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Abstract

Granularity is an integral feature of both anchored (e.g., 25 October 1995, July 1996) and
unanchored (e.g., 3 minutes, 6 hours 20 minutes, 5 days, 1 week) temporal data. In supporting
temporal data that is specified in different granularities, numerous approaches have been pro-
posed to deal with the issues of converting temporal data from one granularity to another. The
emphasis, however, has only been on granularity conversions with respect to anchored temporal
data. This is because a granularity in these approaches is modeled as an anchored partitioning
of the time axis, thereby making it difficult to deal with granularity conversions in unanchored
temporal data. In this paper we provide a novel approach to the treatment of granularity in
temporal data. A granularity is modeled as a special kind of unanchored temporal primitive
that can be used as a unit of time. That is, a granularity is modeled as a unit unanchored tempo-
ral primitive. Granularities are accommodated within the context of calendars and granularity
conversions are presented and discussed in terms of unanchored durations of time. This allows
us to consistently model and operate on unanchored temporal data that is comprised of different
and mixed granularities. Specifically, we show how unanchored temporal data is represented,
give procedures for converting the data to a given granularity, provide canonical forms for the
data, and describe how operations between the data are performed.

Keywords: temporal databases, granularity, calendars

*This research has been supported by the Natural Sciences and Engineering Research Council of Canada under
research grants OGP0951 and OGP8191.

tCurrent address of author is IBM Toronto Lab, IBM Software Solutions Division, 1150 Eglinton Avenue E., North
York, ON M3C 1H7, CANADA



1 Introduction

We address the problem of modeling and managing, within a database management system (DBMS),
anchored and unanchored temporal data of multiple granularities. Anchored data has a specific lo-
cation on the time axis, while unanchored data has no specific location. For example, 31 July 1995
is an anchored temporal primitive in that we know exactly where it is located on the time axis,
whereas 31 days is unanchored since we do not know where it is located on the time axis; it can
stand for any block of 31 consecutive days. Anchored and unanchored temporal information is
usually available in multiple granularities. Such information is prevalent in various fields: clin-
ical data [CPP96, CCPIT]; real-time systems [CMRI1]; geographic information systems [Flo91];
office information systems [BP85, CR88, MPB92]. Clearly, many applications require support
for (a) unanchored temporal primitives that are specified in different (for example, 3 months,
150 seconds) and mixed granularities (for example, 2 hours and 20 minutes), and (b) anchored
temporal primitives that are specified in different granularities (for example, 1990, October 1993,
15 June 1996).

Supporting anchored and unanchored temporal primitives with different granularities necessi-
tates the proper handling of granularity mismatches in operations between temporal primitives with
different granularities. This usually requires converting a temporal primitive from one granularity
to another. Although there have been various recent proposals that handle multiple granularities
[CC87, WILI1, WJS93, WBBJ97, BP85, MPB92, MMCR92, Sno95], the focus has been on rep-
resenting anchored temporal primitives that are specified in different granularities. Granularity
conversions are given for anchored temporal primitives only. However, we contend that supporting
unanchored temporal primitives with different granularities is equally important, and the issues
that arise therein must be addressed. In the next section we give a real-world example from clinical

medicine that motivates our claim.

1.1 Motivation

We focus on a clinical example related to a patient with cardiological problems, particularly related

to the widely known problem of diagnosing and following up unstable angina [BMJ94]. Unstable

1

angina' is a transitory clinical syndrome usually associated with an increased duration and/or

!Formally known as angina pectoris. A clinical syndrome typically characterized by a deep, poorly localized chest
or arm discomfort that is reproducibly associated with physical exertion or emotional stress and relieved promptly by
rest or sublingual nitroglycerine. The discomfort of angina is often hard for patients to describe, and many patients
do not consider it to be “pain.” [BMJ94].



intensity of symptoms related to coronary artery disease; risk of cardiac death and myocardial
infarction increase. In this situation it is important to consider both the time when the symptoms
(like chest pain) began and the time duration of these symptoms.

Let us consider the following sentences which are related to information contained in the cardi-

ological medical record of a patient:

S1. The patient suffered from chest pain at rest for 2 hours and 55 minutes on 13 December 1995.
S2. The patient has been admitted to an Intensive Care Unit from 21:00 29 January 1996,
and he has undergone intensive medical management for 36 hours.
S53. At 3 pm 12 April 1996 the patient presented a new episode of chest pain of
7 minutes and 35 seconds during a soft exertion.
S4. In 1997 the patient had to take a thrombolytic therapy for 7 months.

S5. In January 1998 the patient had to take another thrombolytic therapy for 15 days.

We can observe from the above sentences that there are many different granularities for time
instants (days in S1; minutes in S2; hours in S3; months in S5; years in S4) and different and
mixed granularities for time spans (hours and minutes in S1; hours in S2; minutes and seconds
in 3; months in S4; days in S5). Moreover, in a single sentence there may be time instants and
time spans having heterogeneous granularities. For example, in S2 the time instant at which the
patient is admitted is specified at the granularity of minutes, while the time duration of the medical
management that the patient undertook is specified at the granularity of hours.

In addition to the different and mixed granularities in the patient-related information, the
definition of unstable angina itself involves time spans given at different granularities. Unstable
angina is, in fact, defined as: (1) symptoms of angina at rest, for more than 20 minutes, or (2) new
onset, within two months, of exertional angina, involving marked limitations of ordinary physical
activity, or (3) increasing angina within two months from the initial presentation, or (4) post-
myocardial infarction angina, i.e., angina occurring from 1 to 60 days after an acute myocardial
infarction [BMJ94].

In a clinical setting, we need to be able to derive some extra information from the stored

sentences about the patient. For example:

1. What is the global span of the symptoms of angina?

To answer this question, the time spans 7 minutes and 35 seconds, and 2 hours and 55 minutes

(see sentences S1 and S3) have to be added.



2. What is the global duration of the thrombolytic therapy?

In this case we have to add the time span 7 months to the time span 15 days (see sentences

S4 and S5).

These questions substantiate the need for a temporal DBMS to provide the means for (a) represent-
ing and storing time instants with different granularities, and time spans with different and mixed
granularities, (b) handling granularity mismatches in operations between temporal primitives with
different granularities, and (c) converting a temporal primitive from one granularity to another. In
the rest of the paper, we show how these issues can be supported in a temporal DBMS, focusing

on unanchored temporal primitives. Details on anchored primitives can be found in [Gor98].

1.2 Background

In this work, we model a granularity as a unit unanchored temporal primitive (unit time span). More
specifically, a granularity is modeled as a special kind of time span that can be used as a unit of time.
Granularity conversions are presented and discussed in terms of unanchored durations of time. To
the best of our knowledge, this feature is novel to our work. It allows us to consistently model
and operate on unanchored temporal data that is comprised of different and mixed granularities.
Our work should be seen as complementing other works on temporal granularity. It fills in the
missing piece by allowing unanchored temporal primitives to be specified in different and mixed
granularities, and facilitates the conversion of unanchored temporal primitives from one granularity
to another.

The inherent problem in adequately supporting unanchored temporal primitives with different
granularities in [CC87, WJL91, WJS93, WBBJ97, BP85, MPB92, MMCR92, Sno95], is that a
granularity is treated as an anchored partitioning of the time axis. Since unanchored temporal
primitives are independent of anchored temporal primitives (i.e., their location on the time axis is
unknown since they are not anchored at any particular point) problems arise in the conversion of
unanchored temporal primitives from one granularity to another when a granularity is modeled as
an anchored partitioning of the time axis. In converting (scaling) an unanchored temporal primitive

from one granularity to another in TSQL2 [Sno95], it is noted:

“... the problem is that a granularity is an anchored partitioning, whereas an interval? is

unanchored ... the consequence of the unanchored nature of intervals is that whenever

2An interval is the basic unanchored temporal primitive in TSQL2. It is similar to a time span in our work.



an interval is scaled, an indeterminate interval will result, even when an interval is

scaled from a finer to a coarser granularity” (page 370 in [Sno95]).

1.3 Paper Organization

The rest of the paper is organized as follows: in Section 2 we describe how multiple granularities
are accommodated within the context of calendars and the derivation procedures of converting
one granularity to another. In Section 3 we present our model for unanchored temporal primitives.
Specifically, we show how these primitives are represented, give procedures for converting a primitive
to a given granularity, provide canonical forms for the primitives, and provide a description of how
operations between the primitives are performed. Section 4 sheds some light on implementation

issues. Finally, Section 5 presents conclusions and outlines future avenues of research.

2 Calendars

2.1 Modeling Issues

A calendar is a means by which physical time can be represented so as to be human readable.
It is comprised of time units of varying granularities that enable the representation of different
temporal primitives. Common calendars include Gregorian and Lunar. Educational institutions
also use Academic calendars. In many applications, it is desirable to have multiple calendars that
have different calendric granularities. In this paper, we base our work on a single calendar and
refer the reader to [GLOSQG, Gor98] for details on multiple calendar support. There are a number

of important issues that we address in our model:

1. How are calendars modeled? What are their components? Does a calendar provide relation-

ships between granularities?

2. How is anchored and unanchored temporal information modeled within the context of calen-
dars? Can anchored temporal primitives be of different granularities? How about unanchored

temporal primitives?

3. Can anchored time be converted from one granularity to another? How about unanchored

time?

4. What are the semantics of operations between anchored times, unanchored times, and mixed

anchored and unanchored times which have operands of different granularities?



We start with a definition of a calendar in our model, followed by details on granularities and the

conversion process that we propose.

Definition 2.1 Calendar (C): A calendar C is a triplet (O, G, F), where O is the origin of C, G is
the set of calendric granularities belonging to C, and F is a list of conversion functions associated

with C. l

The origin marks the start of a calendar. Calendric granularities define the reasonable time
units (e.g., minute, day, month) that can be used in conjunction with it. Calendric granularities
within a calendar are counted from its origin. The functions establish the conversion rules between

the different granularities of a calendar.

2.2 Calendric Granularities

A calendar is comprised of a finite number of time units. For example, the Gregorian calendar
includes days and months as time units; the Academic calendar adds semesters. We call these time
units calendric granularities. In the Gregorian calendar the set of calendric granularities consists
of year, month, day, hour, minute, and second. Generally speaking, a calendric granularity is a unit
of measurement for time durations. For example, the calendric granularity of days (Gg4y) in the
Gregorian calendar behaves similar to the unanchored duration 1 day (unanchored durations are

discussed in more detail in Section 3.1).

Definition 2.2 Calendric granularity (G): A calendric granularity is a special kind of unanchored

duration that can be used as a unit of time. B

Since a calendric granularity is a special kind of a time span, it is meaningful to compare two

calendric granularities with each other.

Definition 2.3 Comparison between calendric granularities: G4 is coarser than Gg if G4 > Gp

as a time span. Similarly, G 4 is finer than Gp if G4 < Gp as a time span. A

Example 2.1 The span of 1 day is shorter (<) than the span of 1 month and therefore the
calendric granularity of days (Ggqey) is finer than the calendric granularity of months (Gontn) in

the Gregorian calendar. Similarly, Guont, s coarser than Ggqy. O

We must always be able to compare two calendric granularities with each other. Thus,



Condition 2.1 The set of all possible calendric granularities is totally ordered with respect to the

comparison operators given in Definition 2.3. O

Condition 2.1 provides us with a sharp contrast from other work dealing with temporal granularity.
While granularities are totally ordered in our framework, in many others they are typically only
partially ordered [Sno95, WBBJ97]. This allows us to carry out granularity conversions in terms of
time spans. In this paper we do not consider granularities with gaps (as business week or business
month), as in [WBBJ97, BWJ96].

Each calendric granularity has a list of calendric elements. For example in the Gregorian
calendar, G 44y has the calendric elements 1,2,... ,7. Similarly in the Academic calendar, Gsemester

has the calendric elements Fall, Winter, Spring, and Summer.

2.3 Functions

Associated with a calendar is a list of functions (F) which determine the number of finer calendric
elements in coarser calendric elements. For example, assume we have a calendar C' with the calendric
granularities year, month and day. Three functions are defined: The first returns the number of
months in a given year; the second returns the number of days in a given month of a given year;
and the third maps a given year, month, and day to a real number on a global timeline. Notice
that these functions depend on the particular value of a granularity and not just the granularity
itself. For example, the number of days in a month depend on the month itself. More generally,
let C' be a calendar with calendric granularities G1,Go, ... ,G,, where G is the coarsest calendric
granularity and G, is the finest calendric granularity. The following functions are then defined:
Definition 2.4 Conwversion functions:

fé’(zl) — NGza 1S21 Spl
fé(i1,i2) — Ngs, 1<i1 <p1,1<ig <py

fg(il’iZa"- ,Zn) — R7 ]-Szl SplalgiZ Sp?a"' a]-SZn Spn

where i; (1 < j < n) are natural numbers which correspond to the ordinal number of a calendric
element of the j** calendric granularity in calendar C. For example, the ordinal values of the year
1995 and the month September in the Gregorian calendar would be 1995 and 9, respectively. N¢,
(1 < £ < n) is a natural number which stands for the number of G;’s. p; is the range of calendric

elements for each considered granularity. R is a real number®. B

3We assume the underlying global timeline is real.



The first function (f}(i1)) gives the number of Go’s in a given calendric element of G;. The
second function (f&(i1,42)) gives the number of G3’s defined by a given pair of calendric elements
of types G1 and Ga. The last function (fg(41,42,... ,in)) maps a calendric element of the finest
calendric granularity (G,,) to a real number on an underlying global real timeline, hereafter referred
to as Gy. The scale of Gy is dependent on the precision of the respective machine architecture.

For simplicity and explanatory purposes in this paper, we assume the scale of Gy to be seconds.

Example 2.2 To illustrate the workings of the above functions, let us suppose we are interested in
the number of months in 1995, the number of days in September 1995 and the number of seconds
in 12 September 1995 in calendar C'. The ordinal values corresponding to the year 1995, the month
September, and the day 12, are 1995, 9, and 12, respectively. Then:

fE(1995) — 12

£2(1995,9) — 30
£2(1995,9,12) — 86400.0

O

Although the above example is trivial, it illustrates how the conversion functions work. It sets the

stage for the more complicated cases that are discussed in the next section.

2.4 Conversions between Calendric Granularities

In a temporal model where times with different calendric granularities are supported, we need to
be able to convert a finer calendric granularity to a coarser calendric granularity, and vice-versa.
We discuss these conversions below by first defining two functions. These functions are necessary

since the number of units of one granularity contained in a unit of another granularity is not fixed.

Definition 2.5 Lower bound factor [Ibf(G 4,Gpg)]: The lower bound factor of G4 and Gp is the

minimum number of G g units that can form 1 G4 unit. W

Definition 2.6 Upper bound factor [ubf(Ga,Gpg)]: The upper bound factor of G4 and Gp is the

maximum number of Gg units that can form 1 G 4 unit. H

Example 2.3 [bf(Gponths Gaay) = 28 and ubf(Gmonth, Gaay) = 31. Both factors coincide in
the case of those granularities that have exact conversions. For instance, Ibf(Ghrour, Gminute) =

Ubf(Ghoura Gminute) =60. O



The user can define new calendric granularities in terms of existing ones. For example, the new
calendric granularity decade could be defined in terms of the existing calendric granularity year
using 1bf (G gecade; Gyear) = bf (G decades Gyear) = 10.

We now show how Ibf(G4,Gp) and ubf(G4,Gpg) are derived from the conversion functions

defined in Section 2.3 when G 4 is coarser than G g, and when G4 is finer than Gp.

Derivation 2.1 G4 is coarser than Gp: Let G1,...,G4,... ,Gp,... , G, be the totally ordered
calendric granularities of calendar C' with G being the coarsest calendric granularity and G,, the

finest. The following conversion functions are defined in C:

fé‘(il,... ,'iA) — NGA—H

fCB(’il,...,’iB) — NGB—H

Now, the number of G g units in any given calendric element i 4 is given by the following summation:

7B (i1, ... ,ia) =

. . A . . B—2,. . .
fg(“:"':zA)fc+1(115---5ZA5.71) fc 2(“3---5%47.715---a]B—A—Z)

Z Z Z fgil(ila--- ;iA’jla"' 7jB—A—1)

Jji=1 Jo=1 jB—a-—1=1

The minimum (maximum) number of Gp units in calendric element i4 is then the minimum

(maximum) of the above formula over all i1,... ,i4. More specifically,
f(Ga,Gg) = _ min {fél_)B(il’ oo y%a)} (1)
(31,..-,14)€C
ubf(Ga,Gp) =  max {f&7B(ir,... ,ia)} (2)
(zl,...,ZA)EC
| |

Example 2.4 Let C' be a calendar with the calendric granularities year, month and day. The

following functions are defined in C:
f&(W) = Nionths
fé(y,m) —  Nyays
fély,m,d) — R

where ¢, m, and d are ordinal values of calendric elements in the calendric granularities year, month,
and day, respectively. Suppose we want to find Ibf (Gyear, Gday) and ubf (Gyear, Gday)- The number

1
of days in any year y is given by the summation: anc:(?{) f2(y,m). The minimum (maximum)



number of days in a year is then the minimum (maximum) of this summation over all y. More

specifically,
f& @) f&@)
lbf(Gyeara Gday) = H;Jln{ Z fg'(y, m)} Ubf(Gyeara Gday) = m;ix{ Z f%(y,m)}
m=1 m=1
|

Derivation 2.2 Minimum and mazimum number of Gp in K units of G4: Formulas (1) and
(2) calculate the minimum and maximum number of Gp in one unit of G 4, respectively. We now
generalize formulas (1) and (2) to calculate the minimum and maximum number of Gp in K units

of G 4, e.g., the minimum and maximum number of days in 2 - G, pntn, Where K = 2.

Ibf(K,G4,Gp) = min { >, fE7B G- i) (3)
T 0<disty, (1o )51 sia)) <K —1
ubf(K,Ga,Gp) = max { Z FE7B@, - ia)} (4)

115050 A ) , " ) '
0<disty, , (41510 4)5(i15e584)) <K —1

The summation in formulas (3) and (4) is the number of B units in K consecutive A units starting
with (i1,... ,i4). The function disty, ((i],-.- ,i4), (i1, .. ,i4)) finds the number of k4 units elapsed
between (7,'1, ... ,z';‘) and (i1,...,74). For example, the number of months elapsed between (1996,
February) and (1995, January) is 13. The lower and upper bound factors are then obtained by

taking the minimum and maximum of the summation over all (i1,... ,i4). B

Embedding the coefficient K within formulas (3) and (4) reduces the information lost in the process
of calculating the number of Gp units in K units of G4 as compared to first finding the number
of Gp units in one unit of G4 and then multiplying it by K to find the number of G in K
units of G4. For example, using formulas (1) and (2) to calculate the minimum and maximum
number of days in 2 - Gpontn gives us 56 and 62, respectively, while formulas (3) and (4) give
us 59 and 62, respectively — thereby reducing the information lost by 3 days. Note that for
exact conversions, Ibf(K,G4,Gp) = ubf(K,G4,Gp) = K -Ibf(G4,Gp) = K -ubf(G 4,Gp). For
example, 1f (K, Guayss Ghours) = ubf (K, Guayss Ghours) = K - 24.

Derivation 2.3 G4 is finer than Gp: If G 4 is finer than G g, then the lower and upper bound

factors can be calculated using the formulas:
bf(N,Ga,Gr) = max(K | N > ubf(K,Gn,Ga)} 5)

ubf(N,Ga,Gp) = min{K|N <Ibf(K,Gp,Ga)} (6)

10



Example 2.5 To illustrate the formulas in Derivation 2.3, suppose we want to find the number of

months in 45 days. Then:

lbf(45a Gdaya Gmonth) = III(lg)Z({K | 45 > Ubf(Ka Gmontha Gday)} =1
'U'bf(45a Gdaya Gmonth) = II?EHZI{K ‘ 45 < lbf(K, Gmonth Gday)} =2

Hence, the number of months in 45 days is 1 ~ 2. O

Note that it is not necessary that K be an integer. It can be a real number as well, in which case
we reduce the amount of indeterminacy in finding the number of months in 45 days.

In TSQL2 [Sno95], a calendar has a specification file which provides regular and irregular
mappings between granularities. It is not clear however, how these mappings are derived. In this
section, we gave detailed derivation procedures for the (bf(Ga,Gg) and ubf(Ga,Gg) functions
which represent regular and irregular mappings between any two granularities in a calendar. In
Section 3.2, we will see how the Ibf(G 4,Gp) and ubf(G 4, Gp) functions are used in the conversion

of unanchored temporal primitives to a given calendric granularity.

3 Unanchored Temporal Primitives

We identify a time span as being an unanchored, relative duration of time. Examples of time spans
include 5 hours, 10 days, 2 to 3 months, etc. A time span is basically an atomic, cardinal quantity,
independent of any time instant or time interval, with a number of operations defined on it. These
operations include comparison with another time span with the transitive comparison operators <
and > (which forms a partial order between time spans) and subtraction or addition of another
time span to return a third time span.

Time spans can be further characterized as being determinate or indeterminate. A determinate
span represents complete information about a duration of time. For example, the maximum time
allowed for students to complete an examination is a determinate span. An indeterminate span
represents incomplete information about a duration of time. It has lower and upper bounds that are
determinate spans. 1 day ~ 2 days, for example, is an indeterminate span that can be interpreted
as “a time period between one and two days.” Any determinate span can be represented as a

special kind of indeterminate span with identical lower and upper bounds.

11



3.1 Representation of Time Spans

Since a calendric granularity is a unit time span, we can use calendric granularities to construct time
spans. For example, the time span of 36 hours which represents the duration of intensive medical
management the patient underwent (see sentence S3 in Section 1.1), is obtained as 36 - Gpoyr- A
time span of 2 hours and 55 minutes, which represents the duration of chest pain the patient
suffered (see sentence S1 in Section 1.1), can be obtained as 2 - Gpour + 55 - Grinute- In general, a

time span is made up of mixed calendric granularities and is defined as a finite sum:

Definition 3.1 Discrete Determinate span:

N

Sdiser = Z(Kz : Gz) (7)

=1

where K is an integer coefficient of G;, which is a distinct calendric granularity in the calendar. B

In a temporal model where time spans with different calendric granularities are supported, we
need to be able to convert a time span to a given calendric granularity. This conversion process,
together with the semantics of operations on time spans with mixed granularities, are discussed in

the following sections.

3.2 Conversion of Time Spans

The first question is whether it is always possible to convert a time span from a coarser to a finer
calendric granularity without loss of information. The answer, perhaps surprisingly, is negative.
To illustrate this point, consider the following: the conversion of the time span 1 hour to the
calendric granularity of minutes is exact and will result in the time span of 60 minutes. However,
the conversion of the time span 1 month to the finer calendric granularity of days cannot possibly
be an exact one. Should the resulting time span be 31, 30, 29 or 28 days? We cannot tell unless we
know which month is involved. Since a time span is unanchored this information is not available.
We could convert 1 month to the indeterminate span 28 days ~ 31 days but in this case the

conversion is not exact and some information is lost. Therefore, the following observation is made:

Observation 3.1 The set of all calendric granularities is not totally ordered with respect to the

binary relation “exactly convertible to.” O

We now define the conversion of a determinate time span to any given calendric granularity G 4.

12



Definition 3.2 Discrete time span conversion: The conversion of a time span of the form depicted

in Definition 3.1 to a calendric granularity G 4 results in a time span* with lower bound

N
1) Li]-Ga (8)
i=1
and upper bound
N
Y U]-Ga 9)
=1
where
Lz’ = lbf(Ki, Gi, GA) and Uz’ = ubf(Ki, Gi, GA) (10)
|

In the following example we focus on the more complex and interesting case of an inexact time

span conversion.

Example 3.1 Let us convert the discrete time span 2 months and 45 hours to a time span in
the calendric granularity of days (Ggay). First we represent the given span in the form given in
Definition 3.1: 2 - Gponth + 45 - Ghour- In this span, K1 = 2, Ko = 45, G1 = Gmonth, G2 = Grour-

We now use formula (10) to compute Ly, Lo, Uy, Us:

Ly = Ibf(K1,G1,Guay) Ur = ubf(Ki,G1,Gay)
= lbf(?, Gmontha Gday) = Ubf(2a Gmontha Gday)
= 59 = 62

L2 = lbf(Kz,Gg,Gday) U2 = 'U/bf(KQ,GQ,Gday)

1bf (45, Ghour, Gday) ubf (45, Ghour, Gday)
maa:{K | 45 Z ubf(K, Gdaya Ghom‘)} m'ln{K ‘ 45 S lbf(K, Gdaya Ghom")}
maz{K | 45 > K - 24} min{K | 45 < K - 24}

= 1.875 = 1.875

lbf(K, Gmonth, Gday)a lbf(K, Gdaya Ghaur)a Ubf (K, Gmontha Gday)a and Ubf (K, Gdaya Ghou‘r) are
calculated from the conversion functions in the Gregorian calendar. Lastly, we compute the lower

and upper boundary of the resulting time span according to formulas (8) and (9), respectively:

“Note that conversion of a time span to any calendric granularity may be exact or inexact. In the former case, the
lower and upper bounds of the resulting time span are identical, which signifies that the time span is determinate.
In case of an inexact conversion, the resulting time span will be indeterminate. Details on temporal indeterminacy
are given in [Gor98].

13



lower bound = |L1+ L] -Gaey  upper bound = [Up+ U] Gaqy
= [59+ 1.875) - Gany = 62+ 1.875] - Gaay
= 60- Gday = 64 Gday

Hence, the result of our conversion is the indeterminate discrete time span 60 days ~ 64 days.

3.3 Canonical Forms for Time Spans

In addition to the set of granularities G1,... ,Gn and conversion functions discussed earlier, each
calendar also implicitly defines the relation ezactly convertible to between its granularities. We say
that G; is exactly convertible to G; iff ubf(k,G;,G;) = Ibf(k,G;,G;) = k- C, where C' is a natural
number. Note that exact convertibility is a partial order on granularities which is a suborder of
magnitude ordering. If G; is exactly convertible to G;, then G; = C - G, where C is a natural
number. Since discrete determinate time spans have the form § = Zfi 1 K;G;, where K; are integer
numbers, the presence of the exact conversion rules implies the existence of different forms of a time
span. For example, 2 hour 55 minutes and 175 minutes are different forms of the same time span
S'. To adhere as much as possible to human readability and user intuition, it is usually desirable to
represent time spans in some canonical form. For example, when the time span 1 hour 30 minutes
is added to the time span 35 minutes, the user would expect the time span 2 hours 05 minutes
rather than the time span 1 hour 65 minutes. In this section, we define canonical forms for time

spans. We begin by defining representations for time spans.

Definition 3.3 Span Representation: The N-tuple r = (aﬁfil (where a; are integer numbers
and N is the number of calendric granularities in a calendar) is called a representation of a span S

(denoted r € Rep(S)) iff S = 3N | 0;G;. W

Example 3.2 Let’s assume that the Gregorian calendar has the calendric granularities year,
month, day, hour, minute and second. Then 2 hour 55 minutes and 175 minutes which are two
forms of §' have the representations r; = (0,0,0,2,55,0) and ro = (0,0,0,0,175,0), respectively.

a

We will use span representations to define a canonical form for a time span. In order to do

that, we introduce the notion of a strictly non-negative span.

Definition 3.4 Strictly Non-Negative Span: A span S is a strictly non-negative span (denoted
S >*0)iff Ir = (a;)Y, € Rep(S):a; >0fori=1,... ,N.®
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Example 3.3 The time span 2 hour 55 minutes is strictly non-negative while the time spans
1 week — 10 days and 1 month — 30 days are not strictly non-negative since no positive represen-
tations of either of them exist. In the first time span, although we can convert 1 week to days
exactly, the resulting span —3 days does not have a positive representation. In the second time
span, no positive representations are possible since 1 month does not have an exact conversion to

days. O

Another definition that we need to define for a canonical form is a dominancy relation be-
tween span representations. The dominancy relation is in fact a lexicographical order on span

representations, which is used in determining the canonical representation of a span..

Definition 3.5 Dominancy: A representation r = (a;)Y ; dominates another representation r’ =

(b)Y, (denoted 7 = r'), r,7" € Rep(S), iff Ik :ar, > by Aa;=b; fori=1,... ,(k—1). H
Example 3.4 r, = (0,0,0,2,55,0) = 5 = (0,0,0,0,175,0). O

Having defined strictly non-negative spans and dominancy, we can now proceed to define the

canonical representation and the canonical form for strictly non-negative spans®.

Definition 3.6 Canonical Representation: A representation r = (a;)Y ; € Rep(S) is the canonical

representation of span S >t 0iff a; > 0fori=1,... ,NAVr € Rep(S) :r=r'Vr=r".1
Example 3.5 ry, i.e., (0,0,0,2,55,0) is the canonical representation of the time span S'. o

Observation 3.2 Every strictly non-negative span has one and only one canonical representation.

a

The canonical representation is the best representation of a given strictly non-negative span.

Definition 3.7 Canonical Form: A strictly non-negative span S = ZZZ\;I a; - G; is in canonical

form iff r = (a;)Y, is the canonical representation of S. W

Example 3.6 The canonical form for the time span S is 2 hour 55 minutes. O

3.4 Operations between Time Spans

In this section we give the semantics of arithmetic and comparison operations between time spans

and show how some of the questions posed in Section 1.1 are answered.

5Strictly non-positive spans can be defined similarly and the canonical form can also be defined for them.
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3.4.1 Arithmetic Operations between Time Spans

As described in Section 3.1, a time span is represented as a summation of different calendric
granularities. In this section we elaborate on the arithmetic operations between time spans using
various examples. The semantics of adding (subtracting) two time spans is to add (subtract) the
components which have the same calendric granularity, concatenate the remaining components
to the resulting time span, and reduce the resulting time span to canonical form as described in

Section 3.3.
Example 3.7

1. (5 years + 4 months) + 2 years — (7 years + 4 months)

2. (5 years + 4 months) + 15 days — (5 years + 4 months + 15 days)
O

Similar semantics hold true for addition (subtraction) of determinate time spans and indeterminate
time spans. The following example shows the global duration of the symptoms of angina, described

in sentences S1 and S5 for the patient considered in the motivating example presented in Section 1.1.
Example 3.8

(2 hours + 55 minutes) + (7 minutes + 35 seconds) — (2 hours + 62 minutes + 35 seconds)

— (3 hours + 2 minutes + 35 minutes)

a

We note from the above example that the global duration of the two angina episodes is converted
to its canonical form by the addition operation.

Subtraction leads to the notion of negative spans. In our model, both positive and negative
spans are allowed. Positive spans have the semantics of forward duration in time, while negative
spans have the semantics of backward duration in time. Allowing positive and negative spans
enables us to carry out the subtraction operation between spans of different calendric granularities

which could result in either a positive or negative span, for example, 1 month — 30 days.
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3.4.2 Comparison Operations between Time Spans

The semantics of comparing two time spans is to first convert each time span to the finest granularity
that exists between the two time spans, and then carry out the comparison. The following example

illustrates the various combinations that could occur:
Example 3.9

1. (1 hour + 30 minutes) = 90 minutes ?
& 90 minutes = 90 minutes

& True

2. 1 month > 30 days ?
< (28 days ~ 31 days) > 30 days

& Unknown

a

We note from the above example that time spans which overlap (or even meet each other) cannot
be compared. This follows from Observation 3.1 (see Section 3.2) which states that calendric

granularities are partially ordered with respect to the binary relation “exactly convertible to.”

3.5 Related Work

In this section we compare our approach of representing and operating on unanchored time dura-
tions (time spans) to that of Lorentzos [Lor94] and TSQL2 [Sno95]. Since a time span is independent
of any time instant or time interval due to its relative nature, granularity conversions in the con-
text of anchored temporal primitives cannot be used for unanchored temporal primitives. Hence,
none of the temporal models [CC87, WJL91, WJS93, MPB92, MMCR92, Sno95, WBBJ97| can
completely support the unanchored temporal information needs of an application like the clinical
example given in Section 1.1.

Although the work of Lorentzos [Lor94] does not explicitly deal with temporal granularity, it
proposes a scheme for representing and operating on non-metric types. Mixed granularity time
durations, with separate fields for their composite parts (e.g., hours, minutes, seconds) are one
example of a non-metric data type. These can be represented as elements of sets of composite
numbers which provide conversion relationships (mappings) between the composite fields. However,

only exact (regular) mappings are discussed. The representation does not provide inexact (irregular)
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mappings. Therefore time durations with composite parts having granularities of months and days
cannot be exactly modeled. In our approach, a time span is simply a summation of calendric
granularities. Both exact and inexact mappings between granularities are provided (using the
Ibf(Ga,Gp) and ubf(G 4, Gp) functions). This allows time durations to be converted to any given
calendric granularity.

The conversion of a time duration to a particular granularity is possible in [Lor94]. However,
the target granularity is restricted to be one of the granularities of the composite parts of the
time duration. For example, if the time duration is 2 hours, 50 minutes, 30 seconds, then the time
duration can be converted to hours, minutes, or seconds. We do not enforce such a restriction in our
work. A time duration can be converted to any desired granularity in the calendar. The conversion
process of the time duration 2 months and 45 hours to a time duration in the granularity of days
is shown in Example 3.1.

In [Lor94], addition between time durations is also possible. However, the operands have
to be addition compatible. If S; and Sy are time durations, then they are addition compati-
ble if S consists of at most as many composite parts as S7, and for these composite parts, the
granularities should be the same. For example, the time durations with composite granularities
(days,hours,minutes,seconds), (hours,minutes,seconds), (minutes,seconds), and (seconds) are addi-
tion compatible, and thus can be added to each other. Our approach is more general in that time
durations do not have to be addition compatible. The components of the time durations which
have the same calendric granularity are simply added to each other, and the remaining components
are concatenated to the resulting time span, as shown in Section 3.4.1.

In TSQL2 [Sno95], time spans (durations) which have mixed granularities cannot be represented
[Sno96]. For example, the duration of the chest pain in sentence S1 (see Section 1.1) would have to
be represented in hours or in minutes. Since a time span is a summation of distinct granularities
in our approach, representing symptom durations with mixed granularities is straightforward. Our
approach of representing mixed granularity time spans is also more general than that used in
SQL-92 in that we do not restrict time spans to only year-month or day-time combinations.

A time span in TSQL2 is necessarily indeterminate at both coarser and finer granularities.
This is because a granularity is modeled as an anchored partitioning of the timeline, whereas a
time span in unanchored. Therefore, all time span conversions in TSQL2 are treated as inexact,
resulting in indeterminate time spans. In our approach, a time span conversion can be exact or

inexact. Consider the simple conversion of the time span 1 hour to the granularity of minutes. In
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TSQL2, this conversion results in the indeterminate span 1 ~ 119 minutes — an indeterminacy
of 120 minutes. In our approach however, the conversion is exact and results in the determinate
span 60 minutes, which is what is expected in reality.

Operations involving time spans in TSQL2 could give rise to ambiguities and even incorrect
results. Counsider the addition of the time span 1 hour to the time span 40 minutes in TSQL2.
There are two semantics defined: left-operand (coarser granularity) semantics and finer granularity
semantics. In left-operand (coarser granularity) semantics, this addition can result in two different

time spans:

1. 1 hour + 40 minutes — 1 hour + scale(40 minutes)
— 1 hour + (0 ~ 1 hour)
—1 ~ 2 hours

2. 1 hour + 40 minutes — 1 hour + cast(40 minutes)
— 1 hour + cast(0 ~ 1 hour)
— 1 hour + 0 hour
— 1 hour

The first operation scales the time span of 40 minutes to the granularity of hours (granularity
of the left operand), which results in the indeterminate time span 0 ~ 1 hour. In the second
operation, the time span of 40 minutes is cast to the granularity of hours. The cast operation first
scales the time span 40 minutes to the granularity of hours which result in the indeterminate time
span 0 ~ 1 hour from which the first component, 0 hour, is arbitrarily chosen.

In finer granularity semantics, this addition can result in two different time spans:

1. 1 hour + 40 minutes — scale(1 hour) + 40 minutes
— (1 ~ 119 minutes) + 40 minutes
— 41 ~ 159 minutes
2. 1 hour + 40 minutes — cast(l hour) + 40 minutes
— cast(l ~ 119 minutes) + 40 minutes
— 1 minute + 40 minutes
— 41 minutes

The first operation scales the time span of 1 hour to the granularity of minutes (the finer
granularity of the operands), which results in the indeterminate time span 1 ~ 119 minutes. In
the second operation, the time span of 1 hour is cast to the granularity of minutes resulting in the
time span 1 minute.

In both cases, the addition operation yields results which are counter-intuitive to what a user
actually expects, since some information is lost in the conversion process. Indeed neither semantics

gives the desired result of 100 minutes or 1 hour and 40 minutes. In our approach, the resulting
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time span for the addition of 1 hour to 40 minutes is 1 hour and 40 minutes. Since a time
span is represented as a summation of different calendric granularities, our semantics of arithmetic
operations between time spans of different calendric granularities exactly model what is intuitively
expected in the real-world.

Comparison of time spans of different granularities in TSQL2 can also lead to incorrect results.
Consider the comparison of the time span 30 minutes with the time span 1 hour in TSQL2 [Dyr96],

using left-operand semantics or finer granularity semantics:

30 minutes > 1 hour ?

< 30 minutes > cast(l ~ 119 minutes)
& 30 menutes > 1 minute

& True!

The time span 1 hour is first converted to the granularity of the leftmost operand. Since a time
span is indeterminate at any finer or coarser granularity in TSQL2, the conversion of 1 hour to the
granularity of minutes yields the indeterminate time span 1 ~ 119 minutes. The cast operation
then converts this to a determinate time span by arbitrarily choosing the lower bound. This leads
to comparing the time span 30 minutes to the time span 1 minute, and subsequently returning
True which is the opposite of what is expected. In our approach, the time span 1 hour would be
converted exactly to the time span 60 minutes, and the comparison would then return False.

Some of the counter-intuitive results in TSQL2 may be avoided by defining duration literals
for time spans with mixed granularities in the adopted calendar. The calendar would also manage
different interpretations in mapping a time span from one granularity to another. Even tough
calendar definition in TSQL2 allows users to overcome some of the underlined limitations, this
solution seems to be less general than our approach. Further problems in TSQL2 could arise
in according different calendar-dependent interpretations with the adopted scaling/left operand

semantics.

4 Implementation Issues

The formulae (3) and (4) for Ibf(K,Ga,Gp) and ubf(K,Ga,Gg) (see Derivation 2.2) are compu-
tationally expensive. However, they are not designed for direct computation. These formulae are
just mathematical definitions. Any approximation of these formulae will suffice, and such approxi-
mations for the most common conversions can be chosen at the time when the calendar is defined.

Another technique that can be used to make computations less expensive would be to simplify

20



these formulae since they allow for many simplifications once a set of particular calendric functions

is chosen. As an example, let us consider the Gregorian calendar. In this calendar,

7 (y) = 12 (months)
30 ifmis3, 5,8, or10
31 ifmis0,2,4,6,7,9, or 11

y,m) = (days)

fmonth (
28 if m =1 and y is not leap

29 ifm=1andy is leap
9 (y,m,d) = 24 (hours)

where y is leap when ymod400 = 0V ymod4 = 0 A ymod 100 # 0.
We will consider the conversions from years to months, from years to days, and from months

to days. Then,

fyear—mlonth(y) — fyear(y) - 12
frea—sday () _ 366 if y is leap
365  otherwise
fmonth—>day (y’ m) — fmonth(y’ m)

Then, using formulae (3) and (4) we find that

lbf (K, Gyeara Gmonth) — mln{ Z fyear—>m0nth (yl) }
v 0<distyear(y',y)<K—1

= min{12K}
y

= 12K
ubf(K, Gyeara Gmonth) = 12K

1bf (K, Gyear, Gaay) = min{365(y + K) + |(y + K) /4] — [(y + K)/100] + |(y + K) /400

— 365y — [y/4] + [y/100] — |y/400]}
> 365K + | K/4] — |(K + 96)/100]

ubf (K, Gyear, Gday) < 365K + [(K + 3)/4]

The above [bf and ubf bounds can be used instead of exact formulae. These bounds are easily

computable and introduce an error that is less than a day per century. Analogous methods can be
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used to find computationally cheap approximations for conversion of months to days; however, to
obtain reasonable approximations, values for small K (K < 48) have to be tabulated. Let g, (K)

and gmez(K) be such tabulations. Then we have:

lbf(K, Gmontha Gda,y) = Omin (K mod 48) + lbf( |_K/48J -4, Gyear, Gda,y)
ubf (K, Gmonth, Gday) = Jmaz (K mod48) + ubf (| K /48] - 4, Gyear, Gday)

Using these formulae we can now make fast and quite precise conversions. For example, the
number of days (d) in 100 months according to the above formulae is 120 + 2921 = 3041 < d <
3044 = 122 + 2922, which is the correct estimate. The simplistic approach where the number of
months is not taken into account when the coefficients are computed would give 28 * 100 = 2800 <

d < 3100 = 31 * 100, which is an error of more than 8%, or 200 days.

5 Conclusion

This paper is a first step in completing the puzzle on temporal granularity by providing support for
unanchored temporal primitives with different and mixed granularities and addressing the issues
that arise therein. This will help temporal DBMSs to better support the various applications in
which such primitives are inherent.

A model for supporting calendars is given and it is shown how multiple granularities and unan-
chored temporal entities are integrated within the context of calendars. A calendric granularity is
described as being part of a calendar and represented as a special kind of span - one with a unit
duration. The process of conversion between time spans of mixed granularities is then given and
canonical forms for time spans defined. These forms are used by arithmetic operations on time
spans to return time spans which are what a user intuitively expects. The arithmetic and compar-
ison operations involving time spans were described and compared to similar ones in [Lor94] and
in the TSQL2 query language [Sno95]. We show how our semantics of operations are more general
than that of [Lor94]. Furthermore, our operations exactly model intuition, while the semantics of
operations in TSQL2 yield results which were either counter-intuitive (in the case of arithmetic
operations) or incorrect (in the case of comparison operations).

In Section 4 we show that it is possible to establish computationally inexpensive yet quite precise
formulae for lower and upper bound coefficients. Currently, the derivation of these formulae has to

be done by a database administrator; their automatic derivation is a topic for future research. In
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[GLOS%’, Gor98] we describe how the calendar model, and the anchored and unanchored temporal
primitives introduced in this paper are incorporated into the TIGUKAT object model [OPS"’%].
In conclusion, we emphasize that modeling of unanchored temporal data with different and
mixed granularities is an essential ingredient of temporal granularity, and should therefore be
considered in the design of temporal models and temporal query languages. It is our position
that assuming a simplistic view of unanchored temporal data and thereby avoiding the inherent
issues which arise will only make the resulting temporal model and temporal query language very

restricted for real-world temporal data usage.
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