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Abstract

In this paper, we present an extensible, uniform, behav-
ioral query model and its languages for the TIGUKAT ob-
ject management system [POS92]. The TIGUKAT model is
purely behavioral in nature, supports full encapsulation of
objects, defines a clear separation between primitive com-
ponents such as types, classes, collections, behaviors, func-
tions, etc., and incorporates a uniform semantics over ob-
jects which makes it a favorable basis for a query model.
Queries are modeled as type and behavior extensions to the
base object model, thus incorporating queries as an extensi-
ble part of the model itself. We present the framework of the
complete query model definition that includes the extended
types and behaviors, a formal object calculus with safety
based on the evaluable class of queries, an equivalent object
algebra, an SQL-like ad hoc query language for user-level
querying and proof of its completeness.

Keywords: object-oriented systems, object query model,
object calculus, object algebra, query language, object model

1 Introduction

To meet data management requirements of new complex ap-
plications, object management systems' are emerging as the
most likely candidates. The general acceptance of this new
technology depends on the increased functionality it can pro-
vide, and one measurement is the power of its query model.
Users of these systems must have a declarative language to
formulate queries by focusing on “what” information is re-
quired, and leaving it to the system to determine “how” to
efficiently retrieve the information. Therefore, the formal
query model of these systems should define a declarative
calculus that can be used to formulate queries to the object-
base and an equivalent procedural or functional algebra to
execute them efficiently.

Twe prefer the terms “objectbase” and “object management sys-
tem” over the more popular terms “object-oriented database” and
“object-oriented database management system” since not only data
in the traditional sense is managed, but objects in general which in-
clude things such as code in addition to data.

Several research efforts have addressed the problem of
formalizing a query model in an object-oriented environ-
ment. These have led to the development of design frame-
works for object algebras [YOO91], object calculi [AB93],
and query languages [Bla91, OSP94]. Furthermore, some
work is ongoing to extend SQL with object-oriented features
[Gal92]. Straube and Ozsu [SO90] have investigated query
processing issues in the domain of object-oriented databases.
They specify both an object algebra and calculus definition,
and the two are linked with a calculus to algebra translation.
However, the reduction is only partial and the algebra lacks
object creating operators. The algebra of Shaw and Zdonik
[SZ90] consistently extends the relational algebra with both
preserving and creating operators forming a complex object
algebra. Osborn [Osb88] defines an algebra for an object-
oriented model based on atomic objects, strongly typed ag-
gregates (tuples) and both homogeneous and heterogeneous
sets. The algebra provides a full range of algebraic oper-
ations including the combine operator which is equivalent
to cartesian product. However, the integration of the result
of a combine with the existing lattice is not specified. Kim
[Kim8&9] defines an algebra that includes object-creating op-
erators for performing joins on objects, but the integration
of these new objects into the existing lattice is not known
and so they hang off the root of the lattice.

In this paper, we report our work on a complete ob-
ject query model and its languages. The query model is
developed in a uniform, extensible fashion (using object-
oriented techniques) as type and behavior extensions to the
base object model. Thus, queries are uniformly modeled as
objects and are accessible through behaviors like any other
object. This work is conducted within the framework of the
TIGUKAT? project. TIGUKAT is an extensible uniform,
behavioral, object management system. Its object model
[POS92] is characterized by an abstract behavioral definition
and a uniform approach to objects. Everything, including
types, classes, behaviors, functions, meta-information and
so on, is modeled as a first class object.

The identifying characteristics of the TIGUKAT query
model which differentiates it from other proposals are as
follows:

1. Tt incorporates a formal object calculus and object
algebra specification with a proven equivalence (see

[PLOS93] for theorems and proofs).

TIGUKAT (tee-goo-kat) is a term in the language of the Cana-
dian Inuit people meaning “objects.” The Canadian Inuits, commonly
known as Eskimos, are native to Canada with an ancestry originating
in the Arctic regions of the country.
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2. Tts safety criterion is based on the evaluable class of
queries [GT91] which is arguably the largest decidable
subclass of domain independent queries [Mak81].

3. Tt exploits object-oriented features to extend the evalu-
able class by introducing notions of object generation
which relaxes range specification requirements.

4. Ttincorporates a complete SQL-like user language called
TQL (TIGUKAT Query Language), an object defini-
tion language called TDL (TIGUKAT Definition Lan-
guage) and a control language called TCL (TIGUKAT
Control Language) [Lip93]. TQL is proven equivalent
to the formal languages making it easy to perform log-
ical transformations and argue about its safety.

5. Tt uniformly models queries as first-class objects by
defining type and behavior extensions to the object
model. This makes for an extensible query model with
a consistent uniform underlying semantics.

Although our work is within the context of the TIGUKAT
project, the results reported here extend to any system based
on a uniform behavioral object model where behaviors are
implemented as functions.

The remainder of the paper is organized as follows. In
Section 2, we give a brief overview of the TIGUKAT ob-
ject model. This outlines the fundamental features of the
model and gives a short specification of the primitive type
lattice. In Section 3, an overview of the TIGUKAT query
model as an extension to the object model is presented and
the concept of queries as objects is described. In Section 4,
we present the formal object calculus and discuss its safety.
In Section 5, the syntax and semantics of the TIGUKAT
Query Language are given. In Section 6, we present the
operators of the formal object algebra. In Section 7, we de-
fine a Geographic Information System (GIS) as an example
objectbase and present several example queries expressed
in their equivalent TQL, object calculus and object algebra
forms. The reader may want to refer to the examples in this
section while reading the earlier parts of the paper. Finally,
Section 8 contains concluding remarks and a brief discussion
of the ongoing work.

2 Object Model Overview

The TIGUKAT object model [POS92]is defined behaviorally
with a uniform object semantics. The model is behavioral
in the sense that all access and manipulation of objects is
based on the application of behaviors to objects, and the
model is uniform in that every component of information,
including its semantics, is uniformly modeled by objects and
has the status of a first-class object. Thus, an objectis a fun-
damental concept in TIGUKAT, meaning every expressible
element incorporates at least the semantics of the primitive
notion for “object.”

The primitive objects of the model include: atomic enti-
ties (reals, integers, strings, etc.); types for defining common
features of objects; behaviors for specifying the semantics of
operations that may be performed on objects; functions for
specifying implementations of behaviors over types®; classes
for automatic classification of objects based on type*; and
collections for supporting general heterogeneous groupings
of objects. In the remainder of the paper, the prefix T_refers

3Behaviors and functions form the support mechanism for over-
loading and late binding of behaviors.
4Types and their extents are separate constructs in TIGUKAT.

to a type, C_refers to a class, L_refers to a collection, and
B_refers to a behavior. For example, T_person is a type ref-
erence, C_person a class reference, L_seniors a collection
reference, B_age a behavior reference, and a reference such
as David without any prefix represents some other applica-
tion specific reference. Some primitive types and behaviors
are elaborated on in this paper. For the complete model
definition see [POS92].

Objects are defined as (identity, state) pairs where iden-
tity represents a unique, immutable object identity and state
represents the information carried by the object. Thus, the
model supports strong object identity [KC86]. This does
not preclude application environments such as object pro-
gramming languages from having many references (or de-
notations) to objects which need not be unique. The state
of an object encapsulates the information carried by that
object. More specifically, the state encapsulates the denota-
tions of objects and hides the structure and implementation
of the information carried by that object. Conceptually, ev-
ery object is a composite object, meaning every object has
references (not necessarily implemented as pointers) to other
objects. For example, integers have behaviors which return
objects, but obviously they are not implemented as a series
of pointers. This illustrates a strong point of the model in
the separation of behaviors from their implementations.

The access and manipulation of an object’s state occurs
exclusively through the application of behaviors. An impor-
tant primitive behavior defined on objects is identity equal-
ity that compares two object references based solely on the
identities of the objects they denote. This is the only kind
of equality defined in the primitive type system.

The model separates the definition of object characteris-
tics (a type) from the mechanism for maintaining instances
of a particular type (a class). A type specifies behaviors and
encapsulates behavior implementations and state for objects
created using that type as a template. The behaviors de-
fined by a type describe the interface to the objects of that
type. Types are organized into a lattice structure using the
notion of subtyping which promotes software reuse and in-
cremental development. Since TIGUKAT supports multiple
subtyping, the type structure is potentially a directed acyclic
graph (DAG). However, this DAG is converted to a lattice
by lifting with the base type Tnull.

A class ties together the notions of type and object in-
stance. A class is a supplemental, but distinct, construct
responsible for managing all instances created using a spe-
cific type as a template. The entire group of objects of a
particular type is known as the extent of the type. This is
separated into the notion of deep extent which refers to all
objects created from the given type, or one of its subtypes,
and the notion of shallow extent which refers only to those
objects created from the given type without considering its
subtypes. In general, we use extent in place of deep extent
and explicitly mention shallow extent when required.

Objects of a particular type cannot exist without an as-
sociated class and every class is uniquely associated with
a single type. Thus, a fundamental notion of TIGUKAT
is that objects imply classes which imply types. Another
unique feature of classes is that object creation occurs only
through a class. Defining object, type and class in this man-
ner introduces a clear separation of these concepts. This
separation is important in schema evolution which manipu-
lates type objects into new subtype relationships and need
not be concerned with the overhead of classes.

We define a collection as a general user-definable group-
ing construct. A collection is similar to a class in that
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it groups objects, but it differs in the following respects.
First, no object creation may occur through a collection;
object creation occurs only through classes. Second, an ob-
ject may exist in any number of collections, but is a member
of the shallow extent of only one class. Third, the manage-
ment of classes is implicit in that the system automatically
maintains classes based on the subtype lattice whereas the
management of collections is explicit, meaning the user is
responsible for their extents. Finally, the elements of a class
are homogeneous up to inclusion polymorphism while a col-
lection may be heterogeneous in the sense that it can contain
objects which may be of different types. There is no equiv-
alent of shallow extent for collections.

We define class as a subtype of collection. This intro-
duces a clean semantics between the two and allows the
model to utilize both constructs in an effective manner. For
example, the targets and results of queries are typed col-
lections of objects. This means targets also include classes
because of the specialization of classes on collections. This
approach provides great flexibility and expressiveness in for-
mulating queries and gives closure to the query model which
is often regarded as an important feature [YO91].

Two other fundamental notions are behaviors and the
functions (known as methods in other models) that imple-
ment them. We clearly separate the definition of a behav-
ior from its possible implementations (functions/methods).
The benefit of this approach is that common behaviors over
different types can have a different implementation for each
of the types. This is in direct support for behavior overload-
ing and late binding of implementations to behaviors. These
are recognized as major advantages of object-oriented com-
puting.

The semantics of every operation on an object is specified
by a behavior defined on its type. A function implements the
semantics of a behavior. The implementation of a particular
behavior may vary over the types which support it. How-
ever, the semantics of the behavior remain consistent over all
types supporting that behavior. There are two kinds of im-
plementations for behaviors. A computed function consists
of runtime calls to executable code and a stored function is
a reference to an existing object in the objectbase. The uni-
formity of TIGUKAT considers each behavior application as
the invocation of a function, regardless of whether the func-
tion is stored or computed. Functions are examined more
closely in Section 3. We show that queries are specialized
functions and therefore carry all the semantics of function
objects, meaning they can be used as implementations of
behaviors.

3 Query Model Overview

An identifying characteristic of the TIGUKAT query model
is that it is a direct extension to the object model. In other
words, it is defined by type and behavior extensions to the
primitive model. We define a type T_query as a subtype
of T_function in the primitive type system as illustrated in
Figure 1. This means that queries have the status of first-
class objects and inherit all the behaviors and semantics of
objects. Moreover, queries are functions and can be used as
implementations of behaviors, they can be compiled, they
can be executed and so on.

Functions have source code associated with them and
the source code for a query is a TQL statement as defined
in Section 5. Functions have a behavior B_compile which
compiles the code. For a query, this involves translating
the query statement into an algebra tree, optimizing it and

[ | T-function

| T_query

T_object

Figure 1: Query type extension to primitive type system.

generating an execution plan. Functions have a behavior
B_execute which executes the compiled code. In general,
for a query this means submitting the execution plan to the
storage manager for processing. Furthermore, queries have
specialized behaviors such as B_result which is a reference to
the materialized query result (i.e., the actual result collec-
tion itself). If this result is made persistent, then the query is
said to be stored and in some cases need not be re-evaluated
the next time it is called upon to B_execute itself. Other
behaviors relating to the extensible query optimizer include
B_initialPT and B_optimizedPT for accessing the initial and
optimized processing trees; B_search-strategy for accessing
the search strategy used for optimization; B_transformations
for accessing the list of transformation rules used during
optimization; B_input-types for accessing the types of the
operand collections; B_output-type for accessing the type of
the result collection; and several other behaviors for keeping
various statistics about queries.

Incorporating queries as a specialization of functions is a
very natural and uniform way of extending the object model
to include declarative query capabilities. The major benefits
of this approach are as follows:

1. Queries are first-class objects, meaning they support
the uniform semantics of objects, they are maintained
within the objectbase as another kind of object and
they are accessible through the behavioral paradigm
of the object model.

2. Since queries are objects, they can be queried and can
be operated upon by other behaviors. This is useful in
generating statistics about the performance of queries
and in defining a uniform extensible query optimizer.

3. Queries are uniformly integrated with the operational
semantics of the model and thus, queries can be used as
implementations of behaviors (i.e., the result of apply-
ing a behavior to an object can trigger the execution
of a query).

4. The query model is extensible in a uniform way since
the type T_query can be further specialized by sub-
typing. This can be used to dichotomize the class of
queries into additional subclasses, each with its own
unique characteristics, and to incrementally develop
the characteristics of new kinds of queries as they are
discovered. For example, we can subtype T_query into
T_adhocQuery and T_productionQuery and then define
different evaluation strategies for both. Ad hoc queries
may be interpreted without incurring high compile-
time optimization strategies while production queries
are usually compiled once and then executed many
times.
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The languages for the query model include a complete
object calculus, and equivalent object algebra and an SQL-
like user language.

The user query language (TQL) has syntax based on the
SQL select-from-where structure, and formal semantics de-
fined by the object calculus. Thus, it combines the power of
the relational query languages with object-oriented features.

The calculus has a logical foundation and its expressive
power is outlined by the following characteristics. Tt de-
fines predicates on collections (essentially sets) of objects
and returns collections of objects as results which gives the
language closure. Tt incorporates the behavioral paradigm
of the object model and allows the retrieval of objects using
nested behavior applications, sometimes referred to as path
expressions or implicit joins. It supports both existential
and universal quantification over collections. It has rigorous
definitions of safety (based on the evaluable class of queries)
and typing which are compile time checkable. Tt supports
controlled creation and integration of new collections, types
and objects into the existing schema.

Like the calculus, the algebra is closed on collections. Al-
gebraic operators are modeled as behaviors on the primitive
type T_collection. They operate on collections and return
a collection as a result. Thus, the algebra has a behav-
ioral/functional basis as opposed to the logical foundation
of the calculus. The composition over these behaviors brings
closure to the algebra.

A desirable property of an object query model is that
the algebra and calculus be equivalent in expressive power,
meaning that all queries expressed in one language can also
be expressed in the other. Space limitations do not allow us
to include them here, but in [PL.OS93] we prove the equiv-
alence of our object calculus and algebra in both directions
and present the reduction of the user query language to the
calculus. Moreover, the safety of our languages is proven in
that report as well.

4 The Object Calculus

Tt is well recognized that a declarative query facility is an
essential component of any database management system;
object-oriented systems are no exception. In this section,
we present a high-level object calculus with first-order se-
mantics. In order to maintain the uniformity of the behav-
ioral object model within the query model, the behavioral
abstraction paradigm is carried through into the calculus.
The logical foundation of the calculus includes a function
symbol to incorporate the behavioral nature of the object
model. This allows the use of very general path expres-
sions in the calculus. The safety of our calculus is based on
the evaluable class of queries [GT91] which is arguably the
largest decidable subclass of the domain independent class
[Mak81]. We extend this class by making use of object gen-
erators in queries which alleviates the need for explicit range
expressions for each variable. For a complete discussion of
safety in TIGUKAT see [PLOS93].

The alphabet of the calculus consists of object constants
(a,b, c,d), object variables (o, p, ¢, u, v, z, y, z), monadic pred-
icates (C, P, @), dyadic predicates (=, #, €, &), an n-ary pred-
icate (Fwval), logical connectives (3,V,A,V, =), a function
symbol (#) and delimiters (& ( ) ,). The object constants,
object variables, monadic predicates and function symbol
may be subscripted (e.g., as,0:, Cn, B1,etc.). In addition,
we adopt a vector notation 3 to denote a countably infinite
list of symbols s1, s2,..., 38, where n > 0.

From object constants and object variables we develop
the syntax and semantics of the function symbol £ called a
behavioral specification (Bspec). A term is an object con-
stant, an object variable or a Bspec. A Bspec is an n+2-ary
function 6(5,1),15_) where s and each ¢; denote terms and
where b is an object constant. For n = 0 we use f(s,b)
without loss of generality. A ground term is a term con-
sisting of an object constant or any term composed from
ground terms. From now on, any symbol defined as denot-
ing an object constant, including symbols a, b, ¢, d, denote
ground terms as well. Any term that is not a ground term
is called a wvariable term.

The ordered list of terms s,b,7 is considered to be be-
haviorally consistent if and only if b is an object constant
denoting a behavior, the type of the object denoted by s
defines behavior b as part of its interface, { is compatible
with the arity of behavior b, and the types of the objects
denoted by i are compatible with the argument types of be-
havior b. A Bspec f(s,b, i) is consistent if and only if s,b,1
is behaviorally consistent.

The “evaluation” of a consistent Bspec involves applying
the behavior b to the object denoted by term s using objects
denoted by terms f as arguments. The “result” of Bspec
evaluation denotes an object in the objectbase. Since Bspecs
denote objects, they have a type (and a class) that are in
the objectbase as well.

Bspec evaluation has the following logical foundation.
We introduce the n+3-ary predicate Eval(R,s,b,f) as an
axiom in the language such that Eval(R,s,b,i) is true if
and only if R denotes the “result” of applyin_g behavior b to
the object denoted by term s using terms ¢ as arguments.
The function symbol (s, b,t_> is a logical representation of
R. The Fwval predicate also serves as an enforcement of the
consistency property of Bspecs. From now on we consider
only those Bspecs that are consistent.

Bspecs may be composed. This provides the capability
of building path expressions in queries. For example, given
object constants David, B_worksFor and B_budget where
David is an employee, B_worksFor is defined for employees
and B_budget is defined for departments, we can compose
the Bspec 8(8(David, B_worksFor), B_budget) which de-
notes the object representing the annual budget of the de-
partment that David works for.

For brevity, we recast the syntax of Bspecs into the
dot notation as s.b(f} which we intend as being semanti-
cally equivalent to the original specification. If behavior b
does not require any arguments, then the notation simpli-
fies to s.b. The previous example can then be represented as
David. B_worksFor. B_budget assuming left-associativity of
behavior applications. Parenthesis may be used to change
the order of precedence. Some other equivalent syntax, such
as function application b(s, t_> which is popular in other lan-
guages, could have been chosen instead.

As shown by the above example, many path expression
formations often include a sequence of behaviors with the
semantics that the result of the first behavior be used as the
input to the second and so on. We call such a sequence of
multiple operations a mop [SO90] which is a Bspec. We
introduce the multi-operation dot notation <5>.b1.b3...bm
to denote a multi-operation resulting in the application of
behavior object constants b1.b2...b,, using objects denoted
by terms § as arguments. Furthermore, <5>.F is used as
a shorthand to denote a multi-operation where the number
and ordering of the behaviors are immaterial.

The atoms of the calculus consist of the following;:
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Range Atom: C(o0) is a range atom for o where C corre-
sponds to a unary predicate representing a collection
and o denotes an object variable. A range atom asserts
true if and only if 0o denotes an object in collection C.
When C defines a class, it denotes the deep extent of
the class and we extend the notation to include C* (o)
which asserts true if and only if o denotes an object
in the shallow extent of the class. One may think of
C7 as a separate monadic predicate for specifying the
shallow range of o.

Equality Atom: s = ¢ is a built-in predicate called an
equality atom where s and t are terms. The predicate
asserts that the object denoted by s is object identity
equal to the object denoted by ¢. As a syntactical con-
venience, we simplify the equality atom specification
s = true where s is boolean, to just s and s = false
to —=s. The built-in predicate s # t is the complement
of equality.

Membership Atom: s € ¢ is a built-in predicate called a
membership atom where s and ¢ are terms and ¢ is a
term denoting a collection. The predicate asserts true
if and only if the object denoted by s is an element
of the collection denoted by ¢. The built-in predicate
s & t is the complement of membership.

Generating Atom: An equality atom of the form o = ¢ or
a membership atom o € ¢, where o0 is an object variable
and t is an appropriate term for the atom in which o
does not appear, are called generating atoms for o.
They are so named because the object denotations for
o can be generated from t.

A ground atom is an atom that contains only ground
terms. A literal is either an atom or a negated atom. A
ground literal is a literal whose atom is a ground atom.

The choice of atoms may seem restrictive when compared
to other calculi such as the tuple relational calculus which
allows a greater variety of comparison predicates including
=,<,<,>, and >. An identifying characteristic of our cal-
culus is that it is strictly behavioral and does not allow ex-
plicit value based comparisons of objects or its subcompo-
nents. Thus, operations such as <, >, >, < must be defined
as behaviors on the respective types of objects that are to
be compared. The only comparison predicate defined is that
of object identity equality. However, type implementors can
specialize this behavior for their types in order to define a
form of equality (including value based comparisons) that is
of most utility to them. For example, we define a form of
“structural equality” on cartesian product types that com-
pares two product objects based on the isomorphic mappings
of their respective component objects.

From atoms, first-order well-formed-formula or simply
formula (abbreviated WFF) are defined in the usual way
using logical connectives 3, V, A,V and —. The concepts of
free and bound object variables are also defined in the usual
way.

Several variations of queries may be formed. One class
of queries deals only with behaviors that are without side-
effects. A behavior is said to be side-effect free if it does not
modify the state of any object or create new objects during
its execution. This property is too restrictive in the context
of our model since all operations (including the algebraic op-
erators) are uniformly managed as behaviors. At minimum,
a query will always return a new collection as a result and
in certain cases will generate a new type for the collection

as well. Thus, a small set of predefined behaviors, labelled
as algebraic operators, will manage the controlled creation
of collection and type objects as their side effects. It is a
requirement of our calculus that all user-defined behaviors
be side-effect free.

A distinction is commonly made [SS90] between object
preserving and object creating operations. An object pre-
serving operator produces results containing only existing
objects from an objectbase. That is, it does not create or
modify objects in any way. The query formalism of Straube
and Ozsu [5090] only considered operations of the object-
preserving kind. On the other hand, object creating opera-
tors allow for the “taking apart” and “putting together” of
objects into various new structures, with new identity. The
objects created (especially persistent objects) must be inte-
grated into the underlying type system, including any de-
rived types or classes necessary for the consistent existence
of these new objects.

The terms object-preserving and object-creating require
further clarification in the context of a uniform object model
like TIGUKAT. Queries (at minimum) always create and re-
turn a new collection of objects. Furthermore, a query may
create a new type object to go along with the collection if a
proper type does not already exist. Therefore, all queries are
object-creating in one sense. We make the following distinc-
tion between queries: if the result collection is formed from
existing objects in the objectbase, the query is called target-
preserving; otherwise the query is called target-creating.

A target-preserving query is an object calculus expression
of the form {¢ | 1} where ¢ is a target term consisting of a
single variable, say o, possibly indexed by a set of behaviors,
1 is a WFF with o as the only free variable, and all behavior
denotations in the expression are side-effect free.

Indexed variables are of the form o[B] where B is a set of
object constants denoting behaviors defined on the type of
0. The semantics of indexed terms is to project over the be-
haviors in B for o (possibly) creating a new type. Following
a projection, only the behaviors given in B are applicable to
objects in the result collection of the query.

Target-preserving queries may seem, at first glance, to be
somewhat simplistic and too restrictive, but this form sup-
ports a wide variety of useful queries. For example, assume
finite classes C_dept and C_emp where C_emp objects
have behaviors B_dept and B_age defined on them. The
following target-preserving query returns a collection of de-
partment objects that have senior citizens working for them:

{o | Cdept(o) A Ip(C_emp(p)
A o=p.B_dept A <p,65>.B_age.B_greaterThan) }

A target-creating query is an object calculus expression
of the form {¢1,...,tx | ¥} where the set of variables appear-
ing in (possibly indexed) target terms t1, ..., ¢ is precisely
the set of free variables, say &, in the WFF . This form
is a generalization of the target-preserving kind by allowing
k > 2 target terms over & distinct object variables. The
result of such a query is a collection of product objects. Say
in the previous example we wanted to return (department,
employee) pairs instead of just departments and that the re-
turned employee objects project over behavior B_age. The
target-creating query that produces this result is as follows:

{ o,p[B_age] | C_dept(o) A C_emp(p)
A o=p.B_dept A <p,65>.B_age.B_greaterThan }

Additional examples are presented in Section 7.

Copyright ©1993 by the Association for Computing Machinery, Inc.

Appears in Proc. of the Second Int’l Conf. on Information and Knowledge Management (CIKM’93), pages 403-412, November 1993.



5 The User Language

The main function of the TIGUKAT language is to sup-
port the definition, manipulation and retrieval of objects in
an objectbase. The language consists of three parts: the
TIGUKAT Definition Language (TDL) which supports the
definition of metaobjects (types, collections, classes, behav-
iors and functions), the TIGUKAT Query Language (TQL)
which is used to manipulate and retrieve objects, and the
TIGUKAT Control Language (TCL) which supports the ses-
sion specific operations (open, close, save, etc.). Only TQL
is presented in this paper; the complete specification of all
languages is given in [Lip93, PL.OS93].

TQL is based on the SQL paradigm. We adopt this
paradigm for various reasons. Most importantly, SQL is ac-
cepted as a standard query language in relational databases,
and current work on SQL3 attempts to extend its syntax
and semantics to fulfill requirements of object-oriented sys-
tems [Gal92]. The semantics of TQL is defined in terms
of the object calculus. In fact, there is a complete reduc-
tion from TQL to the object calculus. In addition, TQL
accepts path expressions (implicit joins [KBCT89]) in the
select, from and where clauses. Object equality is defined
on the primitive type T_object, thus explicit joins are also
supported by TQL. The results of queries are queryable,
since queries operate on collections and always return finite
collections as results. Query results can also be used in the
from and where clauses of other queries (nested queries).
Finally, objects can be queried regardless of whether they
are persistent or transient.

We note that the syntax for the application of aggre-
gate functions is not explicitly supported in the current im-
plementation of TQL. However, as the underlying model is
purely behavioral, these functions are defined as behaviors
on the T_collection primitive type and can be applied to
any collection including those returned as a result of a query.

There are four basic TQL operations: select, insert,
delete, and update, and three binary operations: union,
minus, and intersect. In this paper, we only discuss the
select, union, minus, and intersect statements.

The basic query statement of TQL is the select statement
which has the following syntax®:

select <object variable list>

[into [persistent [all]] <collection name>]
from <range variable list>

[where <boolean formula>]

The select clause in this statement identifies objects that
are to be returned in a new collection. There can be one or
more object variables of different formats (constant, vari-
ables, path expressions or index variables) in this clause.
They correspond to free variables in object calculus formu-
las. The into clause declares a reference to a new collection
which may be made persistent. If the into clause is not spec-
ified, a new transient collection is created, but there is no
reference to it. The from clause declares the ranges of ob-
ject variables in the select and where clauses. Every object
variable can range over an existing collection or a collection
returned as a result of a subquery where a subquery can
either be given as a select statement or as a reference to a

5The notation used throughout this section is as follows: all bold
words and characters correspond to terminal symbols of the language
(keywords, special characters, etc.); nonterminal symbols are enclosed
between ‘<’ and ‘>’; a vertical bar ‘|’ separates alternatives; and the
square brackets [’, ]’ enclose optional material which consists of one
or more items separated by vertical bars.

query object. Thus, a range variable in the from clause is
of the form:

<range variable>: <id list> in <collection reference> [+]
<collection reference>: <term> | ( <subquery>)

Note that the collection reference in the range variable
definition can be followed by a plus ‘4’ which refers to the
shallow extent when the collection reference is a class. The
default is deep extent for classes. The id list is a list of
object variables appearing in the select clause and the term
is either a constant reference, a variable reference or a path
expression.

The where clause defines a boolean formula which must
be satisfied by objects returned by a query. Boolean formu-
las have the following syntax:

<boolean formula>: <atom>
| not <boolean formula>
| <boolean formula> and <boolean formula>
| <boolean formula> or <boolean formula>
| ( <boolean formula> )
| <exists predicate>
| <forAll predicate>
| <boolean path expression>

where an atom is defined as:

<atom>: <term> = <term>
| <term> in <collection reference> [+]

and term is a variable reference, a constant reference or a
path expression.

Two special predicates are added to TQL boolean for-
mulas to represent existential and universal quantification.
The existential quantifier is expressed by the exists predicate
which is of the form:

exists <collection reference>

The exists predicate is true if the referenced collection is not
empty. The universal quantifier is expressed by the forAll
predicate which has the structure:

forAll <range variable list> <boolean formula>

The syntax of the range variable list is the same as in the
from clause of the select statement. Tt defines variables
which range over specified collections. The boolean formula
is evaluated for every possible binding of the variables in
this list. Thus, the entire forAll predicate is true, if for ev-
ery element in every collection in the range variable list, the
boolean formula is satisfied.

The last part of the boolean formula definition is the
boolean path expression which is equivalent to:

<path expression> = TRUE|FALSE

where the path expression is the TQL equivalent of a Bspec.
However, to avoid such an artificial construct, we include a
boolean path expression in the definition of a TQIL formula
under two conditions. First, all behaviors in the expression
must be side-effect-free and second, the result type of the
path expression must be boolean.

TQL supports three binary operations: union, minus,
and intersect. The syntax of these statements is as follows:

<collection reference> union < collection reference>
<collection reference> minus < collection reference>
<collection reference> intersect <collection reference>

TQL has a proven equivalence to the formal languages
making it easy to perform logical transformations and argue
about its safety. The theorems and proofs of equivalence

can be found in [Lip93, PLOS93].
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6 The Object Algebra

The underlying framework of the object algebra and calculus
are essentially the same. However, an important difference
is that the algebra has a functional basis as opposed to the
logical foundation of the calculus. In the algebra, names are
used as placeholders for collections of objects with the ap-
propriate types. The predicates =,#, €, ¢ and connectives
A,V,= are handled as boolean functions. There is a small
set of well-defined functions (the algebraic operators) that
provide meaningful iterations over collections and can be
composed to form queries (existential and universal quan-
tification are handled by composing these operators). Thus,
a query is a functional expression to be evaluated and the
algebra is a functional language.

Operands and results of the object algebra operators are
typed collections of objects. Thus, the algebra is closed since
the result of any operator may be used as the operand of
another. Let ® represent an operator in the algebra. The
notation P ® (Q1,...,Qy) is used for expressions where P
and each @); are names for typed collections of objects. They
represent the arguments to ®. When n = 1 we use P ¢ @Q
and when n = 0 we use P ® without loss of generality.
The collections represented by P and @; may be names for
base collections or the result of an algebraic subexpression.
Since the model supports substitutability, any specialization
of collection, including classes, may be used as an operand.
Similar to the range predicates of the calculus, we define P+
to denote the shallow extent when P is the name for a class.

Some algebraic operators are qualified by a boolean-valued
formula (i.e., a predicate). A predicate F is a boolean-
valued functional expression that is composed from Bspecs,
mops and the functions for = #, €, & A,V,~. The argu-
ments to F' are permutations of the members of the operand
collections for the algebraic operator that F' is defined on.
The arguments of predicate F' must be type consistent with
the operand collections. Predicate qualified operators are
written as P ®p (Q1,...,Qn) where F is a predicate with
arguments, say p,qi, ..., qn, that range over the elements of
collections P, Q1, ..., Q, respectively.

The object algebra defines both target-preserving and
target-creating operators. The target-preserving operators
are as follows:

Set Operations The typical set union, difference and
intersection operators are defined. In addition, a
collapse operator is defined for flattening collections
of collections.

Select (denoted P op (Q1,...,Qn)): Select is a higher
order operation accepting a function, the predicate
F, and the n+41-ary collections P, Q1,...,Q, as ar-
guments. The result collection contains objects from
P corresponding to the p component of each permuta-
tion <p, q1,...,qn> that satisfies F.

Map (denoted Q1 >mop (Q2,...,Qxn)): where mop is a
side-effect free behavior application that is type con-
sistent with the membership types of Q1,Q2,..., Q.
Map applies the behaviors of mop to each permuta-
tion of objects <¢1,¢2,...,¢n>. The results of the
application are returned in the result collection.

Project (denoted P I): where B is a collection of be-
haviors with the restriction that it be a subset of the
behaviors defined on the membership type of P. The
B collection is automatically unioned with the behav-
iors of type T_object in order to ensure consistency.

The result collection contains objects of P, but with
the membership type coinciding with the behaviors of
B. The B collection has no impact on which objects
appear in the result collection of the query. Tt is only
important during the final type assignment which oc-
curs at type inferencing time after the extent of the
query has been produced. This form of project differs
from the traditional one in that it does not project
over the structure of objects, but rather over their be-
havioral semantics.

The full object algebra includes target-creating operators
in order to provide necessary object formation operations.
The result of these operations is a collection of new objects
that are object identity distinguishable from the ones in the
argument collections. The primary target-creating operator
is product:

Product (denoted Q1 X -+ x @Qy): where n > 2. Product
produces a collection containing product objects cre-
ated from each permutation <g¢i,...,¢,> such that
component ¢; is an object from ;. Product may ini-
tiate the creation of a new type along with a new class
to maintain the product objects.

If the mop of a map operator is not side-effect free and
creates new objects (e.g., it may contain an algebraic oper-
ation), then the map operation is target-creating.

The above collection of operators form the primitive al-
gebra (some refer to this as a physical algebra). They are
fundamental in supporting the expressive power of the cal-
culus and other expressions can be defined in terms of them.
We add the following operators to the primitive algebra and
call it the extended algebra (some call this a logical alge-
bra). These operators provide useful functionality, general-
ize the expressive power of the algebra and are important
for higher-level optimizations [SO90].

Join (denoted P Mg (Q1,...,Qn)): where n > 1. Join
produces a collection of product objects created from
each permutation <p,qi, ..., ¢,> that satisfies F.

Generate Join (denoted @1 vg (Q2,...,Qn)): where g is

a generating atom of the form o § < ¢ > b (where
6 is one of = or €) over the elements of collections
Q1,Q2,...,Qn. Generate join produces a collection of
product objects created from each permutation of the
¢;’s and extended by an object o in the following way.
If 6 is =, the result contains product objects of the
form <q1,q¢2,...,qn,<q1,q2,...,qn>.b> for each per-
mutation of the ¢;’s (i.e., each product object is a per-
mutation of the ¢;’s extended by the result of the mop
for that permutation). If 4 is €, the result contains
product objects <qi1,¢q2,...,gn,0> for each permuta-
tion of the ¢;’s and each o €<q1, ¢, ..., qn>.g (i.e., for
a permutation of the ¢;’s and for each member o of the
collection resulting from the mop <q¢1,¢2,...,¢n> .g,
a product object < qi,q2,...,qn,0> is created as a
member of the result collection).

Reduce (denoted PAg): where P is a collection of prod-
uct objects and & is a list representing symbolic refer-
ences to the component domains of the product. The
reduce operator has the effect of discarding the & com-
ponents of the objects in P. That is, product objects
of the form <p1,...,pi, 8, pit1,...,Ppn> are mapped
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to <pi,...,Pi,Pit1,- .-, Ppn>. This is similar to the re-
lational projection operator except that the specified
components are removed. If P is not a product object,
the empty collection is produced.

7 Example Objectbase

In this section, we present some examples on a geographic
information system (GIS) objectbase to demonstrate the
power of the query model and its languages. This exam-
ple is selected because it is among the application domains
which can potentially benefit from the advanced features
offered by object-oriented technology.

A type lattice for a simplified GIS is given in Figure 2.
The example includes the root types of the various sub-
lattices from the primitive type system to illustrate their
relative position in an extended application lattice. The
GIS example defines abstract types for representing infor-
mation on people and their dwellings. These include the
types T_person, T_dwelling and T_house. Geographic types
to store information about the locations of dwellings and
their surrounding areas are defined. These include the type
T_location, the type T_zone along with its subtypes which
categorize the various zones of a geographic area, and the
type T_map which defines a collection of zones suitable for
displaying in a window. Displayable types for presenting in-
formation on a graphical device are defined. These include
the types T_display and T_window which are application in-
dependent, along with the type T_map which is the only GIS
application specific object that can be displayed. Finally,
the type T_shape defines the geometric shape of the regions
representing the various zones. For our purposes we only
use this general type. In more practical applications this
type would be specialized into subtypes representing poly-
gons, polygons with holes, rectangles and so on. Table 1 lists
the signatures of the behaviors defined on the GIS specific
types. The specification T_set(T") where T is a type is used
to denote a collection type whose members are of type T.

The following examples illustrate possible queries on the
GIS. They are first expressed in TQL (T:), followed by the
corresponding object calculus expression (C:) and then the
equivalent algebraic expression (A:). In the algebraic ex-
pressions, we subscript an operand collection by the variable
which ranges over it. This variable is used as a symbolic
reference to the elements of the collection. We also use
symbols R1, R2 as temporary results and “—” for assign-
ment. Furthermore, we use the arithmetic notation for op-
erations o.B_greaterThan(p), o.B_elementOf (p), etc., in-
stead of the boolean path expressions.

Example 7.1 Return land zones valued over $100,000 or
cover an area over 1000 units.

T: select o

from o in C_land

where (o0.B_value() > 100000) or (o.B_area() > 1000)
C: {o | Cland(o)

A (o.B_value > 100000 V 0.B_area > 1000)}

A: Clland, %10.B_value>100000 v o.B_areas1000]
Example 7.2 Return all zones which have people living in
them (the zones are generated from person objects).

T: select o
from ¢ in C_person
where (o = ¢.B_residence().B_inZone())
C: {o | 3¢(C_person(q) A o = q.B_residence.B_inZone)}

| Type Signatures
T_location B_latitude: T_real
B_longitude: T_real
T_display B_display: T.-display
T_window B_resize: T_window
B_drag: T_window
T_shape
T_zone B_title: T_string
B_origin: T location
B_region: T_shape
B_area: T_real
B_proximity: T_zone — T_real
T_map B_resolution: T_real
B_orientation: T_real
B_zones: T_set(T_zone)
T_land B_value: T_real
T_water B_volume: T_real
T_transport B_efficiency: T_real
T_altitude B_low: T_integer
B_high: T_integer
T_person B_name: T_string
B_birthDate: T_date
B_age: Tmatural
B_residence: T_dwelling
B_spouse: T_person
B_children: T_person — T_set{T_person)
T_dwelling B_address: T_string
B_inZone: T land
T_house B_inZone: T_developed
B_mortgage: T_real

Table 1: Signatures of example specific types in Figure 2.

A: (C_personq To=q B_residence B_inZone ) Ba

Example 7.3 Return the maps with areas where senior cit-
izens live.

T: select o
from o in C_map
where exists ( select p
from p in C_person, ¢ in C_dwelling
where (p.B_age() > 65 and ¢ = p.B_residence()
and ¢.B_inZone() € 0.B_zones()))
C: { o | Cmap(o) A Ip(C_person(p)
A Jg(C_dwelling(q) A p.B_age > 65
A g = p.B_residence A q.B_inZone € 0.B_zones))}

A: Rl +— C_person,, 7, B_agexes

(C_mapO Mp (C_dwelling,, R1p>) Npg
where F'is the predicate:
g = p.B_residence A q.B_inZone € 0.B_zones

Example 7.4 Return all maps that describe areas strictly
above 5000 feet.

T: select o
from o in C_map
where forAll p in ( select ¢
from ¢ in C_altitude
where ¢ € 0.B_zones())
p.B_low() > 5000
C: { o | C_map(o) A Vp(—C_altitude(p)
V =(p € 0.B_zones) v p.B_low > 5000)}.

A: R1 — C_altitude, T (. B_lows5000)

C_map — ((C_mapO X Rlp) Ap)

peo.B_zones
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T_window
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Figure 2: Type lattice for a simple geographic information system.

Example 7.5 Return the dollar values of the zones that
people live in.

T: select p.B_residence().B_inZone().B_value()
from p in C_person
C: { o | Ip(C_person(p)
A o = p.B_residence.B_inZone.B_value)}.

:p.B_residence.B_inZone.B_Value) P
This has a simplier form using map as follows:

Coperson, > p residence B_inZone B_value

A: (C_personp ~°

Example 7.6 Return the zones that are part of some map
and are within 10 units from water. Project the result over
B_title and B_area.

T: select o[B_title, B_area]
from p in C_map, o in p.B_zones, ¢ in C_water
where o.B_proximity(q) < 10
C: { o[B_title, B_area)] | 3p3¢(C_map(p) A C_water(q)
A o € p.B_zones A 0. B_proximity(q) < 10)}.

A: Rl — C_mapp vsep.B_Zones

R2 — (Rlpyo C_Waterq) FAN

MO.B_proximity(q)ao
R2 HB_title,B_name

Example 7.7 Return pairs consisting of a person and the
title of a map such that the person’s dwelling is in the map.

T: select p, q.B_title()

from p in C_person, ¢ in C_map

where p.B_residence().B_inZone() € ¢q.B_zones()
C: {p,o | F¢(C_person(p) A C_map(q) A o = ¢q.B_title

A p.B_residence.B_inZone € q.B_zones)}

A: (C_personp X @ (C_mapq oo B_title )q,o) YoM
where F'is the predicate:

p.B_residence. B_inZone € ¢q.B_zones

8 Conclusions and Future Work

The development of an efficient and effective query pro-
cessor for an object management system requires a formal
specification of all its components including the user level
language, the object calculus, the object algebra and the
completeness of the languages. In this paper, we present
the framework of the formalization of the TIGUKAT query
model [PLOS93]. This specification is being used as a foun-
dation for implementing the query model.

The query model is defined in a consistent way as type
and behavior extensions to the base object model. This
is a uniform object-oriented approach to developing an ex-
tensible query model that is seamlessly integrated with the
object model. This kind of natural extension is possible due
to the uniformity built into the TIGUKAT object model
which treats everything as a first-class object and allows the
consistent abstraction of an object’s “attributes” into the
uniform semantics of behaviors.

The TIGUKAT Query Language (TQL) is a user-level
language with similarities to the SQL3 standardization ef-
forts [Gal92]. The formal object calculus is a powerful declar-
ative object creating language that incorporates the behav-
ioral paradigm of the object model. Safety is based on
the evaluable class of queries [GT91] which is arguably the
largest decidable subclass of the domain independent class
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[Mak81]. The calculus includes atoms for object restriction
and object generation which extend the evaluable class. The
object algebra includes a complete set of functional oper-
ators that fully support the object-creating nature of the
calculus. The novel operators are the behavioral projection
which is a form of type generalization and the generate join
which extends a join with a mapping of behaviors on the
operand collections. The calculus and algebra are equiva-
lent in expressive power and the reduction from TQL to the
calculus is complete. Object creating languages require the
ability to perform schema evolution because the new objects
may not correspond to any type in the lattice. As part of the
algebra, we define how the operators relate to the schema in
terms of the creation and integration of new types [PL.OS93].

There are a number of ongoing research activities related
to this project. A main memory version of the TIGUKAT
object model has been implemented. We are coupling this
implementation with the EXODUS storage manager [CDV88]
to provide persistence. A compiler for the query model and
user language presented in this paper is being implemented
on top of the object model implementation. Furthermore,
we have completed the design of an extensible query opti-
mizer for the algebra and it too is in the implementation
stage. The optimizer has been developed as a uniform ex-
tension to the object model and will therefore be integrated
just like the query model.

Another issue we are addressing is the definition of up-
date semantics for the model. We have defined the syntax
and semantics of a TIGUKAT Definition Language (TDL)
which allows for the consistent creation of schema such as
types, classes and collections. Furthermore, we have also
defined TQL statements insert, update and delete to per-
form updates on the objectbase and are currently working
out the semantics of these constructs. A related issue in-
volves handling behaviors with side effects and we are hope-
ful in developing some rules for dealing with these in our
languages.
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