflict resolution as necessary.
OP6. Add a new class as the subclass of a class : Create and add to .

If is not specified, then OBJECT by default. In Orion, additional superclasses can
be added to using OP3.
OP7. Drop an existing class : For all subclasses of , remove as a superclass of
using OP4. In effect, remove from and then remove from the lattice.
OP8. Change the name of a class : Change occurrences of in the of every class

to the new name.

Since each of the fundamental operations is specified with an equivalent semantics in the
axiomaticmodel, we conclude that Orion is reducible to the axiomaticmodel. Furthermore,

26 Randal J. Peters and M. Tamer Özsu

both our definitions and Orion’s definitions of soundness and completeness are preserved.
An analogy of this reduction is that one may consider the axioms as a formal assembly
language that can be used to precisely specify the semantics of the higher-level schema
operations. The reduction of the axiomaticmodel toOrion is not possible since, for example,
Orion does not maintain minimal superclasses or native properties of classes. Thus, the
axiomatic model subsumes the schema evolution capabilities of Orion. In Section 5.2, we
compare the similarities and differences of schema evolution in Tigukat and Orion in terms
of their axiomatizations.
The axiomatization of Orion has two useful results. The first is the unification of DSE

on attributes and methods into the single framework of properties, thus simplifying the
specification of DSE in Orion and bringing it a step closer to the uniform model. The
second is the clarification of DSE semantics in Orion. In particular, the informal definition
of OP4 is much better understood in its axiomatic form. Actually, the specification of
OP4 as given above is our best interpretation from its informal definition available in the
literature. This interpretation may not be entirely correct, which stresses the need for a
formal model.
Other systems such as GemStone and Sherpa define DSE policies that follow those

of Orion. Like Orion, these definitions are informal and lack a common framework for
comparison purposes. Due to similarities with Orion, the axiomatization of these systems
are not shown. The axiomatic model serves as a basis for comparing DSE across these
systems and other OBSs. In this section, we only compare the axiomatization of DSE in
Tigukat and Orion, but this is sufficient to illustrate the salient features of the model.

5.2 Comparison of DSE in Tigukat and Orion
In relation to the design space, Tigukat is an object-oriented OBS that supports all the
subcategories for DSE and can benefit from the advantages they provide. Orion is also
an object-oriented OBS, but it only supports a proper subset of the subcategories and,
therefore, cannot exploit the advantages of the ones missed. Orion is a closed system that
supports an overall type lattice and an implicit notion of a lattice for individual type. The
lattice in Orion is acyclic and rooted, but not pointed. Furthermore, Orion does not support
direct supertyped types nor the management of native properties of types.
In terms of subtyping and property inheritance, Tigukat and the axiomatic model are

reducible in both directions while only the reduction from Orion to the axiomatic model is
possible. One result of this observation is that the minimal supertypes and minimal native
properties cannot be exploited inOrion, which can be useful for the efficiency of the system.
For example, to resolve property naming conflicts in a type, it is only necessary to iterate
through the minimal supertypes of that type because any conflicts would be detectable in
these supertypes alone. Another use for minimal supertypes is in displaying the type lattice
graphically. Due to property inheritance, a user only needs to observe the direct subtype
relationships to understand the complete inheritance functionality of a type.
In comparing the schema operations of the two systems, we focus on the operations

of Tigukat outlined in Table V and the eight fundamental operations identified in Orion.
We first present a side-by-side comparison of the common DSE operations in the two
approaches. Second, we discuss the DSE operations that are specific to a particular system.
Finally, we offer general comments about the two approaches and express some judgements
about their DSE semantics in relation to one another.
The following list associates a DSE operation in Tigukatwith its correspondingoperation

Axiomatic Model of Dynamic Schema Evolution in Objectbase Systems 27

in Orion by separating the two with a slash. The commonality between each Tigukat/Orion
operation association is justified and subtle variances are highlighted.

MT-AB/OP1 and MT-DB/OP2. The operations of adding and dropping properties from
types (classes) are virtually identical in both systems. The only subtle difference is that
Tigukat explicitly maintains the minimal native properties while Orion does not.
MT-ASR/OP3. The operation of adding a subtype relationship between two types (an

edge between two classes) is very similar in both systems. The differences are that Orion
maintains an ordered supertype list for conflict resolution and Tigukat explicitly maintains
a minimal supertype set.
MT-DSR/OP4. The operation of dropping a subtype relationship (edge) between two

classes is quite different in the two systems. Dropping a series of edges in Orion can
produce a different lattice depending on the order in which the edges are dropped. In
Tigukat, the ordering is irrelevant and the same lattice is produced regardless of the order
in which they are dropped. That is, subtype relationship dropping is order-independent in
Tigukat, but not in Orion. Based on the axiomatization of the two systems, we make the
judgement that the dropping of subtype relationships in Tigukat is much simpler and is
more uniform than Orion.
AT/OP6. The operation of adding a type (class) is similar, except that Tigukat obeys the

Axiom of Pointedness and so the new type is added as an essential supertype of T null.
DT/OP7. The operation of dropping a type (class) is different in Tigukat and Orion

because both systems base this operation on the operation of droppingsubtype relationships
(edges). Since the two systems differ in the handling of the latter operation, they differ in
the former as well. The differences are equivalent to those defined in the comparison of
MT-DSR and OP4 above.

Aside from the common DSE operations above, there are others that vary slightly in the
two approaches. The operation of changing the ordering of classes (OP5) is introduced
in the axiomatization of Orion to deal with conflict resolution. This is an implementation
detail that is abstracted out in the axiomatization of Tigukat because, in general, conflict
resolution can differ in various systems.
Similarly, the operation of changing the name of a class (OP8) is specific to Orion.

Again, Tigukat deals more abstractly with the notion of references (which act as names)
to objects with unique identity. For example, the act of adding to does not mean
“add the name to the set ”, instead it means “add a reference to the object identified
by to the set ”. There may be two different references (with different names) that
refer to the same object. Objects in Tigukat cannot be renamed with different identities as
in Orion because Tigukat objects are created with a unique, immutable object identity.
The drop behavior operation (DB) in Table V is defined in terms of MT-DB and so it

comparison with Orion in terms of MT-DB/OP2 discussed above. The remaining DSE
operations of Tigukat not discussed (namely, AC, DC, MB-CA, DF, AL, DL) all deal with
the change propagation issue, which is not addressed in the axiomatic model.
Using the axiomatic model as a basis to represent DSE operation semantics enables

comparisons such as the above. Based on this comparison, it is easy to observe the sim-
ilarities and differences of the two systems, Tigukat and Orion, with respect to schema
operations on the type (class) lattice and their properties. Tigukat is a uniform model
and this is reflected in its handling of schema changes. The major difference between the

28 Randal J. Peters and M. Tamer Özsu

two systems is in the handling of dropping subtype relationships (MT-DSR and OP4). In
Tigukat, the operation is order-independent, while in Orion it is not. We make the judge-
ment that this difference makes DSE in Tigukat simpler and more uniform. One result of
this difference is its ramifications on the consistency of the schema when considering dis-
tributed interoperable OBSs. For example, in a distributed system there may be replicated
portions of the schema managed by the various semi-autonomous sites. With Orion-like
systems the order of the type dropping is important and needs to be carefully scrutinized
across the replicated schemas in order to ensure their consistency. On the other hand, for
Tigukat-like systems the type dropping order is irrelevant and this may allow for more
concurrency among these systems. Additional differences lie in Tigukat’s separation of
types from their extents and behaviors from their implementations (functions). This allows
the axiomatization of Tigukat to consider types without considering their extents and to
consider behaviors without considering their implementations. This is directly related to
the dichotomy introduced between the handling of the semantics of change issues versus
the change propagation issues.

6. RELATED WORK
Various systems have proposed solutions to the problems of semantics of change and
change propagation for DSE in OBSs. To support semantics of change, the most common
approach is to define a number of invariants that must be satisfied by the schema, along
with a set of rules and procedures that maintain the invariants with each schema change.
To support change propagation, one solution is to explicitly coerce objects to coincide

with the new definition of the schema. This technique updates the affected objects, changing
their representation as dictated by the new schema. Unless a versioningmechanism is used
in conjunction with coercion, the old representations of the objects are lost. Screening,
conversion, and filtering are techniques that define when and how coercion takes place.
In screening, schema changes generate a conversion program that is independently

capable of converting objects into the new representation. The coercion is not immediate,
but rather is delayed until an instance of the modified schema is accessed. That is, object
access is monitored by the system, and whenever an outdated object is accessed, the system
invokes the conversion program to coerce the object into the newer definition. Conversion
programs resulting from multiple independent changes to a type are composed, meaning
access to an object may invoke the execution of multiple conversion programs where each
one handles a particular change to the schema. Screening causes processing delays during
access to objects because the conversion program may have to be applied. Furthermore, it
can be difficult to determine when the system no longer needs to check whether a particular
conversion program needs to be applied to a particular object. This can cause overhead
during every object access and may increase the amount of supplementary information that
the system needs to keep in the form of screening flags.
In conversion, each schema change initiates an immediate coercion of all objects affected

by the change. This approach causes processing delays during the modification of schema,
but delays are not incurred during object access. Once conversion is complete, all objects
are up to date.
Another solution for handling change consistency of instances is to introduce a new

version of the schema with every modification and supplement each schema version with
additional definitions that handles the semantic differences between versions. These addi-
tional definitions are known as filters and the technique is called filtering. Error handlers

Axiomatic Model of Dynamic Schema Evolution in Objectbase Systems 29

are one example of filters. They can be defined on each version of the schema to trap
inconsistent access and produce error and warning messages.
In the filtering approach, changes are never propagated to the instances. Instead, objects

become instances of particular versions of the schema. When the schema is changed,
the old objects remain with the old version of the schema and new objects are created as
instances of the new schema. The filters define the consistency between the old and new
versions of schema and handle the problems associated with behaviors written according to
one version accessing objects of a different version. For example, if a property is dropped
from a type, then a filter can be defined on the new version that produces a default value if a
method written according to the old type version accesses the dropped property in an object
created according to the new version, which does not contain the property. This approach
introduces the overhead of maintaining the separate versions and the filters between them
that need to be applied from time to time.
A hybrid approach combines two or more of the above methods. For example, a

system could use filtering as the underlying mechanism and allow explicit coercion to
newer versions of types through screening or conversion. This could be used to reduce
the overhead in the number of versions and filters that need to be maintained. Another
example is a system that takes an active role by using screening as the default and switching
to conversion whenever the system is idle.
Orion [Banerjee et al. 1987; Kim and Chou 1988] is the first system to introduce the

invariants and rules approach as a structured way of describing DSE in OBSs. Invariants
define the consistency of the schema under the constraints of the object model. Rules are
introduced to guide the preservation of the invariantswhen choices inmodifying the schema
arise. Orion defines five invariants and a set of twelve accompanying rules for maintaining
the invariants over schema changes. The allowed schema changes in Orion are classified
into three categories that affect different components of the schema. The categories describe
(1) changes to the contents of a class such as its attributes and methods, (2) changes to
the subtyping relationships between classes, and (3) changes to classes as a whole such as
adding and dropping entire classes. Orion’s taxonomy of changes represents the majority
of typical schema modifications allowed in most OBSs. Change propagation in Orion
is handled through screening that coerces out-of-date objects to new schema definitions
when the objects are accessed. In Section 5, we present a complete axiomatization of the
semantics of change for DSE in Orion and compare it to the axiomatization of Tigukat.
Schema evolution in GemStone [Penney and Stein 1987] is similar to Orion in its

definition of a number of invariants. The GemStone model is less complex than Orion in
that multiple inheritance and explicit deletion of objects are not permitted. As a result,
the schema evolution policies in GemStone are simpler and cleaner, but not as powerful
as those of Orion. For example, while Orion defines twelve rules to clarify the effects of
schema modification, GemStone requires no such rules. Conversion is used in GemStone
to propagate changes to the instances. Literature on GemStone mentions the possibility of
a hybrid approach that allows both conversion and screening, but it is not clear if such a
system has been developed.
Skarra and Zdonik [Skarra and Zdonik 1986; Skarra and Zdonik 1987] define a frame-

work for versioning types in the Encore object model as a support mechanism for evolving
type definitions. Their work is more focused on dealing with change propagation rather
than semantics of change. Their schema evolution operations are similar to Orion. A
generic type consists of a collection of individual versions of that type. This is known as

30 Randal J. Peters and M. Tamer Özsu

the version set of the type. Every change to a type definition results in the generation of a
new version of that type. Since a change to a type can also affect its subtypes because of
specialization requirements, new versions of the subtypes may also need to be generated.
By default, objects are bound to a specific type version and must be explicitly coerced to a
newer version in order to be updated. Since objects are bound to a specific type version, a
problem of missing information can arise if programs (i.e., methods) written according to
one type version are applied to objects of a different version. For example, if a property is
dropped from a type, programs written according to an older type version may no longer
work on objects created with the newer version because the newer object is missing some
information (i.e., the dropped property). Similarly, if a property is added to a type, pro-
grams written with the newer type version in mind may not work on older objects because
of missing information. For this reason, type versions include additional definitions, called
handlers, that act as filters for managing the semantic differences between versions – such
as the missing information problem. This approach is one of the first to address the issue
of maintaining behavioral consistency between versions of types.
One result of Skarra and Zdonik’s work is a design methodology for defining handlers.

A handler is defined on a type version and specifies an “on condition” that traps read
and write access to undefined or invalid properties in that type version. Furthermore, the
handler defines an appropriate action to take if such an access occurs. Consider the missing
information example above. A handler can be defined on the type version that is themissing
property so that it returns a default value, a nil value, or simply generates an error. Using
this approach, a handler can be defined for each semantic difference between type versions
in order to filter object access and to trap any inconsistent accesses that may occur. This
is a filtering approach to change propagation that maintains the semantics of properties
between different versions of types. A downside of the approach is that defining handlers
on various type versions can become confusing and unmanageable in systems with a large
number of types that change often.
Nguyen andRieu [Nguyen and Rieu 1989] discuss schema evolution in the Sherpa model

and compare their work to Encore, Gemstone, Orion, and one of their earlier models for
CAD systems called Cadb. The emphasis of this work is to provide equal support for
semantics of change and change propagation. The schema changes allowed in Sherpa
follow those of Orion. Schema changes are propagated to instances through conversion
or screening, which is selected by the user. However, only the conversion approach is
discussed. Change propagation is assisted by the notion of relevant classes. A relevant
class is a semantically consistent partial definition of a complete class and is bound to
the class. A relevant class is similar to a type version in [Skarra and Zdonik 1986] and a
complete class resembles a version set.
The properties of relevant classes are characterized automatically by selecting from the

powerset of instance variables and constraints defined in a complete class definition. The
selection is restricted to only those combinations that are meaningful with respect to certain
semantic rules [Nguyen andRieu 1987]. Objects are instances of exactly one relevant class,
which characterizes a partial definition of that object. The purpose of relevant classes is to
evaluate the side-effects of propagating schema changes to the instances and to guide this
propagation.
Relationships between relevant classes can be characterized as a graph where the nodes

are relevant classes and the edges are labeled with schema changes that take one relevant
class definition to another. As the schema evolves, relevant classes are used to evaluate

Axiomatic Model of Dynamic Schema Evolution in Objectbase Systems 31

the changes and test their semantic consistency. Objects are migrated between relevant
classes to effect the changes made to them. This migration is essentially object coercion.
The propagation of objects within a set of relevant classes can have a large overhead,
but it is argued that relevant classes group objects into smaller sub-classifications so that
the number of objects affected by a change within a class is reduced, thereby increasing
performance. This approach is valid in systems that consider partial definitions of objects
within a class.
In the Farandole 2 model [Andany et al. 1991], a structure called a context and the

maintenance of versions within contexts are proposed as a basis for schema evolution.
A context is a partial view of the overall schema that serves a dual purpose: it defines
a subset of objects in the database, and a subset of operations that can be performed on
these objects. A global database schema can be derived from the set of all contexts. The
typical schema changes that follow those of Orion are allowed. A context is represented
by a connected graph where the nodes are classes and the edges are attributes denoting
relationships between classes. Thus, contexts are similar to entity-relationship diagrams.
Schema changes are characterized into graph operations and rules for maintaining graph
integrity are defined.
The elements contexts can be shared by other contexts and objects must maintain infor-

mation about the contexts in which they participate. One must consider the amount of extra
space needed to store this information in the objects rather than the types. The focus of the
work is on managing changes to schema and no propagation techniques are explicitly stated
– although it seems that conversion or screening could be used. There is a brief discussion
on how the model improves independence between programs and changing schema, which
suggests a filtering approach, but it is unclear how the model achieves this feature. The
authors argue that a context provides a smaller group of objects that need to be modified as
a result of schema changes, which is intended to improve performance.
Osborn [Osborn 1989] describes an algebra that utilizes inclusionpolymorphism todefine

equivalence of queries on different versions of a schema. The work does not describe how
schema changes are propagated to the object instances. Two kinds of schema modifications
are considered. The first involves changing simple atomic attributes like strings and
integers to more complex aggregates of these simple types (the opposite direction of
changing aggregates to simple types is also discussed). Only one level of aggregation
is considered. That is, the aggregation of aggregate types is not discussed. The second
modification considered is that of specializing aggregate types. The schema is modified by
specializing previous types and it is shown how the equivalence of queries are preserved
(or not preserved) through polymorphism. The results are interesting, but the full scope of
schema evolution is not considered.
In OTGen [Lerner and Habermann 1990], the focus shifts from dynamic schema evolu-

tion to database reorganization. The invariants and rules approach is used, and the typical
schema changes are allowed. The invariants are used to define default transformations for
each schema change. Schema changes produce a transformation table that describes how
to modify affected instances. Multiple schema changes are usually grouped and released as
a package called a transformer. Screening is used to apply the transformer and propagate
changes to the instances. Multiple releases are composed and, thus, access to an older
object can invoke multiple transformers to bring the object up to date. One result of the
database reorganization approach is thatmultiple changes are packaged into a single release
and this is expected to reduce the number of screening operations that need to be invoked

32 Randal J. Peters and M. Tamer Özsu

for each object access. Another result is that transformers are represented as tables that are
initialized by OTGen. A simple language is provided to describe transformations. Before
releasing a transformer, a database administrator can edit the entries in the table to override
the default transformations. This provides additional flexibility in defining how changes
are filtered.
The semantics of change for DSE in Tigukat is discussed in Section 4. Change propa-

gation is handled by a filtering approach that uses behavior histories [Peters 1994], which
are based on the temporal aspects of the object model [Goralwalla et al. 1995]. When a
change is made to the schema, the change is not automatically propagated to the instances.
Instead, the old version of the schema is maintained and the change is recorded in the proper
temporal histories of behaviors. Existing objects continue to maintain the characteristics
of the older schema while newly created objects correspond to the semantics of the newer
schema. Coercion of older objects to newer versions of the schema is optional in Tigukat.
Since different versions of types are maintained through temporal histories, the schema in-
formation of older objects is available and can be used to continue processing these objects
in a historical manner. If coercion is desired, the entire object does not need to be updated
at once. Objects can be coerced to a newer version of the schema one behavior at a time.
This means that some behaviors of the object may work with newer versions, while others
may work with older ones. This is in contrast to other models where an object is converted
in its entirety to a newer schema version, thereby losing the old information of the object.

7. CONCLUSIONS AND FUTURE WORK
Two issues in schema evolution are identified: (i) the semantics of change issue describes
the possible schema changes and (ii) the change propagation issue describes how schema
changes affect object instances. In this paper, we address semantics of change by intro-
ducing a sound and complete axiomatic model for dynamic schema evolution (DSE) in
objectbase systems (OBSs). We develop solutions for change propagation in the Tigukat
OBS using the temporal aspects of its object model [Peters 1994; Goralwalla et al. 1995],
but a formal treatment of change propagation and its integration with the axiomatic model
is part of our future work.
An axiomatization of DSE provides a foundation for describing the schema evolution

policies of different systems using a single, underlying framework. The axiomatic model
proposed in this paper has the power to provide this basis toOBSs supportingsubtypingand
property inheritance. Furthermore, the common foundation offered by the model provides
a means to better compare the DSE facilities of various systems. A design space for
OBSs based on the inclusion/exclusion of axioms is developed and can be used to classify,
compare, and differentiate the features of OBSs. To illustrate the power of the axiomatic
model, the schema evolution policies of Tigukat and Orion were reduced to the model and
compared.
A primary interest is the implementation of DSE in Tigukat based on its reduction to

the axiomatic model. A prototype implementation of the core Tigukat object model is
complete [Irani 1993] and its extension with efficient algorithms for DSE is currently
under development. The completion of this task will provide the necessary empirical
evidence of its performance characteristics. Additionally, a formal complexity analysis of
our implementation techniques will provide the theoretical basis of performance. From
this workwe intend to define a taxonomy of performance characteristics of DSE operations
in OBSs. Whereas DSE reductions to the axiomatic model provide a basis for theoretical

Axiomatic Model of Dynamic Schema Evolution in Objectbase Systems 33

comparison, the performance taxonomy can be used for empirical performance analysis
and benchmarking of DSE in existing OBSs.
Another direction being pursued is the extension of the axiomatic model to support

schema integration of heterogeneous systems for solving interoperability problems. The
formalism of the axiomatic model has the potential to serve as a framework for precisely
specifying the semantics of schema integration. We are also investigating the use of a
similar approach to define closed views and view management in OBSs.

ACKNOWLEDGMENTS
The authors are grateful to the referees and the Associate Editor for their valuable sugges-
tions that improved the content and presentation of the paper.

REFERENCES

ANDANY, J., LÉONARD, M., AND PALISSER, C. 1991.Management of Schema Evolution in Databases. In Proc.
of the 17th Int’l Conf. on Very Large Databases, pp. 161–170.

BANERJEE, J., KIM, W., KIM, H.-J., AND KORTH, H. 1987. Semantics and Implementation of SchemaEvolution
in Object-Oriented Databases. In Proc. of the ACM SIGMOD Int’l. Conf. on Management of Data, pp.
311–322.

GORALWALLA, I., LEONTIEV, Y.,ÖZSU, M., AND SZAFRON, D. 1995. A Uniform Behavioral Temporal Object
Model. Technical Report TR95-13, Department of ComputingScience, University of Alberta, Edmonton,
Alberta, Canada.

IRANI, B. 1993. Implementation Design and Development of the TIGUKAT Object Model. Master’s thesis,
Department of Computing Science, University of Alberta, Edmonton, Alberta, Canada. Available as
University of Alberta Technical Report TR93-10.

KIM, W. AND CHOU, H.-T. 1988. Versions of Schema for Object-Oriented Databases. In Proc. of the 14th Int’l
Conf. on Very Large Databases, pp. 148–159.

LERNER, B. AND HABERMANN, A. 1990. Beyond Schema Evolution to Database Reorganization. In Proc.
ECOOP/OOPSLA Conf., pp. 67–76.

NGUYEN, G. AND RIEU, D. 1987. Expert Database Support for Consistent Dynamic Objects. In Proc. of the
13th Int’l Conf. on Very Large Databases, pp. 493–500.

NGUYEN, G. AND RIEU, D. 1989. SchemaEvolution in Object-OrientedDatabase Systems.Data& Knowledge
Engineering 4, 43–67.

OSBORN, S. 1989. The Role of Polymorphism in Schema Evolution in an OODB. IEEE Transactions on
Knowledge and Data Engineering 1, 3 (Sept.), 310–317.

ÖZSU, M., PETERS, R., SZAFRON, D., IRANI, B., LIPKA, A., AND MŨNOZ, A. 1995. TIGUKAT: A Uniform
Behavioral Objectbase Management System. The VLDB Journal 4, 3 (July), 445–492. Special issue on
persistent object systems.

PENNEY, D. AND STEIN, J. 1987. Class Modification in the GemStone Object-Oriented DBMS. In Proc. of the
Int’l Conf. on Object-Oriented Programming: Systems, Languages, and Applications, pp. 111–117.

PETERS, R. 1994. TIGUKAT: A Uniform Behavioral Objectbase Management System. Ph. D. thesis, Depart-
ment of Computing Science, University of Alberta, Edmonton, Alberta, Canada. Available as University
of Alberta Technical Report TR94-06.

PETERS, R. AND ÖZSU, M. 1993. Reflection in a Uniform Behavioral Object Model. In Proc. of the 12th Int’l
Conf. on Entity–Relationship Approach, pp. 37–49.

SKARRA, A. AND ZDONIK, S. 1986. The Management of Changing Types in an Object-Oriented Database. In
Proc. of the Int’l Conf. on Object-Oriented Programming: Systems, Languages, and Applications, pp.
483–495.

SKARRA, A. AND ZDONIK, S. 1987. Type Evolution in an Object-Oriented Database. In Research Directions
in Object-Oriented Programming, pp. 393–415.MIT Press.

WEGNER, P. 1987.Dimensions ofObject-BasedLanguageDesign. InProc. of the Int’l Conf. onObject-Oriented
Programming: Systems, Languages, and Applications, pp. 168–182.

