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Abstract
We describe the TIGUKAT object management sys-
tem that is under development at the Laboratory for
Database Systems Research of the University of Al-
berta. TIGUKAT has a novel object model whose
identifying characteristics include a purely behav-
ioral semantics and a uniform approach to objects.
Everything in the system is a first-class object with
well-defined behavior. The computational model
supported is one of applying behaviors to objects. A
query model has been developed for TIGUKAT that
is complete with a formal object calculus, an equiva-
lent object algebra and an object SQL language. The
uniformity of the model permits modeling queries as
objects, opening up the possibility of developing an
extensible query optimizer. A prototype implemen-
tation of TIGUKAT, including the language and its
optimizer is ongoing.

1 Introduction
The penetration of data management technology into
new application areas with different requirements
than business data processing has generated a search
for appropriate data models and system architec-
tures to support these requirements. Some exam-
ples of these application areas are engineering de-
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sign systems, knowledge-base system applications,
office information systems, and imaging systems. It
is now commonly accepted that relational database
management systems (RDBMSs), with their flat rep-
resentation of data, are not sufficiently powerful to
support these applications. The fundamental diffi-
culty relates to the recognized semantic mismatch
between the entities that are commonly encountered
in these application domains and the representation
provided by the underlying DBMS. Specifically, the
more important shortcomings of the relational model
in meeting the requirements of these applications can
be listed as follows [27]:

1. Relational systems deal with a single object
type: a relation. A relation is used to model
different real-world objects, but the semantics
of this association is not part of the database.
Furthermore, the attributes of a relation only
from simple domains (numeric, character, date,
etc.). The advanced applicationscited above re-
quire explicit storage and manipulation of more
abstract types (e.g., images, design documents,
etc.) and the ability for the users to define their
own application-specific types.

2. Additionally, relational systems capture only
implicitly the relationships between the objects
that various relations represent. These relation-
ships are buried in the value relationships be-
tween attributes of relations. Thus, the schema
is flat, consisting of a collection of relations. In
applications where real-world entities are ex-
plicitly represented as abstract types, these rela-
tionships must be brought out explicitly, which
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requires rich type systems for handling com-
plex object structures with nested objects (e.g.,
a vehicle object containing an engine object).

3. Relational systems provide a declarative and
(arguably) simple language for accessing the
data. The applications mentioned above re-
quire richer languages that overcome the well-
known “impedance mismatch” problem. This
problem arises because of the differences in the
level of abstraction between the relational lan-
guages and the programming languages with
which they interact.

Object-oriented technology is the topic of intense
study as the major candidate to successfully meet
the requirements of advanced applications that re-
quire data management services. At the Laboratory
for Database Systems Research of the University of
Alberta, we are engaged in the design and devel-
opment of an object-oriented DBMS (OODBMS),
called TIGUKAT,1 which follows the object-oriented
methodology in its own design. Consequently, all
database functionality is incorporated within an ex-
tensible object model.

Typically, OODBMS development has followed
two streams in the past. The first is to extend object-
oriented programming languages with DBMS fea-
tures such as persistence and a query facility. The
resulting systems are typically a merger between
object-oriented and relational systems. Out of this
approach there has emerged extensions to C++ (e.g.,
ObjectStore [21] and EXODUS [7]) and SmallTalk
(e.g., GemStone [5]), among others. The second ap-
proach is to develop a language-independent object
model and consistently extend it with DBMS fea-
tures. TIGUKAT follows the second approach along
with ORION [4], O2 [3], and IRIS [11].

TIGUKAT adopts the functional/behavioral ap-
proach to access information about objects. This has
been proposed in some prototypesystems [25, 9, 24],
however, most commercial systems provide some
distinction between the properties (i.e., stored at-
tributes) of an object and methods (i.e., opera-
tions or behaviors) that can be performed on them.
TIGUKAT has a purely behavioral object model
where the user interaction with the system is in terms
of the application of behaviors to objects. In this way,
full abstraction of modeled entities is accomplished

1TIGUKAT (tee-goo-kat) is a term in the language of the
Canadian Inuit people meaning “objects.”

since users do not have to differentiate between at-
tributes and methods. We feel that a purely behav-
ioral approach provides several benefits including
consistency, understandability and portability. These
are the major reasons for developing the behavioral
model of TIGUKAT and for separating behaviors
from their implementations (i.e., functions).

TIGUKAT’s object model is uniform. Everything
in the system, including types, classes, collections,
behaviors, functions as well as meta-information, is a
first-class object with well-defined behavior. Thus,
there is no separation between objects and values,
and the schema information is a natural part of the
database that can be queried just like other objects.
Current systems do not carry uniformity to the extent
that we require for defining the model within itself
and for integrating the query model, query optimizer,
view manager, etc., as type and behavior extensions
to the base model. Thus, we developed TIGUKAT
to be completely uniform by strictly enforcing en-
capsulation of all information, by making behavior
application the only operational semantics, and by
allowing anything that can be described by a type
with well-defined behavior to be an object. We have
shown how the object model, query model, and op-
timizer are described in this way, thereby integrating
them as a single consistent system.

Many commercial OODBMSs are currently
adding declarative query capabilities. There has also
been some theoretical work on formal object query
models [1]. However, the query models of most
OODBMSs describe object-oriented extensions to
the relational query model which does not provide
a good basis for object-oriented development. As a
result, these extensions are usually only informally
defined, and the extent of their functionality is some-
what limited and usually hard to describe. Quite
different from any other system developed to date,
TIGUKAT has a formal object query model incor-
porating both a formal object calculus and an object
algebra with a proven equivalence. Furthermore, we
developed a notion of safety based on the evaluable
class of queries2 [13], and give feasible algorithmic
solutions to determine safety and to translate calcu-
lus expressions to equivalent algebra operators. We
feel that this is a much better basis for implementing
an object query model.

Although lacking in the formal aspects, sev-
eral systems have defined languages for querying

2The evaluable class of queries is arguably the largest decid-
able subclass of domain independent queries.
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a database. There have been programming language
extensions (GemStone/OPAL [5], O2/O2C [10]),
SQL-like query languages with object-oriented ex-
tensions (IRIS/OSQL [16], ORION/SQL-like [18],
O2/RELOOP [8]), and extensions to QUEL (EX-
ODUS/Excess [7]). TIGUKAT incorporates a
complete SQL-like user language called TQL
(TIGUKAT Query Language), an object defini-
tion language called TDL (TIGUKAT Definition
Language) and a control language called TCL
(TIGUKAT Control Language). An identifying
characteristic of our language is that TQL is proven
equivalent to the formal languages, which makes it
easier to perform logical transformations and argue
about its safety.

Query optimization is essential for efficient execu-
tion plans. A lot of research in extending relational
query optimization techniques has been done in re-
cent years (e.g., [31]). A more viable approach is
to use object-oriented design to develop an exten-
sible query optimizer that can evolve and improve
its performance over time. An extensible query op-
timizer is under development for TQL, where the
components of the optimizer such as cost functions,
algebraic transformation rules, and the search strat-
egy (i.e., the heuristics that determine when it is
profitable to apply a certain rule) are all modeled as
objects. Thus, multiple optimization strategies can
be supported in the system, and adding new rules,
heuristics, or cost functions, as well as changing the
strategy used in optimizing a given query, can be
accomplished completely within the model.

In the remainder of this paper, we provide a gen-
eral overview of TIGUKAT, describe our current im-
plementation efforts, and outline our future research
directions. We start, in Section 2, with an overview
of the TIGUKAT object model, presenting the prim-
itive type system and highlighting its important fea-
tures. A simplified geographic information system
(GIS) is also presented as an example database ap-
plication to demonstrate the features of TIGUKAT.
Section 3 includes a discussion of the query model
and the query language TQL. Several examples are
presented to illustrate the features of the model and
TQL. This is followed, in Section 4, with a presen-
tation of the general architecture of the query opti-
mizer as an extension to the primitive object model.
In Section 5, we describe the architecture and cur-
rent implementation status of our prototype. Finally,
in Section 6, we conclude with a discussion of our
current research directions.

2 Object Model

2.1 Object Model Overview
The TIGUKAT object model [30] is defined behav-
iorally with a uniform object semantics. The model
is behavioral in the sense that all access and manipu-
lation of objects is based on the application of behav-
iors to objects. The model is uniform in that every
component of information, including its semantics,
is uniformly modeled as objects with well-defined
behavior. Every element in the model has the status
of a first-class object.

The primitive type system of TIGUKAT is shown
in Figure 1. The primitive objects of the model in-
clude: atomic entities (reals, integers, strings, etc.),
types for defining the common features of objects,
behaviors for specifying the semantics of operations
that may be performed on objects, functions for spec-
ifying implementations of behaviors,3 classes for au-
tomatic grouping of objects based on type,4 and col-
lections for supportinggeneral heterogeneous group-
ings of objects. In the remainder of the paper, the
prefixT refers to a type,C refers to a class,L refers
to a collection, and B refers to a behavior. For exam-
ple, T person is a type reference, C person a class
reference, L seniors a collection reference, B age a
behavior reference, and a reference such as david
without any prefix represents some other application
specific reference. Some primitive types and behav-
iors are elaborated in this paper. For the complete
model definition we refer the reader to [30].

Objects are defined as (identity, state) pairs where
identity represents a unique, immutable object iden-
tity and state represents the information carried by
the object. Thus, the model supports strong object
identity [17]. This does not preclude application
environments from having many references (or de-
notations) to objects, that need not be unique. The
state of an object encapsulates the information car-
ried by that object. Conceptually, every object is a
composite object, meaning every object has refer-
ences (not necessarily implemented as pointers) to
other objects. For example, integers have behaviors
that return objects, but they are not implemented as
pointers.

The access and manipulation of an object’s state
occurs exclusively through the application of behav-

3Behaviors and functions form the support mechanism for
overloading and late binding of behaviors.

4Types and their extents are separate constructs in TIGUKAT.
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Figure 1: Primitive Type System

iors. An important primitive behavior defined on ob-
jects and used in the query model is identity equality,
which compares two object references based solely
on the identities of the objects they denote. This is
the only equality defined by the primitive type sys-
tem. Other notions of equality, such as structural
equality based on object components, can be derived
from identity equality.

The model separates the definition of object char-
acteristics (a type) from the mechanism for main-
taining instances of a particular type (a class). A
type specifies behaviors and encapsulates behavior
implementations and state for objects created using
that type as a template. The behaviors defined by a
type describe the interface to the objects of that type.
Types are organized into a lattice structure using the
notion of subtyping, which promotes software reuse
and incremental development. TIGUKAT supports
multiple subtyping. Thus, the type structure is po-

tentially a directed acyclic graph (DAG). However,
this DAG is converted to a lattice by rooting it at type
T object and liftingwith the base type T null.

A class ties together the notions of type and object
instance. A class is a supplemental but distinct con-
struct, responsible for managing the instances cre-
ated using a specific type as a template. Every class
is uniquely associated with a single type. A type
must have an associated class before instances of
that type can be created. The entire group of objects
of a particular type is known as the extent of the type.
This is separated into the notion ofdeep extent, which
refers to all objects created from the given type or
one of its subtypes, and the notion of shallow extent,
which refers only to those objects created from the
given type without considering its subtypes. In gen-
eral, we use a class specification to mean the deep
extent and explicitly denote the shallow extent with
the suffix ‘ ’ when needed. For example, C person
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denotes all objects of type T person or one of its
subtypes, while denotes only those ob-
jects specifically of type T person.

Objects of a particular type cannot exist with-
out a class and every class is uniquely associated
with a single type. Thus, a fundamental notion of
TIGUKAT is that objects imply classes which imply
types. Another unique feature of classes is that object
creation occurs only through a class. Defining ob-
ject, type, and class in this manner introduces a clear
separation of these concepts. This separation is im-
portant when handling definitions of abstract types5

that don’t have any instances and therefore don’t
need to store any extent information. Other areas
where this separation is useful is in type inferencing
and schema evolution where type information (i.e.,
the schema) is manipulated into new structures and
there is no need to be concerned with the overhead
of classes.

We define a collection as a general user grouping
construct. A collection is similar to a class in that
it groups objects, but it differs in the following re-
spects. First, no object creation may occur through
a collection; object creation occurs only through
classes. Second, an object may exist in any num-
ber of collections, but is a member of the shallow
extent of only one class. Third, the management
of classes is implicit in that the system automati-
cally maintains classes based on the subtype lattice
whereas the management of collections is explicit,
meaning the user is responsible for their extents. Fi-
nally, the elements of a class are homogeneous up to
inclusion polymorphism, while a collection may be
heterogeneous in the sense that it can contain objects
that may be of different types. There is no equivalent
of shallow extent for collections.

We define class as a subtype of collection. This
introduces a clean semantics between the two and
allows the model to use both constructs in an effec-
tive manner. For example, the targets and results of
queries are typed collections of objects. This means
targets also include classes, because of the special-
ization of classes on collections. This approach pro-
vides great flexibility and expressiveness in formu-
lating queries and gives closure to the query model,
which is often regarded as an important feature [32].

Two other fundamental notions are behaviors and
the functions (known as methods in other models)

5These are more commonly known as abstract classes, but
since class has a different meaning in our model we use the term
abstract types instead.

that implement them. We clearly separate the defini-
tion of a behavior from its possible implementations
(functions/methods). The benefit of this approach is
that common behaviors over different types can have
a different implementation for each of the types. This
is direct support for behavior overloading and late
binding of implementations to behaviors. These are
recognized as a major advantage of object-oriented
computing.

The semantics of every operation on an object is
specified by a behavior defined on its type. A func-
tion implements the semantics of a behavior. The
implementation of a particular behavior may vary
over the types that support it. However, the seman-
tics of the behavior remain consistent over all types
supporting the behavior. There are two kinds of im-
plementations for behaviors. A computed function
consists of runtime calls to executable code and a
stored function is a reference to an existing object in
the objectbase. The uniformity of TIGUKAT con-
siders each behavior application as the invocation
of a function, regardless of whether the function is
stored or computed. Functions are examined more
closely in Section 3 where we show that queries are
specialized functions and therefore carry all the se-
mantics of function objects. This has the benefit of
allowing queries to be used as the implementation of
behaviors.

2.2 An Example System
We present a simple geographic information system
(GIS) as a runningexample to demonstrate the power
of TIGUKAT. This example is selected because it is
among the application domains that can potentially
benefit from the advanced features offered by object-
oriented technology.

A type lattice for a simplified GIS is given in Fig-
ure 2. The example includes the root types of the
various sub-lattices from the primitive type system
to illustrate their relative positions in an extended ap-
plication lattice. The GIS example defines abstract
types for representing information on people and
their dwellings. These include the typesT person,
T dwelling, and T house. Geographic types to
store information about the locations of dwellings
and their surrounding areas are defined. These in-
clude the typeT location, the typeT zone along
with its subtypes that categorize the various zones of
a geographic area, and the typeT map, which defines
a collection of zones suitable for displaying in a win-
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Figure 2: Type lattice for a simple geographic information system.

dow. Displayable types for presenting information
on a graphical device are defined. These include
the types T display and T window which are
application independent, along with the type T map,
which is the only GIS application-specific object that
can be displayed. Finally, the type T shape defines
the geometric shape of the regions representing the
various zones. For our purposes we use only this
general type, but in more practical applications this
type would be further specialized into subtypes rep-
resenting polygons, polygons with holes, rectangles,
squares, splines, and so on. Table 1 lists the sig-
natures of the behaviors defined on the GIS specific
types. The specification T coll T where T is a
type is used to denote a collection type whose mem-
bers are of type T.

Type Signatures
T location B latitude: T real

B longitude: T real
T display B display: T display
T window B resize: T window

B drag: T window
T shape
T zone B title: T string

B origin: T location
B region: T shape

B area: T real
B proximity: T zone T real

T map B resolution: T real
B orientation: T real

B zones: T coll T zone
T land B value: T real
T water B volume: T real
T transport B efficiency: T real
T altitude B low: T integer

B high: T integer
T person B name: T string

B birthDate: T date
B age: T natural

B residence: T dwelling
B spouse: T person

B children: T person T coll T person
T dwelling B address: T string

B inZone: T land
T house B inZone: T developed

B mortgage: T real

Table 1: Behavior signatures of GIS specific types.
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3 Query Model and Language

3.1 Query Model Overview
An identifyingcharacteristic of the TIGUKAT query
model is that it is a direct extension to the object
model. In other words, it is defined by type and
behavioral extensions to the primitive model. We
define a typeT query as a subtype ofT function
in the primitive type system as illustrated in Figure 3.
This means that queries have the status of first-class
objects and inherit all the behaviors and semantics
of objects. Moreover, queries are functions and can
be used as implementations of behaviors, they can
be compiled, they can be executed, and so on.

T function T query

T object

Figure 3: Query type extension to primitive type
system.

Functions have source code associated with them
and the source code for a query is a TQL statement
as defined in Section 3.3. Functions have a behavior
B compile that compiles the code. For a query, this
involves translating the query statement into an alge-
bra tree, optimizing it, and generating an execution
plan. Functions have a behavior B execute that exe-
cutes the compiled code. In general, for a query this
means submitting the execution plan to the storage
manager for processing. Furthermore, queries have
specialized behaviors such as B result , which is a
reference to the materialized query result (i.e., the
actual result collection itself). If this result is made
persistent, then the query is said to be stored and
does not need to be re-evaluated the next time it is
called upon to B execute itself. Other behaviors of
a query relating to the extensible query optimizer in-
clude B initialPT and B optimizedPT for accessing
the initial and optimized processing trees, B search-
strategy for accessing the search strategy used for
optimization, B transformations for accessing the
list of transformation rules used during optimization,
B input-types for accessing the types of the operand

collections, B output-type for accessing the type of
the result collection, and several other behaviors for
keeping various statistics about queries.

Incorporating queries as a specialization of func-
tions is a very natural and uniform way of extending
the object model to include declarative query capa-
bilities. The major benefits of this approach are as
follows:

1. Queries are first-class objects, i.e., they support
the uniform semantics of objects, they are main-
tained within the objectbase as another kind of
object, and they are accessible through the be-
havioral paradigm of the object model.

2. Since queries are objects, they can be queried
and can be operated upon by other behaviors.
This is useful in generating statistics about the
performance of queries and in defining a uni-
form extensible query optimizer.

3. Queries are uniformly integrated with the op-
erational semantics of the model and, thus,
queries can be used as implementations of be-
haviors (i.e., the result of applying a behavior to
an object can trigger the execution of a query).

4. The query model is extensible in a uniform way
since the type T query can be further special-
ized by subtyping. This can be used to arrange
the class of queries into additional subclasses,
each with its own unique characteristics, and
to incrementally establish the characteristics of
new kinds of queries as they are developed.
For example, we can subtype T query into
T adhocQuery and T productionQuery
and then define different evaluation strategies
for both. Ad hoc queries may be interpreted
without incurring high compile-time optimiza-
tion strategies, while production queries are
usually compiled once and then executed many
times.

3.2 Formal Query Model
The languages for the query model include a com-
plete object calculus, an equivalent object algebra,
and an SQL-like user language.

The user query language (TQL) has a syntax based
on the SQL select-from-where structure and formal
semantics defined by the object calculus. Thus, it
combines the power of the relational query languages
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with object-oriented features. In this section, we
give a brief overview of the calculus and algebra
(see [28, 29] for additional details). The following
section describes TQL.

Our object calculus has a logical foundation. It
defines predicates on collections (essentially sets)
of objects and a calculus query returns a collection
of objects as a result. This gives the calculus the
property of closure. The calculus incorporates the
behavioral paradigm of the object model and allows
the retrieval of objects using nested behavior appli-
cations, sometimes referred to as path expressions or
implicit joins. It supports both existential anduniver-
sal quantification over collections. It has a rigorous
definition of safety (based on the evaluable class of
queries) and typing that is compile-time checkable.
Moreover, it supports controlled creation and inte-
gration of new collections, types, and objects into
the existing schema.

Like the calculus, our algebra is closed on collec-
tions. Algebraic operators are defined as behaviors
on the primitive type T collection which is part
our uniform approach. These behaviors operate on
collections and return a collection as a result. Thus,
the algebra has a behavioral/functional basis as op-
posed to the logical foundationof the calculus. Com-
position of these behaviors accounts for the closure
of the algebra.

The minimal set of algebraic operators defined in
the system are as follows:

Set Operations The typical set union, difference,
and intersection operators are defined.

Collapse (denoted ): Collapse takes a collec-
tion of collections and performs the extended
union over the element collections of (i.e., it
“flattens” ).

Select (denoted 1 ): This is a pa-
rameterized select operation that returns ob-
jects from the target collection that sat-
isfy the predicate using other collections
( 1 ) as arguments.

Map (denoted 1 mop 2 ): Map ap-
plies a function (denoted ) of arguments
to each combination of objects 1 2
(where ranges over collection ) and re-
turns a collection containing the results of the
function application.

Project (denoted W ): This is a behavioral
project operator that, when applied to collec-
tion , returns the same set of objects, except
that only the behaviors specified in the project
list are applicable to the objects. The result
of this operation may create a supertype of the
type of objects in the .

Product (denoted ): Product returns a collec-
tion of product objects whose components are
created from each permutation of the objects in
the target collections and . Product may
initiate the creation of a new type along with a
new class to maintain the product objects.

The additional operators that add to the expres-
siveness and brevity of the algebra, and provide
many useful opportunities for optimization are as
follows:

Reduce (denoted 1 ): Reduce is similar to
the relational project operator in that it takes a
collection of product objects and eliminates
some of the components ( 1 ) of those
product objects, returning a collection of prod-
uct objects with a smaller degree.

Join (denoted 1 ): Join is a spe-
cial case of Product and produces a collection
containing only those product objects that sat-
isfy a predicate whose arguments range over
collections 1 .

Generate Join (denoted 1 2 ):
Generate join has two possible results based
on the nature of the generating atom ,6 which
is of the form where is one of ,
and the function, which is a function over
the elements of collections 1 . Gen-
erate join produces a collection of product ob-
jects created from each permutation of the ’s
that is extended by an object in the following
way. If is , the mop function is applied to
each permutation of the ’s and the result is
appended to the permutation, which forms the
product object returned in the result collection.
If is , the result of the mop function must be
a collection. Each element of this collection is

6Generatingatoms are definedas part of object calculus, which
we do not specify formally in this paper. Equality atoms of the
form or a membership atom , where is an object
variable, is an appropriate term for the atom, and does not
appear in , are called generating atoms for .
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appended to the permutation and returned as
a product object in the result collection.

A desirable property of an object query model is
that the algebra and calculus be equivalent in expres-
sive power, meaning that all queries expressed in one
language can also be expressed in the other. Space
limitations do not allow us to include them here, but
in [29] we prove the equivalence of our object cal-
culus and algebra in both directions and present the
reduction of the user query language to the calculus.
Moreover, the safety of our languages is also proven
in that report.

3.3 TIGUKAT Query Language
The main function of the TIGUKAT user language is
to support the definition, manipulation, and retrieval
of objects in an object base. The language consists
of three parts: the TIGUKAT Definition Language
(TDL) which supports the definition of metaobjects
(types, collections, classes, behaviors, and func-
tions), the TIGUKAT Query Language (TQL), which
is used to manipulate and retrieve objects, and the
TIGUKAT Control Language (TCL), which supports
the session specific operations (open, close, save,
etc.). Only TQL is presented in this paper; the com-
plete specification of all languages is given in [29].

TQL is based on the SQL paradigm. We adopt
this paradigm for various reasons. Most impor-
tantly, SQL is accepted as the standard language in
relational databases, and current work on SQL3 at-
tempts to extend its syntax and its semantics to fulfill
requirements of object-oriented systems [12]. The
semantics of TQL is defined in terms of the object
calculus. In fact, there is a complete reduction from
TQL to the object calculus. In addition, TQL ex-
tends the basic SQL structure by accepting path ex-
pressions (i.e., implicit joins [19]) in the select, from,
and where clauses. Object equality, defined by the
primitive system, provides support for explicit joins.
The results of queries can be queried, since queries
operate on collections and always return finite col-
lections as results. Therefore, query statements can
be used in the from andwhere clauses of other queries
(i.e., nested queries or subqueries). Furthermore, ob-
jects can be queried regardless of whether they are
persistent or transient. We note that the syntax for
the application of aggregate functions is not explic-
itly supported in the current implementation of TQL.
However, as the underlying model is purely behav-
ioral, these functions may be defined as behaviors

on the primitive type T collection and can be
applied to any collection including those returned as
a result of a query.

There are four basic TQL operations: select, in-
sert, delete, and update, and three binary opera-
tions: union, minus, and intersect. In this paper,
we only discuss the select, union, minus, and inter-
sect statements.

The basic query statement of TQL is the select
statement, which has the following syntax:7

select object variable list
[into [persistent [all]] collection name ]
from range variable list
[where Boolean formula ]

The select clause in this statement identifies the
objects that are to be returned in a new collection.
There can be one or more object variables of differ-
ent formats (constant, variables, path expressions, or
index variables) in this clause. They correspond to
free variables in object calculus formulas. The into
clause declares a reference to a new collection. If
the into clause is not specified, a new collection is
created; however, there is no reference to it. The
from clause declares the range of object variables
appearing in the select and where clauses. The basic
form of the from clause consists of a list of vari-
ables, followed by the keyword in, followed by a
reference to a collection. The where clause defines a
Boolean formula that must be satisfied by objects in
the result of the query. The basic form of the where
clause consists of a number of atoms connected by
logical operations and, or, not. An atom is either
an expression using equality (term = term) or mem-
bership (variable term), where a term is a path
expression or a variable. The following examples
give a feel for the basic select-from-where structure.
A query is first expressed in TQL (T:), followed
by a corresponding object calculus expression (C:),
and then an equivalent algebraic expression (A:). In
the algebraic expressions, we subscript an operand
collection by the variable that ranges over it. This
variable is used as a symbolic reference to the ele-
ments of the collection. We also use symbols 1 2

7All bold words and characters correspond to terminal symbols
of the language (keywords, special characters, etc.). Nonterminal
symbols are enclosed between ‘ ’ and ‘ ’. Vertical bar ‘ ’
separates alternatives. The square brackets ‘ ’, ‘ ’ enclose optional
material which consists of one or more items separated by vertical
bars.
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as temporary results and “ ” for assignment8. Fur-
thermore, we use the arithmetic notation for oper-
ations B greaterThan , B elementOf , etc.,
instead of the Boolean path expressions.

Example 3.1 Return land zones valued over
$100,000 or cover an area over 1000 units.

T: select
from in C land
where B value 100000

or B area 1000
C: C land

B value 100000 B area 1000
A: C land B value 100000 B area 1000

Example 3.2 Return all zones where people live
(the zones are generated from person objects).

T: select
from in C person
where B residence B inZone

C: C person
B residence B inZone

A: C person B residence B inZone

The collection reference in the from clause may
be followed by a plus ‘+’. When the collection ref-
erence is a class, the plus indicates that the shallow
extent of the class is used as the range. In absence
of the plus, the deep extent of the class is used. The
plus has no affect on collections. In Example 3.1, the
deep extent of class C land is used as the range of
. If it were specified as C land , then the shallow

extent would be used.
The range of a variable in the from clause can be

the collection returned as the result of a subquery,
where a subquery can be either given explicitly or as
a reference to a query object. We illustrate the use
of a subquery in the examples below.

Two additional constructs are defined for the
where clause in order to specify existential and uni-
versal quantification. The exists predicate consists
of the keyword exists, followed by a collection refer-
ence, which may be a subquery. The exists predicate
is true if the referenced collection is non-empty. The
following example shows the use of exists with a
subquery as the collection reference.

8Space limitations do not allow us to specify the algebraic
expression as a single formula. Simple back substitution can be
used to reconstruct this formula.

Example 3.3 Return the maps with areas where se-
nior citizens live.

T: select
from in C map
where exists ( select
from in C person, in C dwelling
where B age 65

and B residence
and B inZone B zones

C: C map C person
C dwelling B age 65

B residence
B inZone B zones

A: 1 C person B age 65
C map C dwelling 1

where is the predicate:
B residence B inZone B zones

The universal quantifier is expressed by the forAll
predicate, which consists of the keyword forAll, fol-
lowed by a range variable list and aBoolean formula.
The syntax of the range variable list is the same as
in the from clause of the select statement. It de-
fines variables that range over specified collections.
The Boolean formula is evaluated for every possible
binding of the variables in this list. Thus, the entire
forAll predicate is true if, for every element in ev-
ery collection in the range variable list, the Boolean
formula is satisfied. The following example query
illustrates the use of forAll. The subquery defines the
range of and B low 5000 defines the Boolean
formula that must be satisfied by every in the range
in order for an to be returned.

Example 3.4 Return all maps that describe areas
strictly above 5000 feet.

T: select
from in C map
where forAll in ( select

from in C altitude
where B zones

B low 5000
C: C map C altitude

B zones B low 5000
A: 1 C altitude B low 5000
C map C map B zones 1

In the previous examples, path expressions only
occur in the where clause. Path expression can also
occur in the select and from clauses of a query. The
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following example illustrates the use of path expres-
sions in the select clause.

Example 3.5 Return the dollar values of the zones
that people live in.

T: select B residence B inZone B value
from in C person

C: C person
B residence B inZone B value

A: C person B residence B inZone B value
This has a simplier form using map as follows:
C person B residence B inZone B value

The following example shows a path expression
in the from clause and also introduces the indexed
expressions of the select clause. Indexed expressions
are used to specify behavioral projections in TQL.

Example 3.6 Return the zones that are part of some
map and are within 10 units of water. Project the
result over B title and B area.

T: select B title B area
from in C map, in B zones, in C water
where B proximity 10

C: B title B area C map
C water B zones

B proximity 10
A: 1 C map B zones

2 1 B proximity 10 C water
2 WB title B name

Joins can be defined in TQL by specifying a list
of expressions in the select clause. The result is a
collection of product objects whose components cor-
respond to the objects returned by each expression
in the list. Each expression can be independently in-
dexed to project behaviors on that particular compo-
nent in the resulting product objects. The following
example illustrates a join.

Example 3.7 Return pairs consisting of a person
and the title of a map such that the person’s dwelling
is in the map.

T: select B title
from in C person, in C map
where B residence B inZone B zones

C: C person C map
B title

B residence B inZone B zones

A: C person C map B title

where is the predicate:
B residence B inZone B zones

In addition to the select statement, TQL supports
three binary operations: union, minus, and inter-
sect. The syntax of these statements is defined be-
low. Their semantics correspond to the typical set
operations on the given collection references.

collection ref union collection ref
collection ref minus collection ref
collection ref intersect collection ref

TQL has a proven equivalence to the formal lan-
guages, which makes it easy to perform logical trans-
formations and argue about its safety. The theorems
and proofs of equivalence are given in [29].

4 Query Optimizer
TIGUKAT query optimizer follows the philosophy
of representing system concepts as objects and is
along the lines of [22]. The search space, the search
strategy and the cost functions are modeled as objects
(see Figure 4). The incorporation of these compo-
nents of the optimizer into the type system provide
extensibility via the basic object-oriented principle
of subtyping and specialization.

There are several design decisions that need to be
discussed. First, is the modeling of the algebraic
operators as objects. These are defined as behaviors
on T collection. In the type lattice, they appear
as instances of T algebra, which is a subtype of
T behavior (instances are shown as circles in Fig-
ure 4 and types are shown as rectangles). The execu-
tion algorithms for these operators are appropriately
modeled as functions (as instances of T algOp).
T algOp is defined as a subtype of T context,
which is a type that models functions, all of whose
arguments have been marshaled. We note that there
may be many different algorithms to implement each
algebraic operator (e.g., nested loop join, merge-sort
join, and hash join). Thus, there may be many im-
plementation functions as instances of T algOp.

The second design decision deals with the com-
pilation of query results in the translation of a TQL
expression to an algebraic expression. Algebra ex-
pressions are commonly represented as processing
trees (PTs) [20]. In relational systems, a processing
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Figure 4: Optimizer as part of the type system

tree is a labelled tree where the leaf nodes repre-
sent relations and the intermediate nodes correspond
to relational algebra operators. The edges represent
temporary results generated by these operators. In
our case, processing trees are constructed so that the
nodes uniformly correspond to the functions imple-
menting the algebraic operators. A PT is defined
recursively with the root node of a PT being an alge-
braic operator of type T algOp whose children are
all of type T algOp as well. In this way, a PT is
modeled as an object.

The application of equivalence preserving trans-
formation rules that are defined for the algebraic op-
erators result in the generation of a family of PTs for
a given query. The essence of query optimization is
to find the PT within this family that corresponds to
the most efficient execution plan for the query. The

family of PTs is commonly called the search space
and the algorithm that determines how this space
is searched for the “best” PT is the search strat-
egy. Usually these two are coupled together. How-
ever, in an extensible query optimizer such as ours,
they need to be decoupled. We model search strate-
gies as objects; specifically, T searchStrat is
defined as a subtype of T function (see Figure 4),
and is further specialized into enumerated search
strategies (T enumSS), randomized search strate-
gies (T randomSS), and heuristics-based strategies
(T heurSS).

The final optimization-related concept that needs
to be incorporated into the model is the cost func-
tion. Cost functions determine the cost of exe-
cuting the query according to each PT. We model
them throughT costFunct, which is a subtype of
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T function.
Modeling the building blocks of a cost-based op-

timizer as objects provides the query optimizer the
extensibility inherent in object models. The opti-
mizer implements a control strategy that associates
a search strategy and a cost function to each query.
The database administrator has the option of defin-
ing new cost functions and new search strategies or
transformation functions for new classes of queries
as they are developed.

5 Prototype Implementation
The TIGUKAT object model is implemented on top
of EXODUS [6]. EXODUS is a fairly full-fledged
system providing many aspects of DBMS function-
ality. We actually use only its storage system (called
EXODUS Storage Manager – ESM for short) to pro-
vide persistence for TIGUKAT objects.

The general architecture of our implementation is
shown in Figure 5. The shaded modules are currently
being implemented. The other modules are included
to indicate the general architectural set-up and the
on-going research work.

ESM is at the lowest end of the system responsible
for persistent storage on disk. ESM supports a client-
server topology where the client module is linked
with the host application program and interacts with
the server, which may be running on the same ma-
chine or a different one. The TIGUKAT object model
implementation is linked with ESM’s client mod-
ule to form an executable module that requires the
server process to be running to perform persistent
I/O operations. The TIGUKAT object model imple-
mentation consists of a library of TIGUKAT object
implementations comprising the complete primitive
object system, including behaviors, functions, and
macros for atomic object creation.

The current prototype is implemented in C++.
Since TIGUKAT has a language-independent object
model, the type system of TIGUKAT is not mapped
to that of C++. Instead, a single foundation C++
class, TgObject, is defined as the principal tem-
plate for instantiation of all other objects. This ap-
proach ensures the uniform representation of all ob-
jects in the system, since they may each be treated
as an instance of TgObject. The semantics of
TIGUKAT objects is buried within the TgObject
structure. Following this approach, the TIGUKAT
model can be implemented using any programming

language that suffices in building the foundation
primitive system (e.g., SmallTalk [14]).

An important problem to solve is behavior appli-
cation, since a particular behavior has to be bound to
a particular function corresponding to the implemen-
tation of that behavior. Subtyping and redefinition
of implementation introduce difficulties in determin-
ing a corresponding function and requires dynamic
binding. Behavior application involves retrieving an
appropriate function based on the behavior and the
type of the receiver, and executing this function using
the receiver and any argument objects. Since behav-
ior application is fundamental to TIGUKAT, we have
opted for a relatively simple, but fast mechanism, at
the cost of bearing the consequential memory over-
head. The system maintains a dispatch cache that
is essentially a matrix with behaviors along one axis
and types along the other. Each entry represents an
implementation for a possible (behavior, type) com-
bination. This cache is a statically allocated, volatile
structure that needs to be reinitialized on program
startup. The size of the cache is proportional to the
total number of unique behaviors in the system and
the total number of types in existence. We sacri-
fice memory usage for quick response time during
execution, but as proposed in [2], an incremental col-
oring algorithm would help to substantially reduce
this excessive memory consumption. We have not
yet incorporated this optimization into the current
prototype.

A further complication is introduced due to the
separation of the stored and computed functions.
Although the object model does not distinguish be-
tween stored and computed functions at the concep-
tual level, this distinction needs to be addressed in
the implementation. Consider that some behavior
is associated with a stored function. On invocation,
that function requires access to a memory location
(data field or slot) within the physical structure of
the object it was invoked on. The function either
places an object into this slot or retrieves one from it.
The stored function accesses the concerned memory
location via primitive system provided set and get
accessor functions. Note that for computed func-
tions, these slots have pointers to code rather than
values. Due to subtyping, the number of slots and
their addresses may change. To solve the slot access
problem, we have chosen to implement a supplemen-
tary cache that contains information about which
behaviors are associated with stored functions and
which are associated with computed functions. The
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supplementary cache is a matrix similar to the dis-
patch cache. For every entry in the dispatch cache,
there is a corresponding entry in the supplementary
cache that indicates the stored or computed nature of
the associated function. The supplementary cache
makes its information content available to the type
creation process to resolve conflicts. The imple-
mentation inheritance mechanism (part of the type
creation process) uses this information and attempts
to resolve which of the inherited behaviors should
be associated with stored functions and which ones
with computed functions. For stored functions, in-
formation about set/get pairings are maintained in a
third cache matrix.

The current prototype is a proof of concept im-
plementation to demonstrate the feasibility of im-
plementing an extensible and uniform core object

system. Several performance issues were addressed
during its development as described in this section.
However, there are still many others to consider and
we are working on these as part of the future re-
search. The full implementation of the TIGUKAT
object model is presented in [15], the implementa-
tion of the language compiler is discussed in [23]
and the details of the query optimizer can be found
in [26].

6 Conclusions
In this paper, we provide an overview of the
TIGUKAT object management system under devel-
opment at the Laboratory for Database Systems Re-
search of the University of Alberta. TIGUKAT has
a uniform behavioral object model where everything
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is a first-class object with well-defined behavior, and
the only means of access to the object base is through
behavior application.

The TIGUKAT object model is implemented on
top of EXODUS. We have also defined a formal
query model for the system, complete with an ob-
ject calculus, an object algebra, and a user language.
The user language consists of a definition language,
a session language, and an SQL-based query lan-
guage. The interpreters for the first two and the
compiler for the last one have been implemented.
An extensible query optimizer has been defined and
its implementation is ongoing. The optimizer is be-
ing developed as a uniform extension to object model
and will therefore be integrated with the model, just
as the query model has been.

Current work on the system is progressing along
four lines: (1) the incorporation of time into the ob-
ject and query models, (2) the definition of schema
evolution, view management and update seman-
tics for the model, (3) the development of storage
structures to support query optimization (i.e., index-
ing and clustering issues), and (4) the definition of
a transaction model and its incorporation into the
model.
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