Temporal Extensions to a Uniform Behavioral Object Model*

Igbal A. Goralwalla
M. Tamer Ozsu
Laboratory for Database Systems Research
Department of Computing Science
University of Alberta
Edmonton, Alberta
Canada T6G 2H1
{igbal,ozsu} @cs.ualberta.ca

Abstract

We define temporal extensions to a uniform, behavioral and functional object model by providing an extensible set of
structural and behavioral abstractions to model various notions of time for different applications. We discuss the temporal
semantics of inheritance by defining a lifespan behavior on objects in a collection. Finally, we give an elaborative example and
show that temporal objects can be queried without adding any extra construct to the underlying query language.

1 Introduction

Most of the applications for which object management systems (OMSs) are expected to provide support exhibit some form of
temporality. Some examples are the following: in engineering databases, there is a need to identify different versions of a design
as it evolves; in multimedia systems, the video images are timed and synchronized with audio; in office information systems,
documents are ordered based on their temporal relationships. In this paper we present temporal extensions to the TIGUKAT'!
OMS that is under development in the Laboratory for Database Systems Research of the University of Alberta.

Most of the research on temporal databases has concentrated on extending the relational model to handle time in an
appropriate manner. These extensions can be divided into two main categories. The first approach uses normalized (1NF)
relations in which special time attributes are added (called tuple time-stamping) and the history of an object (attribute) is
modelled by several INF tuples [LI88, Sno87]. The second approach uses non-normalized (N1NF) relations and attaches
time to attribute values (called attribute time-stamping) in which the history of an object is modelled by a single N1NF tuple
[Gad88, Tan86, TG89, Gor92].

There have been studies that have concentrated on the development of new temporal data models. One such model
[SK86, SS87] models temporal data as a time sequence collection which is represented as a set of triples <surrogate, time,
value>. An extension to the entity relationship (ER) model for handling time by incorporating the concept of lifespan to entities
and relationships has been proposed by [EW90].

In the context of OMSs, [KC86] describes a model to handle complex objects and talks about the representation and temporal
dimensions to support object identity. However, most of the emphasis is on the representation dimension. An extension to an
object-based ER model to incorporate temporal structures and constraints in the data model is given in [RS91]. A corresponding
temporal object-oriented algebra is given in [RS93]. A linear structural model with a continuous time domain is used to model
time. Timestamps can be either time instants or time intervals. For every time-varying attribute in a class, a corresponding
subclass is defined to represent the time sequence [SS87] (history) of that attribute, thus resulting in a large number of classes.

In [KS92], a state of a complex object is represented by the notion of a time slice which basically comprises of a time
interval and the object which was valid during the interval. It is not clear however, how other timestamps and domains of time
are supported for different applications and whether temporal constraints are provided to enforce the temporal semantics of
inheritance.

*This research has been supported by the Natural Sciences and Engineering Research Council of Canada under research grant OGP0951.
ITIGUKAT (tee-goo-kat) is a term in the language of Canadian Inuit people meaning “objects.” The Canadian Inuits, commonly known as Eskimos, are
native to Canada with an ancestry originating in the Arctic regions of the country.

In [DW92], variables and quantifiers are used to range over time. They base their work on abstract notions of time and talk
about abstract time types to facilitate the modeling of various notions of time. However, they do not show how these abstract
types fit in their primitive type lattice, neither do they formally define any behaviors on these abstract types.

Our work is conducted within the context of the TIGUKAT object management system which has a uniform, behavioral and
functional object model. All access and manipulation of objects is restricted to the application of behaviors (implemented as
functions) to objects. Every entity in the model is a first-class object [P0S92]. TIGUKAT has a formal query model complete
with a calculus and algebra definition. We have also designed a user language (called TQL) that loosely follows the ongoing
SQL 3 standard definition [PLOS93b].

Given the application domains TIGUKAT is expected to support, we have extended the object model to incorporate the time
dimension and this is the focus of the present paper. Since TIGUKAT has similarities to OODAPLEX (in its functional nature),
our approach has similarities to the work of Wuu and Dayal [DW92, WD92]. However, there are significant differences as well.
The identifying characteristics of our work are the following:

1. We introduce an extensible set of primitive abstract time types and a rich set of behaviors to model the various notions
of time, namely linear, branching, discrete, continuous and dense. Furthermore we identify three kinds of timestamps —
instants, intervals and spans — and provide types for them. These types could be subtyped to model times with different
granularities and durations. This would enable the design of a wide range of applications requiring different models of
time to be carried out with ease and in a uniform manner.

2. We do not differentiate between object and attribute versioning. In our model, behavior histories are used to manage the
properties of objects over time. This essentially models both approaches and alleviates the need to handle each approach
in a different manner.

3. We define a more general and formal lifetime behavior which ranges not only over objects in classes, but in collections as
well. This models the temporal semantics of inheritance in a uniform manner, even when multiple subtyping is involved.

4. Our temporal extensions can be incorporated within the query model without extending it with any additional constructs.
Hence, the underlying object calculus remains unchanged with the temporal extensions. This enables temporal and
non-temporal objects to be queried in uniform manner, which could be useful in query optimization.

The rest of the paper is organized as follows. In Section 2, we briefly describe the TIGUKAT object model. Section 3 outlines
the extension to the object model to support temporal constructs and temporal semantics of inheritance. In Section 4, we
describe our query language, and demonstrate its use in Section 5 by posing several queries on a geographic information system
example. Finally, Section 6 concludes the paper.

2 The TIGUKAT Object Model

TIGUKAT object model [POS92] is behaviorally defined with a uniform object semantics. The model is behavioral in the sense
that all access and manipulation of objects is restricted to the application of behaviors (operations) upon objects, and the model
is uniform in that every entity within the model has the status of a first-class object.

Uniformity in TIGUKAT is similar to the approaches of DAPLEX [Shi81], its object-oriented counterpart OODAPLEX
[Day89]. Furthermore, we adopt another significant aspect of these models: their functional approach in defining behaviors.
However, we go further by including enhanced functionality along with a full set of precise specifications and an integration
with an example structural counterpart. In this section we give only a general overview of TIGUKAT in order to introduce
its fundamental concepts. For the complete and formal model specification, including the structural counterpart, we refer the
reader to [POS92].

An object is the fundamental concept in TIGUKAT. Every component of information, including its semantics, is uniformly
represented as objects in TIGUKAT. This means that at the most basic level, every expressible element in the model incorporates
at least the semantics of our primitive notion for “object.”

The foundation of the model is constructed on a number of primitive objects which include: atomic entities such as reals,
integers, strings, characters, etc.; types for defining and structuring the information carried by common objects, including the
operations which may be performed on them, within a centralized framework for these objects; behaviors for specifying the
semantics of the operations which may be performed on objects; functions for specifying the implementations of behaviors
over various types; classes for the automatic classification of objects related through their types; and collections for supporting
heterogeneous user-definable groupings of objects.

Objects are defined as (identity, state) pairs where identity represents a unique, immutable system managed object identity
and state represents the information carried by the object. Thus, our model supports strong object identity [KC86], meaning
every object has a unique existence within the model. However, this does not preclude application environments (such as object
programming languages) from having many references (or denotations) to objects which need not be necessarily unique and
may even change depending on the scoping rules of the application. On the other hand, the state of an object encapsulates the
information carried by that object. More specifically, the state encapsulates the denotations of objects and hides the structure and
implementation of the information carried by that object. The access and manipulation of an object’s state occurs exclusively
through the application of behaviors. In this way our model represents the message-based approaches such as Smalltalk [GR85]
and OODAPLEX [Day89].

We separate the means for defining the characteristics of objects (i.e., a type) from the mechanism for grouping instances
of a particular type (i.e., a class). A type specifies an object structure, behaviors and their implementations for objects created
using the type as a template. Thus, a type serves as an information repository (template) of characteristics common among
all objects of that particular type. Types are organized into a lattice structure using the notion of subtyping which promotes
software reuse and incremental type development.

A class ties together the notions of type and object instance. A class is a supplemental, but distinct, construct of a type
responsible for managing all instances created using that type as a template (the collection of all instances of a type known
as the extent of the type). Objects of a particular type cannot exist without an associated class and every class is uniquely
associated with a single type. In other words, the model enforces a total (into) mapping classof from objects into classes and
a total, injective (one-to-one and into) mapping typeof which maps each class to a unique type. Thus, a fundamental notion of
TIGUKAT is that objects imply classes which imply types (i.e., object —> class —> type). Another unique feature of classes
is that object creation occurs only through a class using its associated type as a template for the creation. Defining object, type
and class in this manner introduces a clear separation of these concepts.

In addition to classes, we define a collection as a more general grouping construct. A collection is similar to a class in
that it groups objects, but it differs in the following respects. First, no object creation may occur through a collection; object
creation occurs only through classes. This means that collections only form groupings of existing objects. Second, an object
may exist in any number of collections, but its participation in classes is restricted by the lattice structure on types. Third, the
management of classes is implicit in that the system automatically maintains classes based on the subtype lattice whereas the
management of collections is explicit, meaning that the user is responsible for their extents. Finally, whereas a class groups the
entire extension of a single type and its subtypes (i.e. homogeneous objects based on inclusion polymorphism), a collection
may be heterogeneous in the sense that it can contain objects which may be of different types. Classes in our model are similar
to the grouping constructs in Iris [FBC T87] O++ [AG89], ObjectStore [LLOW91] and Orion [BCG*87], while collections
resemble those in EXODUS [CDV88], ENCORE [SZ90], GEMSTONE [MS87] and O, [LRVS88].

In TIGUKAT, we properly define class as a specialization (subtype) of collection which introduces a clean semantics between
the two and allows the model to utilize both constructs in an effective manner. For example, the targets and results of queries
are typed collections of objects. Now, targets also include classes because of the specialization of classes on collections.

Two other fundamental notions of TIGUKAT are behaviors and the objects which implement them called functions (also
known as methods). In the same way as object specifications (types) are separated from the groupings of their instances (classes
and collections), we separate the definition of a behavior from its possible implementations (functions/methods). Behaviors
provide the only means of operating upon objects and define a semantics which describe their functionality. Objects supporting
the functionality of a particular behavior must have that behavior incorporated into the interface of their type in order for
it to be applicable. Functions implement the semantics of behaviors; we say they provide the operational semantics of the
behavior. The implementation of a particular behavior may vary over the types which support it. Nonetheless, the semantics
of the behavior remains constant and unique over all types supporting that behavior. The implementation of a behavior may
consist of runtime calls to executable code which is known as a computed function. Alternatively, it may simply be a reference
to an existing object in the database in which case it is called a stored function. The uniformity of TIGUKAT object model
considers each behavioral application as the invocation of a function, regardless of how the function is implemented (i.e., stored,
computed, etc.).

The primitive type system of TIGUKAT is shown in Figure 1 with the type T object as the root of the lattice. We use the
following prefixes: type objects by T _, class objects by C _, collection objects by L _and behavior objects by B ..

T_class-classg

[T-type | T-class T_type-class
| T-collection ™ | T-collection-clasg
| T-poset
| T-behavior T_list
—| T-bag
1 T-function
o]
O> T null
— o]
T_object - T_boolean
| T-atomic T_character
| T-string
—| T-real T_integer [| T-natural
Supertype Subtype

Figure 1: Primitive type system of TIGUKAT.

3 Temporality in the Object Model

3.1 Object Model Extensions

Applications that require the functionality of object management systems also require an extensible type system. Applications
built on top of TIGUKAT may have different type semantics. Consequently, we provide a rich and extensible set of types to
support various models of time. The inclusion of the time abstract types into the primitive type lattice is shown in Figure 2.

There are two aspects of modeling time: structural models of time and the density of these structural models. Two basic
structural models of time can be identified [Ben83]:

e Linear: In the linear model, time flows from the past to the future in a totally ordered manner.

e Branching: In the branching model, time is linear in the past upto the present time (now), at which point it branches out
into the future. In other words, the two predecessors of a given time must be relatable. The structure of the branching
model can be thought of as a tree with now as its root defining a partial order of times. This model is useful in applications
where alternate evolutions of versions and their variants are to be kept.

The density in a structural model of time defines the domain over which time is perceived in the model. In other words, it
defines a scale for time in the model. We identify three scales (domains) of time:

1. Discrete domains map time to the set of integers (or to the set of natural numbers when combined with the linear model).
2. Dense domains map time to the set of rational numbers.

3. Continuous domains map time to the set of real numbers.

[| T-instant

T_linear T_interval

T_span

| T-timemodel

T_branching

T_object]
[] T-continuos
I T-timescale T_dense
|
|
|
|
i — | T_discrete
|
|
|
|
|
] T-behavior T_temporalBhv
Supertype Subtype

Figure 2: Primitive type system with abstract time types.

To model the structural models, we define type T_timemodel as a subtype of T_.object. Similarly, to characterize the
density of the structural models, we introduce the T _timescale type as a subtype of T object.

Type T_timemodel has subtypes T_linear and T_branching which define the linear and branching structural models
of time respectively. Each of these has the B_timescale behavior defined on them (see Table 1). In T_t imemodel, this behavior
returns a collection of T_timescale objects, thereby defining the density of the time model. The B timescale behavior is
refined in T_linear to return a list of T timescale objects due to the total ordering on the linear model, and a collection
of T_1linear objects in T_branching since a branching model can be visualized as a union of linear branches.

The T_timescale type has the normal comparison behaviors such as B_lessthan, B_greaterthan, etc (see Table 1 for full
behavior definition). Furthermore, it has subtypes, T discrete, T dense and T continuous which define the respective
domains of time. Type T_-discrete has additional behaviors B_next and B _previous which return the next and previous time
points of a particular time point. Type T _dense has the behavior B_incr which essentially finds a rational time between two
rational times. Finally, type T_continuous has behaviors to B_round or B truncate a continuous time to a discrete one.

Objects can be timestamped with either a time instant (moment, chronon, etc.), a time interval or a time span (duration).
A time instant is a specific instant on the time axis and can be compared with another time instant with transitive comparison
operators. A time interval can be defined as an ordered pair of time instants, a lower bound and an upper bound where the
former is less than the latter. A time span is an unanchored, relative duration of time (e.g., an event taking 5 months). It is
independent of any time instant or interval.

The T_linear type can be subtyped into three abstract types, T_instant, T_interval and T span which basically
identify the timestamps for objects?.

2The T_branching type could be subtyped as well to model versions and their variants. Conceptually, these would be a collection of their linear
counterparts. In this work however, we concentrate on the T 1inear type.

Type

Signatures

T_timescale B_lessthan: T.timescale — T boolean
B_lessthaneqto: ~ T_timescale — T_boolean
B_greaterthan: ~ T_timescale — T_boolean
B_greaterthaneqto: T _timescale — T_boolean
B_noteqto: T_timescale — T_boolean
T_continuos B_round: T_discrete
B_truncate: T_discrete
T_dense B_incr: T_dense — T-dense
T_discrete B_next: T_discrete
B_previous: T._discrete
T_timemodel B_timescale: T_collection<T timescale>
T_linear B_timescale: T_1list<T timescale>
T_branching B_timescale: T.collection<T linear>
T_instant B_timescale: T_timescale
B_precedes: T_interval — T_boolean
B_follows: T_interval — T_boolean
B_within: T_interval — T_boolean
B_add: T_span — T_instant
B_sub: T_span — T_instant
T_interval B_timescale: T_list<T timescale>
B_Ib: T_timescale
B_ub: T_timescale
B_length: T_span
B_precedes: T_interval — T_boolean
B_meets: T_interval — T-boolean
B_overlaps: T_interval — T_boolean
B_during: T_interval — T_boolean
B_starts: T_interval — T_boolean
B_finishes: T_interval — T-boolean
B_union: T_interval — T-interval
B_intersection: T_interval — T-interval
B_difference: T_interval — T_interval
T_span B_timescale: T_timescale
B_add: T_span — T_span
B_sub: T_span — T_span
B_mult: T_integer — T_span
B_div: T_integer — T_span
B_mod: T_integer — T_span

Table 1: Behavior signatures of the time abstract types.

Behaviors are defined on T_instant to check if a time instant is before, after, or within a time interval. Furthermore,
behaviors B_add and B_subtract are provided which connect spans with instants.

A rich set of behaviors is defined on T_interval which includes interval comparison behaviors [All84] (B .overlaps,
B_meets, B_during, etc) and set-theoretic behaviors (B_union, B difference, and B _intersection).

Behaviors on T_span allow time spans to be added to (subtracted from) each other to give other time spans. A time span
can also be multiplied or divided by an integer to give another time span. To model absolute times, like dates, we can easily
extend our time type hierarchy by defining a subtype, T date of the T instant type. Furthermore, we can subtype type
T_span to model year, month and day spans (durations). These can be further subtyped to model finer granularities of time.

To manage temporal information of various properties of objects, we introduce a subtype, T temporalBhv, of the
T_behavior type. T_temporalBhv has an additional functionality in that its instances maintain a history of updates
with respect to a particular object to which they are applicable. We model this history of updates by defining the B history
behavior in the interface of type T _temporalBhv which returns a collection of <T timemodel, T object> objects. More
specifically,

B_history: T_object — T_collection(T timemodel, T object)

Forexample, if e € C_employee, and B_salary is defined in the interface of T_employee and is an instance of C _temporalBhv,
then B_salary.B_history(e) gives the salary history of employee e.
The following definitions formally distinguishes between temporal and non-temporal objects.

Definition 3.1 Object temporality: An object o is temporal iff ¢ = 0.B _mapsto is temporal, where £ is a type object.
Definition 3.2 Type temporality: Typet is temporal iff

3blb € t.B_interface A
b € C_temporalBhv

T_employee : B._Ssno:T._integer
B_name : T_string
BT _Dept : T_department
BT _Salary : T_integer

T.department : B_name:T_string
BT_Manager : T_employee

Figure 3: Employee object type

Since either all objects belonging to a particular type are temporal or all are non-temporal temporality of an object is determined
by looking at its type. As shown in the above expression, a type is temporal if and only if there exists at least one behavior in
its interface which is an instance of the C_temporalBhv class. Hence, the above rule uniformly determines whether any object
is temporal or non-temporal.

For discussion purposes, in the rest of this paper we concentrate on the type T interval to demonstrate the extensibility
of our modeling of time. Extensions for other temporal notions can be provided in the same manner, but in the interest of saving
space, we don’t discuss them in this paper. To exemplify the notion of timestamping objects, we introduce a subtype of the
T_interval type, T . DiscInterval?, which refines all the behaviors of its supertype by fixing the time scale to be discrete.
We also use the term, interval to mean an instance of C_DiscInterval. Hence, the time model part of the <T_timemodel,
T_object> object is taken to be the interval in which the object is valid. Consequently, we represent the history of behaviors
which are instances of C_temporalBhv by sets of triplets of the form, < [/, #), 0 > where [1,u) is the time component (interval),
with [and u representing the lower and upper bounds of the interval respectively, and o is the object (could be either atomic or
complex) which is valid (exists) over the time interval [1,u).

The time instant now is the marking symbol for the current time. An interval whose upper bound is now expands as the
clock ticks. We do not specify any time unit; this is left to the user. For these interval comparison behaviors, we assume the
existence of an instance of C_DiscInterval, [], which stands for the empty interval.

The result of the B_history behavior is a collection of <T DiscInterval, T object> objects and can be represented
as T_collection(T DiscInterval, T-object). Inother words, T_collection is made up of objects whose type is
T_DiscInterval x T_object. This type is automatically created as a subtype of T_product [PLOS93b] and thereby
inherits all its native behaviors. The injection behavior (p;) of T_product returns the i'* component of a product object.
Hence, if o is a temporal product object (i.e., 0 € T_collection(T DiscInterval, T.object)), then o.p; returns an
object of type T DiscInterval and o.p; returns an object of type T_object.

For notational convenience, in the rest of the paper we prefix the names of behaviors which are instances of the
C_temporalBhv class by BT_. As an example, a T_employee object type with its respective behaviors can be repre-
sented as shown in Figure 3. If e € T_employee, and s € BT _Salary.B_history(e), then s.p, gives the salary value during the
interval given by s.p.

A point worthy of mention is the temporality transparency in the signatures of behaviors which are instances of the
C_temporalBhv class. This is important especially from user perspective since behavior histories can be got simply by
application of the B_history behavior thereby providing uniformity in the signatures of behaviors which are instances of the
C_temporalBhv class and those that are instances of the C_behavior type.

Two basic aspects of time are considered in databases which incorporate time. These are the valid and transaction times.
The former denotes the time when an object becomes effective (begins to model reality), while the latter represents the time
when a transaction was posted to the database. The need to distinguish between valid and transaction time arises when an
update to an object is posted to the database at a time which is different than the time when the update becomes valid. In this
work we only consider valid time (all the notions introduced apply to transaction time as well and can easily be carried forward)
and use the term “temporal objectbase” liberally to refer to a database which contains any kind of time-varying objects.

Objects in our model are either mutable (versionable) or immutable (non-versionable). Immutable objects exist indefinitely in
the database. Examples of these are T_integer, T_string, etc. Mutable objects on the other hand, are simply compositions
of immutable objects tagged by a sequence of continuous time intervals in ascending order. T employee is an example of a
mutable object. This categorization enables us to model both time-varying and non time-varying objects.

3The T-interval type can be subtyped to model any other specialized intervals according to a specific time scale.

‘4{ Lifespan of superclass

‘7 o { Lifespan of class

Figure 4: Temporal constructs between a class object and its superclass object

3.2 Temporal Semantics of Inheritance

We model temporal constraints to represent relationships between objects, more specifically between objects in a class and
those existing in their (immediate) superclass. Figure 4 shows the four different constructs used to model temporal relationships
between a class and its superclass. As seen, the lifespan of a class is contained in the lifespan of its superclass where the lifespan
is the time interval over which objects of this class are valid*. The differentiating factor in the four cases is the start and end
times of the class as compared to those of its superclass. The construct in Figure 4 (a) is directly inherited by the subclass(es),
and need not be explicitly specified. We do not allow the lifespan of a class object to be larger than that of its superclass object.
For example, if a person dies, it makes no sense for his existence to continue as an employee, assuming C_employee is a
subclass of C_person.

Adding time to the object model should enable us to find out all existing objects of a class (collection) at a particular time
interval. We introduce a timeextent behavior in the T collection type which returns a collection of objects existing at
a given time interval, when applied to a collection (class). If no interval is specified, defaults could be set by the database
administrator to either return the collection of currently existing objects or the collection of objects which ever existed.

B_timeextent : T DiscInterval — T collection(T object)

From the constructs given in Figure 4, it follows that the collection of existing class (collection) objects during a given time
interval (extent of the class), is a subset of its existing superclass objects during the same time interval (extent of the superclass).
This is essentially same as the temporal inclusion constraint specified in [WD92]. The constructs in Figure 4 also restrict the
behaviors inherited by a class from its superclass to span over the duration in which the class exists and not the duration in
which its superclass existed.

In [WD92], a lifespan function is defined which takes an object as an argument and returns the time during which it existed.
The lifespan of an object in the class to which it belongs is restricted to be a subset of its lifetime in the superclass, but it is not
clear how the constraint is actually enforced. We extend this notion of the lifespan function and formally define a more general
lifespan behavior, B_lifespan on the T_object type which returns the time during which an object existed in a particular
collection (class). This definition allows us to talk about the lifespan of an object not only in a class, but in any collection as
well. Collections are typed groupings of objects meaning every collection has an associated type. For a collection ¢, we use
B_typeof{(c) to denote the associated type for collection c.

B_lifespan: T_collection — T DiscInterval
To ensure temporal consistency, we add the following rule:
Blifespan(o,x) < Blifespan(o,c¢) < Blifespan(c,C_class)

where c is a class object, z is any collection object and B_typeof(x) is a subtype of B typeof(c). The above rule ensures that the
lifespan of an object within a particular class ¢ is contained in the lifespan of class c. Furthermore, the lifespan of that object
in any collection z ranging over the class c, is also contained in the lifespan of ¢. When an object ceases to exist (becomes
invalid), the extent of the class to which it belongs (and the extents of all its subclasses) is adjusted to reflect this change. A
similar change is made in the respective collections ranging over the class.

The temporal inheritance semantics using a lifespan behavior hold true for multiple subtyping as well, but there are questions
concerning update semantics in the primitive model which need to be addressed first. We are currently working on the update
semantics for multiple subtyping in the object model and this will be directly carried forward to the temporal object model.

4We base our discussion of inheritance semantics on classes rather than on types since in TIGUKAT types may exist without having an extent (abstract
types) modeled as classes. The lifespans of instance objects are, therefore, limited to the lifespans of their classes rather than their types.

4 The TIGUKAT Query Language

The TIGUKAT query model is a direct extension to the object model. It is defined by type and behavioral extensions to the
primitive model. The languages for the query model include a complete calculus, and equivalent object algebra and a SQL-like
user language.

The calculus has a logical foundation and its expressive power is outlined by the following characteristics. It defines
predicates on collections (essentially sets) of objects and returns collections of objects as results which gives the language
closure. Tt incorporates the behavioral paradigm of the object model and allows the retrieval of objects using nested behavioral
applications, sometimes referred to as path expressions or implicit joins. It supports both existential and universal quantification
over collections. It has rigorous definitions of safety (based on the evaluable class of queries) and typing which are compile
time checkable. It supports controlled creation and integration of new collections, types and objects into the existing schema.

Like the calculus, the algebra is closed on collections. Algebraic operators are modeled as behaviors on the primitive type
T_collection. They operate on collections and return collections as a result. Thus, the algebra has a behavioral/functional
basis as opposed to the logical foundation of the calculus. The combination of these behaviors brings closure to the algebra.

Details of the equivalence of the object calculus and algebra in both directions, reduction of the user language to the calculus
and the safety of the calculus, algebra and user languages are given in [PLOS93a]. In this section, we briefly discuss the
TIGUKAT Query Language (TQL) and demonstrate how it can be used to access temporal objects since the rich set of behaviors
defined on the time abstract types alleviates the need to make changes to the underlying calculus and algebra.

TQL is based on the SQL paradigm and its semantics is defined in terms of the object calculus. Hence, every statement of
the language corresponds to an equivalent object calculus expression.

The basic query statement of TQL is the select statement. It operates on a set of input collections, and it always returns a
new collection as the result. The general syntax of the select statement is as follows:

< select statement > :
select < object variable list >
[into < collection name >]
from < range variable list >
[where < boolean formula >]

The select clause in this statement identifies objects which are to be returned in a new collection. There can be one or more
object variables with different formats (constant, variables, path expressions or index variables) in this clause. They correspond
to free variables in object calculus formulas. The info clause declares a reference to a new collection. If the into clause is
not specified, a new collection is created; however, there is no reference to it. The from clause declares the ranges of object
variables in the select and where clauses. Every object variable can range over either an existing collection, or a collection
returned as a result of a subquery, where a subquery can be either given explicitly, or as a reference to a query object. The range
variable in the from clause is as follows:

< range variable > : < identifier list > in < collection reference > [+]
< collection reference >: < term > | (< query statement >)

The collection reference in the range variable definition can be followed by a ’+’ to refer to the shallow extent of a class. The
term in the collection reference definition is either a constant reference, a variable reference, or a path expression.

The where clause defines a boolean formula which must be satisfied by objects returned by a query. Two additional predicates
are added to TQL boolean formulas to represent existential and universal quantification. The existential quantifier is expressed
by the exists predicate which is of the form:

< ewists predicate >: exists < collection reference >

The exists predicate is true if the referenced collection is not empty. The universal quantifier is expressed by the forAll predicate
which has the structure:
< forAll predicate > : forAll < rangevariablelist > < boolean formula >
The syntax of the range variable list is the same as that in the from clause of the select statement. It defines variables which
range over specified collections. The boolean formula is evaluated for every possible binding of the variables in this list. Hence,
the entire forAll predicate is true, if for every element in every collection in the range variable list, the boolean formula is
satisfied.

Having described TQL, and with the behaviors defined on T DiscInterval, we show in the next section how temporal
objects can uniformly be queried without changing any of the basic constructs of TQL.

T_object

/

T_person T dwelling T_location T_shape
T_display | | |
T_atomic T_behavior T_type
T house T T zone N T function T.collection
T_date
T_window
T.map T_land T water T_transport T_altitude
T_forest T T_clear T_pond T_river T_road

T_developed

N\

Figure 5: Type lattice for a simple geographic information system.

S Example Objectbase

In this section, we present some examples on a geographic information system (GIS) objectbase to demonstrate how the temporal
extensions to our underlying object model can easily be incorporated within the query model, without extending TQL with any
extra construct to query temporal objects.

A type lattice for a simplified GIS is shown in Figure 5. The example includes the root types of the various sub-lattices
from the primitive type system to illustrate their relative position in an extended application lattice. The GIS example defines
abstract types for representing information on people and their dwellings. These include the types T person, T dwelling
and T_house. Geographic types to store information about the locations of dwellings and their surrounding areas are defined.
These include the type T_-location, the type T_zone along with its various subtypes which categorize the various zones of
a geographic area, and the type T_map which defines a collection of zones suitable for displaying in a window. Displayable
types for presenting information on a graphical device are defined. These include the types T display and T window which
are application dependent, along with the type T map which is the only GIS application specific object that can be displayed.
Finally, the type T_shape defines the geometric shape of the regions representing the various zones. Table 2 lists the signatures
of the behaviors defined on GIS specific types. A type in the GIS example is temporal, if it has at least one behavior which is
an instance of C_temporalBhv. Hence, as seen in Table 2, the types T_zone, T_-map, T-1land, T_water, T_transport,
T_person and T_house are temporal.

The following examples illustrate possible queries on the GIS expressed in TQL. We use arithmetic notation for the operators
like o.greaterthan(p), o.elementof), etc., and set inclusion notation for the operators like overlap(o,p), union(o,p), etc., instead
of boolean path expressions. Lower case letters like o, p, a, etc., stand for object variables.

Example 5.1 Return land zones valued over $100,000 that covered an area over 1000 units.

select o
from o in in C_land, v in BT_Value.B_history(o), a in BT _Area.B_history(o)
where (v.p2() > 100000 and a.p>() > 1000 and (v.p;() Na.p1() #[])

Type Signatures
T_location B_latitude: T_real
B_longitude: T _real
T_display B_display: T_display
T_window B_resize: T_window
B_drag: T_window
T_shape
T_zone B_title: T_-string
BT _Origin: T_location
BT_Region: T_shape
BT_Area: T._real
BT_Proximity: T_-zone — T_real
T_map B_resolution: T_real
B_orientation: T_real
BT_Zones: T_collection{T_zone)
T_land BT_Value: T_real
T_water BT_Volume: T_real
T_transport | BT_Efficiency: T.real
T_altitude B_low: T_integer
B_high: T_integer
T_person B_name: T_string
B_birthDate: ~ T_date
BT_Age: T._natural
BT_Residence: T_dwelling
BT_Spouse: T_person
BT_Children: ~ T_person — T_collection(T person)
T_dwelling B_address: T_string
B_inZone: T_land
T_house B_.inZone: T_developed
BT_Mortgage: T_real

Table 2: Behavior signatures pertaining to the GIS example.

Example 5.2 Return all zones which have people currently living in them.

select o

from p in C_person, r in BT_Residence.B_history(p)
where (o=p.BT_Residence().B-inzone() and r.p;().B_ub= now)

Example 5.3 Return the maps with areas where senior citizens have ever lived.

select o

from o in C_map, z in BT Zones.B_history(o)

where exists (select p

from p in C_person, r in BT_Residence.B_history(p), d in C_dwelling
where (p.BT_Age() > 65 and d = r.p,() and d.B_inzone() € z.p>()))

Example 5.4 Return all persons who changed their spouse in a span of less than 2 years. (assuming a time unitis equal to a year)

select o
from o in C_person

where forAll p in (BT_Spouse.B_history(o))

(p.p1().B_length < 2)

Example 5.5 When was person z spouse of person y?

select s.p1()

from y in C_person, z in C_person, s in BT_Spouse.B_history(y)

where s.p,() =

Example 5.6 Return all (T person,T person,T_Set) triples of people who have never married but have children together.

select p, ¢, k

from p in C_person, ¢ in C_person

where (k = p.BT_Children(q) and —(k = {}) and
(forAll s in (BT_Spouse.B_history(p))

(5020 = 4))

6 Conclusion

In this paper we defined temporal extensions to the TIGUKAT object model by providing an extensible set of primitive time types
with a rich set of behaviors to model various notions of time elegantly. We showed how temporal objects can be timestamped
with one of the time interval types and manipulated using the injection behavior of the T product type.

We introduced a general lifespan notion for objects which models the lifespan of an object in any collection, and the class
to which it belongs. A lifespan constraint was defined for objects which facilitates the inheritance of temporal classes.

Finally, we gave a real world GIS example and illustrated with the help of some example queries, how temporal objects can
be queried without adding any extra construct to our query language, TQL.

We are currently investigating the modeling of schema versioning and other time dimensions (like transaction time) with
our primitive time types in a uniform way. We also intend to look into the issues of query optimization when temporal objects
are considered by investigating how best the notion of a time index [EWK90] can be applied to complex temporal objects.

References

[AGS89] R. Agrawal and N.H. Gehani. ODE (Object Database and Environment): The Language and the Data Model. In
Proc. ACM SIGMOD Int’l. Conf. on Management of Data, pages 36—45, May 1989.

[All84] J. F. Allen. Towards a General Theory of Action and Time. Artifical Intelligence, 23(123), 1984.

[BCGT87] 7. Banerjee, H.T. Chou, J.F. Garza, W. Kim, D. Woelk, N. Ballou, and H.J. Kim. Data Model Issues for Object-
Oriented Applications. ACM Transactions on Office Information Systems, 5(1):3-26, January 1987.

[Ben83] JFK.A. Benthem. The Logic of Time. Reidel, 1983.

[CDV88] M. Carey, D.J. DeWitt, and S.L.. Vandenberg. A Data Model and Query Language for EXODUS. In Proc. ACM
SIGMOD Int’l. Conf. on Management of Data, pages 413-423, September 1988.

[Day89] U. Dayal. Queries and Views in an Object-Oriented Data Model. In Proc. 2nd Int’l Workshop on Database
Programming Languages, pages 80—102, June 1989.

[DW92] U. Dayal and G. Wuu. A Uniform Approach to Processing Temporal Queries. In Proc. 8th Int’l. Conf. on Data
Engineering, pages 407-418, August 1992.

[EW90] R. Elmasri and G. Wuu. A Temporal Model and Query Language for ER Databases. In Proc. 6th Int’l. Conf. on
Data Engineering, pages 76—83, February 1990.

[EWK90] R. Elmasri, G. Wuu, and Y. Kim. The Time Index: An Access Structure for Temporal Data. In Proc. 16th Int’l
Conf. on Very Large Data bases, August 1990.

[FBCt87] D.H. Fishman, D. Beech, H.P. Cate, E.C. Chow, T. Connors, J.W. Davis, N. Derrett, C.G. Hoch, W. Kent,
P.Lyngbaek, B. Mahbod, M.A. Neimat, T.A.Ryan, and M.C. Shan. Iris: An Object-Oriented Database Management
System. ACM Transactions on Office Information Systems, 5(1):48-69, January 1987.

[Gad88] S. Gadia. A Homogeneous Relational Model and Query Languages for Temporal Databases. ACM Transactions
on Database Systems, 13(4), 1988.

[Gor92] I. Goralwalla. An Implementation of a Temporal Relational Database Management System. Master’s thesis,
Bilkent University, 1992.

[GR85]
[KC86]

[KS92]

[LI88]

[LLOWO1]

[LRV8S]

[MS87]

[PLOS93a]

[PLOS93b]

[POS92]

[RS91]

[RS93]

[Shi81]

[SK86]

[Sno87]

[SS87]

[SZ90]

[Tan86]

[TG89]

[WD92]

A. Goldberg and D. Robson. SMALLTALK-80: The Language and its Implementation. Addison-Wesley, 1985.

S.N. Khoshafian and G.P. Copeland. Object Identity. In Proc. of the Int’l Conf on Object-Oriented Programming:
Systems, Languages, and Applications, pages 406—416, September 1986.

W. Kafer and H. Schoning. Realizing a Temporal Complex-Object Data Model. In Proc. ACM SIGMOD Int’l.
Conf. on Management of Data, pages 266-275,1992.

N. Lorentzos and R. Johnson. Extending Relational Algebra to Manipulate Temporal Data. Information Systems,
15(3), 1988.

C. Lamb, G. Landis, J. Orenstien, and D. Weinreb. The ObjectStore Database System. Communications of the
ACM, 34(10):50-63,October 1991.

C. Lecluse, P. Richard, and F. Velez. O,, an Object-Oriented Data Model. In Proc. ACM SIGMOD Int’l. Conf. on
Management of Data, pages 424-433, September 1988.

D. Maier and J. Stein. Development and Implementation of an Object-Oriented DBMS. In Research Directions in
Object-Oriented Programming, pages 355-392. M.L.T. Press, 1987.

R.J. Peters, A. Lipka, M.T. Ozsu, and D. Szafron. A Query Model and Language for the TIGUKAT Objectbase
Management System. Technical Report TR93-01, Department of Computing Science, University of Alberta,
January 1993.

R.J. Peters, A. Lipka, M.T. Ozsu, and D. Szafron. An Extensible Query Model and Its Languages for a Uniform
Behavioral Object Management System. In Proc. Second Int’l. Conf. on Information and Knowledge Management,
November 1993.

R.J. Peters, M.T. Ozsu, and D. Szafron. TIGUKAT: An Object Model for Query and View Support in Object
Database Systems. Technical Report TR-92-14, University of Alberta, October 1992.

E. Rose and A. Segev. TOODM - A Temporal Object-Oriented Data Model with Temporal Constraints. In Proc.
10th Int’l Conf. on the Entity Relationship Approach, pages 205-229, October 1991.

E. Rose and A. Segev. TOOA - A Temporal Object-Oriented Algebra. In Proc. European Conference on Object-
Oriented Programming, 1993.

D.W. Shipman. The Functional Model and the Data Language DAPLEX. ACM Transactions on Database Systems,
6(1), March 1981.

A. Shoshani and K. Kawagoe. Temporal Data Management. In Proc. 12th Int’l Conf. on Very Large Data Bases,
1986.

R. Snodgrass. The Temporal Query Language, TQuel. ACM Transactions on Database Systems, 12(2):247-298,
June 1987.

A.Segev and A. Shoshani. Modeling Temporal Semantics. In Temporal Aspects of Information Systems Conference,
1987.

G. Shaw and S. Zdonik. A Query Algebra for Object-Oriented Databases. In Proc. 6th Int’l. Conf. on Data
Engineering, pages 154—162, February 1990.

A. Tansel. Adding Time Dimension to Relational Model and Extending Relational Algebra. Information Systems,
13(4):343-355,1986.

A. Tansel and L. Garnett. Nested Historical Relations. In Proc. ACM SIGMOD Int’l. Conf. on Management of
Data, 1989.

G. Wuu and U. Dayal. A Uniform Model for Temporal Object-Oriented Databases. In Proc. 8th Int’l. Conf. on
Data Engineering, pages 584-593, February 1992.

