Axiomatization of Dynamic Schema Evolution in Objectbases’

Randal J. Peters and M. Tamer Ozsu
Laboratory for Database Systems Research
Department of Computing Science, University of Alberta
Edmonton, Alberta, Canada T6G 2H1
{randal ozsu} @cs.ualberta.ca

Abstract

The schema of a system consists of the constructs that
model its entities. Schema evolution is the timely change
and management of the schema. Dynamic schema evo-
lution is the management of schema changes while the
system is in operation. We propose a sound and complete
axiomatic model for dynamic schema evolution in object-
base management systems (OBMSs) that support subtyping
and property inheritance. The model is formal, which dis-
tinguishes it from the traditional approach of informally
defining a number of invariants and rules to enforce them.
By reducing systems to the axiomatic model, their func-
tionality with respect to dynamic schema evolution can be
compared within a common framework.

1 Introduction

Object-oriented computing is emerging as the predom-
inant technology for providing database services in ad-
vanced application domains such as engineering design,
CAD/CAM systems, multimedia, medical imaging, and
geo-information systems, to name a few. An important
characteristic of these applications is that their schema
changes frequently and dynamically. Forexample, in an en-
gineering design application many components of an over-
all design may go through several modifications before a
final product design is achieved. These kinds of changes
require modifications to the way components are modeled
(i.e., the schema). The evolutionary characteristic of these
applications requires sophisticated dynamic schema evolu-
tion policies for managing changes in schema and ensuring
the overall consistency of the system.

The schema (or meta-information) of an objectbase man-
agement system (OBMS) is the information that describes
the structure and operations applicable to the object in-
stances. Dynamic schema evolution is the process of ap-
plying changes to the schema in a consistent fashion and
propagating these changes to the instance level while the
system is in operation.

Typical schema changes in an OBMS include adding
and dropping types, adding and dropping sub/supertype re-
lationships between types, and adding and dropping prop-
erties of types. A complete list of possible schema changes
is given in [1]. A typical schema change can affect many
aspects of a system. There are two fundamental problems
to consider:

*This research is supported by the Natural Science and Engineering
Research Council (NSERC) of Canada under research grant OGP0951.

1. Semantics of change: This refers to the effects of the
schema change on the overall way in which the system
organizes information;

2. Change propagation: This refers to the method of
propagating schema changes to the objects.

For the first problem, the traditional approach is to define
a number of invariants that must be satisfied by the schema
and then to define rules for maintaining these invariants.
The invariants and rules are dependent on the underlying
object model and since object models differ, their schema
evolution policies differ as well. Furthermore, the lack
of a formal semantics make systems difficult to compare.
In this paper, we propose a sound and complete axioma-
tization for dynamic schema evolution in OBMSs that is
powerful enough to describe the semantics of change in
different systems. These systems can be then reduced to
this common model and compared.

For the second problem, the typical solution is to explic-
itly coerce objects to coincide with the new schema defi-
nition. Screening, conversion, and filtering are techniques
for defining when and how coercion takes place. Due to
space restrictions, change propagation is not addressed in
this paper.

In order to clarify the expressiveness of the axiom-
atization, the dynamic schema evolution policies of the
TIGUKAT' OBMS [5, 7] are presented as an example and
reduced to the axiomatic model. TIGUKAT is being devel-
oped at the University of Alberta and has a uniform, exten-
sible object model capable of supporting database services
within a single underlying framework. In keeping with its
modeling capability, the schema evolution policies are de-
fined as extensions to the base system. Thus, this paper has
two main contributions:

1. it introduces a sound and complete axiomatic model
that can be used to formalize and compare the schema
management approaches of OBMSs, and

2. it presents the uniform dynamic schema evolution
strategies employed by the TIGUKAT OBMS.

ITIGUKAT (tee-goo-kat) is a term in the language of the Canadian
Inuit people meaning “objects.” The Canadian Inuits, commonly known
as Eskimos, are native peoples of Canada with an ancestry originating in
the Arctic regions of the country.

Copyright ©IEEE 1995. To appear in Proc. of the 11 th el Conf. on Data Engineering (ICDE’95), Taiwan, March 1995. 1

The remainder of the paper is organized as follows. The
axiomatization of schema evolution is defined in Section 2
and a sketch of the soundness and completeness proofs are
given. An overview of the TIGUKAT object model and the
representation of schema evolution in TIGUKAT in terms
of the axiomatic model is shown in Section 3. The reduc-
tion of Orion and other systems to the axiomatic model
is presented in Section 4. A discussion and comparison
of the axiomatization of TIGUKAT and Orion is given in
Section 5. Section 6 contains the concluding remarks and
a discussion of future work.

2 Axiomatization of Schema Changes

A type in an object model (class in some models) de-
fines properties of objects. Existing systems use attributes,
methods, and behaviors to represent properties. We use
the term property in the generic sense as encompassing all
these techniques. Types are templates for creating objects.
The set of objects created from a type is called the extent of
that type. We use type to denote the construct that defines
object properties and class to denote the type extent.

Subtyping is a facility that allows types to be built incre-
mentally from other types. A subtype relationship can be
represented as a directed arrow from a subtype (the tail) to
its supertype (the head). A subtype inherits all properties of
its supertype(s). When a subtype has multiple supertypes,
it is known as multiple subtyping and results in a directed
acyclic graph or lattice of subtype relationships.

Typical schema changes include adding and dropping
types, adding and dropping subtype relationships, and
adding and dropping type properties. How these affect
subtyping relationships and property inheritance must be
closely scrutinized in order to maintain system integrity, as
well as the intentions of the schema designer.

The notation for the axiomatic model is shown in Ta-
ble 1. The terms denote various arrangements of types and
properties that can be represented in any object model. We
now explain each of these terms and use the simple type
lattice in Figure 1 as an example to clarify their semantics.

[Term | Description |
T The lattice of all types in the system.
s,t, T, L | Type elements of 7.

P(t) Immediate supertypes of type ¢.
P.(1) Essential supertypes of type t.
L(t) Supertype lattice of type .
N(t) Native properties of type ¢.
H(t) Inherited properties of type ¢.
N.(t) Essential properties of type ¢.
I(t) Interface of type t.
ax(f,7') | Apply-all operation.

Table 1: Notation for axiomatization.

The set of types 7 represents all the types in the system
on which dynamic schema evolution operations are per-
formed. The set consisting of all types shown in Figure 1
forms 7 in this example.

The set 7 forms a lattice through subtype relation-
ships maintained by the immediate supertypes, P(t), for
each type ¢t. The immediate supertypes of a type ¢

T_object

7 T

T_person T _taxSource

\ /

T_teachingAssistant

™~

T null

Figure 1: Simple type lattice.

are those types that cannot be reached from ¢, tran-
sitively, through some other type. In other words,
their only link to ¢ is through a direct subtype re-
lationship. ~ For example, P(T-teachingAssistant) =
{T_student, T_employee}?>. The other supertypes of
T_teachingAssistant (i.e., T_person, T-taxSource, and
T_object) can be reached through T_student or T_employee.

The essential supertypes, F.(t), are those specified by
the schema designer as being essential to the construction
of type ¢. The meaning of essential supertypes is that they
should be maintained as supertypes of ¢ for as long as pos-
sible during schema evolution. The only way to break a
link from 7 to an essential supertype s is to explicitly re-
move s from P.(t) by either dropping the subtype relation-
ship between s and ¢ or by dropping s entirely. Note that
P(t) C P.(t), meaning immediate supertypes are essen-
tial. In Figure 1, the schema designer may have specified
the essential supertypes of T_teachingAssistant as:

P, (T_teachingAssistant) =
{T_student, T_employee, T_person, T_object}

This means that if, for example, T_student and
T_employee are dropped as immediate supertypes of
T_teachingAssistant, then T_person would be established
as an immediate supertype because it is essential. How-
ever, T_taxSource would be lost as a supertype because it
was not declared as essential.

The supertype lattice, PL(t), of a type ¢ is the
set of all types of which ¢ is a subtype, includ-
ing ¢ itself. For example, PL(T-employee) =
{T_employee, T_person, T_taxSource, T_object}.

The native properties, N (), of atype ¢ are those that are
not defined in any of the supertypes of ¢. Note that these
properties may be defined by other types not in a subtype
relationship with ¢. For example, the type T_employee may
have a native “salary” property that is not defined on any of
its supertypes. Moreover, T_person and T_taxSource may
both have native “name” properties defined.

The inherited properties, H (t),of atypet is the union of
the properties defined by all supertypes of ¢. The native and
inherited properties are disjoint. For example, the inherited
properties of T_employee is the union of the properties
defined on T_person, T_taxSource, and T_object.

2The prefix “T_ " indicates a type.

Copyright ©IEEE 1995. To appear in Proc. of the 11 th el Conf. on Data Engineering (ICDE’95), Taiwan, March 1995. 2

The essential properties, N.(t), are those specified by
the schema designer as being essential to the construc-
tion of type ¢ and consist of all native and possibly some
inherited properties [N () C N.(t)]. The meaning of es-
sential properties is that they should be a part of ¢ (either
inherited or native) for as long as possible during schema
evolution. This may require, for example, the adoption
of inherited properties as native if the supertype defining
those properties natively is removed. For example, assume
there is a “taxBracket” property defined on T-taxSource
that is declared as essential in T_employee. This prop-
erty is inherited by T_employee, but if T_taxSource were
deleted, then the “taxBracket” property would be adopted
by T_employee as a native property. The interface, I(t), of
atypet is the union of native and inherited properties of £.

In Table 2 we show how the various arrangements of
types and properties in Table 1 can be computed from P,
and N., which are specified by the system designer. All
schema evolution operations can be handled through these
two terms, which make it simple for the schema designer to
understand and manage. The axiomatic model takes care
of rearranging the schema to conform to these two inputs.

The specification of P. and N, can be system or user
managed. For example, when a new type is defined, the
system may open a dialog with the schema designer to de-
termine all supertypes and properties that are essential to
the new type. Alternatively, the system may, as default, as-
sume that all supertypes and properties (including inherited
properties) are essential in a given type, or that none are
essential. The various systems define different semantics
for the notions of subtyping, inheritance, and nativeness.
This formalization of the concepts leaves it open to inter-
pretation by the individual systems. It is likely that some
combination of user and system managed control would be
most effective. For example, the system may assume that
only the initial supertypes and properties defined on a type
are essential. By default, none of the inherited properties
are assumed to be essential. A schema designer may evolve
the schema by adding and dropping properties, and adding
and dropping subtype relationships. These operations are
noted in NV, and P, as the “essential” structure of properties
and types. These operations may not be fulfilled in N and
P because of other inheritance links that may be present.
For example, defining an already inherited property on a
type would not include the property in NV, but would in-
clude it in .. Furthermore, adding a subtype relationship
between s and ¢ such that s is the supertype of ¢ always
includes s in P.(¢), but it is added to P(t) if and only if
s ¢ PL(t). In this way, N (¢) maintains the minimal prop-
erties that need to be defined by ¢ and P(t) maintains the
minimal supertypes of £. This minimality is important for
the efficiency of the system.

We assume the availability of an apply-all operation in
the axiomatic model. This operation, denoted o, (f, 7’),
applies the unary function f to the elements of a set of
types 7' C 7 . The function f is over the single variable =z,
denoted as the subscript of the & symbol. Other variables
appearing within the parenthesis of the o symbol are sub-
stituted with their values and remain constant throughout
the apply-all operation.

The semantics of the apply-all operation is to let x range
over the elements of 7’ and for each binding of x, evaluate
f and include the result in the final result set. If 7/ is empty,

the empty set is returned. In a functional notation, one may
think of « as applying the lambda function Az. f to every
element of 7" and returning a set containing the results.

Table 2 summarizes the axiomatization of subtyping and
property inheritance. Note that the apply-all operations
specified in the table return a set of sets and the large union
operator preceeding each apply-all performs the extended
union over these member sets. We define the extended
union of the empty set as the empty set.

Axiom of Closure: Types in 7 have supertypesin 7, giv-
ing closure to 7 .

Axiom of Acyclicity: There are no cycles in the type lat-
tice formed by 7. This axiom disallows any element
of 7 from appearing in the supertype lattice of any of
its supertypes, which would form cycles.

Axiom of Rootedness: There is a single type T in 7 that
is the supertype of all types in 7 . The type T is called
the root or least defined type of T . This axiom can be
relaxed in which case the type lattice has many roots
and is known as a forest.

Axiom of Pointedness: There is a single type L in 7 that
is the subtype of all types in 7. The type L is called
the base or most defined type of T . The lattice is said
tobe pointedat L. This axiom can be relaxed in which
case the lattice has many leaves.

Axiom of Supertypes: The set of immediate supertypes of
atypet is exactly the subset of the essential supertypes
that cannot be reached indirectly through some other
type. This axiom provides a way of automatically
instantiating the immediate supertypes of a given type
based on the essential supertypes of that type.

Axiom of Supertype Lattice: The supertype lattice of a
type t includes ¢ itself and recursively the types in the
supertype lattices of its immediate supertypes. This
axiom provides a way of automatically instantiating
the supertype lattice of a given type.

Axiom of Interface: The interface of a type consists of
the union of the native and inherited properties of that
type. This axiom provides a way of automatically
instantiating the interface of a given type.

Axiom of Nativeness: The native properties of a type is
the subset of the essential properties that are not in-
herited. This axiom provides a way of automatically
instantiating the native properties of a given type.

Axiom of Inheritance: The inherited properties of a type
is the union of the interfaces of its immediate super-
types. This axiom provides a way of automatically
instantiating the inherited properties of a given type.

There are several simplifications that can be made to the
axioms in order to reduce the amount of mutual recursion
among them. Furthermore, several optimizations can be
made to the way in which the axioms generate their re-
sults. Space restrictions do not allow us to present these
simplifications and optimizations in this paper.

Copyright ©IEEE 1995. To appear in Proc. of the 11 th el Conf. on Data Engineering (ICDE’95), Taiwan, March 1995. 3

Axiom of Closure

VteT,P.(t)CT (1)

Axiom of Acyclicity Vi€ T,t¢| Jaa(PL(x), P()))
Axiom of Rootedness AT €T VteT | TEPLA)ANP(T)={} ©)
Axiom of Pointedness AL eT VteT | te PL() 4)
Axiom of Supertypes VteT,P(t U ap(PL(z) N Pe(t) — {x}, P.(t)) Q)
Axiom of Supertype Lattice VieT,PL(t U ay(PL(z), P(t)) U {t} (6)
Axiom of Interface VteT,I(t) = N(YU H(t) (7)
Axiom of Nativeness VteT,N(t) = N.(t) - H(t) (8)
Axiom of Inheritance VieT, H(t U (1 () 9

Table 2: Axiomatization of subtyping and behavioral inheritance.

To illustrate the expressiveness of the axioms, consider
again the simple type lattice in Figure 1. Axioms 1 and 2
are satisfied by the lattice.

Axiom 3 holds when T = T_object and Axiom 4 holds
when L = T_null. Assume the essential supertypes of
T_teachingAssistant are defined as follows:

P, (T_teachingAssistant) =
{T_student, T_person, T_employee, T_object}

That is, it is essential that a teaching assistant is a
student, person, employee, and object, but not essen-
tial that it is a tax source. Note that teaching assis-
tants are tax sources by inheritance through T_employee.
The meaning of this separation is that if teaching assis-
tants cease to be employees, by removing the subtype
relationship, then they automatically cease to be taxable
sources. Axiom 5 instantiates the immediate supertypes
of T_teachingAssistant as {T_student, T_employee}. Now,
if T_student is dropped from P.(T_teachingAssistant),
then the new instantiation of the immediate supertypes
would only include T_employee. The properties inherited
from T_student are lost in T_teachingAssistant, except for
those declared in N, (T_teachingAssistant). Moreover, if
T_employee is dropped as an essential supertype, then Ax-
iom 5 instantiates { T_person} as the only immediate super-
type of T_teachingAssistant. The properties of T_employee
and T_taxSource are lost in T_teachingAssistant (except for
the essential properties).

The axioms provide a consistent and automatic mecha-
nism for re-computing the entire type lattice structure after
a change is made to either the essential supertypes P. or
the essential properties N, of a type. Changes to these two
components are fundamental to schema evolution and the
axiomatic model can handle variations of the other type and
property arrangements depending on the defaults required.
This can in turn be used to describe and compare schema
evolution in any object model that supports subtyping and
property inheritance.

Due to space restrictions, only a sketch of the proofs for
soundness and completeness are presented. The full proofs
will appear in a subsequent paper.

Theorem 2.1 The schema evolution axioms are sound.
Proof: Assumes P.(t) and N, (¢) are sound and then shows
through subset inclusion and induction on maximal path
lengths to root type T _object that only sound sets are pro-
duced for P(t), PL(t), I(t), N(¢) and H(t).

Theorem 2.2 The schema evolution axioms are complete.
Proof: Assumes P.(t) and N,(t) are complete and then
shows through induction on maximal path lengths to root
type T-object that only complete sets are produced for
P(t), PL(t), I(t), N(¢) and H(1).

3 Schema Evolution in TIGUKAT

In this section, we give a brief overview of the
TIGUKAT object model, define the dynamic schema evolu-
tion policies of TIGUKAT, and indicate how these policies
can be described using the axiomatic model presented in
Section 2. We focus on the definition of the semantics of
schema changes and exclude change propagation from the
discussion. See [7] for a discussion of change propagation
in TIGUKAT that uses the temporality of the model [2].

3.1 Object Model Overview

The TIGUKAT object model [5, 7] is purely behavioral
with a uniform object semantics. The model is behav-
ioral in that all access and manipulation of objects is based
on the application of behaviors to objects. Behaviors in
TIGUKAT correspond to the generic concept of properties
discussed in Section 2. The model is uniform in that ev-
ery component of information, including its semantics, is
modeled as a first-class object with well-defined behavior.

The primitive type system of TIGUKAT is shown in
Figure 2. Types define behaviors that are applicable to
their instances. The type T_object is the root of the type
system and T_null is the base. We concentrate on the shaded
types in the figure, which are used to model schema, and
describe their role in supporting schema evolution in terms
of the axiomatic model. For a complete model definition,
including primitive behaviors, see [7].

Primitive objects of TIGUKAT include: atomic entities
(reals, integers, strings, etc.); types for defining common
features of objects; behaviors for specifying the semantics

Copyright ©IEEE 1995. To appear in Proc. of the 11 th el Conf. on Data Engineering (ICDE’95), Taiwan, March 1995. 4

T_class-class

T_type-class)

T_class

T_collection T_collection-class

T_string

T_real)—(Tjnmgcr >—< T_natural)

Supertype Subtype

T_atomic

Figure 2: Primitive type system of TIGUKAT.

of object properties; functions for specifying implementa-
tions of behaviors; classes for automatic classification of
objects based on their type’; and collections for general
heterogeneous groupings of objects. In this paper, a ref-
erence prefixed by “T_” refers to a type, “C_” a class, and
“B_" a behavior. For example, T_person refers to a type,
C_person its class, and B_age one of its behaviors. A ref-
erence such as David, without a prefix, denotes some other
application specific reference.

Objects consist of a unique identity and an encapsulated
state. Access and manipulation of objects occurs exclu-
sively through the application of behaviors. We clearly
separate the definition of a behavior from its possible im-
plementations (functions/methods). This supports over-
loading and late binding of implementations to behaviors.

One component of every behavior is its semantics. We
use signatures as a partial semantics of behaviors. A sig-
nature includes a name used to apply the behavior, a list of
argument types, and a result type. The object to which a
behavior is applied is called the receiver. We use the dot
notation o0.b to denote behavior b applied to object o.

A type defines behaviors and encapsulates behavior im-
plementations and state representation for objects created
using that type. TIGUKAT supports multiple subtyping, so
the type structure forms a lattice. The lattice is rooted by
the type T_object and pointed at the base type T_null. The
type T_null defines objects that can be assigned to behaviors
when no other result is known (e.g., null, undefined, etc.).
The set of behaviors defined by a type specify the interface
for the objects of that type. A type interface is separated
into inherited and native behaviors that correspond to H
and N in the axiomatic model.

Types represent the foundation of schema in most ob-
jectmodels, including TIGUKAT. The fundamental schema
evolution operations on types are to add and drop types, add
and drop subtype relationships between types, and add and
drop behaviors (i.e., properties) of types. In order to il-
lustrate the principles of the axiomatization in Section 2,
we define the modeling of types in TIGUKAT. The uni-
formity of TIGUKAT dictates that types are modeled as
objects. The primitive type T_type defines the behaviors of
types. The behaviors related to schema evolution include
B_supertypes, B_super-lattice, B_interface, B_native, and

3Types and their extents are separate constructs in TIGUKAT.

B_inherited. The B_supertypes behavior returns the im-
mediate supertypes of receiver type. The B_super-lattice
behavior returns a partially ordered collection of types rep-
resenting the supertype lattice pointed at the receiver type
and rooted at T_object. Behaviors B_interface, B_native,
and B_inherited represent the collections of behaviors re-
lated to the interface components of types.

A class ties together the notions of type and object in-
stances. A class is a supplemental, but distinct, construct
responsible for managing all instances of a particular type
(i.e., the type extent). In this way, the model clearly sepa-
rates types from from their extents.

Collections are defined as heterogeneous grouping con-
structs as opposed to classes, which are homogeneous up
to inclusion polymorphism. Object creation occurs only
through classes; thus they are extents of types and are man-
aged automatically by the system. Collections are managed
explicitly by the user.

The types T_class-class, T_type-class, and T_collection-
class are part of the extended mera type system. Their
placement within the type lattice directly supports the uni-
formity of the model and brings the definition of the meta-
model within the model itself. For a discussion on the
architecture of the meta-model and the features it provides
(e.g., class behaviors, reflective queries), see [8].

3.2 Definition of Schema

There are different kinds of objects modeled by
TIGUKAT, some of which are classified as schema ob-
jects. All objects managed by TIGUKAT fit in the category
of type, class, behavior, function, collection or other. These
categories are used to distinguish the “schema” of the model
and the changes that affect it. First, the definition of what
constitutes schema objects is presented. This is followed
by the definition of the “schema.”

Definition 3.1 Schema Objects: The following defines
the primitive schema objects of the model:

o Types are schema objects. The class C_type forms the
set of type schema objects denoted as T'SO. This is
equivalent to 7 in the axiomatic model.

e Forall typest € T'SO, the extended union over inter-
faces of these types (i.e., | J t.B_interface) forms the
set of behavior schema objects denoted as BSO. Only
those behaviors defined in the interface of some type
are considered to be behavior schema object, which
means BSO C C_behavior. BSO represents all
properties in the axiomatic model, which is equiva-
lentto T(L).

e Forallbehaviorsb € BSO and foralltypest € T'SO,
the extended union over the implementations of these
behaviors (i.e., | Jb.B_implementation(t)) forms the
set of function schema objects denoted as F'SO. Only
those functions defined as the implementation of some
behavior for some type are considered to be function
schema objects, which means F'SO C C_function.
Function objects denote the implementations of prop-
erties in the axiomatic model, which can be repre-
sented as attributes, methods, and so on. The ax-
iomatic model is high-level and does not directly deal

Copyright ©IEEE 1995. To appear in Proc. of the 11 th el Conf. on Data Engineering (ICDE’95), Taiwan, March 1995. 5

with implementations or the conflict resolution strate-
gies associated with them. Conflictresolution of prop-
erties is at a semantic level in which the semantics of
a property is unique and, therefore, simple set opera-
tions can be used to resolve conflicts.

e The class C_collection forms the set of collection
schema objects denoted as LSO. Collections rep-
resent a flat space of heterogeneous, user-defined and
managed object groupings. The axiomatic model does
not restrict the management of collections.

o The class C_class forms the set of class schema objects
denoted as C'SO. Note that C'SO C LSO. Classes in
TIGUKAT mirror types in that a class is responsible
for managing the extent of a type. Thus, the subset
inclusion structure of classes is represented by the
subtyping lattice in the axiomatic model. O

Definition 3.2 Schema: The schema of a TIGUKAT
objectbase is the union of all schema object sets:

schema = TSOU BSOUFSOULSO UCSO
Note that C'SO is included for completeness. O

There are three basic operations that can be performed
on objects: add, drop, and modify. Table 3 shows the
combinations between the object categories and the kinds
of operations that can be performed. The bold entries
represent combinations that imply schema evolution modi-
fications, while the emphasized entries denote changes that
are not considered to be part of the schema evolution.

3.3 Semantics of Change

In this section the modifications that affect the schema
are described. The basic operations affecting the schema
include adding behaviors to a type definition, dropping
behaviors from a type definition, changing the implemen-
tation of a behavior in a type, and adding and dropping
classes. The other schema changes, namely, adding and
dropping types, adding and dropping subtype relationships,
dropping behaviors and dropping functions are defined in
terms of the basic operations.

The MT-AB (Modify Type - Add Behavior) oper-
ation adds a behavior as an essential component of a
type and the behavior then becomes part of BSO. To
add behavior b to type t, b is added to N.(t) and
N(t), H(t), I(t) are recomputed. The results are reflected
int.B_native, t.B_inherited,t.B_interface, respectively.

The MT-DB (Modify Type - Drop Behavior) oper-
ation drops a behavior as an essential component of a
type, which could possibly remove it from BSO. To
drop behavior b from type ¢, b is removed from N, (¢) and
N(t), H(t), I(t) are recomputed. The results are reflected
in t.B_native,t.B_inherited,t.B_interface, respectively.
Note that this may not actually remove b from the interface
of ¢ because b may be inherited from one or more super-
types of . However, if eventually the links to all supertypes
defining b are removed, then b will no longer be part of ¢.

The MT-ASR (Modify Type - Add Subtype Relation-
ship) operation adds a type as an essential supertype of
another type, which effectively adds a subtype relationship
between the two types. To add type s as a supertype of type

t, s is added to P.(¢) and all computations depending on
P. are recomputed. The results of any lattice change are
reflected in ¢. B_supertypes. Due to the axiom of acyclic-
ity, the addition of a type as a supertype of another type is
rejected if it introduces a cycle into the lattice.

The MT-DSR (Modify Type - Drop Subtype Relation-
ship) operation drops a type as an essential supertype of
another type, which effectively drops a subtype relation-
ship between the two types. To drop type s as a supertype
of type t, s is removed from P,(t) and all computations
depending on P, are recomputed. The results of any lat-
tice change are reflected in ¢.B_supertypes. Due to the
axiom of rootedness, which TIGUKAT obeys, a subtype
relationship to T_object cannot be dropped.

The AT (Add Type) operation creates a new type, adds
it to T'SO, and integrates it with the existing lattice. Type
creation is supported through regular subtyping, which is
an operation provided by the primitive model. A B_new
behavior is defined as part of the meta-system that accepts a
collection of supertypes and a collection of behaviors as ar-
guments. The result of creating a new type ¢ as the subtype
of types sy, . . ., s, withessential behaviors by, . . ., b,, adds
S1y..+y8pt0 Pe(t),b1, ..., by to N.(1), and the axioms are
recomputed. If no supertypes are specified, T-object is as-
sumed. Due to the axiom of pointedness, which TIGUKAT
obeys, the new type ¢ is added to P.(T-null) because all
types are essential supertypes of this base type.

The DT (Drop Type) operation drops a given type and
removes it from 7'SO. To drop a type ¢, the type is removed
from C_type and from the P, of all subtypes of . The ax-
iomatic model does not specifically define a subtypes prop-
erty, but this can be defined as the inverse operation of the
supertypes property. TIGUKAT does define a B_subtypes
behavior for types, so finding all subtypes of a dropped type
is trivial.

In TIGUKAT, there is the restriction that the primitive
types of the model (i.e., those in the primitive type system
of Figure 2) cannot be dropped. When a type is dropped,
the type’s associated class and extent are dropped as well.
With the use of object migration techniques, the instances
can be ported to some other type prior to being dropped
in order to preserve their existence. Object migration is
outside the scope of this paper.

The AC (Add Class) operation creates a class, adds it to
C'S0, and uniquely associates it with a particular type to
manage its extent. The creation of a class allows instances
of its associated type to be created.

The DC (Drop Class) operation drops the associated
class of a type and removes it from C'SO. The extent
managed by a dropped class is also dropped. As mentioned
above, object migration techniques can be used to migrate
objects to another class in order to preserve them.

Since explicitly dropping behaviors from a type defini-
tion (operation MT-DB) is a schema change, dropping a
behavior in its entirety is also a schema change because the
behavior may be defined on one or more types.

The DB (Drop Behavior) operation drops a given be-
havior and removes it from BSO. A dropped behavior is
dropped from all types that define the behavior as essential.
The semantics of this operation follows dropping behaviors
from types (operation MT-DB) defined above.

The MB-CA (Modify Behavior - Change Association)
operation changes the implementation of a behavior by as-

Copyright ©IEEE 1995. To appear in Proc. of the 11 th el Conf. on Data Engineering (ICDE’95), Taiwan, March 1995. 6

Operation
Objects Add (A) Drop (D) Modify (M)
Type (T) subtyping type deletion add behavior(AB)
drop behavior(DB)

add subtype relationship(ASR)

drop subtype relationship(DSR)
Class (C) class creation class deletion extent change
Behavior (B) behavior definition | behavior deletion change association(CA)
Function (F) Sfunction definition | function deletion implementation change
Collection (L) || collection creation | collection deletion extent change
Other (O) instance creation instance deletion instance update

Table 3: Classification of schema changes.

sociating it with a different function, which could also affect
the function’s membership in F'.SO. This is an implemen-
tation based schema change that is outside the scope of the
high-level axiomatic model. We have defined a complete
set of possible implementation changes and conflict reso-
lution procedures for these changes. Details are given in
[7]. Conflict resolution of high-level behaviors is based
on their semantics, which is a unique description of the
behavior and, thus, set operations can be used.

Since changing the association of a function with a be-
havior is considered a schema change, dropping a function
in its entirety is a schema change because the function may
be the implementation of a behavior in some type.

The DF (Drop Function) operation drops a given func-
tion and removes it from F'SO. The operation is rejected
if the function is associated as the implementation of a
behavior in a type that has an associated class.

Collections are heterogeneous, user-defined and man-
aged object groupings and the axiomatic model does not
interfere with this flexibility. They are included here for
completeness.

The DL (Drop Collection) operation drops a given col-
lection and removes it from 7.SO. Unlike classes, dropping
a collection does not drop its members.

The AL (Add Collection) operation adds a new empty
collection to L.SO. Collection addition is collection cre-
ation as defined by the primitive model.

The remaining entries in Table 3 represent changes that
are not considered part of the schema evolution problem.
Creating, dropping, and updating object instances (oper-
ations AO, DO, and MO) other than the ones discussed
above clearly are operations concerned with the real-world
concepts modeled in the objectbase and, therefore, do not
have an affect on the schema. Defining a new behavior
(operation AB) does not affect the schema because behav-
iors don’t become part of the schema until after they are
added as essential behaviors of some type. Defining a new
function (operation AF) does not affect the schema because
functions don’t become part of the schema until after they
are associated as the implementation of a behavior defined
on some type. Modifying a function (operation MF) does
not affect the semantics of the behaviors it may be asso-
ciated with and, therefore, this operation does not affect
the schema. Collections are groupings of objects that are
defined and maintained by the user. Modifying a collection
involves changing the membership of its extent and chang-
ing its membership type. These are operations related to

the contents of the collection and, therefore, are not part of
the schema evolution problem.

4 Related Work

In recent years, several researchers have addressed the
problem of defining schema evolution policies for OBMSs.
All of these studies address the issue from the perspective of
individual systems. The axiomatic model provided in this
paper is unique in this respect. Some systems are described
below in relation to the concepts introduced in this paper.

The Orion [1] model is the first system to introduce
the invariants and rules approach as a structured way of
describing schema evolution in OBMSs. Orion defines
a complete set of invariants and a set of twelve accom-
panying rules for maintaining the invariants over schema
changes. The allowed schema changes are classified into
several categories, each of which affects different parts of
the schema. These changes represent the typical schema
modifications allowed in most systems. The changes sup-
ported in TIGUKAT are similar to those of Orion, but vary
to deal with uniformity, which is not part of Orion. For
example, stored properties and computed methods are sep-
arate concepts in Orion and need to be handled separately,
while in TIGUKAT they are treated uniformly as behaviors
and, therefore, a single mechanism suffices for both.

Orion defines eight fundamental operations that are
declared as being inclusive of all “interesting” schema
changes. The soundness and completeness of these op-
erations are proven. We show how the semantics of the
eight operations are represented in the axiomatic model.
The Orion terminology of class, subclass, and superclass
is used instead of type, subtype, and supertype.

In mapping the Orion class structure to the axiomatic
model, P, represents the superclasses of an Orion class.
There is no notion of the minimal superclasses, P, in Orion.
The superclasses in Orion are ordered for conflict resolution
purposes. The P. set can easily be ordered for this purpose.
There is also no explicit superclass lattice in Orion, but it
is implied by the superclass relationships.

In mapping properties, N, represents the defined or re-
defined properties of an Orion class. There is no notion of
the minimal native, N, or inherited, I, properties in Orion.
Inherited properties of a class C' in Orion is equivalent to
I(C) — N¢(C) in the axiomatic model. The interface, I,
of a class has the same meaning in Orion and the axiomatic
model. Properties in Orion have names and domains, which
are used in conflict resolution. The axiomatic model as-
sumes that properties have a given semantics. Names and

Copyright ©IEEE 1995. To appear in Proc. of the 11 th el Conf. on Data Engineering (ICDE’95), Taiwan, March 1995. 7

domains can be part of the semantics, which in turn can be
used for conflict resolution.

The Axiom of Closure is not explicitly stated in Orion,
butis implied by the connected nature of the class structure.
The Axiom of Acyclicity, on the other hand, is strictly en-
forced. Furthermore, the Axiom of Rootedness is obeyed
with T = OBJECT and the Axiom of Pointedness is re-
laxed since there is no single class as a base.

The eight fundamental operations of Orion and their
semantics in terms of the axiomatic model are as follows:

OP1: Add a new property v to a class C': Add v to
N(C). Perform Orion conflict resolution as neces-
sary. The same operation is performed whether v is
an attribute or a method.

OP2: Drop an existing property v from a class C': Drop
v from N.(C'). Perform conflict resolution as neces-
sary. The same operation is performed whether v is
an attribute or a method.

OP3: Add an edge to make class .S a superclass of class
C': Add S to the end of ordered P, (C'). Perform con-
flict resolution as necessary. If the Axiom of Acyclic-
ity is violated, the operation is rejected.

OP4: Drop an edge to remove class S as a superclass of
class C': Remove S from P.(C') unless S is the last
superclass of C' in which case C' is linked to the super-
classes of S (i.e., P.(5)). If S is the last superclass
of C' and S is OBJECT, the operation is rejected. The
following algorithm illustrates the procedure:

if P.(C') = {S} then // Last superclass of C'?

if S = OBJECT then REJECT operation

else P.(C') = P.(S) // Link C to superclasses
else remove S from P.(C')

OP5: Change the ordering of superclasses of a class
C': Simply change the ordering of classes in P.(C').
Perform conflict resolution as necessary.

OP6: Add a new class C as the subclass of a class S:
Create C' and add S to P.(C). If S is not specified,
then S = OBJECT by default. In Orion, additional
superclasses can be added to C' using OP3.

OP7: Drop an existing class S: For all subclasses C' of
S, remove S as a superclass of (' using OP4.

OP8: Change the name of a class C': Change every oc-
currence of C' in the P,’s of the various classes to the
new name.

Since each of the fundamental operations have an equiv-
alent semantics in the axiomatic model, the soundness and
completeness of these operations are preserved. Thus,
Orion is reducible to the axiomatic model. The reduc-
tion of axiomatic model to Orion is not possible since, for
example, Orion does not maintain minimal superclasses or
native properties of classes. Thus, the axiomatic model
subsumes the schema evolution techniques of Orion. In
Section 5, we discuss the similarities and differences of

schema evolution in TIGUKAT and Orion in terms of their
axiomatizations.

Due to space limitations, only a brief discussion of other
schema evolution approaches are presented below. These
systems define schema evolution policies similar to Orion
and they too are reducible to the axiomatic model.

Schema evolution in GemStone [6] is similar to Orion
in its definition of a number of invariants. The GemStone
model is less complex than Orion in that multiple inher-
itance and explicit deletion of objects are not permitted.
As a result, the schema evolution policies in GemStone
are simpler and cleaner. Based on published work [6],
the GemStone schema changes can be expressed by the
axiomatic model.

Skarra and Zdonik [9] define a framework for version-
ing types in Encore as a support mechanism for evolving
type definitions. This work is focussed on dealing with
change propagation rather than semantics of change. Their
schema evolution operations are similar to Orion and, thus,
representable by the axiomatic model.

Nguyen and Rieu [4] discuss schema evolution in the
Sherpa model and compare their work to Encore, Gem-
Stone, Orion, and their earlier model called Cadb. The em-
phasis of this work is to provide equal support for semantics
of change and change propagation. The schema changes
allowed in Sherpa follow those of Orion and, therefore, can
be represented by the axiomatic model.

S Discussion and Comparison

One advantage of the axiomatization presented in this
paper is the precision that it introduces to the specification
of dynamic schema evolution strategies of various systems.
Another important advantage is the possibility of compar-
ing these approaches based on a common specification. In
this section, we provide a few important comparisons be-
tween TIGUKAT and Orion based on their reduction to the
axiomatic model.

In terms of subtyping and property inheritance,
TIGUKAT and the axiomatic model are reducible in both
directions while only the reduction from Orion to the ax-
iomatic model is possible. One result of this is that the
minimal supertypes and minimal native properties cannot
be exploited in Orion, which can be useful for the effi-
ciency of the system. For example, to resolve property
naming conflicts in a type, it would only be necessary to
iterate through the minimal supertypes of that type because
any conflicts would be detectable in these supertypes alone.
Another use for minimal supertypes is in displaying the
type lattice graphically. A user would only need to see the
minimal subtype relationships in order to understand the
complete functionality of a type.

In comparing the schema operations of the two systems,
we focus on the eight fundamental operations identified in
Orion. The operations of adding and dropping properties of
types (classes) are virtually identical in both systems. The
only difference is that TIGUKAT maintains the minimal
native properties while Orion does not.

The operation of adding a subtype relationship between
two types (an edge between two classes in Orion) is also
similar in both systems. The differences are that Orion
maintains an ordered supertype list for conflict resolution
and TIGUKAT maintains a minimal supertype set.

Copyright ©IEEE 1995. To appear in Proc. of the 11 th el Conf. on Data Engineering (ICDE’95), Taiwan, March 1995. 8

The operation of dropping a subtype relationship (edge)
between two classes is quite different in the two systems.
Dropping a series of edges in Orion can produce a differ-
ent lattice depending on the order in which the edges are
dropped. In TIGUKAT, the ordering is irrelevant and the
same lattice is produced no matter the order in which they
are dropped. Based on the axiomatization of the two sys-
tems, the judgement we make here is that the dropping of
subtype relationships in TIGUKAT is much simpler and is
uniform as compared to Orion.

The operation of adding a type (class) is similar, except
that TIGUKAT obeys the Axiom of Pointedness and so
the new type is added as an essential supertype of T_null.
The operation of dropping a type (class) is different in the
two systems. In both, this operation is based on dropping
subtype relationships (edges),but the two systems differ in
the handling of this operation.

The operation of changing the ordering of classes was in-
troduced in the axiomatization of Orion to deal with conflict
resolution. This is an implementation detail that was ab-
stracted out in the axiomatization of TIGUKAT. Similarly,
the operation of changing the name of a class is specific to
Orion. Again, TIGUKAT deals more abstractly with the
notion of references (which act as names) to objects with
unique identity. For example, the act of adding s to P, ()
does not mean “add the name s to the set P.(¢)”, instead
it means “add a reference to the object identified by s to
the set P.(¢)”. There may be two different references (with
different names) that refer to the same object. There is no
notion of renaming objects in TIGUKAT because objects
are created with a unique, immutable object identity.

From the above comparison, TIGUKAT and Orion are
quite similar with respect to lattice and property inheri-
tance schema operations. TIGUKAT is a uniform model
and this is reflected in its handling of schema evolution.
Additional differences lie in TIGUKAT’s separation of
types from their extents and behaviors from their imple-
mentations (functions). This allows the axiomatization of
TIGUKAT to consider types without considering their ex-
tents and to consider behaviors without considering their
implementations.

6 Conclusions and Future Work

There are two issues in schema evolution: the seman-
tics of change issue describes the possible schema changes
and the change propagation issue describes how schema
changes affect object instances. In this paper, we only
address the semantics of change issue and do not dis-
cuss change propagation. We have informally described
change propagation in TIGUKAT [7]. However, a formal
axiomatic model for change propagation and its integration
with the model proposed here is under development.

An axiomatization of dynamic schema evolution pro-
vides a foundation for describing the schema evolution
policies of different systems using a single, underlying
framework. The sound and complete axiomatic model
proposed in this paper has the power to provide this ba-
sis to object models supporting subtyping and property
inheritance. Furthermore, the common description facility
offered by the model provides a means of better comparing
the schema evolution facilities of the various systems. To
illustrate the power of the axiomatic model, the schema

evolution policies of TIGUKAT and Orion were reduced to
the model and compared.

One area of great interest is the implementation of
schema evolution in TIGUKAT based on the axiomatic
model. A prototype implementation of the core object
model is complete [3] and its extension with efficient al-
gorithms for schema evolution is currently under develop-
ment. The completion of this task will provide the neces-
sary empirical evidence of its performance characteristics.
Also of interest is a formal complexity analysis of our im-
plementation techniques, which will provide the theoretical
evidence of performance.

References

[1] J. Banerjee, W. Kim, H-J. Kim, and H.F. Korth. Se-
mantics and Implementation of Schema Evolution in
Object-Oriented Databases. In Proc. of the ACM SIG-
MOD Int’l. Conf. on Management of Data,pages 311—
322, May 1987.

[2] I. Goralwalla and M.T. Ozsu. Temporal Extensions
to a Uniform Behavioral Object Model. In Proc. of
the 12th Int’l Conf. on Entity—Relationship Approach,
pages 115-127, December 1993.

[3] B. Irani. Implementation Design and Development of
the TIGUKAT Object Model. Master’s thesis, Depart-
ment of Computing Science, University of Alberta,
Edmonton, Alberta, Canada, 1993. Available as Uni-
versity of Alberta Technical Report TR93-10.

[4] G.T.Nguyenand D.Rieu. Schema Evolution in Object-
Oriented Database Systems. Data & Knowledge Engi-
neering, 4:43-67,1989.

[5] M.T. Ozsu, R.J. Peters, D. Szafron, B. Irani, A. Lipka,
and A. Mufioz. TIGUKAT: A Uniform Behavioral
Objectbase Management System. The VLDB Journal
(Special Issue on Persistent Object Systems), January
1995. In press.

[6] D.J. Penney and J. Stein. Class Modification in the
GemStone Object-Oriented DBMS. In Proc. OOPSLA
Conf.,pages 111-117, October 1987.

[7] RJ. Peters. TIGUKAT: A Uniform Behavioral Object-
base Management System. PhD thesis, Department of
Computing Science, University of Alberta, Edmonton,
Alberta, Canada, 1994. Available as University of Al-
berta Technical Report TR94-06.

[8] R.J. Peters and M.T. Ozsu. Reflection in a Uniform
Behavioral Object Model. In Proc. of the 12th Int’l
Conf. on Entity—Relationship Approach, pages 37-49,
December 1993.

[9] AH. Skarra and S.B. Zdonik. The Management
of Changing Types in an Object-Oriented Database.
In Proc. OOPSLA Conf., pages 483-495, September
1986.

Copyright ©IEEE 1995. To appear in Proc. of the 11 th el Conf. on Data Engineering (ICDE’95), Taiwan, March 1995. 9

