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Abstract

We present the uniform meta-architecture of the TIGUKAT object model and show how it provides reflection in object
management systems. Reflection is the ability for a system to manage information about itself and to access (or reason about)
this information through the regular access primitives of the model. The TIGUKAT object model is purely behavioral in
nature, supports full encapsulation of objects, defines a clear separation between primitive components such as types, classes,
collections, behaviors, functions, etc., and incorporates a uniform semantics over objects. The architecture of its meta-system
is uniformly represented within itself, which gives a clean semantics for reflection.

1 Introduction
Tomeet data and informationmanagement requirements of new complex applications, object management systems (OMSs)1 are
emerging as the most likely candidates. The general acceptance of this new technology depends on the increased functionality
it can provide. Obviously, one measure lies in the ability to model complex domains of information. The ability for a model to
manage information about itself is seen as a strength since meta-information, like the schema, becomes a first-class component
of the objectbase and the access primitives of the model can be used on them uniformly. This uniformity of representation and
access is a basis for reflection.

Reflection is the ability for a system to manage information about itself and to access (or reason about) this information
through the regular “channels” of information retrieval. It is natural for an OMS to manage information about itself since an
OMS is a complex application defined by a model.

There are several advantages in providing reflection in an object model. For example, the primitives of the model are used
to manage all forms of information (including meta-information) as first-class components (uniformity of representation), and
information retrieval is uniformly handled by the model’s access primitives regardless of the information’s type or “status”
(uniformity of access and manipulation). With these two abilities, a system is capable of reflection.

Relational systems provide reflective capabilities by using relations to store information (i.e., schema) about relations.
However, the attributes of relations are restricted to the atomic domains of a particular system (i.e., integers, strings, dates, etc.),
which limits the semantic richness of the meta-information and makes it awkward to model. With the richer type structures of
object models, self management and reflection is more natural.

In a uniform object model, the structures used to manage information about “normal” real-world objects like persons,
houses, maps, or complex applications (e.g., a geographic information system) are also used to manage meta-information like
types, classes, behaviors, and functions. Furthermore, the access primitives to all these forms of information are uniform,
which means there is no distinction, for example, between accessing information about persons and accessing information
about types. In this paper, we present a uniform architecture for managing meta-information within an object model and show
how the model provides reflective capabilities through uniformity. This work is done within the context of the TIGUKAT2

This research is supported by the Natural Science and Engineering Research Council of Canada under research grant OGP0951.
1We prefer the terms “objectbase” and “object management system” over the more popular terms “object-oriented database” and “object-oriented database

management system”, since not only data in the traditional sense is managed, but objects in general, which includes things such as code in addition to data.
2TIGUKAT (tee-goo-kat) is a term in the language of the Canadian Inuit people meaning “objects.” The Canadian Inuits, commonly known as Eskimos,

are native to Canada with an ancestry originating in the Arctic regions of the country.
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project which has a behavioral object model [10] that supports full encapsulation of objects, defines a clear separation between
primitive components such as types, classes, collections, behaviors, functions, etc., and incorporates a uniform semantics over
objects. All these forms of information are uniformly accessible through the regular access primitives of the model, and in
TIGUKAT, this is the application of behaviors to objects. Although our work is within the context of TIGUKAT, the results
reported here extend to any system based on a uniform behavioral object model where the application of behaviors to objects
is the operational semantics.

The remainder of the paper is organized as follows. In Section 2, we discuss various reflection models that have been
proposed in the past and relate our model to these. In Section 3, we give a brief overview of the TIGUKAT object model,
which outlines the fundamental features of the model and gives a brief specification of the primitive type lattice. In Section 4, a
simplified Geographic Information System (GIS) is presented as a running example to demonstrate the results of this paper. In
Section 5, we define the uniform architecture of the TIGUKAT meta-system, and in Section 6, we show how this meta-system
supports reflection. A number of example queries are given to illustrate the uniformity over objects, which is our basis for
reflection. Concluding remarks and results of the paper are summarized in Section 7.

2 Related Work
In recent years, work on reflection in object-oriented languages (OOLs) has resulted in the identification of two basic models
of reflection [2]:

1. The first is called structural reflection and was advocated by Cointe [1] in the design of ObjVlisp. The model is based on
a uniform instance/class/meta-class architecture where everything is an object, and meta-classes are proper classes in the
sense that they can have a number of instances and can be subclassed. The distinction between meta-classes, classes and
other instances is a consequence of inheritance and not a type distinction. This is in contrast to Smalltalk-80 [4] where
meta-classes are anonymous objects and there is a one-to-one correspondence between a class and its meta-class.

2. The second is called computational reflection and was pursued by Paes [7] in the development of 3-KRS. This approach
essentially introduces a meta-object for each object to handle both the structural and computational aspects of the object.
The work was done within the context of a model that did not support the traditional class/instance structure of object-
oriented systems such as Smalltalk, ObjVlisp, and TIGUKAT. Therefore, the structural aspects of objects were represented
by the meta-objects as well. In a class/instance model, the structural aspects of an object can be handled by the type (or
class) of the object and therefore, meta-objects are only useful for computational aspects in these systems.
Three models of computational reflection have been identified for object-oriented systems:

(a) the meta-class model, where the meta-object for an object is the class of the object,
(b) the specific meta-object model, where in addition to classes, objects also have specific meta-objects,
(c) the meta-communicationmodel, which is based on the reification of messages sent to objects. That is, messages are

objects and can be sent messages to process themselves.

Some work has been done on adding computational reflection to Smalltalk-80 [3] and work on the ABCL/R2 language
[8] is striving towards an efficient implementation of a reflective OOL with concurrency.

Our model supports structural reflection similar to (1) and computational reflection is provided by a meta-class model as
in (2a). We did not choose a meta-object model (2b) because of the additional overhead involved. One form of overhead is the
introduction of a meta-object for (potentially) every object in the system. Another, more important one in our perspective, is
the additional dispatch processing needed for every behavior applied to an object. The application of behaviors to objects is the
fundamental information access primitive of TIGUKAT. We have gone to great lengths in our implementation to speed up the
execution of behavior application [5] and have traded space requirements for execution speed. In a meta-object approach, every
behavior application needs to perform an additional check to see if the object has a meta-object and to dispatch the behavior to
meta-object if it does. We find this overhead unacceptable because we feel there are only a few occasions where objects need
to support the semantics of meta-objects, and the additional cost for each behavior application is too high. Besides, we argue
that the semantics of meta-objects can be supported through subtyping and schema evolution, which are features required of
an OMS anyway. We expand on this discussion after the introduction of our meta-architecture in Section 5. Another anomaly
with the meta-object approach is that some information is at the type level and some information is at the object level. The
distribution of some type information on a per object basis has implications for persistent object management (e.g., where to

Appears in Proc. of the 12th Int’l Conf. on Entity-RelationshipApproach (ERA’93), pages 37-49, December 1993. 2



store the meta-object: with the type, with the object or somewhere else?). Finally, since behaviors are objects in TIGUKAT,
some form of the meta-communication model (2c) could be integrated with our system. We are currently investigating the
incorporation of these semantics into TIGUKAT.

3 Object Model Overview
The TIGUKAT object model [10] is behaviorally defined with a uniform object semantics. The model is behavioral in the sense
that all access and manipulation of objects is based on the application of behaviors to objects. The model is uniform in that
every component of information, including its semantics, is modeled as a first-class object with well-defined behavior.

SubtypeSupertype

T_object

T_type

T_collection

T_behavior

T_function

T_atomic

T_bag

T_poset
T_list

T_type-class

T_class-class

T_collection-class

T_null
T_boolean

T_character

T_string

T_real T_integer T_natural

T_class

Figure 1: Primitive type system of the TIGUKAT object model.

The primitive type system of the TIGUKAT object model is shown in Figure 1. Each box represents a type. Types define
the behaviors applicable to their instances. The type T object is the root of the type system and T null is the base. Space
limitations do not allow us to give the full behavioral definition of the primitive types. However, the shaded types in the figure
and some of their behaviors are elaborated on to show how they support reflection in the model. For a complete definition of
the model, including the primitive behaviors, see [10].

The primitive objects of the model include: atomic entities (reals, integers, strings, etc.); types for defining common features
of objects; behaviors for specifying the semantics of operations that may be performed on objects; functions for specifying
implementations of behaviors over types3; classes for automatic classification of objects based on type4; and collections for
supporting general heterogeneous groupings of objects. In this paper, a reference prefixed by T refers to a type, C refers to a
class, L refers to a collection, and B refers to a behavior. For example, T person is a type reference, C person a class reference,
L seniors a collection reference and B age a behavior reference. A reference such as David, without a prefix, represents some
other application specific reference.

Objects consist of identity and state. The identity is a unique, immutable identifier assigned by the system and state
represents the information carried by the object. Thus, the model supports strong object identity [6]. This does not preclude

3Behaviors and functions form the support mechanism for overloading and late binding of behaviors.
4Types and their extents are separate constructs in TIGUKAT.
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application environments such as object programming languages from having many references (or denotations) to objects,
which need not be unique. The state of an object encapsulates the information carried by that object, meaning it hides the
structure and implementation of the object. Conceptually, every object is a composite object. By this we mean every object has
references (not necessarily implemented as pointers) to other objects.

The access and manipulation of an object’s state occurs exclusively through the application of behaviors. We clearly
separate the definition of a behavior from its possible implementations (functions/methods). The benefit of this approach is
that common behaviors over different types can have a different implementation in each of the types. This is direct support
for behavior overloading and late binding of implementations to behaviors. The meta-system uses this feature to specialize the
implementation of behaviors for managing the meta-model.

The model separates the definition of object characteristics (a type) from the mechanism for maintaining instances of a
particular type (a class). A type specifies behaviors and encapsulates behavioral implementations and state representation for
objects created using that type as a template. The behaviors defined by a type describe the interface to the objects of that type.
The interface is separated into inherited and native behaviors, which distinguish the behaviors inherited by the type from those
explicitly defined by the type. Types are organized into a lattice-like structure through subtyping. TIGUKAT supportsmultiple
subtyping, meaning the type structure is a directed acyclic graph (DAG). However, this DAG is rooted by the type T object and
liftedwith the base type T null. The type T null defines objects that can be assigned to behaviors when no other result is known
(e.g., null, undefined, etc.).

A class ties together the notions of type and object instance. A class is a supplemental, but distinct, construct responsible
for managing the instances of a particular type that exist in the objectbase. The entire collection of objects of a particular type
is known as the extent of the type. This is separated into the notion of deep extent, which refers to all objects of a given type,
or one of its subtypes, and the notion of shallow extent, which refers only to those objects of a given type without considering
its subtypes. In general, we use extent in place of deep extent and explicitly mention shallow extent when required.

Objects of a particular type cannot exist without an associated class and every class is uniquely associated with a single type.
Thus, a fundamental notion of TIGUKAT is that objects imply classes which imply types. Another unique quality of classes is
that object creation occurs only through them. Defining object, type and class in this manner introduces a clear separation of
these concepts. This separation is important to uniformly define the model within itself and to build a foundation for reflection.

In addition to classes, we define a collection as a general grouping construct. A collection is similar to a class in that it
groups objects, but it differs in the following respects. First, object creation cannot occur through a collection; object creation
occurs only through classes. Second, an object may exist in any number of collections, but is a member of the shallow extent of
only one class. Third, classes are automatically managed by the system based on the subtype lattice whereas the management
of collections is explicit, meaning the user is responsible for their extents. Finally, the elements of a class are homogeneous up
to inclusion polymorphism, while a collection may be heterogeneous in the sense that it may contain objects of types that are
not in a subtype relationship with one another.

We define class as a subtype of collection. This introduces a clean semantics between the two and allows the model to
utilize both constructs in an effective manner. For example, we have defined a query model [9] where the targets and results of
queries are typed collections of objects. Since classes specialize collections, a class may be used as a target of a query.

The remaining subtypes of T class, namely, T class-class, T type-class and T collection-class, make up the meta type
system. Their placement within the type lattice directly supports the uniformity of the model. Section 5 describes the semantics
of the behaviors defined on these types and the architecture of the corresponding class and instance structure of the types. This
meta-model (within the model) is the foundation of reflective capabilities.

4 Example Objectbase
In this section, we present a geographic information system (GIS) as an example OMS application to demonstrate the reflective
capabilities of the model. This example is selected because it is among the application domains that can potentially benefit from
the advanced features offered by object-oriented technology.

A type lattice for a simplified GIS is given in Figure 2. The example includes the root types of the various sub-lattices from
the primitive type system to illustrate their relative position in an extended application lattice.

The GIS example defines abstract types for representing information on people and their dwellings; these include T person,
T dwelling and T house. Geographic types to store information about the locations of dwellings and their surrounding areas
are defined; these include T location, T zone and its subtypes that categorize the various zones of a geographic area, along with
T map that defines a collection of zones suitable for displaying in a window. Displayable types for presenting information on a
graphical device are defined; these include T display, T window, and T map. Finally, T shape defines the geometric shape of
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T behavior

T date

T display

T shape

Figure 2: Type lattice for a simple geographic information system.

regions representing the various zones. For our purposes, we only use this general type, but in more practical applications this
type would be specialized into subtypes representing polygons, polygons with holes, rectangles, splines, and so on.

Table 1 lists the signatures of the behaviors defined on the GIS specific types. The signatures do not include the type of the
receiver object, which is implied from the type that the behavior is defined on. Furthermore, the notation T collection is
used to denote a collection type whose members are of type . By this notation we do not mean parametric collection types.

5 The Uniform Meta-Architecture
Several of the primitives introduced in Section 3 are referred to as meta-information because they are objects that provide
support for other objects. For example, the type T type provides support for types by defining the structure and behaviors
of type objects, and the class C class supports classes by managing class objects in the system. In a uniform model, these
meta-objects are objects themselves and are managed within the model as first-class objects. The support for this semantics lies
in the introduction of higher-level constructs we call meta-meta-objects or 2-objects.

The meta-system of TIGUKAT is a three tiered structure for managing objects. This structure is depicted in Figure 3. Each
box in the figure represents a class and the text within the box is the common reference name of that class. The dashed arrows
represent shallow extent instance relationships between these objects with the head of the arrow being the instance and the tail
being the class that manages the object.

The lowest level of our structure consists of the “normal” objects that depict real world entities such as integers, persons,
maps, etc., plus most of the primitive object system is integrated at this level, including types, collections, behaviors and
functions. This illustrates the uniformity in TIGUKAT. We denote this level as 0 and classify its objects as 0-objects.

The next level defines the class objects that manage the objects in the level below and maintain schema information for
these objects. These include C type, C collection and all other classes in the system, except for the classes in the level above.
This level is denoted as 1 and its objects as 1-objects. The reasoning for placing classes at this higher level is that classes
maintain objects of the system, every class is associated with a type, and types define the semantics of objects throughbehaviors.
Thus, a class together with its associated type is a form of meta-information.
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Type Signatures
T zone B title: T string

B origin: T location
B region: T shape
B area: T real

B proximity: T zone T real
T map B resolution: T real

B orientation: T real
B zones: T collection T zone

T land B value: T real
T water B volume: T real
T transport B efficiency: T real
T altitude B low: T integer

B high: T integer
T person B name: T string

B birthDate: T date
B age: T natural

B residence: T dwelling
B spouse: T person
B children: T person T collection T person

T dwelling B address: T string
B inZone: T land
B age: T natural

T house B inZone: T developed
B mortgage: T real

Table 1: Behavior signatures pertaining to example specific types of Figure 2.

The upper-most level consists of the meta-meta-information (labeled 2), which defines the functionality of the 1-objects.
The structure is closed off at this level because the 2-object C class-class is an instance of itself as illustrated by the looped
instance edge. The introduction of the 2-objects adds a level of abstraction to the type lattice and instance structures. The
need for this three-tiered structure comes from the fact that every object belongs to a class and every class is associated with
a type that defines the semantics of the instance objects in the class. Regular objects (level 0) belong to some class (level
1). Since classes are objects, the class objects (level 1) belong to some class (level 2). The 2 class objects belong to the
2-class C class-class which closes the lattice. The types associated with these classes are all managed as regular objects at

level 0. The outcome of this approach is that the entire model is consistently and uniformly defined within itself.
The grayed portion of the type lattice in Figure 1 is shown as a companion subclass lattice in Figure 4 where C in Figure 4

is the associated class of type T in Figure 1. Figure 4 illustrates the subset inclusion and instance structure of some of the 0,
1 and 2-objects in relation to one another. Starting from the left-side of the lattice structure the class C object is an 1-object

that maintains all the objects in the objectbase (i.e., every object is in the deep extent of class C object). Two other 1-objects
in the figure are subclasses of C object, namely, C type and C collection. These two classes maintain the instances of types and
collections, respectively. Class C collection is further subclassed by the 2-object C class, because every object that is a class
is also a collection of objects. For example, the class C person is an instance of the class C class, and C person is a collection
of person objects as well. The class C class manages the instances of all classes in the system like C object, C person and so
on. Finally, C class is subclassed by 2-objects C type-class, C class-class and C collection-class. Intuitively, C type-class is
a class whose instances are classes that manage type objects. Similarly, C class-class is a class whose instances are classes that
manage class objects, and C collection-class is a class whose instances are classes that manage collection objects.

In understanding the meta-system, it is important to remember that the following general concept holds throughout the
model, including the meta-system.

Tenet of Uniformity: The behaviors defined on a type are applicable to the objects in the class associated with that type.

For the following discussion, we use the dot notation B something 1 to denote the application of behavior
B something to the receiver object using objects 1 through as arguments. Furthermore, we use 1 to denote a
collection of objects, and to denote the assignment of the result of behavior to an object .
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C class-class

C collection-classC type-class

C collectionC type

0

1

2

C class

Figure 3: Three tiered instance structure of TIGUKAT object management.

Recall that objects are created through classes. The type T class defines a behavior B new for creating objects. Applying
B new to a class object creates an object according to the type specification associated with that class.

The type T type-class is associated with the class C type-class, which has the single instance object C type. Following the
tenet of uniformity, the behaviors defined on type T type-class are applicable to the object C type. The type T type-class refines
the behavior B new from T class for creating new “type” objects. This behavior accepts a collection of types, say , and a
collection of behaviors, say , as arguments and produces a type as a result. Its semantics is to create a new type as an instance
of C type such that it is a subtype of the types in and it defines the behaviors in as native behaviors. For example, to create
a new type for modeling mobile homes (as a subtype of T dwelling) that adds a native behavior “B numberOfMoves:T natural”
(assumed to be defined), we apply B new to C type as follows and assign the result to a type reference T mobileHome:

T mobileHome C type B new T dwelling B numberOfMoves

The type T collection-class is associated with the class C collection-class that has the single instance object C collection.
The type T collection-class refines B new for creating a new collection object. The behavior accepts a type argument that
is used as the membership type of the new collection. Its semantics is to create a new collection object as an instance of
C collection and to set the membership type to the argument. For example, to create a new collection of map objects, we apply
B new to C collection and assign the result to L mobileHomeParks as follows:

L mobileHomeParks C collection B new T map

The previous two examples illustrate how specialization and overriding of implementations (basic modeling concepts) are
used to develop the components of the meta-system. B new has the same semantics of creating a new object as an instance of
a particular receiver class, but the implementation of this behavior depends on the type of the receiver class.

The class C class-class is associated with T class-class and maintains all the 2-classes. Its instances include itself, C type-
class, C collection-class and C class. The type T class-class refines B new for creating a new instance of a class that manages
other classes. For the model, this means that we can create additional classes for managing types (additional instances of
C type-class), for managing collections (additional instances of C collection-type), for managing classes (additional instances
of C class), and for managing classes that manage classes (additional instances of C class-class).

There are several features that arise from modeling objects in a uniform way, including the ability to perform reflection.
We briefly explore these aspects by comparing an 2 class structure with a “normal” meta-class structure. Following this, we
discuss additional uses of the 2-classes and the uniformity they provide. Section 6 describes how our architecture supports
reflection.
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C type

C class C class-class

C type-class

C collection

C object

C collection-class

Figure 4: Subclass and instance structure of 1 and 2 objects.

One use for thismodeling capability is to uniformlydefine an 2-class whose associated type includes behaviors for creating
default objects of a particular type. For example, consider the GIS objectbase of Section 4 and assume that type T person
and class C person are defined. The “normal” class and instance structure for this scenario is shown in Figure 5. Instances of
T person are created by applying B new to class C person. However, the B new behavior used in this case is the one defined
on T class, which has a generic implementation of creating a new “empty” object as an instance of the receiver class (i.e., a
new “empty” person instance of C person). Most existing models allow some form of specialized new behavior on classes.
However, they are usually defined in a roundabout and non-uniformway by stating that a class can have a new behavior defined
that is applicable to itself (e.g., C++ [11]). This is non-uniform since a class defines some behaviors that are applicable to its
instances and some that are applicable to itself. Other models get around this by stating that every class is an instance of itself
(e.g., Modular Smalltalk [12]), but in a uniform model this approach raises the question: is the class of persons a person? We
want a uniform way of defining a behavior B new for C person that creates new objects of type T person with some default
information. It would not make sense to define this behavior on type T class since then it would be applicable to all classes and
we only want it to apply to C person. The solution lies in the 2-objects.

We first create a new type called T person-class as a subtype of T class whichwill specialize B new. The followingbehavior
application performs this task:

T person-class C type.B new( T class , )

Following this, we redefine the implementation of the inherited behavior B new so that it creates person objects with some
default information (i.e., age set to 0, birthdate set to current date, etc.). In the following discussion we assume this is done.
Next, we create and associate an 2-class with type T person-class and call it C person-class.

C person-class C class-class.B new(T person-class)

Now, it is semantically consistent for the instance C person-class to have the behavior B new (the one defined on T class-
class) applied to it. The final step is to create a class, called C person, as an instance of C person-class and associate it with the
type T person. This is accomplished by the following behavior application:

C person C person-class.B new(T person)

This series of behavior applications results in a class and instance structure shown in Figure 6. Now, the class C person
is an instance of C person-class. Thus, the B new behavior (the one defined on T person-class) may be applied to it to create
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C classC collection C class-class

C object

C person

Figure 5: A “normal” class and instance structure for C person.

a new person with default information (i.e., C person.B new() creates a new person with defaults as dictated by the particular
implementation). This defines a uniform semantics for the creation and management of objects. Furthermore, the example
meta-system for persons was created in a uniform way using the primitives of the TIGUKAT object model.

Different “flavors” of new behaviors can be defined for 2-objects. For example, T person-class can define new behaviors
that accept variations of arguments (such as name, age, address, etc.) and create a new person with the given arguments.
Furthermore, we can define a variety of default new behaviors that create person objects with various defaults (e.g., B newBorn,
B newYouth, B newSenior, etc.).

Another feature of the meta-system is that the 2-classes support a uniform definition of class behaviors (i.e., behaviors that
are applicable to classes). For example, a behavior B averageAge can be defined on T person-class that computes the average
age of persons in a class. Now, this behavior is applicable to the class C person and applying it as C person.B averageAge()
yields the average age of the persons in the objectbase. If we subtype T person with T student and want the same semantics
with the class C student, then we can create C student as an instance of C person-class. Then B averageAge is applicable to
C student and computes the average age of the students in the objectbase. Any number of “person-like” classes (employee,
teaching assistant, etc.) can be created in this way and have these semantics attached to them. A similar approach can be
used to generalize the concept to collections. That is, define collection behaviors, such as B averageAge, that are applicable to
collections and compute various results from the members of collections.

Our meta-system architecture is similar to the meta-class structure inObjVlisp [1] and is a generalization of the Smalltalk-80
[4] parallel one-to-one class/meta-class lattice in the sense that our approach is entirely uniform. Every class, including the
2 classes are proper class that, in general, have multiple instances and can be subclassed (i.e., their associated types can

be subtyped). One advantage is that there is less overhead for classes that do not need additional class behaviors or do not
need to specialize class behaviors. For example, both C person and C student can be defined as instances of C person-class if
C student does not require additional class behaviors or specialization of existing ones. Furthermore, classes that do not require
any class behaviors can be instances of the general C class. This illustrates that 2 classes are classes whose instances are
class objects. A potential problem is that the schema needs to be reorganized if at a later time it is decided that additional class
behaviors are required for certain classes that were grouped as instances of one meta-class (e.g., if we decide that additional
behaviors applicable to C student, but not to C person are needed). This kind of “evolution” can be viewed as correcting design
problems of an application (i.e., it was a design mistake to create C student as an instance of C person-class). The problem
is corrected by subtyping T person-class with T student-class, defining the new behaviors and specializations on this type,
creating an associated class C student-class, and migrating C student to be an instance of C student-class. The reason for this
reorganization is because both structural and computational reflection are handled by the type. We feel the need for this kind
of schema reorganization will be minimal. Nonetheless, with the development of our schema evolution and object migration
policies, these kinds of changes will follow naturally since some form of them must be supported in a full-featured OMS.

Another solution is to introduce meta-objects to handle the computational aspects of objects [7, 2]. This avoids schema
reorganization by allowing behaviors to be redefined in the meta-objects instead of the type. However, it requires some
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Figure 6: An 2 class and instance structure for C person.

additional dispatch processing to determine if an object has a meta-object and if it does, to tell the meta-object to handle
the behavior. If the object does not have a meta-object, then the regular type dispatch should occur. Furthermore, there are
additional space requirements since every object can potentially have a meta-object. The drawback of this approach in an
objectbase environment is that efficient query processing is a necessity and the overhead of the additional dispatch processing
for every behavior application can be quite significant in queries where many behaviors are being applied. Thus, we have
chosen to trade-off the flexibility of meta-objects (that we can get through subtyping instead) for speed.

It is easy to see how the tenet of uniformity carries through for all objects and forms a basis for reflection. For example, the
object David is a person, David is in the extent of class C person, the associated type of C person is T person, the behaviors
defined by T person are applicable to David. The object C person is a class, C person is in the extent of class C class (or
C person-class in the 2 example of Figure 6), the associated type of C class is T class (or T person-class), the behaviors
defined by T class (or T person-class) are applicable to C person. The same line of reasoning can be applied to T person,
T person-class, C class, T type and uniformly to all objects in TIGUKAT. The base (fixpoint) of the type chain is T type and
the base of the class chain is C class-class. This defines the closure of the lattice and instance structure.

6 Reflective Capabilities
Reflection is the ability for a system or model to manage information about itself and to access this information using the regular
“channels” of information retrieval. The uniform meta-architecture described in Section 5 is consistent with the modeling
capabilities of the TIGUKAT object model and the model uniformly manages information about itself. The access primitives
of the model (i.e., the application of behaviors to objects) can be uniformly applied to all objects, including meta-information.
Thus, uniformity in TIGUKAT supports reflection.

We have developed a query model with an SQL-like language called TQL (TIGUKAT Query Language) [9]. The select-
from-where clause of the language is an object-oriented extension of SQL. We use the basic structure of this clause to present
some queries that illustrate the reflective capabilities of TIGUKAT. First, to get a feel for the syntax, we give some example
queries on “normal” real-world objects. These examples also serve to illustrate that the method of querying real-world objects
is uniform with querying meta-information like schema.

Example 6.1 Return land zones valued over $100,000 or that cover an area over 1000 units.
select o
from o in C land
where (o.B value() 100000) or (o.B area() 1000)

Example 6.2 Return all zones that have people living in them (the zones are generated from person objects).
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select o
from p in C person
where o = p.B residence().B inZone()

Example 6.3 Return all maps that describe areas strictly above 5000 feet.
select o
from o in C map
where forAll p in (select q from q in C altitude, q in o.B zones()) p.B low() 5000

Example 6.4 Return pairs consisting of a person and the title of a map such that the person’s dwelling is in the map.
select p, q.B title()
from p in C person, q in C map
where p.B residence().B inZone() in q.B zones()

The above queries introduce variables (i.e., o,p,q) that range over classes and collections. The queries apply behaviors to
the variables and other object references to extract information about the objects and return the information (in the form of
objects) as part of the query result.

By using the behavioral application paradigm on meta-objects, we can uniformly access information about the meta-system
of the model. For example, we can retrieve information about types by querying the class C type. Some example reflective
queries are given below. The examples reference several behaviors defined on types, behaviors, collections, and objects in
general. The signatures for these behaviors, along with a brief explanation, are given in Table 2 (signatures do not include the
type of the receiver as in Section 4). There are many other behaviors defined on these types, but space limitations do not allow
us to specify them.

Type Signature Explanation
T object B mapsto: T type Return the type of the receiver object.
T type B interface: T collection T behavior Return the full interface of the type.

B native: T collection T behavior Return only the native behaviors of the type.
B inherited: T collection T behavior Return only the inherited behaviors of the type.
B supertypes: T collection T type Return the immediate supertypes of the type.
B super-lattice: T poset T type Return all supertypes of the type, partially ordered by subtyping.
B sub-lattice: T poset T type Return all subtypes of the type, partially ordered by subtyping.

T behavior B impl: T type T function Return the implementation (i.e., function) of the behavior in the given type.
T collection B memberType: T type Return the membership type of the collection.

B cardinality: T natural Return the cardinality of the collection.

Table 2: Some behavior signatures for certain primitive types.

Example 6.5 Return the types that have behaviors B name and B age defined as part of their interface.
select t
from t in C type
where B name in t.B interface() and B age in t.B interface()

Example 6.6 Return the types that define behavior B age with the same implementation as one of the supertypes.
select t
from t in C type, r in t.B supertypes()
where B age in t.B interface() and B age in r.B interface() and B age.B impl(t) = B age.B impl(r)

Example 6.7 Return all types that inheritbehaviorB age, but define a different implementation from all types in the super-lattice
that define behavior B age.

select t
from t in C type
where B age in t.B inherited()

and forall r in t.B super-lattice()
((not r = t) or (not B age in r.B interface()) or (not B age.B impl(t) = B age.B impl(r)))
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Example 6.8 Return all subtypes of T zone.
select r
from r in T zone.B sub-lattice()

Example 6.9 Return pairs consisting of a subtype of T zone and the native behaviors that the subtype defines.
select r, r.B native()
from r in T zone.B sub-lattice()

Example 6.10 Return pairs consisting of an object in collection L stuff together with the type of the object, but only if it is a
subtype of T water.

select o, o.B mapsto()
from o in L stuff
where o.B mapsto() T water.B sub-lattice()

The following reflective queries are defined on classes and collections. They illustrate how uniformity carries through to
these kinds of objects.

Example 6.11 Return all the classes in the objectbase.
select o
from o in C class

Example 6.12 Return only those classes that make up the meta-meta-system.
select o
from o in C class-class

Example 6.13 Return all collections that contain the objectDallas, but only if the membership type of the collection is T land
or one of its subtypes.

select o
from o in C collection, p in o
where o.B memberType() in T land.B sub-lattice() and p = Dallas

Example 6.14 Return the classes that have a greater cardinality than any collection in the system without considering the
cardinality of other classes.

select o
from o in C class
where forall p in C collection

((not p in C class) or o.B cardinality() p.B cardinality())

Example 6.15 Return pairs consisting of an 2-class and the collection of native class behaviors defined by that 2-class.
select c, c.B memberType().B native()
from c in C class-class

Example 6.16 Return objects from L things that exist in at least one other collection without considering their existence in a
class.

select o
from o in L things, p in C collection
where (not p = L things) and (not p in C class) and (o in p)

The paradigm of behavioral application can be applied uniformly to all objects in TIGUKAT since every object belongs to
the extent of some class, every class is associated with a type, and every type defines behaviors that are applicable to the objects
in the extent of the associated class. Note that some examples (6.13) intermix access to “normal” real-world objects with access
to types and collections. This is a consequence of uniformity.

The object model approach differs from relational systems, which use relations to store information about schema, in that
the attributes of relations are limited to the atomic domains of a particular system (i.e., integers, strings, dates, etc.) while an
object model has a richer type system for representing complex objects and a more sophisticated executionmodel that allows the
application of general behaviors to objects. Thus, representing schema information in a uniform object model is more natural
and easier to manage. As a consequence, the access primitives apply naturally to all forms of information.
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7 Conclusions
In this paper, we describe the uniform meta-architecture of the TIGUKAT object model, how it manages information about
itself, and the uniform access primitive of applying behaviors to objects. We show how the model uniformity forms a basis for
reflective capabilities. Types in TIGUKAT support both structural and computational reflection of objects through the definition
and specialization of behaviors, and through subtyping.

The tenet of uniformity is defined to describe the basic property that applies to all objects in a uniform model: behaviors
defined on a type are applicable to objects in the class associated with that type. All objects in TIGUKAT exist in some class,
and every class is associated with a type, and every type defines behaviors applicable to objects in its associated class. Thus,
the paradigm of applying behaviors to objects carries uniformly to all objects, including types, classes, behaviors, and so on.

Using an SQL-like query language developed for the model [9], we compare several queries on real-world objects with
queries on meta-information and show that in a uniform model, there is no distinction between “normal” objects and meta-
objects because everything is a first-class object with well-defined behavior. These queries retrieve information about types,
classes and collections (parts of the schema) by applying behaviors to objects in a uniformway. Some queries even mix regular
and meta-objects in a single query to further illustrate the uniformity. The information retrieved by these queries is information
about the system (i.e., schema information), which is what reflection is all about.

Our meta-system design has similarities to ObjVlisp [1] and is a uniform extension to the Smalltalk-80 [4] meta-class
architecture. It is more general in the sense that it can mimic the parallel meta-class structure of Smalltalk-80, but does not force
this semantics. Other differences are that any class in TIGUKAT can have many instances and any type can be subtyped. Thus,
themetaness of an object is a consequence of inheritance and gives rise to a uniformmodel. One advantage is reduced overhead
since not all classes require a meta-class. However, some subtype reorganization is required if at a later time a particular class
needs to specialize a meta-class. These changes can be viewed as application design corrections and our schema evolution
policies make these changes natural.

Since behaviors are objects in TIGUKAT, we feel that some form of themeta-communicationmodel (model (2c) in Section 2)
could be integrated with our system. We are currently investigating the incorporation of these semantics into TIGUKAT.
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