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Abstract. Granularity is an integral feature of both anchored (e.g., 25 October 1995; July 1996)
and unanchored (e.g., 3 minutes, 6 hours 20 minutes, 5 days) temporal data. In supporting
temporal data that is speci�ed in di�erent granularities, numerous approaches have been proposed
to deal with the issues of converting temporal data from one granularity to another. The emphasis,
however, has only been on granularity conversions with respect to anchored temporal data. In
this paper we provide a novel approach to the treatment of granularity in temporal data. A
granularity is modeled as a special kind of unanchored temporal primitive that can be used as a
unit of time. That is, a granularity is modeled as a unit unanchored temporal primitive. We show
how unanchored temporal data is represented, give procedures for converting the data to a given
granularity, provide canonical forms for the data, and describe how operations between the data
are performed. We also show how anchored temporal data is represented at di�erent granularities
and give the semantics of operations on anchored temporal data.
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1. Introduction

We address the problem of modeling and managing, within a database management
system (DBMS), anchored and unanchored temporal data of multiple granularities.
Anchored data has a speci�c location on the time axis, while unanchored data has
no speci�c location. For example, 31 July 1995 is an anchored temporal primitive
in that we know exactly where it is located on the time axis, whereas 31 days is
unanchored since we do not know where it is located on the time axis; it can stand
for any block of 31 consecutive days. Anchored and unanchored temporal informa-
tion is usually available in multiple granularities. Such information is prevalent in
various sources. For example:
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� clinical data � Physicians usually specify temporal clinical information for pa-
tients with varying granularities [9, 10, 11]. For example, \the patient su�ered
from abdominal pain for 2 hours and 20 minutes on 15 June 1996," \in 1990,
the patient took a calcium antagonist for 3 months," \in October 1993, the
patient had a second heart seizure."

� real-time systems � A process is usually composed of sub-processes that evolve
according to times that have di�erent granularities [12]. For example, the tem-
poral evolution of the basin in a hydroelectric plant depends on di�erent sub-
processes: the 
ow of water is measured daily; the opening and closing of radial
gates is monitored every minute; and the electronic control which has a granu-
larity of microsecond.

� geographic information systems � Geographic information is usually speci�ed
according to a varying time scale [14]. For example, vegetation 
uctuates ac-
cording to a seasonal cycle, while temperature varies daily.

� oÆce information systems � temporal information is available in di�erent time
units of the Gregorian calendar [2, 8, 21]. For example, employee wages are usu-
ally recorded in the time unit of hours while the history of sales are categorized
according to months.

Clearly many applications require support for both anchored and unanchored
temporal primitives that are speci�ed in di�erent and mixed granularity. Without
a sound and general treatment of temporal granularities, even if the choice of the
most appropriate granularity (i.e., the �nest) for a given application domain was
possible (and this is not the case, for example, of medical applications), several
problems would arise both in integrating data from heterogeneous systems based on
di�erent time units, and in converting a temporal primitive from some granularity
to that of the system (e.g., 3 months in days).
Although there have been various recent proposals that handle multiple granular-

ities [2, 4, 7, 11, 21, 22, 23, 25, 26, 27], the focus has been mainly on representing
anchored temporal primitives that are speci�ed in di�erent granularities. Granular-
ity conversions are given for anchored temporal primitives only. However, support-
ing unanchored temporal primitives with di�erent granularity is equally important
[18]. All the proposals dealing with temporal granularity can be viewed as pieces
of a puzzle: we contend that this puzzle will be completed only by supporting both
anchored and unanchored temporal primitives with di�erent granularities. In the
next section we give a real-world example from clinical medicine that motivates our
claim.

1.1. Motivation

We focus on a clinical example related to a patient with cardiological problems,
particularly related to the widely known problem of diagnosing and following up
unstable angina [1]. Unstable angina1 is a transitory clinical syndrome usually
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associated with an increased duration and/or intensity of symptoms related to
coronary artery disease; risk of cardiac death and myocardial infarction increase.
In this situation it is important to consider both the time when the symptoms (like
chest pain) began and the time duration of these symptoms.
Let us consider the following sentences which are related to information contained

in the cardiological medical record of a patient:

1. The patient su�ered from chest pain at rest for 2 hours and 55 minutes on 13
December 1995.

2. The patient presented an episode of acute chest pain on 29 January 1996 from
13:20:15 to 13:56:23.

3. The patient has been admitted to an Intensive Care Unit from 21:00 29 January
1996, and he has undergone intensive medical management for 36 hours.

4. On 15 February 1996 the patient had myocardial infarction.

5. At 3 pm 12 April 1996 the patient presented a new episode of chest pain of 7
minutes and 35 seconds during a soft exertion.

6. From December 1994 to April 1996 the patient took aspirin.

7. From 30 January 1996 the patient had to take a thrombolytic therapy for 38
months.

We can observe from the above sentences that there are many di�erent granulari-
ties for time instants (days in sentences 1, 4, and 7; seconds in sentence 2; minutes
in sentence 3; hours in sentence 5; months in sentence 6) and di�erent and mixed
granularities for time spans (hours and minutes in sentence 1; hours in sentence 3;
minutes and seconds in sentence 5; months in sentence 7). Moreover, in a single
sentence there may be time instants and time spans having heterogeneous granu-
larities (for example, in sentence 3 the time instant is speci�ed at the granularity
of minutes, while the time duration is speci�ed at the granularity of hours).
In addition to the di�erent and mixed granularities in the patient-related infor-

mation, the de�nition of unstable angina itself involves time spans given at di�erent
granularities. Unstable angina is, in fact, de�ned as: (1) symptoms of angina at
rest, for more than 20 minutes, or (2) new onset, within two months, of exertional
angina, involving marked limitations of ordinary physical activity, or (3) increasing
angina within two months from the initial presentation, or (4) post- myocardial in-
farction angina, i.e., angina occurring from 1 to 60 days after an acute myocardial
infarction [1].
In a clinical setting, we need to be able to derive some extra information from

the stored sentences about the patient. For example:

1. What is the time span between the myocardial infarction and the last episode
of chest pain?

To derive this, we need to compute the elapsed time (which is a time span)
between the time instants 15 February 1996 and 3 pm 12 April 1996 (see
sentences 4 and 5).
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2. What is the global span of the symptoms of angina?

To answer this question, the elapsed time between the time instants 13:20:15
29 January 1996 and 13:56:23 29 January 1996 has to be added to the time
spans 7 minutes and 35 seconds, and 2 hours and 55 minutes (see sentences
1, 2, and 5).

3. When did the patient �nish the intensive medical management and what is the
time span between the end of the intensive medical management and the onset
of the new angina episode?

To answer the �rst part of the question, we need to add the time span 36 hours
to the time instant 21:00 29 January 1996. The elapsed time between the
resulting time instant and the time instant 3 pm 12 April 1996 gives the answer
to the second part of the question (see sentences 3 and 5).

4. Was the patient taking aspirin when the past episode of chest pain happened?

The answer to this question depends on what interpretation we choose to give to
the temporal labels December 1994 and April 1996. If we consider that the pa-
tient took aspirin from sometime in December 1994 to sometime in April 1996,
then we cannot give a de�nite answer to the question. However, if we inter-
pret December 1994 and April 1996 to mean the entire speci�ed months, then
December 1994 means the entire period between 00:00:00 1 December 1994
and 23:59:59 31 December 1994. Similarly, April 1996 means the entire period
between 00:00:00 1 April 1996 and 23:59:59 30 April 1996. In this case we
are able to give a de�nite answer that the patient was taking aspirin when the
episode of chest pain happened (see sentences 5 and 6).

5. When did the thrombolytic therapy end?

In this case we have to add the time span 38 months to the time instant
30 January 1996 (see sentence 7).

These questions substantiate the need for a temporal DBMS to provide the means
for (a) representing and storing time instants with di�erent granularities, and time
spans with di�erent and mixed granularities, (b) handling granularity mismatches in
operations between temporal primitives with di�erent granularities, (c) converting
a temporal primitive from one granularity to another, and (d) considering di�erent
interpretations for time labels. In the rest of the paper, we show how these issues
can be supported in a temporal DBMS.

1.2. Paper Organization

The rest of the paper is organized as follows: in Section 2 we describe how multiple
granularities are accommodated within the context of calendars and the derivation
procedures of converting one granularity to another. In Section 3 we present our
model for unanchored temporal primitives. In Section 4 anchored temporal prim-
itives are presented along similar lines to that of Section 3. Section 5 sheds some
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light on implementation issues. In Section 6, we compare our approach with the re-
lated work in literature. Finally, Section 7 presents conclusions and outlines future
avenues of research.

2. Calendars

2.1. Modeling Issues

A calendar is a means by which physical time can be represented so as to be
human readable. It is comprised of time units of varying granularities that enable
the representation of di�erent temporal primitives. Common calendars include
Gregorian and Lunar. Educational institutions also use Academic calendars. In
many applications, it is desirable to have multiple calendars that have di�erent
calendric granularities. In this paper, we base our work on a single calendar and
refer the reader to [15] for details on multiple calendar support.

De�nition 1. Calendar (C). A calendar C is a triplet hGtl;G;Fi, where Gtl is the
global timeline of C, G is the set of calendric granularities belonging to C, and F is
a list of conversion functions associated with C.

Calendric granularities de�ne the reasonable time units (e.g., minute, day, month)
that can be used in conjunction with a calendar. Calendric granularities within a
calendar are counted from the origin of its global timeline Gtl. The functions
establish the conversion rules between the di�erent granularities of a calendar.

2.2. Calendric Granularities

A calendar is comprised of a �nite number of time units, called calendric granular-

ities. In the Gregorian calendar the set of calendric granularities consists of year,
month, day, hour, minute, and second. Generally speaking, a calendric granularity
is a unit of measurement for time durations. For example, the calendric granularity
of days (day) in the Gregorian calendar behaves similar to the unanchored duration
1 day (unanchored durations are discussed in more detail in Section 3.1).

De�nition 2. Calendric granularity (G). A calendric granularity is a special kind
of, possibly varying, unanchored duration that can be used as a unit of time.

Since a calendric granularity is a special kind of a time span, it is meaningful to
compare two calendric granularities with each other.

De�nition 3. Comparison between calendric granularities. GA is coarser than GB

if GA > GB as a time span. Similarly, GA is �ner than GA if GA < GB as a time
span.
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For example, the span of 1 day is shorter (<) than the span of 1 month and there-
fore the calendric granularity of days (day) is �ner than the calendric granularity of
months (month) in the Gregorian calendar. Similarly, month is coarser than day.

Because we must always be able to compare two calendric granularities with each
other, we assume that the set of all possible calendric granularities is totally ordered
with respect to the comparison operators given in De�nition 3. This condition pro-
vides us with a sharp contrast from other work dealing with temporal granularity.
While granularities are totally ordered in our framework, in many others they are
typically only partially ordered [23, 26]. This allows us to carry out granularity
conversions in terms of time spans.

2.3. Functions

Associated with a calendar is a list of functions (F) which determine the number of
�ner calendric elements in coarser calendric elements. Notice that these functions
depend on the particular value of a granularity and not just the granularity itself.
For example, the number of days in a month depend on the month itself. More
generally, let C be a calendar with calendric granularities G1; G2; : : : ; Gn, where
G1 is the coarsest calendric granularity and Gn is the �nest calendric granularity.
The following functions are then de�ned:

De�nition 4. Conversion functions.

f
G1
C (i1) ! NG2 ; lb1 � i1 � ub1

f
G2
C (i1; i2) ! NG3 ; lb1 � i1 � ub1; lb2 � i2 � f

G1
C (i1)

..

.

f
Gn
C

(i1; i2; : : : ; in) ! RGtl ; lb1 � i1 � ub1; lb2 � i2 � f
G1
C

(i1); : : : ; lbn � in � f
Gn�1
C

(in�1)

where ij (1 � j � n) are natural numbers which correspond to the ordinal number
of a calendric element of the jth calendric granularity in calendar C. NGx

(1 �
x � n) is a natural number which stands for the number of Gx's. lbi de�ne the
lower bound of the range of calendric elements for each considered granularity (e.g.,
months from 1, hours from 0). RGtl

is a real number.

The scale of Gtl is dependent on the precision of the respective machine architec-
ture. For simplicity and explanatory purposes in this paper, we assume the scale
of Gtl to be seconds. Just to illustrate how the conversion functions work, let us
suppose we are interested in the number of months in 1995 and the number of days
in September 1995 in calendar C: the functions fyearC (1995) and fmonth

C (1995; 9)
will return 12 and 30, respectively. More complicated cases will be discussed in the
next section.
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2.4. Conversions between Calendric Granularities

In a temporal model where times with di�erent calendric granularities are sup-
ported, we need to be able to convert a �ner calendric granularity to a coarser
calendric granularity, and vice-versa. We discuss these conversions below by �rst
de�ning two functions. These functions are necessary since the number of units of
one granularity contained in a unit of another granularity is not �xed.

De�nition 5. Lower bound factor [lbf(GA; GB)]. The lower bound factor of GA

and GB is the minimum number of GB units that can form 1 GA unit.

De�nition 6. Upper bound factor [ubf(GA; GB)]. The upper bound factor of GA

and GB is the maximum number of GB units that can form 1 GA unit.

Both factors coincide in the case of those granularities that have exact conversions
(e.g., lbf(hour;minute) = ubf(hour;minute) = 60); in general, however, these
factors can be di�erent (e.g., lbf(month; day) = 28 and ubf(month; day) = 31).

We now show how lbf(GA; GB) and ubf(GA; GB) are derived from the conversion
functions de�ned in Section 2.3 when GA is coarser than GB , and when GA is �ner
than GB .

Derivation 1 GA is coarser than GB. Let G1; : : : ; GA; : : : ; GB ; : : : ; Gn be the
totally ordered calendric granularities of calendar C with G1 being the coarsest
calendric granularity and Gn the �nest. Now, the number of GB units in any given
calendric element (i1; : : : ; iA) is given by the following summation:

fGA!GB

C (i1; : : : ; iA) =

f
GA
C

(i1;::: ;iA)X
j1=lbA+1

f
GA+1
C

(i1;::: ;iA;j1)X
j2=lbA+2

: : :

: : :

f
GB�2
C

(i1;::: ;iA;j1;::: ;jB�A�2)X
jB�A�1=lbB�1

f
GB�1

C (i1; : : : ; iA; j1; : : : ; jB�A�1)

The minimum (maximum) number of GB units in a calendric element og GA is
then the minimum (maximum) of the above formula over all (i1; : : : ; iA). More
speci�cally,

lbf(GA; GB) = min
(i1;::: ;iA)

ffGA!GB

C (i1; : : : ; iA)g (1)

ubf(GA; GB) = max
(i1;::: ;iA)

ffGA!GB

C (i1; : : : ; iA)g (2)
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Example: Let C be a calendar with the calendric granularities year, month and
day. The following functions are de�ned in C: fyearC (y)! Nmonth, f

month
C (y;m)!

Nday, f
day
C (y;m; d) ! RGtl

, where y, m, and d are ordinal values of calendric
elements in the calendric granularities year, month, and day, respectively. Suppose
we want to �nd lbf(year; day) and ubf(year; day). The number of days in any year

y is given by the summation:
Pf

year

C
(y)

m=1 fmonth
C (y;m). The minimum (maximum)

number of days in a year is then the minimum (maximum) of this summation over
all y. More speci�cally,

lbf(year; day) = min
y
f

f
year

C
(y)X

m=1

fmonth
C (y;m)g

ubf(year; day) = max
y
f

f
year

C
(y)X

m=1

fmonth
C (y;m)g

Derivation 2 Minimum and maximum number of GB in K units of GA. Formu-
las (1) and (2) calculate the minimum and maximum number of GB in one unit of
GA, respectively. We now generalize formulas (1) and (2) to calculate the minimum
and maximum number of GB in K units of GA.

lbf(K;GA;GB) = min
i1;::: ;iA

f
X

0�distGA
((i

0

1
;::: ;i

0

A
);(i1;::: ;iA))�K�1

f
GA!GB
C (i

0

1; : : : ; i
0

A)g (3)

ubf(K;GA;GB) = max
i1;::: ;iA

f
X

0�distGA
((i

0

1
;::: ;i

0

A
);(i1;::: ;iA))�K�1

f
GA!GB
C (i

0

1; : : : ; i
0

A)g (4)

The summation in formulas (3) and (4) is the number ofGB units inK consecutive
GA units starting with (i1; : : : ; iA). The function distGA

((i
0

1; : : : ; i
0

A); (i1; : : : ; iA))

�nds the number of GA units elapsed between (i
0

1; : : : ; i
0

A) and (i1; : : : ; iA). For
example, distmonth((1996; 2); (1995; 1)) = 13 (number of months elapsed between
February 1996 and January 1995 ). The lower and upper bound factors are then ob-
tained by taking the minimum and maximum of the summation over all (i1; : : : ; iA).
Embedding the coeÆcient K within formulas (3) and (4) reduces the information

lost in the process of calculating the number of GB units in K units of GA as
compared to �rst �nding the number of GB units in one unit of GA and then
multiplying it by K to �nd the number of GB in K units of GA. For example,
using formulas (1) and (2) to calculate the minimum and maximum number of
days in 2 �month gives us 56 and 62, respectively, while formulas (3) and (4) give
us 59 and 62, respectively � thereby reducing the information lost by 3 days. Note
that for exact conversions, lbf(K;GA; GB) = ubf(K;GA; GB) = K �lbf(GA; GB) =
K � ubf(GA; GB). For example, lbf(K; day; hour) = ubf(K; day; hour) = K � 24.
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Derivation 3 GA is �ner than GB . If GA is �ner than GB , then the lower and
upper bound factors can be calculated using the formulas:

lbf(R;GA; GB) = max
K2R+

fK j R � ubf(K;GB; GA)g (5)

ubf(R;GA; GB) = min
K2R+

fK j R � lbf(K;GB; GA)g (6)

Example: We know that the number of days in 1 month is 28 � 31 and the
number of days in 2 months is 59 � 62 . Therefore, we can reasonably say that
for 1 � K � 2:

lbf(K;month; day) = 28 + (59� 28) � (K � 1) = 31 �K � 3

ubf(K;month; day) = 31 + (62� 31) � (K � 1) = 31 �K

lbf(45; day;month) = max
K2R+

fK j 45 � ubf(K;month; day)g

= max
K2R+

fK j 45 � 31 �Kg = 45=31 = 1:45

ubf(45; day;month) = min
K2R+

fK j 45 � lbf(K;month; day)g

= min
K2R+

fK j 45 � 31 �K � 3g = 48=31 = 1:55

Hence, the number of months in 45 days is 1:45 � 1:55.

3. Unanchored Temporal Primitives

We identify a time span as being an unanchored, relative duration of time. Examples
of time spans include 5 hours, 10 days, 2 to 3 months, etc. A time span is basically
an atomic, cardinal quantity, independent of any time instant or time interval, with
a number of operations de�ned on it. These operations include comparison with
another time span with the transitive comparison operators < and > (which forms
a partial order between time spans) and subtraction or addition of another time
span to return a third time span.
Time spans can be further characterized as being determinate or indeterminate.

A determinate span represents complete information about a duration of time. For
example, the maximum time allowed for students to complete an examination is a
determinate span. An indeterminate span represents incomplete information about
a duration of time. It has lower and upper bounds that are determinate spans.
1 day � 2 days, for example, is an indeterminate span that can be interpreted
as \a time period between one and two days." Any determinate span can be
represented as a special kind of indeterminate span with identical lower and upper
bounds.
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3.1. Representation of Time Spans

Since a calendric granularity is a unit time span, we can use calendric granularities
to construct time spans. For example, the time span of 36 hours which represents
the duration of intensive medical management the patient underwent (see sentence
3 in Section 1.1), is obtained as 36 �hour. A time span of 2 hours and 55 minutes,
which represents the duration of chest pain the patient su�ered from (see sentence
1 in Section 1.1), can be obtained as 2 �hour+55 �minute. In general, a time span
is made up of mixed calendric granularities and is de�ned as a �nite sum:

De�nition 7. Discrete determinate span. A discrete determinate span Sdiscr is
given as as

Sdiscr =

nX
i=1

(Ki �Gi) (7)

where Ki is an integer coeÆcient of Gi, which is a distinct calendric granularity
in the calendar.

3.2. Conversion of Time Spans

The �rst question is whether it is always possible to convert a time span from a
coarser to a �ner calendric granularity without loss of information. The answer,
perhaps surprisingly, is negative. To illustrate this point, consider the following:
the conversion of the time span 1 month to the �ner calendric granularity of days
cannot possibly be an exact one. Should the resulting time span be 31, 30, 29 or 28
days? We cannot tell unless we know which month is involved. Since a time span
is unanchored this information is not available. We could convert 1 month to the
indeterminate span 28 days � 31 days but in this case the conversion is not exact
and some information is lost. We now de�ne the conversion of a determinate time
span to any given calendric granularity GA.

De�nition 8. Discrete time span conversion. The conversion of a time span of the
form depicted in De�nition 7 to a calendric granularity GA results in a time span
with lower bound

b

nX
i=1

Lic �GA (8)

and upper bound

d

nX
i=1

Uie �GA (9)
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where

Li = lbf(Ki; Gi; GA) and Ui = ubf(Ki; Gi; GA) (10)

For example, let us convert the duration of the chest pain in sentence 1 (see
Section 1.1), which is the discrete time span 2 hours and 55 minutes, to a time
span in the calendric granularity of minutes (minute). According to De�nition 8,
the time span 2 �hour+55 �minute will be converted in the time span 175 �minute.
The more interesting case of inexact time span conversion is shown the next

example.

Example: Let us convert the time span 2 � month + 45 � hour to a time span in
the calendric granularity of days (day). In this span, K1 = 2;K2 = 45; G1 =
month;G2 = hour. We now use formula (10) to compute L1; L2; U1; U2:

L1 = lbf(2;month; day) U1 = ubf(2;month; day)
= 59 = 62

L2 = lbf(45; hour; day) U2 = ubf(45; hour; day)
= maxfK j 45 � ubf(K; day; hour)g = minfK j 45 � lbf(K; day; hour)g
= maxfK j 45 � K � 24g = minfK j 45 � K � 24g
= 1:875 = 1:875

lbf(K;month; day); lbf(K; day; hour); ubf(K;month; day); and ubf(K; day; hour)
are calculated from the conversion functions in the Gregorian calendar. Lastly, we
compute the lower and upper boundary of the resulting time span according to
formulas (8) and (9), respectively:

lower bound = bL1 + L2c � day upper bound = dU1 + U2e � day
= b59 + 1:875c � day = d62 + 1:875e � day
= 60 � day = 64 � day

Hence, the result of our conversion is the indeterminate discrete time span 60 �
day � 64 � day.

3.3. Canonical Forms for Time Spans

In addition to the set of granularities G1; : : : ; Gn and conversion functions dis-
cussed earlier, each calendar also implicitly de�nes the relation exactly convert-

ible to between its granularities. We say that Gi is exactly convertible to Gj i�
ubf(k;Gi; Gj) = lbf(k;Gi; Gj) = k �Q, where Q is a natural number. Note that ex-
act convertibility is a partial order on granularities which is a suborder of magnitude
ordering. If Gi is exactly convertible to Gj , then Gi = Q �Gj , where Q is a natural
number. Since discrete determinate time spans have the form S =

Pn
i=1Ki � Gi,

where Ki are integer numbers, the presence of the exact conversion rules implies
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the existence of di�erent forms of a time span. For example, 2 hour 55 minutes
and 175 minutes are di�erent forms of the same time span S

0

. To adhere as
much as possible to human readability and user intuition, it is usually desirable to
represent time spans in some canonical form. For example, when the time span
1 hour 30 minutes is added to the time span 35 minutes, the user would expect
the time span 2 hours 5 minutes rather than the time span 1 hour 65 minutes.
In this section, we de�ne canonical forms for time spans. We begin by de�ning
representations for time spans.

De�nition 9. Span Representation. The n-tuple r = haii
n
i=1 (where ai are integer

numbers and n is the number of calendric granularities in a calendar) is called a
representation of a span S (denoted r 2 Rep(S)) i� S =

Pn
i=1 ai �Gi.

For example, let's assume that the Gregorian calendar has the calendric granular-
ities year, month, day, hour, minute and second. Then 2�hour+55�minute and 175�
minute, which are two forms of S

0

, have the representations r1 = h0; 0; 0; 2; 55; 0i
and r2 = h0; 0; 0; 0; 175; 0i, respectively.

We will use span representations to de�ne a canonical form for a time span. In
order to do that, we introduce the notion of a strictly non-negative span.

De�nition 10. Strictly Non-Negative Span. A span S is a strictly non-negative

span (denoted S >+ 0) i� 9r = haii
n
i=1 2 Rep(S) : ai � 0 for i = 1; : : : ; n.

The time span 2 hour 55 minutes, for example, is strictly non-negative while the
time span 1month�30 days is not strictly non-negative: no positive representations
are possible since 1 month does not have an exact conversion to days.

Another de�nition that we need to de�ne for a canonical form is a dominancy
relation between span representations. The dominancy relation is in fact a lexico-
graphical order on span representations, which is used in determining the canonical
representation of a span.

De�nition 11. Dominancy. A representation r = haii
n
i=1 dominates another rep-

resentation r0 = hbii
n
i=1 (denoted r � r0), r; r0 2 Rep(S), i� 9k : ak > bk ^ ai =

bi for i = 1; : : : ; (k � 1).

According to this de�nition, given two representations r1 = h0; 0; 0; 2; 55; 0i and
r2 = h0; 0; 0; 0; 175; 0i, the dominancy relation r1 � r2 holds.

Having de�ned strictly non-negative spans and dominancy, we can now proceed to
de�ne the canonical representation and the canonical form for strictly non-negative
spans.

De�nition 12. Canonical Representation. A representation r = haii
n
i=1 2 Rep(S)

is the canonical representation of span S >+ 0 i� ai � 0 for i = 1; : : : ; n ^ 8r0 2
Rep(S) : r � r0 _ r = r0.
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For example, r1, i.e., h0; 0; 0; 2; 55; 0i is the canonical representation of the time
span S

0

.

Every strictly non-negative span has one and only one canonical representation.
The canonical representation is the best representation of a given strictly non-
negative span.

De�nition 13. Canonical Form. A strictly non-negative span S =
Pn

i=1 ai �Gi is
in canonical form i� r = haii

n
i=1 is the canonical representation of S.

For example, the canonical form for the time span S
0

is 2 � hour + 55 �minute.

3.4. Operations between Time Spans

In this section we give the semantics of arithmetic and comparison operations be-
tween time spans and show how some of the questions posed in Section 1.1 are
answered.

3.4.1. Arithmetic Operations between Time Spans The semantics of adding (sub-
tracting) two time spans is to add (subtract) the components which have the same
calendric granularity, concatenate the remaining components to the resulting time
span, and reduce the resulting time span to canonical form as described in Sec-
tion 3.3.

For example, the global duration, in canonical form, of the symptoms of angina,
described in sentences 1 and 5 in the motivating example (see Section 1.1), is
obtained by the addition operation:

(2�hour+55�minute)+(7�minute+35�second)! (2�hour+62�minute+35�second)
! (3 � hour + 2 �minute+ 35 � second)

Subtraction leads to the notion of negative spans. In our model, both positive and
negative spans are allowed. Positive spans have the semantics of forward duration
in time, while negative spans have the semantics of backward duration in time.

3.4.2. Comparison Operations between Time Spans The semantics of comparing
two time spans is to �rst convert each time span to the �nest granularity that exists
between the two time spans, and then carry out the comparison. As an example,
let us compare the duration of the �rst symptom of angina (sentence 1) with the
duration (20 minutes), for establishing if we have a case of unstable angina (see the
motivating example in Section 1.1): being (2 �hour+55 �minute) = 175 �minute >
20 �minute, we identify the patient as su�ering from unstable angina.

Considering more complex situations, the comparison 1 � month > 30 � day will
be translated (28 � day � 31 � day) > 30 � day, which will return the value Unknown.
We note from the above example that time spans which overlap (or even meet each
other) cannot be compared. This follows from the fact that calendric granularities
are partially ordered with respect to the binary relation \exactly convertible to."
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4. Anchored Temporal Primitives

We identify a time interval as the basic anchored speci�cation of time; it is a
duration of time between two speci�c anchor points which stand for the lower and
upper bounds of the interval, e.g., [15 June 1995; 31 July 1995]. A time instant

is a speci�c anchored moment in time. For example, the anchor points of the
time interval [15 June 1995; 31 July 1995] are represented by the time instants
15 June 1995 and 31 July 1995. In this paper we concentrate on time instants.
The treatment of time intervals is a straightforward extension of the discussion in
this section.

4.1. Representation of Anchored Times

In representing anchored time concepts, i.e., instants and intervals, we use a time

granule [3]. In our approach, a time granule is an interval on the global timeline and
can be easily identi�ed by the functions de�ned for a calendar (see Section 2.3).
Every time granule belongs to a speci�c calendar and is composed of calendric
elements which belong to di�erent calendric granularities of the same calendar.
We identify three possible interpretations of a time granule:

� Beginning Instant (Ibeg). This type of instant refers to the beginning of the
period the granule denotes. Examples of beginning instants would be the
time of space launches, start of exams, process start and end times in real-
time systems, etc. Therefore the time instants 1995beg, January 1995beg, and
1 January 1995beg are equivalent and refer to the beginning of the year 1995.

� Determinate Interval (Idet). It refers to the whole period the granule denotes.
The time granules denoting national holidays are examples of determinate in-
tervals. For example, Victoria Day (a national holiday in Canada) occurs on 24
May each year. This means that the whole day of 24 May is a holiday. In this
case, 24 Maydet is a determinate interval.

� Indeterminate Instant (Iindet). This type of instant refers to sometime in the
period the granule denotes, and is perhaps the most commonly used time instant
in \real-world" temporal measurements. For example, in sentence 4 of the
motivating example we would represent the time at which the patient had a
myocardial infarction as 15 February 1996indet (which means the patient had a

myocardial infarction some time on that day).

Essentially, a determinate (indeterminate) time interval (instant) can be expressed
by an interval whose lower and upper bounds are beginning time instants. For ex-
ample, the time interval 5 February 1997det is analogous to the interval [5 February
1997beg; 6 February 1997beg).
Every determinate (indeterminate) time interval (instant) has a granularity (Gi)

associated with it. This granularity determines the mapping of the given determi-
nate (indeterminate) time interval (instant) Idet (Iindet) to the domain of beginning
time instants. The mapping is de�ned as follows:



15

Idet 7! [Ibeg ; Ibeg +Gi)
Iindet 7! [Ibeg � Ibeg +Gi)

Here Ibeg denotes the counterpart of Idet and Iindet in the domain of beginning
time instants. The upper bound of the resulting interval is de�ned to be open
to ensure that di�erent time granules with the same granularity do not overlap.
Table 1 gives an example of the granule 1995, interpreted respectively as a beginning
instant, a determinate time interval, and an indeterminate time instant, at di�erent
granularities.

Table 1. Conversion of the di�erent interpretations of a time granule (1995) on di�erent
granularities (Year, Month, and Day).

Beginning Instant Determinate Interval Indeterminate Instant

1995beg [1995beg ; 1996beg) [1995beg � 1996beg)
Jan 1995beg [Jan 1995beg ; Jan 1996beg) [Jan 1995beg � Jan 1996beg)
1 Jan 1995beg [1 Jan 1995beg ; 1 Jan 1996beg) [1 Jan 1995beg � 1 Jan 1996beg)

A formal treatment of determinate intervals and indeterminate time instants and
mappings is given in [16]; moreover, in handling indeterminacy, we have to consider
modality, multiple-valued logics, and probabilistic approaches [6, 11, 13, 21] for
dealing with uncertainty in relationships. In the rest of this section, since deter-
minate intervals and indeterminate time instants can be mapped to the domain of
beginning time instants, we will concentrate on beginning time instants (hereinafter
simply time instants).

4.2. Operations on Time Instants

As with time spans, instants can be compared with each other, and subtracted from
one another to �nd the elapsed time between them. Additionally, a time span can
be added to, or subtracted from, a time instant to return another time instant.

4.2.1. Comparison between Time Instants Let I1Gm
= (i1; : : : ; im) and I2Gp

=

(i
0

1; : : : ; i
0

p) be two time instants, with �nest granularities Gm and Gp, respectively.
We assume that the instants belong to the same calendar. We also assume without
loss of generality that m � p. Then, the following algorithm checks if I1Gm

� I2Gp
:

Compare1(I
1
Gm

; I2Gp
)

I1Gm
= (i1; : : : ; im): a time instant where i1; : : : ; im are

ordinal numbers of its calendric elements;

I2Gp
= (i

0

1; : : : ; i
0

p): a time instant where i
0

1; : : : ; i
0

p are

ordinal numbers of its calendric elements;
f
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I2Gp
:= (i

0

1; : : : ; i
0

p; lbp+1; : : : ; lbm| {z }
m�p

);

for j from 1 to m f

if (ij > i
0

j)
return False

g
return True

g

The algorithm basically compares the time instants by comparing each of their
calendric elements. The instant I2Gp

is adjusted by adding the calendric element

with the ordinal numbers lbs until its �nest granularity is the same as that of I1Gm
.

This is reasonable because a time instant refers to the beginning of the time period
it denotes.
Suppose we have the following time instants and the ordinal values of their re-

spective calendric elements:
5 June 1990 � (1990; 6; 5); 15 June 1990 � (1990; 6; 15); June 1990 � (1990; 6);
1990 � (1990). Then, 5 June 1990 < 15 June 1990 because (1990; 6; 5) <
(1990; 6; 15); June 1990 < 15 June 1990 because (1990; 6) � (1990; 6; 1), and
(1990; 6; 1) < (1990; 6; 15); 1990 < 15 June 1990 because (1990) � (1990; 1; 1), and
(1990; 1; 1) < (1990; 6; 1).

4.2.2. Elapsed Time between Time Instants Let (i1; : : : ; im) and (i
0

1; : : : ; i
0

m) be
two time instants belonging to the same calendar. Then:

Elapsed((i1; : : : ; im); (i
0

1; : : : ; i
0

m)) =

mX
j=1

(Kj �Gj);where Kj = i
0

j � ij

In the simplest case, both instants have the same �nest granularity. The calen-
dric elements of the �rst time instant are simply subtracted from the corresponding
calendric elements of the second time instant. This way, we can evaluate the dura-
tion of the acute chest pain in sentence 2 (see Section 1.1). Adding this time span
to the time span, previously evaluated on the basis of sentences 2 and 5, enables
us to determine the global span of the symptoms of angina (see question 2. in
Section 1.1).

Let us consider a more complex case (see sentences 4 and 5, and question 1. in
Section 1.1): we have to evaluate the time span between the myocardial infarction
(happened on 15 February 1996) and the last episode of angina (happened at
15 hour 12April 1996). Here, the �nest calendric granularity of 15 February 1996 is
coarser than that of 15 hour 12 April 1996. Thus, 15 February 1996 is �rst replaced
by the time instant 0 hour 15 February 1996, its equivalent time instant with the
�nest granularity of hour: Elapsed((15 February 1996); (15 hour 12 April 1996))
) Elapsed((0 hour 15 February 1996); (15 hour 12 April 1996)) ) (1 �month+
27 � day + 15 � hour).
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The Elapsed function can be extended to accept a third argument, namely, the
granularity of the resulting span. If such an additional argument is omitted, the
Elapsed function reverts to the default behavior described in the above example.

4.2.3. Operations between Spans and Time Instants In performing arithmetic
operations that involve spans and time instants, there are two cases to consider:

� If the �nest calendric granularity of the span is coarser than or the same as the
�nest calendric granularity of the instant, then each component of the span is
simply added to the corresponding calendric element of the time instant. For
example, adding the time span 38months to the time instant 30 January 1996,
in order to know when the thrombolytic therapy (see sentence 7 and question
5. in Section 1.1) will �nish, results in the time instant 30 March 1999.

� If the �nest calendric granularity of the span is �ner than the �nest calendric
granularity of the time instant, then the time instant is �rst replaced by an
equivalent time instant whose �nest granularity is the same as that of the span,
and the addition is carried out. For example, if we want to know when the
the �rst episode of chest pain ended (see sentence 1 in Section 1.1), we have to
add the time span 2 hour and 55 min to the time instant 13 December 1995.
In this case the time instant is �rst replaced by its equivalent time instant
0 hour 0 min 13 December 1995. The addition of the time span to this time
instant results in the time instant 2 hour 55 min 13 December 1995.

5. Implementation Issues

The formulae (3) and (4) for lbf(K;GA; GB) and ubf(K;GA; GB) (see Derivation 2)
are computationally expensive. However, they are not designed for direct compu-
tation. These formulae are just mathematical de�nitions. A technique that can be
used to make computations less expensive would be to simplify these formulae since
they allow for many simpli�cations once a set of particular calendric functions is
chosen. As an example, let us consider the Gregorian calendar. In this calendar,

fyear(y) = 12 (months)

fmonth(y;m) =

8>>><
>>>:
30 if m is 4, 6, 9, or 11

31 if m is 1, 3, 5, 7, 8, 10, or 12

28 if m = 2 and y is not leap

29 if m = 2 and y is leap

(days)

fday(y;m; d) = 24 (hours)

where y is leap when y mod 400 = 0 _ y mod 4 = 0 ^ y mod 100 6= 0.
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We will consider the conversions from years to months, from years to days, and
from months to days. Then,

fyear!month(y) = fyear(y) = 12

fyear!day(y) =

(
366 if y is leap

365 otherwise

fmonth!day(y;m) = fmonth(y;m)

Then, using formulae (3) and (4) we �nd that

lbf(K; year;month) = min
y
f

X
0�distyear(y0;y)�K�1

fyear!month(y0)g

= min
y
f12Kg

= 12K

ubf(K; year;month) = 12K

lbf(K; year; day) = min
y
f365(y +K) + b(y +K)=4c �

b(y +K)=100c+ b(y +K)=400c �

365y � by=4c+ by=100c � by=400cg

� 365K + bK=4c � b(K + 96)=100c

ubf(K; year; day) � 365K + b(K + 3)=4c

The above lbf and ubf bounds can be used instead of exact formulae. These bounds
are easily computable and introduce an error that is less than a day per century.
Analogous methods can be used to �nd computationally cheap approximations for
conversion of months to days; however, to obtain reasonable approximations, values
for small K (K � 48) have to be tabulated. Let gmin(K) and gmax(K) be such
tabulations. Then we have:

lbf(K;month; day) = gmin(K mod 48) + lbf(bK=48c � 4; year; day)

ubf(K;month; day) = gmax(K mod 48) + ubf(bK=48c � 4; year; day)

Using these formulae we can now make fast and quite precise conversions. For
example, the number of days (d) in 100 months according to the above formulae is
120 + 2921 = 3041 � d � 3044 = 122 + 2922, which is the correct estimate.

6. Related work

6.1. Representing time spans

Since a time span is independent of any time instant or time interval due to its
relative nature, granularity conversions in the context of anchored temporal prim-
itives cannot be used for unanchored temporal primitives. Hence, most of the
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previously described temporal models [4, 7, 21, 22, 23, 25, 26, 27] cannot support
completely the unanchored temporal information needs of an application like the
clinical example given in Section 1.1.

Although the work of Lorentzos [20] does not explicitly deal with temporal gran-
ularity, it proposes a scheme for representing and operating on non-metric types.
Mixed granularity time durations, with separate �elds for their composite parts
(e.g., hours, minutes, seconds) are one example of a non-metric data type. These
can be represented as elements of sets of composite numbers which provide conver-
sion relationships (mappings) between the composite �elds. However, only exact
(regular) mappings are discussed. Therefore time durations with composite parts
having granularities of months and days cannot be modeled. In our approach, a
time span is simply a summation of calendric granularities. Both exact and in-
exact mappings between granularities are provided (using the lbf(GA; GB) and
ubf(GA; GB) functions). This allows time durations to be converted to any given
calendric granularity. The conversion of a time duration to a particular granularity
is possible in [20]. However, the target granularity is restricted to be one of the
granularities of the composite parts of the time duration. We do not enforce such a
restriction in our work. A time duration can be converted to any desired granularity
in the calendar. In [20], addition between time durations is also possible. However,
the operands have to be addition compatible. If S1 and S2 are time durations, then
they are addition compatible if S2 consists of at most as many composite parts
as S1, and for these composite parts, the granularities should be the same. For
example, the time durations with composite granularities (days, hours, minutes,
seconds), (hours, minutes, seconds), (minutes, seconds), and (seconds) are addition
compatible, and thus can be added to each other. Our approach is more general in
that time durations do not have to be addition compatible.

In TSQL2, a calendar has a speci�cation �le which provides regular and ir-
regular mappings between granularities [23]. It is not clear however, how these
mappings are derived. In Section 3, we gave detailed derivation procedures for
the lbf(GA; GB) and ubf(GA; GB) functions which represent regular and irregular
mappings between any two granularities in a calendar. Then, we described how the
lbf(GA; GB) and ubf(GA; GB) functions are used in the conversion of unanchored
temporal primitives to a given calendric granularity.

Moreover, in TSQL2 time spans (durations) which have mixed granularities can-
not be represented [24]. For example, the duration of the chest pain in sentence
1 (see Section 1.1) would have to be represented in hours or in minutes. Since
a time span is a summation of distinct granularities in our approach, represent-
ing symptom durations with mixed granularities is straightforward. Our approach
of representing mixed granularity time spans is also more general than that used
in SQL-92 in that we do not restrict time spans to only year-month or day-time

combinations.

A time span in TSQL2 is necessarily indeterminate at both coarser and �ner
granularities. This is because a granularity is modeled as an anchored partitioning
of the timeline, whereas a time span in unanchored. Therefore, all time span con-
versions in TSQL2 are treated as inexact, resulting in indeterminate time spans. In
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our approach, a time span conversion can be exact or inexact. Consider the simple
conversion of the time span 1 hour to the granularity of minutes. In TSQL2, this
conversion results in the indeterminate span 1 � 119 minutes � an indeterminacy
of 120 minutes. In our approach however, the conversion is exact and results in the
determinate span 60 minutes, which is what is expected in reality. Being based
on the mentioned conversions, operations involving time spans in TSQL2 could
give rise to ambiguities and even incorrect results. Details on results of operations
involving time spans in TSQL2 are given in [18].

Comparison of time spans of di�erent granularities in TSQL2 can also lead to
incorrect results. Consider the comparison of the time span 30 minutes with the
time span 1 hour in TSQL2, using left-operand semantics: 30 minutes > 1 hour ?
, 30 minutes > cast(1 � 119 minutes) , 30 minutes > 1 minute , True!

The time span 1 hour is �rst converted to the granularity of the leftmost operand.
Since a time span is indeterminate at any �ner or coarser granularity in TSQL2,
the conversion of 1 hour to the granularity of minutes yields the indeterminate time
span 1 � 119 minutes. The cast operation then converts this to a determinate
time span by arbitrarily choosing the lower bound. This leads to comparing the
time span 30 minutes to the time span 1 minute, and subsequently returning True
which is the opposite of what is expected. In our approach, the time span 1 hour
would be converted exactly to the time span 60minutes, and the comparison would
then return False.

Some of the counter-intuitive results in TSQL2 may be avoided by de�ning du-
ration literals for time spans with mixed granularities in the adopted calendar.
The calendar would also manage di�erent interpretations in mapping a time span
from one granularity to another. Even though calendar de�nition in TSQL2 allows
users to overcome some of the underlined limitations, this solution seems to be less
general than our approach. Further problems in TSQL2 could arise in according
di�erent calendar-dependent interpretations with the adopted scaling/left operand
semantics.

6.2. Representing time instants

Cli�ord and Rao [7] introduce a general structure for time domains called a tempo-

ral universe which consists of a totally ordered set of granularities. Operations are
de�ned on a temporal universe, which basically convert di�erent anchored times to
a (common) �ner granularity before carrying out the operation. Wiederhold et al,
[27] also examine the issue of multiple granularities. An algebra is described that
allows the conversion of event times to an interval representation. This involves
converting the coarser granularity to the �ner granularity in light of the semantics
of the time varying domains. Wang et al, in [25], extend this work by providing
semantics for moving up and down a granularity lattice. In [2], Barbic and Per-
nici discuss the issues of absolute, relative, imprecise, and periodic times. Multiple
granularities are supported for each time. Operands (which are anchored) in opera-
tions involving mixed granularities are converted to the coarser granularity to avoid
indeterminacy. In a more recent work [21], the existence of a minimum underlying
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granularity (quantum of time) to which time is mapped, is assumed. Montanari et
al, [22] examined the issue of multiple granularities, but considered exact granu-
larity conversions only. Corsetti et al, [12] deal with di�erent time granularities in
speci�cations of real-time systems. The above works do not consider granularities
for expressing unanchored time span; hence, while we can perform both anchored
and unanchored granularity conversions, the proposals above consider only anchored
granularity conversions. Furthermore, none of the models, with the exception of
[21], explicitly address the notion of indeterminacy.

Bettini et al in [4] propose a general framework for de�ning time granularity
systems and analyze di�erent kinds of relationships between granularities. In com-
parison with this framework, it is worth noting that our proposal does not allow
one to model granularities with gaps either inside a granule or between granules
(e.g., business-week or business-day); a further limit is that incomparable granular-
ities (e.g., months and weeks) are not allowed. Our proposal allows one to formally
specify a granularity system having, according to the framework of Bettini and col-
leagues, comparable granularities possibly having nonuniform granules, which cover
partially or completely the global time axis. Two main di�erences exist between
the approach of Bettini and colleagues and our approach: they do not face the
problem of managing di�erent granularities for unanchored temporal primitives,
focusing mainly on the formal speci�cation of the features related to the mapping
functions from di�erent granularity to the global timeline; furthermore, they do not
consider the problem of expressing anchored and unanchored time span at mixed
granularities (e.g., 3 days and 20 minutes) and of converting them to a speci�ed
granularity.

In [5], Bettini and De Sibi propose formal de�nitions and a mathematical char-
acterization of �nite and periodical time granularities: this kind of granularities
(intuitively, all those granularities for which there is a periodic pattern for their
granules: years and days, years and months, and so on), excluding the case of gaps
between or inside a granule, can be represented in our approach by a suitable cal-
endar. Moreover, our notion of calendar is able to represent no-gap, comparable
granularities, which do not have periodic patterns, i.e., having completely irregular
mappings between them.

TSQL2 treats all instants as indeterminate at �ner granularities [23]. In contrast,
our treatment of time instants depends on the interpretation given to the time
instant. This is illustrated in Table 1. In our approach, indeterminacy in time
instants is not in the conversion to �ner granularities, but it is in the interpretation
of the time instant. In TSQL2, the semantics of arithmetic operations which involve
time spans and time instants are left to the calendar as calendar speci�c operations.
These include instant+span, span+ instant, and instant� instant. For example,
consider the operation 1month+15 June 1995 in TSQL2. If the operationmonth+
DATE = DATE is not supported by the calendar, according to the [left operand]
semantics of TSQL2, the following would happen: 1 month + 15 June 1995 !
1month+June 1995! July 1995 [24]. This result is not what one would intuitively
expect. In our approach (see Section 4.2), the addition operation would return the
expected time instant 15 July 1995.
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Combi et al in [9, 10, 11] propose an object-oriented data model and a related
query language to deal with temporal information given at di�erent granularities
and/or with indeterminacy: they propose the adoption of a three-valued logic for
managing uncertainty coming from relationships between intervals and/or instants
given at di�erent granularities or with indeterminacy. The proposed data model
allows one the de�ne durations at di�erent calendric granularities: it considers
only the Gregorian calendar and models granularities for unanchored time span
by regular mappings (e.g., one unanchored year is composed by 365.2425 days).
Irregular mappings and di�erent interpretations for unanchored time spans are not
considered: durations given at di�erent granularities are regularly mapped on the
global timeline as indeterminate time spans.

7. Conclusion

This paper is a further step in completing the puzzle on temporal granularity by
providing support both for anchored and unanchored temporal primitives with dif-
ferent and mixed granularities and addressing the issues that arise therein. This
will help temporal DBMSs to better support the various applications in which such
primitives are inherent.

A model for supporting calendars is given and it is shown how multiple granu-
larities and unanchored and anchored temporal entities are integrated within the
context of calendars. A calendric granularity is described as being part of a cal-
endar and represented as a special kind of span - one with a unit duration. The
process of conversion between time spans of mixed granularities is then given and
canonical forms for time spans de�ned. These forms are used by arithmetic opera-
tions on time spans to return time spans which are what a user intuitively expects.
The arithmetic and comparison operations involving time spans were described
and compared to similar ones proposed in literature: we show how our semantics
of operations are more general and intuitive than that present in the considered
proposals.

We also give a treatment of anchored temporal primitives and provide three dif-
ferent interpretations of time granules. We show how time instants are converted
to di�erent granularities and describe the various operations on time instants.

In Section 5 we show that it is possible to establish computationally inexpensive
yet quite precise formulae for lower and upper bound coeÆcients. Currently, the
derivation of these formulae has to be done by a database administrator; their
automatic derivation is a topic for future research.

In conclusion, it is our position that assuming a simplistic view of unanchored
temporal data and thereby avoiding the inherent issues which arise will only make
the resulting temporal model and temporal query language very restricted for real-
world temporal data usage.
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Notes

1. Formally known as angina pectoris. A clinical syndrome typically characterized by a deep,
poorly localized chest or arm discomfort that is reproducibly associated with physical exertion
or emotional stress and relieved promptly by rest or sublingual nitroglycerine. The discomfort
of angina is often hard for patients to describe, and many patients do not consider it to be
\pain." In most, but not all patients, these symptoms re
ect myocardial ischemia resulting
from signi�cant underlying coronary artery disease [1].
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