An Extensible Query Optimizer for an Objectbase Management System*

M. Tamer Ozsu

Adriana Mufioz

Duane Szafron

Laboratory for Database Systems Research
Department of Computing Science
University of Alberta
Edmonton, Alberta, Canada T6G 2H1

Abstract

We describe an extensible query optimizer for objectbase
management systems. Since these systems are expected to
serve data management needs of a wide range of applica-
tion domains with possibly different query optimization re-
quirements, extensibility is essential. Our work is conducted
within the context of TIGUKAT, which is a uniform be-
havioral system that models every system component as a
first-class object. Consistent with this philosophy, we model
every component of the optimizer as a first-class object, pro-
viding ultimate extensibility. We describe the optimizer ar-
chitecture and how the optimizer components are modeled
as extensions of a uniform type system.

1 Introduction

The early objectbase management systems (OBMSs) have
been criticized [SRL*90] for their lack of declarative query
capabilities (both languages and optimizers). These facili-
ties are common in the state-of-the-art relational database

management systems (DBMSs).The newer commercial OBMSs

and research prototypes have started to include these capa-
bilities, but their optimization is still not very well under-
stood.

We have been studying query optimization issues for
some time [$090, SO95]. Our more recent work is within the

context of the TIGUKAT project! [OPI*95]. TIGUKAT
is an OBMS with an extensible object model characterized
by a purely behavioral semantics and a uniform approach
to objects which treats everything (including queries) as
first-class objects. The query model consists of a calculus,
an equivalent algebra and an SQI-based user query lan-
guage [PL.OS93a].

An important design consideration for an OBMS query
optimizer, especially one which has a very flexible and ex-

*This research is supported by the Natural Sciences and Engineer-
ing Research Council of Canada under grant OGP0951.

ITIGUKAT (tee-goo-kat) is a term in the language of the Cana-
dian Inuit people meaning “objects.” The Canadian Inuits, commonly
known as Eskimos, are native to Canada with an ancestry originating
in the Arctic regions of the country.

tensible object model such as TIGUKAT, is extensibility.
This allows the optimizer to accommodate different search
strategies, different algebra specifications with their differ-
ent transformation rules, and different cost functions. There
are a number of reasons for extensibility [OB94]:

1. The application domains to be supported by the object-
oriented technology have different query processing and
optimization requirements. Therefore, the optimizer
design should support easy customization of the sys-
tem.

2. There is no consensus about an object algebra and
there are many proposals. Furthermore, OBMSs should
allow application-specific algebra operators to be de-
fined and managed by the system (see, for example,
[BG92]). The optimizer should be able to deal with
these operators uniformly.

3. The optimization techniques for OBMSs are not fully
developed and the alternatives are not completely un-
derstood. Thus, the techniques that are included in
today’s optimizers are likely to change as research re-
sults emerge. Tt should be possible to easily incorpo-
rate these changes into the system.

4. Even in traditional query optimizers (i.e., relational
ones which deal with a well-defined and fixed set of
algebra operators), the entire set of transformation
rules that are exploited by the optimizer in determin-
ing the alternative execution plans are unlikely to be
fully specified [HCF*89]. Therefore, it is necessary to
be able to define new rules for the optimizer as they
are discovered.

In this paper we describe the architecture of an extensi-
ble query optimizer for OBMSs. Even though this work is
conducted within the context of the TIGUKAT system, the
general approach is valid for other OBMSs and the specifics
hold for any system which uniformly models system com-
ponents as first-class objects. The architecture described
in this paper allows every aspect of the query optimizer
(search strategies, search space as identified by the algebraic
transformation rules, and the cost functions) to be extended.
It incorporates an object-oriented approach to extensibility,
representing components of the optimizer as objects.

The remainder of the paper is organized as follows. In
Section 2, we review some of the other extensible optimiz-
ers. In Section 3 we summarize the TIGUKAT object model
and the query model. This discussion is restricted to only

Copyright @ACM 1995. Appears in Proc. of the Fourth Int. Conf. on Information and Knowledge Management (CIKM'95), 1

Baltimore, November 1995, pages 188—196.

those object model and query model characteristics that are
relevant to the optimizer design described here. The overall
architecture of the query optimizer is described in Section 4.
Sections 5, 6, and 7, respectively elaborate on the extensible
representations of the search space, the search strategy, and
the cost functions. Section 8 describes how these pieces are
put together in the design of the optimizer. This discussion
is aided by the presentation of an example query creation
and optimization scenario. We conclude, in Section 9, with a
discussion of the advantages of our approach and the current
state of our development.

2 Related Work

There has been significant amount of research on extensible
DBMSs. EXODUS [CD86], Genesis [BBGT86], and Post-
gres [SK91] are examples of such systems. These provide
customization of system components for individual applica-
tions. In this paper, our interest is in the extensibility and
customization of the query optimizer rather than the cus-
tomization of the overall system architecture.

Many existing OBMS optimizers are either implemented
as part of the object manager on top of a storage system,
or they are implemented as client modules in a client-server
architecture. In most cases, the search algorithms, transfor-
mations rules and cost functions are “hardwired” into the
query optimizer. Rule-based query optimizers [Fre87] pro-
vide a limited amount of extensibility by allowing the def-
inition of new transformation rules. However, they do not
allow extensibility in other dimensions.

The Open OODB project at Texas Instruments concen-
trates on the definition of an open architectural framework
for OBMSs and on the description of the design space for
these systems. Query processing in Open OODB [BMG93]
is largely influenced by the extensibility goals of the Open
OODB project. The query optimizer, built using the Vol-
cano optimizer generator [GM93], is extensible with respect
to algebraic operators, logical transformation rules, execu-
tion algorithms, implementation rules (i.e., logical opera-
tor to execution algorithm mappings), cost estimation func-
tions, and physical property enforcement functions (e.g.,
presence of objects in memory). The search algorithms are
built-in, however, and cannot be extended.

Quite a different approach to extensibility is described
in [MZD92], where the search space is divided into regions.
Each region corresponds to an equivalent family of query ex-
pressions that are reachable from one another. The regions
do not have to be mutually exclusive and differ in the queries
that they can manipulate, the control (search) strategy that
they use, or in the objectives that they want to achieve in
query manipulation. For example, one region may have the
objective of minimizing a cost function, while another region
may attempt to put queries in some desirable form. Alterna-
tively, one region may cover transformation rules that deal
with simple select queries, while another region may deal
with transformations for nested queries. Since a region in-
corporates a transformation strategy, it can be treated as
the transformation of an input query to an equivalent out-
put query. This is what allows movement between regions.
There i1s a global control strategy to determine how the
query optimizer moves from one region to another [MDZ93].
Since search strategies, transformations and optimizations
can change from one region to another, the approach allows
strategies to be changed within a single query.

Starburst is an extensible DBMS with an extensible query
optimizer [HCF*89]. Tt extends SQL and allows user-defined

extensions to the language. It also allows extensions to the
transformation rules that are used during optimization. The
rules are of the condition-action type and the base system
provides three different classes of rules: predicate migration,
projection push down, and operation merging. System im-
plementors can either use these rules or define application-
specific rules of their own. Starburst provides a limited set of
search algorithms and does not allow their extension. Cost
functions cannot be changed or extended either. Since the
underlying model is relational, there is no need to extend
the set of algebraic operators.

Our approach differs from all of these in that we use an
object-oriented approach to extensibility that models each
component of the query optimizer, listed above, as an ob-
ject. This is similar to [LV91] in the general approach, but
differs in the details and in the extent object-orientation is
used as the fundamental means of extensibility. The incor-
poration of these optimizer components into the type system
provides extensibility via the basic object-oriented principle
of subtyping as we describe in the rest of this paper. Con-
sequently, we are able to allow extensibility of all optimizer
components.

3 TIGUKAT Object and Query Models

The TIGUKAT object model is defined behaviorally with a
uniform object semantics. The model is behavioral in the
sense that all access and manipulation of objects is based
on the application of behaviors to objects, and the model
is uniform in that every component of information, includ-
ing its semantics, is uniformly modeled by objects and has
the status of a first-class object. This uniformity provides
reflection to the model [PO93].

The primitive type system of TIGUKAT is depicted in
Figure 1. The primitive objects of the model include: types
for defining common features of objects; atomic types (re-
als, integers, strings, etc.); behaviors for specifying the se-
mantics of operations that may be performed on objects;
functions for specifying implementations of behaviors over
types?; classes for automatic classification of objects based
on type®; and collections for supporting general heteroge-
neous groupings of objects. In the remainder of the paper,
an identifier beginning with the prefix T_ refers to a type,
C_ refers to a class, L_ refers to a collection, and B_ refers
to a behavior. For example, T_person is a type reference,
C_person a class reference, L_seniors a collection refer-
ence, B_age a behavior reference, and a reference such as
xyz without any prefix represents some other application
specific reference. In this paper we discuss only a subset of
the primitive types and behaviors that are relavant to this
topic.

The access and manipulation of an object’s state occurs
exclusively through the application of behaviors. An impor-
tant primitive behavior defined on objects is identity equal-
ity that compares two object references based solely on the
identities of the objects they denote. This is the only type
of equality that is defined in the primitive type system.

In addition to types and classes, we define a collection
as a general user-definable grouping construct. A collec-
tion is similar to a class in that it groups objects, but it
differs in the following respects. First, no object creation
may occur through a collection; object creation occurs only

?The association of behaviors and functions form the support
mechanism for overloading and late binding of behaviors.

3Types and their extents are separate constructs in TIGUKAT.

Copyright @ACM 1995. Appears in Proc. of the Fourth Int. Conf. on Information and Knowledge Management (CIKM'95), 2

Baltimore, November 1995, pages 188—196.

T_type T_class

T_collection

% T_behavior ‘

ﬁ T_function

T_boolean

]

T_object

T_character ‘

T_real H T_integer H T_natural

‘{ T_atomic

Supertype Subtype

Figure 1: Primitive Type System

through classes. Second, an object may exist in any number
of collections, but is a member of the shallow extent of only
one class. Third, the management of classes is implicit in
that the system automatically maintains classes based on
the subtype lattice whereas the management of collections
is explicit, meaning the user is responsible for their extents.
Finally, the elements of a class are homogeneous up to inclu-
sion polymorphism while a collection may be heterogeneous
in the sense that it can contain objects which may be of
different types.

We define class as a subtype of collection. This intro-
duces a clean semantics between the two and allows the
model to utilize both constructs in an effective manner. For
example, the targets and results of queries are typed col-
lections of objects. This means targets also include classes
because of the specialization of classes on collections. This
approach provides great flexibility and expressiveness in for-
mulating queries and gives closure to the query model.

Two other fundamental notions are behaviors and the
functions (known as methods in other models) that imple-
ment them. We clearly separate the definition of a behav-
ior from its possible implementations (functions/methods).
The benefit of this approach is that common behaviors over
different types can have a different implementation for each
of the types. This is direct support for behavior overloading
and late binding of implementations to behaviors, which are
important aspects of object-oriented computing.

The semantics of every operation on an object is spec-
ified by a behavior defined on its type. A function imple-
ments the semantics of a behavior. The implementation of a
particular behavior may vary over the types which support
it. However, the semantics of the behavior remain constant
and unique over all types supporting that behavior. There
are two kinds of implementations for behaviors. A com-
puted function consists of runtime calls to executable code
and a stored function is a reference to an existing object
in the objectbase. The uniformity of TIGUKAT considers
each behavioral application as the invocation of a function,
regardless of whether the function is stored or computed.
Functions are examined more closely in Section 4. We de-
fine queries as specialized functions so that they carry all
the semantics of function objects, meaning they can be used
as implementations of behaviors.

The query model consist of a complete object calculus,
an equivalent object algebra, and an SQL-like user language.

The entire query model is defined in detail in [PLOS93b].
In the remainder of this section we provide an overview.

The syntax of the TIGUKAT query language (TQL)
is based on the SQL select-from-where structure, and the
formal semantics is defined by the object calculus. Thus,
it combines the power of relational query languages with
object-oriented features.

The calculus has a logical foundation and its expressive
power is outlined by the following characteristics. It defines
predicates on collections (essentially sets) of objects and ex-
pressions represent collections of objects that satisfy these
predicates to give the language closure. It incorporates the
behavioral paradigm of the object model and allows the re-
trieval of objects using nested behavioral applications, some-
times referred to as path expressions or implicit joins. Tt
supports both existential and universal quantification over
collections. Tt has rigorous definitions of safety (based on
the evaluable class of queries [GT91]) and typing which are
compile time checkable. It supports controlled creation and
integration of new collections, types and objects into the
existing schema.

Like the calculus, the algebra is closed on collections. Al-
gebraic operators are modeled as behaviors on the primitive
type T_collection. They operate on collections and return
a collection as a result. Thus, the algebra has a behav-
ioral/functional basis as opposed to the logical foundation
of the calculus. Composition over these behaviors brings
closure to the algebra. We do not elaborate on the algebra
operators in this paper.

The algebra and calculus are proven to be equivalent in
expressive power, meaning that all queries expressed in one
language can also be expressed in the other. Space limita-
tions do not allow us to include them here, but in [PL.OS93b]
we prove the equivalence of our object calculus and alge-
bra in both directions and present the reduction of the user
query language to the calculus. Moreover, the safety of our
languages is proven in that report as well.

4 Optimizer Architecture

Query optimization can be modeled as an optimization prob-
lem whose solution is the choice of the “optimum” state in
a state space (also called search space). In query optimiza-
tion, each state corresponds to an algebraic query execu-
tion schedule represented as a processing tree [KBZ86]. The
state space is a family of equivalent (in the sense of generat-
ing the same result) algebraic queries that can be generated
by applying the transformation rules defined for the specific
algebra. The goal is to move from one state to another using
a search strategy, applying a cost function to each state and
finding the one with the least cost. Thus, to characterize a
query optimizer three things need to be specified:

1. the transformation rules that generate the alternative
query expressions which constitute the search space;

2. a search algorithm that allows one to move from one
state to another in the search space; and

3. the cost function that is applied to each state.

We model each of these components as objects as de-
scribed in Sections 5 — 7.

TIGUKAT query model is a direct extension to the ob-
ject model, defined by type and behavioral extensions to
the primitive type system. We define a type T_query as a

Copyright @ACM 1995. Appears in Proc. of the Fourth Int. Conf. on Information and Knowledge Management (CIKM'95), 3

Baltimore, November 1995, pages 188—196.

— T_algEqRule
e H

—| T_activeRule

T_object |—

—| T_formula T_heurSS

*—‘ T_searchStrat T_enumSS ‘
7‘ T_costFunc ‘ T_randomSS‘
| F_hashJoin

Figure 2: Optimizer as part of the type system

subtype of T_functionin the primitive type system as illus-
trated in Figure 2. The dashed boxes indicate instances of
types which are solid boxes. For example, B_join is an in-
stance of type T_algebra which is a subtype of T_behavior.
This means that queries have the status of first-class ob-
jects and inherit all the behaviors and semantics of objects.
Moreover, queries are functions so they can be used as im-
plementations of behaviors, they can be compiled, and they
can be executed.

Since T_query is a subtype of T_function, it inherits
all of the behaviors of T_function and defines new ones.
Each function knows the types of its arguments and the
type of its result (via B_argTypes and B_resultType, respec-
tively), constituting its signature. They can be compiled
(B_compile) and executed (B_execute).

For a query, B_compile is re-implemented to include trans-
lating the query statement into an algebraic expression rep-
resented as an object algebra processing tree (OAPT), op-
timizing it and generating an execution plan. Similarly,
B_execute is re-implemented to submit the execution plan
to the object manager for processing. There is the capa-
bility of storing the result of query execution so that it
is returned the next time the query is posed without re-
execution, allowing the amortization of optimization effort
over multiple executions. In addition to the behaviors it in-
herits from T_function, T_query has native behaviors that
return the initial (B_initialOAPT) and optimized OAPT
(B_optimizedOAPT), the search strategy (B_searchStrat),
the transformation rules used (B_transformations), the cost
model function (B_costModelFunc), the family of execution

plans generated during optimization (B_genExecPlan), the
result of the query execution (B_result), and some behav-
iors to store and access statistical data as well as behaviors
that start the optimization (B_optimize) and that generate
a family of execution plans (B_execPlanFamily). The de-
tails of these behavior definitions are omitted here and can
be found in [Mun93].

Incorporating queries as a specialization of functions is a
very natural and uniform way of extending the object model
to include declarative query capabilities. The major benefits
of this approach are:

1. Queries are first-class objects, so they support the uni-
form semantics of objects. They are maintained within
the objectbase and are accessible through the behavior
of the object model.

2. Since queries are objects, they can be used in queries,
and behaviors can be applied to them. This is useful in
generating statistics about the performance of queries
and in defining a uniform extensible query optimizer.

3. Queries are uniformly integrated with the operational
semantics of the model and thus, queries can be used as
implementations of behaviors (i.e., the result of apply-
ing a behavior to an object can trigger the execution
of a query).

4. The query model is extensible in a uniform way since
the type T_query can be further specialized by sub-
typing. For example, we can subtype T_query into
T_adHoc and T_production and then define different
evaluation strategies for each.

The TIGUKAT query optimizer follows the philosophy
of representing system concepts as objects along the lines of
[LV91]. We model the algebraic operators as objects, specif-
ically as behaviors over the T_collection type. In the type
lattice, they appear as instances of type T_algebra which
is a subtype of T_behavior. In addition, the three compo-
nents of the optimizer, namely the search space (T_algOp
and T_algEqRule),the search strategy (T_searchStrat) and
the cost function (T_costFunc) are modeled as objects (see
Figure 2). The incorporation of these components of the
optimizer into the type system provides extensibility via the
basic object-oriented principle of subtyping and specializa-
tion. In the following three sections we discuss the modeling
of the components of the optimizer as part of TIGUKAT’s
type system.

5 Representation of Search Space

Asindicated earlier, compilation translates a query to a cor-
responding algebraic expression represented as an OAPT.
OAPTs are slightly different from their relational counter-
parts in that OAPT nodes, even the leaves, uniformly cor-
respond to functions that are implementations of algebraic
operators.

The object algebra operators are modeled as behaviors
on type T_collection whose implementations are modeled
as instances of T_function. Since each algebraic operator
has its own characteristics (i.e., predicates, functions to ap-
ply, etc), objects of type T_function are created according
to the different TIGUKAT algebra operators. Furthermore,
since there may be a number of different algorithms to im-
plement each algebraic operator (e.g., different join algo-
rithms), there may be many implementation functions as

Copyright @ACM 1995. Appears in Proc. of the Fourth Int. Conf. on Information and Knowledge Management (CIKM'95), 4

Baltimore, November 1995, pages 188—196.

instances of T_function. For example, F_hashJoinis an ob-
ject of type T_function that models the algorithm that im-
plements the join algebraic operation B_join defined as a
behavior on T_collection. This gives flexibility in redefin-
ing algebraic operators and in extending the algebra (e.g.,
by adding transitive closure for recursive query processing).

We cannot use these implementation functions as the
nodes of an OAPT, however. The nodes of the tree should
represent execution functions all of whose arguments have
been marshalled. Therefore, we define T_algDp whose in-
stances are functions with marshalled arguments and they
make up the nodes of OAPTs. In this fashion, each node of
an OAPT represents a specific execution algorithm for an
algebra expression. Instead of defining T_algOp as an im-
mediate subtype of T_function, we define it as a subtype of
T_context which, in turn, is a subtype of T_function. In a
sense, a T_context instance corresponds to delayed execu-
tion of a function. This allows further optimization possibil-
ities. Since the nodes of OAPTSs are instances of T_context
(due to subtyping), we could relax the restriction that they
be instances of T_algOp and represent the functions that
implement behaviors in predicates of query expressions as
nodes in the OAPT as well. This would open the possibil-
ity of optimizing the execution of the functions that imple-
ment behaviors together with algebraic operators in a query.
Commonly called the method optimization problem, this is
a serious concern in OBMSs.

Since the nodes of OAPTSs are instances of type T_alg0Op,
to provide uniformity, we define the object Fl.leafAlgOp to
model the leaf nodes of the OAPTs. This object can be
thought of as a container that holds a reference to one of
the input collections of the query that the OAPT represents.
F_leafAlgOp objects model the delayed execution of the alge-
braic identity operator B_Identity that is defined as part of
the interface of the type T_collection. Thus, all the nodes
of an OAPT are uniformly modeled as instances of T_algOp
rather than making an exception for the leaf nodes which
correspond to collections?.

An OAPT is recursively defined as an object of type
T_algOp as follows: the root node of the OAPT is an alge-
braic operator of type T_algOp whose children are also of
type T_algOp with the restrictions that no interior node can
be the object FlleafAlgOp and every leaf node is the object
FlleafAlgOp.

Instead of discussing the behaviors defined on T_algOp
(see [Mun93]), we present the general approach with an ex-
ample. Consider a geo-information system application that
stores information about dwellings, the zones that these
dwellings are in and the maps of these areas. Four types,
among many, are defined: T_map, T_person, T_dwelling, and
T_zone. Tmap is a subtype of T_displayObject which mod-
els all displayable objects; the other types are direct sub-
types of the root type, T_object. Using, TQL, the query
“Return the maps which show the areas where senior citi-
zens live” is expressed as

select o
from o in C_map
where exists (
select p
from p in C_person, ¢ in C_dwelling
where (p.B_age() > 65 and ¢ = p. B_residence()
and ¢.B_inzone() € o.B_zones()))

4This is a conceptual model; for efficiency reasons, the optimizer
may represent the leaf nodes directly as collections and handle them
as special cases.

where the types over which behaviors are defined can be de-
termined from the range variables. The algebraic expression
of the same query is

Result — C_map, or < C_person,, C_dwelling, >

where o indicates the selection algebraic operator, C_map is
the target class of selection, C_Class; indicates that variable
1 ranges over class C_Class, and F is the selection formula:

F =p.B_age > 65 A q = p.B_residence A
¢.B_inzone € 0.B_zones

Figure 3 shows the OAPT for this example. The first
information in the box represents an object instance ref-
erence and the mapping to its type. Then the behaviors
that are relevant to the subsequent discussion are listed.
The f in the figure is the formula p.B_age > 65 A ¢ =
p.B_residence A ¢q.B_inzone € o.B_zones and is repre-
sented as an object of type T_formula.

As indicated before, the search space consists of a fam-
ily of equivalent plans, each of which is represented as an
OAPT. The equivalence of two OAPTs corresponding to
the same query is established by means of the equivalence-
preserving algebraic transformation rules. Tn [SO90], we give
transformation rules for a less powerful algebra than the one
supported by TIGUKAT. These rules are being extended for
the new algebra specification.

To provide extensibility, we model these transformation
rules as objects of type T_algEqRule which is a subtype of
T_rule. Even though at this stage we have not yet added
“active DBMS” capabilities to TIGUKAT, we have defined
the type T_rule as an abstract supertype with subtypes
T_activeRule and T_algEqRule. T_activeRule would, in
the future, model ECA-type rules [DBM88] when active ca-
pabilities are added.

Matching rules to OAPTSs is analogous to unification in
logic programming where a two step process is used. The
first step is a syntactic match based on identical symbols.
Only if the first step succeeds is the second more computa-
tionally expensive match attempted. In logic programming
the second step is the identification of a unifying substitu-
tion. In this case, the match is also based on semantics.

The application of rules by rule-based optimizers such as
Exodus [GD87] and Starburst [HCF*89] optimizers is done
by a pattern matching engine that matches subexpressions
of a query against algebraic rules. Additionally, the firing of
rules is dependent on the satisfaction of the conditions that
involve user-defined functions. A major difference between
the rules defined for those systems and the ones defined for
TIGUKAT is that the rules for the former systems are based
on operators of fixed arity while the rules for TIGUKAT
are based on algebraic operators which can have varying
numbers of arguments. In order to use those rule-based
optimizers for the application of rules defined herein, their
pattern matching engine would have had to be modified to
handle algebraic operators which can have varying numbers
of arguments. Considering the uniform manner in which the
TIGUKAT optimizer is defined as an extension of the object
model, it would be difficult to integrate these optimizers
with the TIGUKAT system. Hence, the need for a special
pattern matching engine for the TIGUKAT optimizer.

6 Modeling of Search Strategies

The search strategy determines the use of the rules for con-
trolling the search. There are many alternative strategies,

Copyright @ACM 1995. Appears in Proc. of the Fourth Int. Conf. on Information and Knowledge Management (CIKM'95), 5

Baltimore, November 1995, pages 188—196.

e 7
oapt —=T_algOp
B_name F_selAlgOp
B_rcvrType : T_class
B_argTypes [T_class, T_class]
B_resultType : T_collection
B_rcviMbrType : T_map
B_argMbrTypes: [T_person, T_dwelling]
B_resultMbrType: T_map
B_targetVar: o
B_constraint: f
_______________ Fmmmmmmm e e e mmm oo o
L B_outerRevr: ' B_innerArg: [»<])
e 7 e 7 4 7
leafMap —= T_algOp leafPerson —= T _algOp leafDwelling ——= T_algOp
B_name : F_leafAlgOp B_name : F_leafAlgOp B_name : F_leafAlgOp
B_targetVar: o B_targetVar:)4 B_targetVar: q
B_targetColl: C_map B_targetColl: C_person B_targetColl: C_dwelling
e e | e e | e
*_ B_outerRevr: null : B_innerArg: null) B_outerRevr: null : B_innerArg: null) B_outerRcvr: null : B_innerArg: null)

Figure 3: Construction of the OAPT

ranging from static priorities to heuristics that determine
which rules would be applied under various conditions.

In traditional optimizers, the search space (usually iden-
tified as a set of processing trees) and the search strate-
gies that control the movement through this search space
are coupled together. However, in an extensible query opti-
mizer, they need to be decoupled. Consequently, we define
T_searchStrat as a subtype of type T_function which can in
turn be specialized. The type T_searchStrat is an abstract
supertype whose behaviors are implemented in its subtypes.
In other words, its extent is empty. Figure 2 shows the spe-
cialization of T_searchStrat into enumerated search strate-
gies, T_enumS$S, randomized search strategies, T_randomSS,
and heuristics-based optimization strategies, T_heurSS. The
search strategy component of the query optimizer can easily
be extended by further subtyping T_searchStrat when new
search strategies are defined.

In this architecture, search strategies can be changed
among queries. Before optimizing a query, the system se-
lects the appropriate search strategy for the particular type
of query under consideration. The flexibility of supporting
various search strategies, each one best for a particular class
of queries, enables the handling of different kinds of appli-
cations such as GIS, hypertext, and CAD/CAM by special-
izing T_query according to the different categories or classes
of applications.

Since T_searchStrat is a subtype of T_function, it inher-
its all its behaviors and defines new ones. The native behav-
iors defined on T_searchStrat are B_initSS and B_optimal
which return the initial OAPT(s) at which the search starts
and the “optimal” OAPT which is reached at the end. Op-
timal OAPT is selected from a set of “good” candidate
OAPTSs which are returned by B_goal. The three behaviors,
B_nextState, B_stopCond, and B_action control the execu-
tion of the search algorithm.

Since B_searchStrat is an abstract type, it does not im-
plement any of these behaviors, leaving that to its subtypes

(e.g., T-enumSS and T_randomSS). Through subtyping and
the overloading of the behaviors defined on T_searchStrat,
customization of the search strategy is possible. Due to
space limitations, we cannot demonstrate the customization
of search strategies with an example. We refer the reader to

[Mun93].

7 Modeling of Cost Functions

The final optimization-related concept that needs to be in-
corporated into the model is the cost function. Cost-based
optimization strategies apply a predetermined cost function
(total time or response time) to an OAPT to calculate the
cost of executing the corresponding query according to that
OAPT. The issue is how these cost functions are modeled.

In TIGUKAT, each function is associated a cost through
B_costFunction. Applying this behavior to a function ob-
ject f returns another function object g of type T_costFunc
that implements the computation of the cost of executing
function f. T_costFunc is a subtype of T_function. When
function g is executed, it returns the actual cost of execut-
ing function f. It is important to associate a cost function
with each function instead of a cost value since the cost is
often dependent on other factors that can be modeled as
arguments to the cost function.

Algebraic operator context nodes (i.e., the instances of
T_algOp) redefine the behavior B_costFunction to return a
function object of type T_costFuncAlgOp, which is a subtype
of T_costFunc. This redefinition is necessary since the cost
of executing algebraic operators require the incorporation
of various optimization issues into these functions. These
issues are typical ones such as the availability of indexes
over the collection on which these operators are defined, the
statistical information about these collections, etc.

Calculation of the cost of executing one node of an OAPT
is recursive in nature. The cost of a node is defined in terms
of the costs of its children whose costs in turn depend on

Copyright @ACM 1995. Appears in Proc. of the Fourth Int. Conf. on Information and Knowledge Management (CIKM'95), 6

Baltimore, November 1995, pages 188—196.

the costs of their own children. Recursion naturally termi-
nates at the leaf nodes. Consequently, the application of a
function of type T_cogtFunc to the root context of an OAPT
calculates the estimated cost of executing that query accord-
ing to the execution plan represented by that OAPT. Thus,
our definition of cost functions are based on graphs. Given
an OAPT, its total time is calculated by summing up the
costs of all of its nodes; the calculation of the response time
is dependent upon the shape of the OAPT (i.e., bushy trees
vs. linear trees) and whether parallel execution is possible.

For an algebraic operator o, its cost function f includes
the cost of executing algebraic operator o and the cost of
executing the children of o (if any). The cost of executing
the algebraic operator (i.e., the application of the behavior
B_costFunc to the OAPT node o) may include the cost of
object creation since some of the operators, such as product,
create objects with (possibly) new types (we call these op-
erators target creating). In these cases, the associated cost
of creating a new type object and inserting it into the type
lattice needs to be taken into account.

We model cost functions as instances of T_costFunc. Since
T_costFuncis a subtype of T_function, it inherits all its be-
haviors. For a cost model function, B_execute computes the
cost model equation whose algorithm is stored in B_source.
For each different cost function, the sysem creates a differ-
ent instance of T_costFunc. For example, for a total time
cost model function, the instance F_costTT is created as an
object of type T_costFunc. This gives to the cost function
component of the optimizer the extensibility property re-
quired to incorporate into TIGUKAT query optimizer new
cost model functions as they are found useful to measure the
actions of a search strategy over the search space.

Each algebraic operator context node (of type T_algOp)
has a different cost function because the algebraic node func-
tion incorporates optimization issues that potentially vary
among the operators. For example, the union operator only
needs the cost of accessing the instances of the collections
Ci, C; involved in the operation, while the select operator
requires the cost of accessing the instances of the collec-
tion C, in the presence of a predicate f. This means that
for each algebraic operation implementation (an instance
of T_function), there is a corresponding cost function (an
instance of T_costFuncAlg0Op) that computes the cost of ex-
ecuting that operation.

Because OAPT nodes are objects of type T_algOp which
is itself a subtype of T_function, they inherit the behavior
B_costFunction from T_function. The application of this
behavior to an OAPT node o returns the function object
of type T_costFuncAlgOp that implements the computation
of the cost of executing the algebraic operation that node o
represents.

The fundamental advantage of this approach is that each
algebraic operator node provides individualized behavior for
its cost function. For example, if the cost for some algebraic
operators is considered negligible, it is easy to make the
cost functions associated with those algebraic nodes return
a constant value (i.e., zero) without having to modify the
implementation of the cost model function to consider these
exceptions. This gives more flexibility to the optimizer to be
able to extend the cost function component for new algebraic
operators as they are incorporated in the object algebra.

Modeling the building blocks of a cost-based optimizer as
objects provides the query optimizer the extensibility inher-
ent in object models. The optimizer basically implements a
control strategy that associates a search strategy and a cost
function to each query. The database administrator has the

option of defining new cost functions and new search strate-
gies or transformation functions for new classes of queries.

8 Putting it Together

TIGUKAT query optimizer is incorporated as a behavior
B_optimize in the interface of type T_query. It is, therefore,
modeled as an instance of type T_behavior (see Figure 2).
This means that the query optimizer has the status of a
first-class object in the model.

The query optimizer behavior, B_optimize, is responsible
for applying a search strategy B_searchStrat to an initial
OAPT, B_initial OAPT, in order to produce an “optimal”
OAPT, B_optimizedOAPT, for a query object ¢. In case
the search strategy is a cost-controlled strategy, the cost
model B_costModelFunc is used to measure the effects of
the optimizer actions. All these behaviors are defined in the
interface of the type T_query (see Section 3).

The implementation for B_optimize is:

F_optimize(T_query q): T-1list<T_algOp>
{ return(

(q.B_getSearchSS).B_execute(q.B_getInitial OAPT)) }

To demonstrate the utility of the architecture and the
interaction of its components, we present the sequence of
steps that would be followed in creating and optimizing the
query object for the example TQL query given above. All
TQL queries are either submitted from within a program-
ming language (embedded TQL) or during a user session.
In this section we will only consider the latter, since em-
bedded TQIL is not yet available. For queries submitted
during a session, we have a simple session control language,
called TIGUKAT Control Language (TCL), that controls
the creation of the appropriate objects and interprets the
optimization commands.

1. Query object creation. The TCL interpreter creates
the query (say q1) and then sets the TQL statement
of the query as the source of this query.

ql — C_query.B_new
q1l.B_setSource(TQL_statement)

Note that in TIGUKAT, for every behavior B_behavior
whose value can be changed by users, a pair of behav-
iors, B_getBehavior/B_setBehavior is defined.

2. Search strategy specification. The architecture allows
the user (or the application submitting the query) to
set the search strategy and the behaviors associated
with it. In this case, we assume that the system de-
faults are used:

q1l.B_setSearchStrat(F_enumSS)

3. Cost model specification. The architecture allows the
user (or the application submitting the query) to set
the cost model. In this case, we assume that the sys-
tem defaults are used:

q1l.B_setCostModelFunc(F_costTT)
The cost model is only required when the search strat-
egy is cost-controlled.

4. Compilation of the query object. The query is com-
piled by applying the behavior B_compile to query q1:
q1l.B_compile()

The effect of applying the B_compile behavior is the
following:

Copyright @ACM 1995. Appears in Proc. of the Fourth Int. Conf. on Information and Knowledge Management (CIKM'95), 7

Baltimore, November 1995, pages 188—196.

(a) Parsing and calculus-algebra translation

oapto.B_setName(F selAlgOp) (
oapto.B_setRevrType(T_class) (
oapto.B_setArgTypes([T_class,T_class]) (
oapto.B_setResult Type(T_collection) (
oapto.B_setRevMbrType(T map) (
oapto.B_setArgMbrTypes(

[T-person, T_dwelling)) (
oapto.B_setResultMbrType(T_map) (
oapto.B_setTargetVar(o) (
oapto.B_setConstraint(f) (

q1.B_setInitial DAPT (oapto) (10
q1.B_setResult(null) (11

The result of the translation of the calculus query
into an algebra expression is the generation of an
OAPT (referenced by oapto and setting various
behaviors (expressions (1) — (9) above). By and
large these expressions are self-explanatory. The
ones that require some explanation are (9)—(11).
The f in expression (9) is a reference to an object
of type T_formula which represents the predicate
of the selection operator. Statements (10) and
(11) set the two behaviors of the query object
ql. The result of the query is null at this point
since it has not yet been executed.
(b) Algebraic Optimization

The second major action resulting from the com-
pilation of a query is its optimization. This is
accomplished by the application of B_optimize to
ql:

finalOAPT — q1.B_optimize()

The B_optimize behavior carries out plan opti-
mization on ql.B_initial OAPT using the search
strategy ql.B_searchStrat. This behavior imple-
ments the control strategy for the plan optimizer.
Since the search strategy in this example is an
enumerative search algorithm, the cost of the ini-
tial OAPT is calculated using the technique de-
scribed in Section 7. The cost of all the equivalent
OAPTSs that can be obtained by the application
of transformation rules are calculated in a simi-
lar manner and the one with the least cost is se-
lected as the finalOAPT®. This optimal OAPT

is saved:
ql.B_setOptimizedOAPT(finalOAPT)

which records the optimal execution plan as part
of the query. This is useful both for later execu-
tions which do not need to be optimized and for
being able to implement operators such as “ex-
plain” which informs the requestor of the opti-
mal execution plan that the optimizer has cho-

sen. These operators are now quite common in

state-of-the-art DBMSs.

(c) Execution Plan Generation

This is the last step in the query processing method-

ology whereby the algebraically optimized OAPT

5This is an oversimplification; no query optimizer enumerates all
the alternatives, rather the search space is pruned using one of a
number of algorithms. That complication is ignored in this example.

is submitted to the object manager for further
optimization and execution. This part is outside
the scope of the current research. However, our
ideas about this step are described in [SO95]. Ba-
sically, we propose to generate the query execu-
tion plan by replacing each individual algebra op-
erator from the optimized OAPT with a “best”
subtree of Object Manager (OM) calls. These ob-
ject manager calls that are part of the set of low
level object manipulation primitives that consti-
tutes the interface to the OM can be modeled in
TIGUKAT as function objects.

The architecture supports execution plan gener-
ation by providing the behavior B_genFExecPlan,
which, when applied to q1:

ql.B_genExecPlan()

results in the set of execution plans being stored
as part of the query. These execution plans can
be accessed later by applying B_execPlanFamily
to query ql.

5. Execution of the query object. The execution of the
query may be invoked by the user explicitly if the query
is already optimized. In the case of ad hoc queries
submitted during a user session, the query is executed
when it is compiled and optimized. Thus, the TCL
interpreter applies the B_execute behavior to q1 and
uses the result of that application as an argument to
B_setResult.

ql.B_setResult(ql.B_execute())

9 Conclusions

In this paper we describe an extensible query optimizer ar-
chitecture for the TIGUKAT OBMS. Even though this re-
search is conducted within the context of the TIGUKAT
project, the general approach is applicable to other OBMS
designs.

The identifying characteristic of our design is the use
of the object-oriented philosophy in providing extensibility.
The architecture defines all components of the optimizer
(search space and transformation rules, cost function, and
search strategies) as well as the queries themselves as first-
class objects. This is consistent both with the TIGUKAT
object model and the object-oriented design philosopy. In a
sense, we are using the medicine that we normally prescribe
to others. The end result, which we believe to be a signifi-
cant advantage, is that both the query model and the query
optimizer become direct extensions of the TIGUKAT object
model which can be managed (stored, changed, queried) just
like any other object.

The emphasis in this paper is on the extensible archi-
tecture of the optimizer. Therefore, we have not discussed
details such as top-down versus bottom up evaluation of
execution plans, logical and physical transformation rules,
space management, etc. Some of these have been researched
and will be presented in other papers and some of them are
topics of on-going and future research.

The architecture described in this paper has been imple-
mented. The implementation covers all the types required
for the optimizer. There are a number of outstanding is-
sues for the generation of a full-fledged optimizer. The most
important is to couple this architecture with an optimizer
generator that would provide a language for the specification
of optimization alternatives. We intend to use a new version

Copyright @ACM 1995. Appears in Proc. of the Fourth Int. Conf. on Information and Knowledge Management (CIKM'95), 8

Baltimore, November 1995, pages 188—196.

of Volcano optimizer generator that is currently under de-

velopment.

This version will be suitable for object-oriented

systems and will allow more extensibility than the earlier

versions of Volcano.

Other issues we work on include the

specification of the full set of logical and physical transfor-

[MDZ93]

G. Mitchell, U. Dayal, and S.B. Zdonik. Control
of an extensible query optimizer: A planning-
based approach. 1In Proc. 19th Int. Conf. on
Very Large Databases, pages 517-528, August
1993.

mation rules a.nd. the physical optimization at the storage [Mun93] A. Munoz. Extensible query optimizer architec-
system level (similar to [SO95]). ture for TIGUKAT. Master’s thesis, University
of Alberta, Edmonton, Alberta, Canada, 1993.
References Available as University of Alberta Technical Re-
[BBG+86] D.S. Batory, J. Barnett, J. Garza, K. Smith, port TR94-01. .
K. Tsukuda, B. Twitchell, and T. Wise. GEN- [MZD92] G. Mitchell, S.B. Zdonik, and U. Dayal. An
ESIS: An extensible database management sys- Arc.hitecture for Query Processing in Persistent
tem. IEEE Transactions on Software Eng., SE- Object Stores. In Proceedings of the Hawaii In-
1.12(11):1711-1.1730, November 1986. ternational Conference on System Sciences, vol-
. . ume 11, pages 787-798, January 1992.
[BG92] .. Becker and R.H. Giiting. Rule-based opti- . |
mization and query processing in an extensible [OB94] M.T. Ozsu and J. Blakeley. Query processing in
geometric database system. ACM Transactions object-oriented database systems. In W. Kim,
on Database Systems, 17(2):247-303, June 1992. editor, Modern Database Management — Issues
in Object-Oriented and Multidatabase Technolo-
[BMG93] J.A. Blakeley, W.J. McKenna, and G. Graefe. ﬁ%ﬂlﬁiﬁmnweﬁew ACM Press, 1994, pages
Experiences building the Open OODB query op- . T
timizer. In Proc. ACM SIGMOD Int. Conf. on [OPI*95] M.T. Ozsu, R.G. Peters, B. Irani, A. Lipka,
Management Of Data’ pages 287—296’ 1993. A. MHHOZ, and D. S.zafron. TIGUKAT: A uni-
[CD86] Michael J. Carey and David DeWitt. The ar- f:;n ;zlc}a‘v}fj% ;l’ijflt;aslzg?aﬁgerfsesnt sys-
chitecture of the EXODUS extensible DBMS. . ' ’ ' p '
In Proc. Int. Workshop on Object-Oriented [PLOS93a] R.J. Peters, A. Lipka, M.T. Ogzsu, and
Database Systems, pages 52—65, Pacific Grove, D. Szafron. An extensible query model and its
CA (USA), September 1986. IEEE. languages for a uniform behavioral object man-
[DBM8&8] U. Dayal, A. Buchmann, and D. McCarthy. agement system.)In Proc. 2nd Int. Conf. on In-
Rules are objects too: A knowledge model for an formation and Knowledge Management, pages
. . . 403-412, November 1993.
active object-oriented database system. In Proc.) ’)
of the 2nd Int. Workshop on Object-Oriented [PLOS93b] R.J. Peters, A. Lipka, M.T. Ogzsu, and
Database Systems, pages 129-1.143, 1988. D. Szafron. The query model and query lan-
[Fre87] J.C. Freytag. A rule-based view of query opti- guage of TIGUKAT. Techmcal Beport T393'
mization. In Proc. ACM SIGMOD Int. Conf. on 01, Department of Computing Science, Univer-
Management of Data, pages 173-1.180, 1987. sity of Alberta, January 1993.
[GD8&7) G. Graefe and D. DeWitt. The EXODUS opti- [PO93] R.J. Peters {md M.T.. Ozsu. Reflection in a Uni-
mizer generator. In Proc. ACM SIGMOD Int. form Behavioral Object Model. In Proc. 12th
Conf. on Management of Data, pages 160-1.172, Int. Conf. on FEntity-Relationship Approach,
May 1987. pages 37—49, December 1993.
[GM93] G. Graefe and W.J. McKenna. The Volcano [SK91] M. Stonebraker and G. Kemnitz. The Post-
optimizer generator. In Proc. 9th Int. Conf. on gres next generation database management sys-
Data Engineering, pages 209-218, 1993. tem. Comm. of the ACM, 34(10):78-92, October
[GT91] A.V. Gelder and R.W. Topor. Safety and) 1991,))
translation of relational calculus queries. ACM [SO90] D.D. Straube.and. M~T: OZSU; Queries and
Transactions on Database Systems, 16(2):235— query processing in obJegt—orlented databqse
278, June 1991. systems. ACM Transactions on Information
[HOF+89] L.M. Haas, W.F. Cody, J.C. Freytag, G. Lapis,) Systems, 8(4):387-430, October 1990.
B.G. Lindsay, G.M. Lohman, K. Ono, and H. Pi- [SO95] D.D. Straube and M.T. Ozsu. Query optimiza-
rahesh. Extensible query processing in Star- tion and execution plan generation in object-
burst. In Proc. ACM SIGMOD Int. Conf. on oriented data management systems. [EFE
Management of Data, pages 377-388, 1989. Transactions on Knowledge and Data FEng.,
[KBZ86] R. Krishnamurthy, H. Boral, and C. Zaniolo. 7(2):210-227, April 1995.
Optimization of nonrecursive queries. In Proc. [SRLT90] M. Stonebraker, L.A. Rowe, B. Lindsay, J. Gray,
12th Int. Conf. on Very Large Databases, pages M. Carey, M. Brodie, P. Bernstein, and
128,137, 1986. D. Beech. Third-generation data base system
[LVI1] R. Lanzelotte and P. Valduriez. Extending the ISnarilfes}:t)o. fgcg;](‘)l SIGMOD Record, 19(3):31-44,
search strategy in a query optimizer. In Proc. eptember ’
17th Int. Conf. on Very Large Databases, pages
363-373, 1991.
Copyright @ACM 1995. Appears in Proc. of the Fourth Int. Conf. on Information and Knowledge Management (CIKM'95), 9

Baltimore, November 1995, pages 188—196.

