
Modeling Temporal Primitives: Back to Basics

Iqbal A. Goralwalla, Yuri Leontiev, M. Tamer Özsu and Duane Szafron
Laboratory for Database Systems Research

Department of Computing Science
University of Alberta

Edmonton, Alberta, Canada T6G 2H1
iqbal,yuri,ozsu,duane @cs.ualberta.ca

Abstract
The fundamental question about a temporal model is “what
is its underlying temporal structure?” More specifically, what
are the temporal primitives supported in the model, what tem-
poral domains are available over these primitives, and whether
the primitives are determinate or indeterminate? In this paper
a simple, general framework for supporting temporal primi-
tives (instants, intervals, sets of intervals) is presented. The
framework allows seamless integration of dense and discrete
temporal domains of time over a linearly ordered, unbounded
point structure. The framework also provides a set-theoretic
basis that allows uniform treatment of determinate and inde-
terminate temporal primitives.

1 Introduction
The primary component of a temporal model is its underly-
ing temporal structure. Supporting a temporal structure in-
volves making choices between alternative temporal features.
This includes the temporal primitives supported (points or in-
tervals), the temporal domain available for these primitives
(dense or discrete), the temporal determinacy of the primi-
tives, the ordering imposed on the primitives (linear or branch-
ing), and whether time is bounded or unbounded. Indeed, the
temporal structure, with its various constituents, forms the ba-
sic building block of the design space of any temporal model
since it is comprised of the basic temporal features that un-
derlie any temporal model. In this paper we concentrate on
temporal primitives, the temporal domains available over these
primitives, and the temporal determinacy of the primitives.

The definition of temporal primitives requires prior knowl-
edge of the underlying temporal domain. A temporal domain
can be dense or discrete. Between any two temporal primitives
in a dense time domain, another temporal primitive exists. For
any temporal primitive in a discrete time domain, there is a
unique successor and predecessor. Similarly, in handling tem-
poral indeterminacy, some researchers assume a dense tem-
poral domain [12], while others assume a discrete temporal
domain [8, 6]. Therefore, selecting the appropriate temporal
domain is an integral part of defining a temporal model.
Most of the research in the context of temporal databases

has assumed that the temporal domain is discrete. Several
arguments in favor of using a discrete temporal domain are
made by Snodgrass [16] including the imprecision of clocking
instruments, compatibility with natural language references,
possibility of modeling events which have duration, and prac-
ticality of implementing the temporal data model.
However, in an excellent survey by Chomicki on temporal

query languages [3], it is argued that the dense temporal do-
main is very useful in mathematics and physics. Furthermore,
dense time provides a useful abstraction if time is thought of
as discrete but with instants that are very close. In this case,
the set of time instants may be very large which in turn may be
difficult to implement efficiently. Chomicki further argues that
query evaluation in the context of constraint databases [11, 14]
has been shown to be easier in dense domains than in discrete
domains. Dense temporal domains have also been used to fa-
cilitate full abstract semantics in reasoning about concurrent
programs [1].
In our opinion, both views have valid arguments. While

the discrete domain of time helps in promoting the practical
side of temporal research, the dense domain of time provides a
useful underlying abstraction. Our contention is that a tempo-
ral model should be general enough to support both the dense
and the discrete temporal domains. In this paper, we propose
a simple general framework for defining temporal primitives,
without making any assumptions about the underlying tempo-
ral domain. We do not advocate one domain over the other;
rather our framework enables leveraging the advantages of
both by allowing seamless integration of dense and discrete

domains of time. This allows a temporal model to provide
support not only for applications which usually need a discrete
temporal domain, but also for applications that need dense
time as an abstraction. This is in contrast to recent propos-
als that handle multiple granularities [4, 13, 5, 18, 2, 17, 15].
These proposals assume a single underlying temporal domain
which is usually discrete.
The contributions of this paper can be summarized as fol-

lows: (1) We present a simple, general framework for support-
ing temporal primitives which allows seamless integration of
dense and discrete domains of time over a linearly ordered,
unbounded point structure. To the best of our knowledge, this
feature is novel to our work. (2) We define calendric support
over the point structure which is independent of any particular
temporal domain. This allows physical time to be interpreted
in a meaningful manner and allows us to define various calen-
dric systems in our framework. (3) We provide a uniform and
consistent mapping of calendric primitives to the point struc-
ture. (4) A set-theoretic framework that allows uniform treat-
ment of determinate and indeterminate temporal primitives.
The rest of the paper is organized as follows: Section 2

gives the definition of our underlying point structure, and de-
scribes how intervals and temporal elements can be defined
over it. In Section 3 the foundation for calendric support is set
by defining granularities over the point structure. Section 4 de-
fines calendars and their primitives, and describes how the cal-
endric primitives are mapped to the point structure. Section 5
provides a treatment of indeterminate temporal information.
Section 6 summarizes the work presented in this paper and
discusses avenues for future research.

2 Preliminaries
In this section we define our underlying domain (called the
global timeline) which will be used as the basis of all subse-
quent definitions. The set of desired properties of the global
timeline postulated here is quite weak: for example, we do
not postulate either density or discreteness of the global time-
line. This will allow us to use almost all subsequent constructs
independently of the density of the underlying domain. The
only construct that depends on the density of the underlying
domain is the infinitely divisible granularity that will allow us
to bridge between a dense domain and its discrete approxima-
tion.

Definition 2.1 Global timeline: The global timeline (de-
noted) is a point structure with precedence relation (ab-
breviated to), which is a total (linear) order without end-
points (i.e., is irreflexive, transitive and linear relation un-
bounded from both left and right).

Example 2.1 Examples of point structures satisfying Defini-
tion 2.1 include integers Z, rationals Q, and reals R. More
exotic examples are (lexicographically ordered pairs of
integer and rational numbers) and . Note that both
dense and discrete point structures are allowed. The examples

in this paper use (denoted) and (denoted
).

The global timeline with (minimal element) and
(maximal element) added to it is called the extended global
timeline and is denoted . The power set over (denoted

) has the usual set-theoretic operations (union, comple-
ment, intersection, and difference) defined over it. In addition,
it has two distinct partial orderings namely, strong precedence

and subset inclusion . We will now define inter-
vals over .

Definition 2.2 Open time interval: An open time interval
, where , , and is a subset of such that

def

Left-closed, right-closed, and closed time intervals (denoted
respectively , , and) are defined analogously.
Closed intervals allow ; thus, intervals of the form
are allowed. All these kinds of intervals form , the
set of all intervals over . Note that is isomorphic to a
subset of formed by intervals of the form with
precedence relation . There is one additional partial or-
dering, weak precedence , defined for intervals. It is defined
as follows: def

. The strong precedence is a
suborder of the weak one. For example, in , ,
while . Since time intervals are sets, usual set-
theoretic operations (union, intersection, complement, differ-
ence) can be defined for them. However, the set of all inter-
vals is not closed with respect to the above operations. For
example, in , INT . The notion of
temporal element (union of a finite number of time intervals)
[7] is therefore used. We will denote the set of all temporal
elements over as . is treated as a subset
of , with the same set-theoretic operations and ordering.

and are defined the same way as
and .
Figure 1 shows the relationships between the global time-

line and the temporal primitives defined over it. The figure
shows that is isomorphic to a set of intervals , the lower
and upper bounds of which are points that are members of .
The set of intervals is a subset of the set of intervals over
, which in turn is a subset of the set of temporal elements

over . Finally, the set of temporal elements is a subset of the
power set over .

()TINT

U
I

U
I

()TTE

U
I

()TP{[a,a]} ¡a TT
isomorphic

Figure 1: Relationships between temporal primitives de-
fined over the global timeline

3 Granularities
The global timeline () defined in Section 2 is “flat”. In this
section, we define granularities over in order to overcome
its “flatness”. Generally speaking, granularities allow to be
perceived at several resolution levels. For example, defining
the Gregorian calendar over would allow to be partitioned
in several levels, e.g., years, months, days. Granularities are
subsequently used to define calendars in Section 4. Granular-
ities can also be perceived as generalized forward shifts along
the timeline. For example, the granularity of second ()
moves any point on the timeline one second forward.
In the following, we use to denote integer

powers of functions. Positive powers are defined as
times , zero power (of any function) is defined as

(identity over), and negative powers are defined as
where is an inverse function.

Negative powers of a function only make sense if the inverse
function exists.

Definition 3.1 Granularity: A (partial) function
with domain and codomain is called a
granularity if it satisfies the following:

1. Monotonicity (MON):

2. Forward directedness (FORW):

3. Origin (ORIG):
def

An origin is a point on the timeline such that
def can be viewed

as a partition of the timeline.
Thus, a granularity is a generalized forward shift that de-

fines at least one partition of the timeline. In other words, a
granularity allows us to “step through” back and forth the en-
tire timeline in a countable number of steps, starting from any
of its origins. This will be used to define calendars in the Sec-
tion 4.
A granularity can define several partitions. A single calen-

dar only makes use of one of them; however, different calen-
dars can use different partitions defined by the same granular-
ity. Note that if a granularity, then can be treated as a
generalized backward shift that defines the same partitions of
the timeline as . Note also that for any granularity and any

, is also a granularity. Theorem 3.1 ensures that for
any given domain satisfying Definition 2.1, there always exists
at least one granularity.

Theorem 3.1 If is a point structure satisfying Defini-
tion 2.1, then has a granularity.

The proof follows from Definitions 2.1 and 3.1, and Zorn's
Lemma [10].

Example 3.1 These are examples of granularities:

is even
undefined otherwise

undefined otherwise

A granularity is called a total granularity iff is a total
function (i.e.). Total granularities are very use-
ful in establishing relationships between different calendars
since every point on the timeline belongs to a chain defined by
a total granularity. An example of a total granularity is
from the above example. We now define divisible granulari-
ties that provide successively finer partitions of the timeline.

Definition 3.2 Divisible granularity: A granularity is di-
visible by iff there exists a granularity
such that .

The divisibility of a granularity by essentially means
that for every partition defined by , there is a partition that
is times finer. It is easy to see that if is a granularity then

is divisible by . The ability to divide a granularity by an
arbitrary number (thus giving “infinitely finer” partitions) is
an essential property when the underlying domain is dense. A
granularity that is divisible by all is called an infinitely
divisible granularity.

Example 3.2 The granularity from Example 3.1 is not di-
visible by any . The granularity from the same
example is infinitely divisible. For example, we can choose

The granularity from the same example is divisible by 2 over
and is infinitely divisible over . In we can choose

while in we can choose
for all .

Theorem 3.2 If is dense then it has at least one infinitely
divisible granularity.

The proof follows from Theorem 3.1 and the definition of a
dense domain. The following theorem states that any chain of
any total infinitely divisible granularity can be used to approx-
imate any point on the timeline with an arbitrary precision.

Theorem 3.3 If is a total infinitely divisible granular-
ity over then

Infinitely divisible granularities are useful for the interpreta-
tion of dense domains. Discrete domains do not have infinitely
divisible granularities. Every granularity over can be
extended to to yield an extended granularity : (1)

(2) (3)
In the rest of the paper we will use extended granularities only
and will omit for brevity. In the next section we use granu-
larities to define calendars over the global timeline.

4 Calendars
In order to interpret the global timeline, we propose to use cal-
endars. A calendar is a means by which physical time can be
represented in a meaningful way. A calendar is comprised of
a finite number of partitions called origin chains, and a distin-
guished point on the timeline called the origin of the calendar.
Calendars are used to define calendric time primitives called
calendric instants and calendric intervals. They provide an
abstraction mechanism that allows us to deal with calendric
time primitives independently of the underlying domain.

Definition 4.1 Calendar: A calendar is a tuple , where
is the origin of the calendar and is a finite set of gran-

ularities: , where the coarsest granularity
is while the finest one is . The calendar origin and the
set of its granularities has the following collective properties:

1. Ordering (ORD):

2. Origin chain (ORIG):

The chain of to which 0 belongs ()
is called the origin chain (of) and is denoted or
simply .

3. Chain inclusion (CHAIN):

Informally, the calendar defines (by its origin chains) a ruler
on the timeline with bigger markers made by origin chains of
coarser granularities and a zero marker placed at the calendar
origin. An actual ruler always has at least one smaller marker
between two bigger ones; only the smallest markers have no
markers between them. The ruler property holds for calendars
as well, since if , then: (1)

(2) (3)

Example 4.1 Let us consider and and define a cal-
endar that corresponds to a simplified version of the standard
Gregorian calendar with years, months, days, hours, minutes,
and seconds. In this example, we will treat as a second.
Then we can define the following granularities: second

minute second hour minute

day hour In order to define
months and years, two additional functions are introduced:

is the number of seconds between the origin, January 1
year 0001, encoded here as 0 day of 0 month of 0 year, and
the beginning of year . is number of seconds between
the origin and the beginning of month . We can now define
granularities corresponding to months and years:

month

year

It is easy to see that for those for which year
is defined, year month . We will take
0 as the origin of our calendar so that Greg

second minute hour day month year . Note that
second is infinitely divisible in and indivisible in . The

granularities corresponding to seconds, minutes, hours, and
days are total ones while all the others are not. Therefore,
since second in is total and infinitely divisible, the calen-
dar can approximate every point in . Note that we can now
define another calendar (e.g. fiscal) with different origin and
different definition of months and years and then we could use
seconds, minutes, hours, and days of the Gregorian calendar
in order to establish a correspondence between the two calen-
dars.

4.1 Calendric instants
A calendric instant is a calendric denotation of a point on the
timeline. Calendric instants are almost domain-independent
(their only dependencyon domains lies in the coefficient of the
finest granularity); they are introduced to provide a calendar-
based abstraction of the timeline.

Definition 4.2 Calendric instant: A calendric instant
in a calendar is a tuple where ,

, and , or and is divisi-
ble by .

We will denote the set of all calendric instants of as
INST(). Note that if is infinitely divisible, then .
Every calendric instant of a calendar maps to a single el-
ement of . The function that realizes this mapping
is defined as follows: ,
where 0 is the origin of and are its granular-
ities. Informally this means that a point on the timeline rep-
resented by a calendric instant , is computed by

taking the calendar origin and shifting it forward times by
, then shifting the result times by , etc until
. The last shift can be fractional as can be non-integer if
is a divisible granularity.

Example 4.2 The calendric instant 1995, 1, 15,
13, 16, 3 in the calendar Greg corresponds to 13h 16min
3sec on February 16, 1996 a.d. (we routinely start count-
ing days, months, and years from 1, and hours, minutes,
and seconds from 0, while in our framework all of them
are always counted starting from 0). is mapped to:
second minute hour day month year

is another calendric instant
which is mapped to the same point as .

is an example of a calendric
instant in Greg over which is not a calendric instant of the
same calendar in (as second is indivisible over).

This mapping together with the ordering on induces an or-
dering on equivalence classes of calendric instants (two cal-
endric instants are equivalent iff they map to the same point
of). This ordering is total and we will use to denote it.
We will also use to denote the equivalence of two calendric
time instants and use for tuple equality. Thus, INST()
is isomorphic to a subset of .
It can be seen from Example 4.2 that different calendric in-

stants from the same calendar can map to the same point on
the timeline. In order to overcome this drawback, calendric
instants can be normalized. For example in the Gregorian cal-
endar, the month is between 0 and 11, the day is in the appro-
priate range for the givenmonth, the hour is between 0 and 23,
and the minutes and seconds are between 0 and 59. Distinct
normalized calendric instants from the same calendar map to
different points of . Without loss of generality, in the rest of
the paper we will deal with normalized calendric instants. For
normalized calendric instants, we can define a partial function,

, that takes a point in and transforms it to a normalized
calendric instant in . We will now use INST() to denote all
normalized instants of a calendar . INST() is isomorphic to
a subset of .
Dates are human-readable representations of normal-

ized calendric instants. For example, in the Gregorian
calendar defined in Example 4.2, a normalized instant
years months days hours minutes seconds would correspond

to the date , where is years a.d. if
years and years b.c. if years , is January if
months , February if months , , December if
months , is days , is hoursh, is minutesmin,
and is secondssec. Thus, corre-
sponds to the date 1996 a.d. February 16 13h 16min 3sec,
while corresponds to the
date 1996 a.d. February 15, 13h 16min 3.098sec. We will
routinely omit hours, minutes and seconds when they are ze-
roes. In order to make the examples more illustrative, we will
use dates to represent calendric instants in the rest of the paper.

4.2 Discrete calendric instants
The formalism described in this paper allows us to use dis-
crete instants without knowing the actual structure of and
seamlessly integrate them if is not discrete. Discrete calen-
dric instants are discrete abstractions of the underlying (possi-
bly dense) domain. They are completely domain-independent.
Discrete calendric instants can have different granularities.
They are mapped to intervals over the underlying domain
whose length is determined by the granularity of the instant.
This necessitates the definition of calendric addition.

Definition 4.3 Calendric addition: A calendric addition
is defined as:

def

Example 4.3 1996 a.d. February 16 1 day
day

1996 a.d. February 17.

In this section we will deal with a single calendar and will
therefore routinely omit the subscript .

Definition 4.4 Discrete calendric instant: A discrete calen-
dric instant is a tuple such that (1)

(2)

We map the discrete calendric instants to intervals over .
The mapping function is defined as follows:

The inverse of this mapping, , is unambiguouswhen it ex-
ists. The mapping, , together with precedenceand inclusion
relations on INT() induce these relationships on the set of
all discrete instants DINST and its subsets for each calendar
(DINST()). DINST() is isomorphic to a subset of INT().
For example, a discrete time instant of the granularity “day”
can be viewed as a point in the global timeline that is dis-
crete at the level of days. The well-known problem of dealing
uniformly with instants of different granularities is solved by
the uniform mapping of discrete calendric instants to intervals
over the underlying domain.
Since INST() is isomorphic to a subset of , which is in

turn isomorphic to a subset of INT(), we can form a union
UINST() INST() DINST(). This union is disjoint and
it can be mapped to disjoint subsets of INT(). From now on,
we will use this mapping to map UINST() to INT() and
vice versa.
Informally, UINST() is an abstraction of the underlying

point structure determined by the calendar. Every element of
UINST() can be viewed as a point, thus providing a seam-
less integration of calendric instants (that may be dense) and
discrete calendric instants that are discrete at various granular-
ities.
We will use dates indexed by the name of the appropriate

granularity to represent discrete calendric instants (unindexed
dates denote calendric instants).

Example 4.4
1996 February 16day day

,
while 1996 February 16

.
Thus, 1996 February 16day 1996 February 16 It is also
easy to show that 1996 February 16day
1996 February 17day 1996 February 18 and
1996 February 16day 1996 Marchmonth, while
1996 February 16day and 1996 Februarymonth are incompara-
ble.

Discrete calendric instants provide a discrete abstraction of the
underlying domain of any structure. We have demonstrated
that we can easily mix calendric instants and discrete calendric
instants of different granularities, thus providing a uniform,
sound, and intuitive way of comparing them to each other.

4.3 Calendric intervals
The uniformity of our framework can be strengthened by
defining calendric intervals, which provide an abstraction of
intervals defined over UINST(). In order to define calendric
intervals, we first define structures called double intervals over
. Double intervals are intervals that have intervals rather

than instants as their bounds (for example, if one or both of
the bounds are discrete instants). We need double intervals
in order to define calendric intervals over UINST. Element of
UINST are mapped to intervals over the global timeline, and
therefore, construction of intervals over UINST requires the
ability to deal with “intervals” with interval bounds.

Definition 4.5 Double interval: A double interval is a struc-
ture formed analogously to an interval. While a standard (sin-
gle) interval has instants as upper and lower bounds, a double
interval has interval bounds. Double intervals are defined (and
mapped to single ones) according to the following rules:

1. where
def

2. where def

3. where def

4. where def

Just like an interval includes and everything be-
tween and while excluding , a double interval
includes the intervals and everything between the inter-
vals and while excluding the interval itself. For
example, should include and everything
between and (i.e.). Thus,

. It is easy to see that the result ()

automatically excludes the upper bound (). Double inter-
vals of other shapes are interpreted in a similar manner. The
result always includes “the middle” and includes or excludes
the “interval bound” according to the outer level brackets.

Example 4.5

.

Having defined double intervals, we now define calendric in-
tervals.

Definition 4.6 Calendric interval: A calendric interval
is a structure formed analogously to single intervals with up-
per and lower bounds taken from UINST. They are mapped
to INT() in the following way: first, the lower and upper
bounds of are mapped to INT(), then is converted to a
double interval which in turn is mapped to INT().

Example 4.6 1996 February 16day,1996 March 1day is first
mapped to

which is in
turn mapped to
1996 February 15day,1996 March 1day is also mapped to

which is
what we intuitively expect since the first interval includes
February 16, while the second excludes February 15.

Calendric intervals form the set CINT. The membership re-
lation on UINST CINT is defined as subset inclusion be-
tween images of its two arguments in INT. The precedence re-
lationships are defined similarly. Calendric temporal elements
(CTE) are defined as finite unions of calendric intervals. They
are mapped to elements of TE() (TE()) by mapping every
calendric interval to INT and then taking union of the resulting
intervals. Figure 2 shows the relationships between the calen-
dric primitives defined in this section, and their mappings to
corresponding temporal primitives that were defined in Sec-
tion 2 and shown in Figure 1.

5 Temporal Indeterminacy
In the real world there are many caseswhen we have complete
knowledge of the time or the duration of a particular event.
For example, the maximum time allowed for students to com-
plete their Introduction to Logic Programming examination is
known for certain. This is an example of determinate temporal
information. However, there are cases when the knowledge of
the time or the duration of a particular event is known only
to a certain extent. For example, we do not know the exact
moment when the Earth was formed though we may speculate
on the time frame for this event. In this case, the temporal
information is indeterminate.
To treat indeterminate temporal information, we introduce

an isomorphic image of (denoted) with isomorphism
. Since is isomorphic to , all constructs de-

fined earlier for are automatically defined for as well.

UI

UI

UI

()T

()T

()T

INST(C)

DINST(C)

UINST(C)

UINST(C)a ¡{[a,a]}

UI

UI

CINT(C)

CTE(C)

T
isomorphic

P

TE

INT

{[a,a]} ¡a Ta
mapped to

mapped to

mapped to
isomorphic

mapped to

mapped to

Figure 2: Relationships between calendric primitives
and their mapping to primitives defined over the global
timeline

We give temporal elements (and thus instants, intervals etc)
the following meaning: if a temporal element comes from
, it represents “certain” information; otherwise if it comes

from it represents “possible” information. Thus if an
event is known to occur during that event
is known to occur in time interval, known not to occur
in , and no information is avail-
able about this event during time interval (assuming

).
In order to be able to mix temporal elements from with

those from , we introduce the indeterminate time sets.

Definition 5.1 Indeterminate Time Set: An indetermi-
nate time set is a member of such that

Example 5.1 The set is an indetermi-
nate time set. At the same time, is not,
since .

The indeterminate time sets form a family of sets . de-
fines set inclusion, complement, and union in a manner differ-
ent from standard set-theoretic definitions for these operations.

1. def

2. def

3. def

Intersection and difference are defined in terms of the above
operations in the usual way. The intuition behind these def-
initions is as follows: let us assume that we have “black”

(for sure), “grey” (maybe) and “white” (certainly not) inter-
vals. Then every indeterminate time set partitions the whole
timeline into black (defined as),
grey (defined as), and white
() areas. Thus, carries information about
time when an event did happen, might have happened, and did
not happen. Intersection of white with anything is white (if
one of two events is known not to occur at a particular time,
then the conjunction of these events could not occur at that
time), and that of grey with anything but white is grey (if
we are uncertain about one event, we are uncertain about its
conjunction with any other event, unless the second event is
known not to happen at that time), and an intersection of black
with black is black (if both events are known to occur at a par-
ticular time, their conjunction is also known to occur at that
time). Likewise, a union of black with anything is black, that
of grey with anything but black is grey, and the union of white
and white is white (in this case we consider disjunction of two
events). Analogous considerations can be used to intuitively
justify our definitions of subset relationship and negation.
The operations of follow the same rules as standard set-

theoretic operations. is closed with respect to the operations
just defined. Another nice property of these operations is that
both and are sub domains of ; set-theoretic op-
erations and subset inclusion of restricted to ()
give standard set-theoretic operations and subset inclusion for
these domains. The maximal element of with respect to its
subset inclusion is . An indeterminate temporal element is
defined as a member of that can be represented as a union
of a finite number of intervals from INT() INT().
With the introduction of we can map all temporal ele-

ments from both and to (the mapping is identity, since
and). Using the constructs described above,

we are now able to represent determinate and indeterminate
calendric instants and intervals and map them to indetermi-
nate time sets that form a uniform, consistent, and sound set-
theoretical basis of our framework. This is in contrast to other
works on temporal indeterminacy [8, 12, 6]. In [8, 6] the un-
derlying temporal domain is assumed to be discrete, while the
work of [12] is carried out in the context of a dense temporal
domain.

6 Discussion
The formalism developed in this paper gives us a framework in
which granularities, calendars, calendric instants, and discrete
calendric instants and intervals can be defined. They can then
be mapped to a global timeline in a uniform and consistent
manner, regardless of whether the underlying temporal do-
main is dense or discrete. If the temporal domain is dense, cal-
endric time primitives and operations on them form a temporal
structure that has both dense and discrete components of dif-
ferent granularities that can be mixed and operated upon uni-
formly and consistently. Our framework also abstracts from
the underlying domain to a large extent so that when the un-

derlying domain is enhanced (for example, is made dense) ex-
isting calendric temporal primitives do not have to be changed
and operations on them still yield the same results. Lastly,
our treatment of temporal indeterminacy allow us to uniformly
represent determinate and indeterminate temporal primitives
without making any assumptions on the underlying temporal
domain.
It is important to note that our framework not only provides

theoretical treatment of dense domains of time, but also pro-
vides finite approximations of dense domains which is actu-
ally what a standard computer provides. For example, if a
computer provides a precision of 5 decimal places, then the
finest granularity () to which a calendric instant is defined
(see Definition 4.2) can be made divisible by . If another
computer with a precision of 7 decimal places is now used,
the old data still works since is now divisible by both
and . This gives us scalability for free, unlike the chronon
assumption used in [15] which would involve updating every
instant.
In another work [9], we investigate how a calendar pro-

vides relationships between granularities, and give procedures
for converting temporal primitives from one granularity to an-
other. We are also investigating the incorporation of the for-
malism developed in this paper into a temporal query lan-
guage. Since the temporal primitives, set-theoretic operations
and their semantics have been defined, we do not foresee this
incorporation to be a major task.

References
[1] H. Barringer, R. Kuiper, and A. Pnueli. A Really Ab-

stract Concurrent Model and its Temporal Logic. In
Proc. of the 13th ACM Symposium on Principles of Pro-
gramming Languages, pages 173–183, 1986.

[2] C. Bettini, X. Wang, E. Bertino, and S. Jajodia. Semantic
Assumptions and Query Evaluation in Temporal Data-
bases. In Proc. ACM SIGMOD Int'l. Conf. on Manage-
ment of Data, pages 257–268, 1995.

[3] J. Chomicki. Temporal Query Languages: a Survey. In
Proceedings of the International Conference on Tempo-
ral Logic, Bonn, Germany, July 1994.

[4] J. Clifford and A. Rao. A Simple, General Structure
for Temporal Domains. In C. Rolland, F. Bodart, and
M. Leonard, editors, Temporal Aspects in Information
Systems, pages 17–30. North-Holland, 1988.

[5] E. Corsetti, A. Montanari, and E. Ratto. Dealing with
Different Time Granularities in Formal Specifications of
Real-Time Systems. The Journal of Real-Time Systems,
3(2):191–215, 1991.

[6] C.E. Dyreson and R.T. Snodgrass. Valid-time Indeter-
minacy. In Proc. 9th Int'l. Conf. on Data Engineering,
pages 335–343, April 1993.

[7] S. Gadia. A HomogeneousRelational Model and Query
Languages for Temporal Databases. ACM Transactions
on Database Systems, 13(4), 1988.

[8] S.K. Gadia, S. Nair, and Y-C. Poon. Incomplete Infor-
mation in Relational Temporal Databases. In Proc. 18th
Int'l Conf. on Very Large Data Bases, pages 395–406,
August 1992.

[9] I.A. Goralwalla, Y. Leontiev, M.T. Özsu, and D. Szafron.
Modeling Time: Back to Basics. Technical Report TR-
96-03, University of Alberta, February 1996.

[10] P.R. Halmos. Naive Set Theory. Springer Verlag, 1974.

[11] P.C. Kanellakis, G.M. Kuper, and P.Z. Revesz. Con-
straint Query Languages. In Proc. of the 9th ACM
SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems, pages 299–313, Nashville, Ten-
nessee, April 1990.

[12] M. Koubarakis. Representation and Querying in Tem-
poral Databases: the Power of Temporal Constraints. In
Proc. 9th Int'l. Conf. on Data Engineering, pages 327–
334, April 1993.

[13] A. Montanari, E. Maim, E. Ciapessoni, and E. Ratto.
Dealing with Time Granularity in Event Calculus. In
Proceedings of the International Conference on Fifth
Generation Computer Systems, pages 702–712, June
1992.

[14] P.Z. Revesz. A Closed Form for Datalog Queries with
Integer Order. In International Conference on Database
Theory, pages 187–201, 1990.

[15] R. Snodgrass. The TSQL2 Temporal Query Language.
Kluwer Academic Publishers, 1995.

[16] R.T. Snodgrass. Temporal Databases. In Theories and
Methods of Spatio-Temporal Reasoning in Geographic
Space, pages 22–64. Springer-Verlag, LNCS 639, 1992.

[17] X.S. Wang, C. Bettini, A. Brodsky, and S. Jajodia. Logi-
cal Design for Temporal Databases with Multiple Gran-
ularities. ACM Transactions on Database Systems, June
1997. In press.

[18] X.S. Wang, S. Jajodia, and V. Subrahmanian. Tempo-
ral Modules: An ApproachToward Temporal Databases.
In Proc. ACM SIGMOD Int'l. Conf. on Management of
Data, pages 227–236, 1993.

