
An Object-Oriented Framework for Temporal

Data Models

Iqbal A. Goralwalla, M. Tamer �Ozsu, and Duane Szafron

Laboratory for Database Systems Research
Department of Computing Science

University of Alberta
Edmonton, Alberta, Canada T6G 2H1
fiqbal,ozsu,duaneg@cs.ualberta.ca

Abstract. Most of the database research on modeling time has con-
centrated on the de�nition of a particular temporal model and its in-
corporation into a (relational or object) database management system.
This has resulted in quite a large number of di�erent temporal models,
each providing a speci�c set of temporal features. Therefore, the �rst
step of this work is a design space for temporal models which accom-
modates multiple notions of time, thereby classifying design alternatives
for temporal models. The design space is then represented by exploit-
ing object-oriented features to model the di�erent aspects of time. An
object-oriented approach allows us to capture the complex semantics of
time by representing it as a basic entity. Furthermore, the typing and
inheritance mechanisms of object-oriented systems allow the various no-
tions of time to be re
ected in a single framework. The framework can be
used to accommodate the temporal needs of di�erent applications, and
derive existing temporal models by making a series of design decisions
through subclass specialization. It can also be used to derive a series of
new more general temporal models that meet the needs of a growing
number of emerging applications. Furthermore, it can be used to com-
pare and analyze di�erent temporal object models with respect to the
design dimensions.

1 Introduction

The ability to model the temporal dimension of the real world is essential for
many applications such as econometrics, banking, inventory control, medical
records, real-time systems, multimedia,airline reservations, versions in CAD/CAM
applications, statistical and scienti�c applications, etc. Database management
systems (DBMSs) that support these applications have to be able to satisfy
temporal requirements.

To accommodate the temporal needs of di�erent applications, there has
been extensive research activity on temporal data models in the last decade
[Sno86,SS88,Soo91,Kli93,TK96]. Most of this research has concentrated on the
de�nition of a particular temporal model and its incorporation into a (relational
or object-oriented) database management system (DBMS).

To appear in Temporal Databases: Research and Practice, O. Etzion, S. Jajodia, S.
Sripada (editors), Springer Verlag, 1998.

1

The early research on temporal data models concentrated on extending the
relational data model to handle time in an appropriate manner. The notion of
time, with its multiple facets, is di�cult (if not impossible) to represent in one
single relational model since it does not adequately capture data or application
semantics. This is substantiated by most of the relational temporal models that
only support a discrete and linear model of time.

The general limitation of the relational model in supporting complex appli-
cations has led to research into next-generation data models, speci�cally object
data models. The research on temporal models has generally followed this trend.
Temporal object models can more accurately capture the semantics of complex
objects and treat time as a basic component. There have been many temporal ob-
ject model proposals (for example, [RS91,SC91,WD92,KS92,CITB92,BFG97]).
These models di�er in the functionality that they o�er, however as in relational
systems, they assume a set of �xed notions of time. Wuu & Dayal [WD92] pro-
vide an abstract time type to model the most general semantics of time which
can then be subtyped (by the user or database designer) to model the various no-
tions of time required by speci�c applications. However, this requires signi�cant
support from the user, including speci�cation of the temporal schema.

Both (relational and object-oriented) approaches have led to the de�nition
and design of a multitude of temporal models. Many of these assume a set of �xed
notions about time, and therefore do not incorporate su�cient functionality or
extensibility to meet the varying temporal requirements of today's applications.
Instead, similar functionality is re-engineered every time a temporal model is
created for a new application.

Although most temporal models were designed to support the temporal needs
of a particular application, or group of similar applications, if we look at the func-
tionality o�ered by the temporal models at an abstract level, there are notable
similarities in their temporal features:

{ Each temporal model has one or more temporal primitives, namely, time
instant, time interval, time span, etc. The discrete or the continuous domain
is used by each temporal model as a temporal domain over the primitives.

{ Some temporal models require their temporal primitives to have the same
underlying granularity, while others support multiple granularities and allow
temporal primitives to be speci�ed in di�erent granularities.

{ Most temporal models support a linear model of time, while a few support
a branching model. In the former, temporal primitives are totally ordered,
while in the latter they have a partial order de�ned on them.

{ All temporal models provide some means of modeling historical information
about real-world entities and/or histories of entities in the database. Two of
the most popular types of histories that have been employed are valid and
transaction time histories [Sno87], respectively.

These commonalities suggest a need for combining the diverse features of time
under a single infrastructure that is extensible and allows design reuse. In this pa-
per, we present an object-oriented framework [JF88] that provides such a uni�ed

To appear in Temporal Databases: Research and Practice, O. Etzion, S. Jajodia, S.
Sripada (editors), Springer Verlag, 1998.

2

infrastructure. An object-oriented approach allows us to capture the complex se-
mantics of time by representing it as a basic entity. Furthermore, the typing and
inheritance mechanisms of object-oriented systems directly enable the various
notions of time to be re
ected in a single framework.

The objectives of this work are fourfold. The �rst objective is to identify the
design dimensions that span the design space for temporal models. This will clas-
sify design alternatives for temporal models. The design space is then represented
by exploiting object-oriented features to model the di�erent aspects of time. The
second objective is to show how the temporal framework can be tailored to ac-
commodate real-world applications that have di�erent temporal needs. The third
objective is to show how the various existing temporal object models can be rep-
resented within this framework. The �nal objective is to use the framework to
analyze and compare the di�erent temporal object models based on the design
dimensions. In particular, the [RS91,SC91,KS92,PM92,CITB92,BFG97] tempo-
ral object models are considered. The work of Wuu & Dayal [WD92] and Cheng
& Gadia [CG93] (which follows a similar methodology as [WD92]) are not consid-
ered since they do not provide concrete notions of time in their models. Object
models which support versioning using time [KGBW90,WLH90,SRH90,Sci94]
usually follow a structural embedding of temporality within type de�nitions.
Thus, the notion of temporal objects is lost since the model knows nothing
about temporality. Moreover, most temporal version models use the Date func-
tion call which is provided by the system. For example, though the EXTRA-V
version model [Sci94] supports \valid" and \transaction" time, it does so by
timestamping attributes using system provided dates. This is limited in scope as
no semantics of the various notions of time are provided. Since these models are
not \temporal object models" in the strict sense of the term, we do not include
them in this study.

We can draw a parallel between our work and similar (albeit on a much
larger scale) approaches used in Choices [CJR87] and cmcc [ATGL96]. Choices
is a framework for operating system construction which was designed to pro-
vide a family of operating systems that could be recon�gured to meet diverse
user/application requirements. cmcc is an optimizing compiler that makes use of
frameworks to facilitate code reuse for di�erent modules of a compiler. Similar
to Choices and cmcc, the temporal framework presented in this paper can be re-
garded as an attempt to construct a family of temporal models. The framework
can then be tailored to re
ect a particular temporal model which best suits the
needs of an application. A particular temporal model would be one of the many
\instances" of the framework.

The presentation of this paper is divided into �ve sections. Section 2 presents
the temporal framework by identifying the design dimensions (key abstractions)
for temporal models and the interactions between them. Section 3 illustrates how
the temporal framework can be tailored to accommodate the temporal needs of
di�erent applications, and the temporal features of temporal object models. In
Section 4 object-oriented techniques are used to compare and analyze di�erent
temporal object models with respect to the design dimensions. Section 5 sum-

To appear in Temporal Databases: Research and Practice, O. Etzion, S. Jajodia, S.
Sripada (editors), Springer Verlag, 1998.

3

marizes the work presented in this paper, discusses related work, and outlines
avenues for future research.

2 The Architecture of the Temporal Framework

In order to accommodate the varying requirements that many applications have
for temporal support, we �rst identify the design dimensions that span the design
space for temporal models. Next, we identify the components or features of each
design dimension. Finally, we explore the interactions between the design dimen-
sions in order to structure the design space. These steps produce a framework
which consists of abstract and concrete object types, and properties (abstrac-
tions of methods and attributes in traditional object-oriented terminology). The
types are used to model the di�erent design dimensions and their corresponding
components. The properties are used to model the di�erent operations on each
component, and to represent the relationships (constraints) between the design
dimensions. The framework classi�es design alternatives for temporal models by
providing types and properties that can be used to de�ne the semantics of many
di�erent speci�c notions of time.

2.1 Design Dimensions

The design alternatives for temporal models can be classi�ed along four design
dimensions:

1. Temporal Structure � provides the underlying ontology and domains for
time.

2. Temporal Representation � provides a means to represent time so that it is
human readable.

3. Temporal Order � gives an ordering to time.
4. Temporal History � allows events and activities to be associated with time.

There are two parts to the description of a design dimension. First, we de�ne
a set of temporal features that the design dimension encompasses. Second, we
explore relationships between the temporal features and describe the resulting
design space for the design dimension. The design space consists of an archi-
tectural overview of abstract and concrete types corresponding to the temporal
features, and a design overview which describes some of the key properties (oper-
ations) de�ned in the interface of the types. We do not describe the properties in
detail since many of these are traditional temporal operations that have already
appeared in the literature on temporal databases.

We assume the availability of commonly used object-oriented features �
atomic entities (reals, integers, strings, etc.); types for de�ning common fea-
tures of objects; properties (which represent methods and instance variables) for
specifying the semantics of operations that may be performed on objects; classes
which represent the extents of types; and collections for supporting general het-
erogeneous groupings of objects. In this paper, a reference pre�xed by \T " refers

To appear in Temporal Databases: Research and Practice, O. Etzion, S. Jajodia, S.
Sripada (editors), Springer Verlag, 1998.

4

to a type, and \P " to a property. A type is represented by a rounded box. An
abstract type is shaded with a black triangle in its upper left corner, while a
concrete type is unshaded. In Figures 5, 8, 9, and 15 the rectangular boxes are
objects. Objects have an outgoing edge for each property applicable to the ob-
ject which is labeled with the name of the property and which leads to an object
resulting from the application of the property to the given object. A circle la-
beled with the symbols f g represents a container object and has outgoing edges
labeled with \2" to each member object.

Temporal Structure The �rst question about a temporal model is \what is
its underlying temporal structure?" More speci�cally, what are the temporal
primitives supported in the model, what temporal domains are available over
these primitives, and what is the temporal determinacy of the primitives? Indeed,
the temporal structure dimension with its various constituents forms the basic
building block of the design space of any temporal model since it is comprised of
the basic temporal features that underlie the model. We now give an overview
of the features of a temporal structure and then identify the relationships that
exist between them.

Components

1. Temporal Primitives

Temporal primitives can either be anchored (absolute) or unanchored

(relative) [Sno92]. For example, 31 July 1995 is an anchored temporal
primitive since we know exactly where it is located on the time axis,
whereas 31 days is an unanchored temporal primitive since it can stand
for any block of 31 consecutive days on the time axis.

There is only one unanchored primitive, called the span. A span is a
duration of time with a known length, but no speci�c starting and ending
anchor points. There are two anchored primitives, the instant (moment,
chronon) and the interval. An instant is a speci�c anchored moment in
time, e.g., 31 July 1995. An interval is a duration of time between two
speci�c anchor points (instants) which are the lower and upper bounds
of the interval, e.g., [15 June 1995; 31 July 1995].

2. Temporal Domain

The temporal domain of a temporal structure de�nes a scale for the
temporal primitives. A temporal domain can be continuous or discrete.
Discrete domains map temporal primitives to the set of integers. That is,
for any temporal primitive in a discrete time domain, there is a unique
successor and predecessor. Continuous domains map temporal primi-
tives to the set of real numbers. Between any two temporal primitives
of a continuous time domain, another temporal primitive exists. Most
of the research in the context of temporal databases has assumed that
the temporal domain is discrete. Several arguments in favor of using a
discrete temporal domain are made by Snodgrass [Sno92] including the
imprecision of clocking instruments, compatibility with natural language

To appear in Temporal Databases: Research and Practice, O. Etzion, S. Jajodia, S.
Sripada (editors), Springer Verlag, 1998.

5

references, possibility of modeling events which have duration, and prac-
ticality of implementing a continuous temporal data model. However,
Chomicki [Cho94] argues that the continuous (dense) temporal domain
is very useful in mathematics and physics. Furthermore, continuous time
provides a useful abstraction if time is thought of as discrete but with
instants that are very close. In this case, the set of time instants may
be very large which in turn may be di�cult to implement e�ciently.
Chomicki further argues that query evaluation in the context of con-
straint databases [KKR90,Rev90] has been shown to be easier in contin-
uous domains than in discrete domains. Continuous temporal domains
have also been used to facilitate full abstract semantics in reasoning
about concurrent programs [BKP86].

3. Temporal Determinacy

There are many real world cases where we have complete knowledge of
the time or the duration of a particular activity. For example, the time
interval allowed for students to complete their Introduction to Database

Management Systems examination is known for certain. This is an exam-
ple of a determinate temporal primitive. However, there are cases when
the knowledge of the time or the duration of a particular activity is
known only to a certain extent. For example, we do not know the exact
time instant when the Earth was formed though we may speculate on an
approximate time for this event. In this case, the temporal primitive is
indeterminate. Indeterminate temporal information is also prevalent in
various sources such as granularity, dating techniques, future planning,
and unknown or imprecise event times [DS93]. Since the ultimate pur-
pose of a temporal model is to represent real temporal information, it is
desirable for such a model to be able to capture both determinate and
indeterminate temporal primitives.

Design Space

Figure 1 shows the building block hierarchy of a temporal structure. The ba-
sic building block consists of anchored and unanchored temporal primitives.
The next building block provides a domain for the primitives that consists of
discrete or continuous temporal primitives. Finally, the last building block
of Figure 1 adds determinacy. Thus, a temporal structure can be de�ned by
a series of progressively enhanced temporal primitives.
Figure 2 gives a detailed hierarchy of the di�erent types of temporal primi-
tives that exist in each of the building blocks of Figure 1. Based on the fea-
tures of a temporal structure, its design space consists of 11 di�erent kinds
of temporal primitives. These are the determinacy-domain-based temporal
primitives shown in Figure 2 and described below.
Continuous time instants and intervals. Continuous instants are just

points on the (continuous) line of all anchored time speci�cations. They
are totally ordered by the relation \later than." Since in theory, contin-
uous instants have in�nite precision, they cannot have a period of in-
determinacy. Therefore, continuous indeterminate time instants do not
exist in Figure 2. However, continuous intervals can be determinate or

To appear in Temporal Databases: Research and Practice, O. Etzion, S. Jajodia, S.
Sripada (editors), Springer Verlag, 1998.

6

Primitives

Determinacy-Domain-based

Domain-based Temporal

Temporal Primitives

Temporal Primitives

+ determinacy/
indeterminacy

+ discrete/continuous
domain

Fig. 1. Building a Temporal Structure

indeterminate. The di�erence between them is that a continuous deter-
minate interval denotes that the activity associated with it occurs dur-
ing the whole interval, while a continuous indeterminate interval denotes
that the activity associated with it occurs sometime during the interval.
Continuous intervals have lower and upper bounds which are continuous
instants.

Discrete time instants and intervals. Assume that somebody has been
on a train the whole day of 5 January 1997. This fact can be expressed
using a determinate time instant 5 January 1997det (which means the
whole day of). However, the fact that somebody is leaving for Paris on
5 January 1997 can be represented as an indeterminate time instant
5 January 1997indet (which means some time on that day). Hence, each
discrete time instant is either determinate or indeterminate, correspond-
ing to the two di�erent interpretations. Discrete time instants are anal-
ogous to continuous time intervals. Every determinate (indeterminate)
discrete time instant has a granularity (Gi) associated with it. This gran-
ularity determines the mapping of the given determinate (indeterminate)
discrete time instant Idet (Iindet) to the domain of continuous time in-
stants. The mapping is de�ned as follows:

Idet 7! [Icont; Icont +Gi)
Iindet 7! [Icont � Icont +Gi)

Here Icont denotes the counterpart of Idet and Iindet in the domain of
continuous time instants. This is exempli�ed by the mapping of the dis-
crete determinate instant 5 January 1997det to the continuous deter-
minate interval [5 January 1997cont; 6 January 1997cont). In this case
Gi = Gdays = 1 day. A formal treatment of the di�erent types of instants

and mappings is given in [GL�OS97].
Discrete time instants can be used to form discrete time intervals. Since
we have determinate and indeterminate discrete instants, we also have
determinate and indeterminate discrete intervals. Determinate (indeter-
minate) time instants can be used as boundaries of determinate (inde-
terminate) time intervals.

Time spans. Discrete and continuous determinate spans represent com-
plete information about a duration of time. A discrete determinate span
is a summation of distinct granularities with integer coe�cients e.g.,

To appear in Temporal Databases: Research and Practice, O. Etzion, S. Jajodia, S.
Sripada (editors), Springer Verlag, 1998.

7

Temporal Primitives
Domain-based

Temporal Primitives

Temporal Structure

Indeterminate Continuous Spans

Instants

Anchored Primitives

Unanchored Primitives

Intervals

Discrete Instants

Continuous Instants

Discrete Intervals

Continuous Intervals

Discrete Spans

Continuous Spans

Determinate Discrete Instants

Indeterminate Discrete Instants

Determinate Continuous Instants

Determinate Discrete Intervals

Indeterminate Discrete Intervals

Determinate Continuous Intervals

Indeterminate Continuous Intervals

Determinate Discrete Spans

Indeterminate Discrete Spans

Determinate Continuous Spans

Determinacy-Domain-based
Temporal Primitives

Temporal Structure Design Space

Fig. 2. Design Space of a Temporal Structure

5 days or 2 months + 5 days. Similarly, a continuous determinate
span is a summation of distinct granularities with real coe�cients e.g.,
0:31 hours or 5:2 minutes + 0:15 seconds.

Discrete and continuous indeterminate spans represent incomplete infor-
mation about a duration of time. They have lower and upper bounds
that are determinate spans. For example, 1 day � 2 days is a discrete
indeterminate span that can be interpreted as \a time period between
one and two days."

The mapping of the temporal structure to an object type hierarchy is given
in Figure 3 which shows the types and generic properties that are used to
model various kinds of determinacy-domain-based temporal primitives.

Properties de�ned on time instants allow an instant to be compared with
another instant; an instant to be subtracted from another instant to �nd
the time duration between the two; and a time span to be added to or sub-
tracted from an instant to return another instant. Furthermore, properties
P calendar and P calElements are used to link time instants to calendars
which serve as a representational scheme for temporal primitives (see Sec-
tion 2.1). P calendar returns the calendar which the instant belongs to and
P calElements returns a list of the calendric elements in a time instant. For
example P calendar applied to the time instant 15 June 1995 would return

To appear in Temporal Databases: Research and Practice, O. Etzion, S. Jajodia, S.
Sripada (editors), Springer Verlag, 1998.

8

P_before

P_after

P_addDuration

P_subDuration

P_add, P_subtract

P_coefficient

P_calGranularities

P_leq, P_geq

P_elapsed

P_calendar

P_calElements

P_ub,P_lb, P_length

P_overlaps, P_during

P_starts, P_finishes, P_meets

P_union

P_intersection

P_difference P_succ, P_pred

P_lb,

P_succ, P_pred

P_ub

P_lb, P_ub

P_succ, P_pred

P_succ, P_pred

Supertype Subtype

T_instant

T_interval
T_temporalStructure

T_unanchPrim

T_anchPrim

T_indetContSpan

T_detContSpan

T_indetDiscSpan

T_detDiscSpan

T_indetContInterval

T_detContInterval

T_indetDiscInterval

T_detDiscInterval

T_detContInstant

T_indetDiscInstant

T_detDiscInstant

Fig. 3. The Inheritance Hierarchy of a Temporal Structure

Gregorian, while the application of P calElements to the same time instant
would return (1995; June; 15).
Similarly, properties de�ned on time intervals include unary operations which
return the lower bound, upper bound and length of the interval; ordering
operations which de�ne Allen's interval algebra [All84]; and set-theoretic
operations.
Properties de�ned on time spans enable comparison and arithmetic oper-
ations between spans. The P before and P after properties are re�ned for
time spans to model the semantics of < and >, respectively. Additionally,
properties P coe�cient and P calGranularities are used as representational
properties and provide a link between time spans and calendars (see Sec-
tion 2.1). P coe�cient returns the (real) coe�cient of a time span given a
speci�c calendric granularity. For example, (5 days)� P coe�cient(day) re-
turns 5:0. P calGranularities returns a collection of calendric granularities
in a time span. For example, the property application (1 month + 5 days)�
P calGranularities returns fday;monthg.

To appear in Temporal Databases: Research and Practice, O. Etzion, S. Jajodia, S.
Sripada (editors), Springer Verlag, 1998.

9

We note that (see Figure 3) the properties P succ and P pred are de�ned
in all the types involving both discrete instant and span primitives. This
redundancy can be eliminated by refactoring the concerned types and using
multiple inheritance. More speci�cally, an abstract type called T discrete

can be introduced, and the properties P succ and and P pred de�ned on
it. All the types involving discrete primitives can then be made subtypes
of T discrete. A similar approach can be used to factor the types that
de�ne properties P lb and P ub. An abstract type called T bounds can be
introduced with the properties P lb and P ub de�ned on it. The T interval

type and the types involving indeterminate spans can then be made subtypes
of T bounds. Alternatively, the concept of multiple subtyping hierarchies
can be used to collect semantically related types together and avoid the
duplication of properties [HKOS96]. For example, the unanchored primitives
hierarchy can be re-structured as shown in Figure 4.

P_lb, P_ub

T_detDiscSpan

T_indetContSpan

T_detContSpan

T_discSpan

T_indetSpan

T_contSpan

P_succ, P_pred

T_indetDiscSpan

Supertype Subtype

P_add, P_subtract

P_coefficient

P_calGranularities

T_unanchPrim

Fig. 4. Multiple Subtyping Hierarchy for Unanchored Temporal Primitives

Temporal Representation

Components. For human readability, it is important to have a representational
scheme in which the temporal primitives can be made human readable and
usable. This is achieved by means of calendars. Common calendars include
the Gregorian and Lunar calendars. Educational institutions also use Aca-

demic calendars.
Calendars are comprised of di�erent time units of varying granularities that
enable the representation of di�erent temporal primitives. In many applica-
tions, it is desirable to have multiple calendars that have di�erent calendric
granularities. For example, in �nancial trading, multiple calendars with dif-
ferent time units and operations need to be available to capture the seman-
tics of �nancial data [CS93,CSS94]. In time series management, extensive
calendar support is also required [DDS94,LEW96].
A calendar should be able to support multiple granularities since temporal
information processed by a DBMS is usually available in multiple granular-
ities. Such information is prevalent in various sources. For example:

To appear in Temporal Databases: Research and Practice, O. Etzion, S. Jajodia, S.
Sripada (editors), Springer Verlag, 1998.

10

{ clinical data � Physicians usually specify temporal clinical information
for patients with varying granularities [CPP95,CPP96]. For example,
\the patient su�ered from abdominal pain for 2 hours and 20 minutes
on June 15, 1996," \in 1990, the patient took a calcium antagonist for 3
months," \in October 1993, the patient had a second heart seizure."

{ real-time systems � A process is usually composed of sub-processes that
evolve according to times that have di�erent granularities [CMR91]. For
example, the temporal evolution of the basin in a hydroelectric plant
depends on di�erent sub-processes: the
ow of water is measured daily;
the opening and closing of radial gates is monitored every minute; and
the electronic control has a granularity of microseconds.

{ geographic information systems � Geographic information is usually
speci�ed according to a varying time scale [Flo91]. For example, vege-
tation
uctuates according to a seasonal cycle, while temperature varies
daily.

{ o�ce information systems � temporal information is available in dif-
ferent time units of the Gregorian calendar [BP85,CR88,MPB92]. For
example, employee wages are usually recorded in the time unit of hours
while the history of sales are categorized according to months.

Design Space. A calendar is composed of an origin, a set of calendric gran-
ularities, and a set of conversion functions. The origin marks the start of
a calendar1. Calendric granularities de�ne the reasonable time units (e.g.,
minute, day, month) that can be used in conjunction with this calendar
to represent temporal primitives. A calendric granularity also has a list of
calendric elements. For example in the Gregorian calendar, the calendric
granularity day has the calendric elements Sunday, Monday, : : : , Saturday.
Similarly in the Academic calendar, the calendric granularity semester has
the calendric elements Fall, Winter, Spring, and Summer. The conversion
functions establish the conversion rules between calendric granularities of a
calendar.
Since all calendars have the same structure, a single type, called T calendar

can be used to model di�erent calendars, where instances represent di�erent
calendars. The basic properties of a calendar are, P origin,P calGranularities,
and P functions. These allow each calendar to de�ne its origin, calendric
granularities, and the conversion functions between di�erent calendric gran-
ularities.

Example 1. Figure 5 shows four instances of T calendar� theGregorian,Lu-
nar, Academic, and Fiscal calendars. The origin of the Gregorian calendar is
given as the span 1582 years from the start of time since it was proclaimed in

1 We note that our de�nition of a calendar is di�erent from that de�ned in
[CS93,CSS94,LEW96] where structured collections of time intervals are termed as
\calendars." Our de�nition adheres closely to the human understanding of a calen-
dar. However, the extensibility feature of the framework allows any other notions of
calendars to be incoporated easily under the temporal representation design dimen-
sion.

To appear in Temporal Databases: Research and Practice, O. Etzion, S. Jajodia, S.
Sripada (editors), Springer Verlag, 1998.

11

1582 by Pope Gregory XIII as a reform of the Julian calendar. The calendric
granularities in the Gregorian calendar are the standard ones, year, month,
day, etc. The origin of the Academic calendar shown in Figure 5 is assumed to
be the span 1908 academicY ears having started in the year 1908, which is the
establishment date of the University of Alberta. The Academic calendar has sim-
ilar calendric granularities as the Gregorian calendar and de�nes a new calendric
granularity of semester. The semantics of the Lunar and Fiscal calendars could
similarly be de�ned.

{ }

{ }

ε

{ }

ε
ε

1908 years

{ }

εε ε

ε

ε

ε

ε

T_calendar

year month day

academicYear semester academicMonth

P_origin
P_calGranularities

P_functions

P_origin
P_calGranularities

P_functions

Fiscal Lunar

Academic

1582 years

Gregorian

Fig. 5. Temporal Representational Examples

Temporal Order We now have the means of designing the temporal structure
and the temporal representation of a temporal model. The next step is to pro-
vide an ordering scheme for the temporal primitives. This constitutes the third
building block of our design space.

Components. A temporal order can be classi�ed as being linear or branching
In a linear order, time
ows from past to future in an ordered manner. In

To appear in Temporal Databases: Research and Practice, O. Etzion, S. Jajodia, S.
Sripada (editors), Springer Verlag, 1998.

12

a branching order, time is linear in the past up to a certain point, when it
branches out into alternate futures. The structure of a branching order can
be thought of as a tree de�ning a partial order of times. The trunk (stem)
of the tree is a linear order and each of its branches is a branching order.
The linear model is used in applications such as o�ce information systems.
The branching order is useful in applications such as computer aided design
and planning or version control which allow objects to evolve over a non-
linear (branching) time dimension (e.g., multiple futures, or partially ordered
design alternatives).

Design Space. The di�erent types of temporal orders are dependent on each
other. A sub-linear order is one in which the temporal primitives (time inter-
vals) are allowed to overlap, while a linear order is one in which the temporal
primitives (time intervals) are not allowed to overlap. Every linear order is
also a sub-linear order. A branching order is essentially made up of sub-linear
orders. The relationship between temporal orders is shown in Figure 6.

Temporal Order

is-a

is-a
Branching Order

sub-Linear
Order

composed-of

Linear
is-a

Order

Fig. 6. Temporal Order Relationships

The hierarchy in Figure 7 gives the various types and properties which model
di�erent temporal orders2.

T_temporalOrder

P_temporalPrimitives

Supertype Subtype

T_subLinearOrder

T_branchingOrder

P_branchingOrder

P_root
P_branches

T_linearOrder

P_in

Fig. 7. The Hierarchy of Temporal Orders

2 We do not consider periodic temporal orders in this work. These can easily be incor-
porated as a subtype of T temporalOrder.

To appear in Temporal Databases: Research and Practice, O. Etzion, S. Jajodia, S.
Sripada (editors), Springer Verlag, 1998.

13

Example 2. Consider the operations that take place in a hospital on any partic-
ular day. It is usually the case that at any given time multiple operations are
taking place. Let us assume an eye cataract surgery took place between 8am
and 10am, a brain tumor surgery took place between 9am and 12pm, and an
open heart surgery took place between 7am and 2pm on a certain day. Figure 8
shows a pictorial representation of operationsOrder, which is an object of type
T subLinearOrder. operationsOrder consists of the time intervals [08:00,10:00],
[09:00,12:00], [07:00,14:00], and does not belong to any branching timeline. As
seen in the �gure, operationsOrder consists of intervals (representing the time
periods during which the di�erent surgeries took place) that overlap each other.
Hence, operationsOrder is an example of a sub-linear order.

P_temporalPrimitives

operationsOrder
P_branchingOrder

{ }

ε ε ε

null

[08:00, 10:00]

[09:00, 12:00]

[07:00, 14:00]

Fig. 8. An Example of a Sub-Linear Order.

Example 3. To illustrate the use of objects of type T linearOrder which are
total linear temporal orders, consider a patient with multiple pathologies, for
example as a result of diabetes. The patient has to attend several special clinics,
each on a di�erent day. Hence, it follows that since the patient cannot attend
more than one special clinic on any day, the temporal order of the patient's spe-
cial clinics visit history is linear and totally ordered. Suppose the patient visited
the opthalmology clinic on 10 January 1995, the cardiology clinic on 12 January
1995, and the neurology clinic on 3 February 1995. Figure 9 shows a pictorial
representation of specialClinicOrder, which is an object of type T linearOrder.
As seen in the �gure, specialClinicOrder is totally ordered as its time intervals do
not overlap.

Example 4. Consider an observational pharmacoeconomic analysis of the chang-
ing trends, over a period of time, in the treatment of a chronic illness such as
asthma [G�OS97]. The analysis would be performed using information gathered
over a time period. At a �xed point during this period new guidelines for the

To appear in Temporal Databases: Research and Practice, O. Etzion, S. Jajodia, S.
Sripada (editors), Springer Verlag, 1998.

14

{ }

ε ε

10 January 1995 12 January 1995 3 February 1995

ε

P_temporalPrimitives

P_branchingOrder
specialClinicOrder null

Fig. 9. An Example of a Linear Order.

treatment of asthma were released. At that point the population of patients
known to have asthma are divided into those whose doctors continue the old
established treatment, and those whose doctors, in accordance with new rec-
ommendations, change their treatment. Thus, the patients are divided into two
groups, each group undergoing a di�erent treatment for the same illness. The
costs and bene�ts accrued over the trial period for each treatment are calcu-
lated. Since such a study consists of several alternative treatments to an illness,
a branching timeline is the natural choice for modeling the timeline of the study.
The point of branching is the time when the new guidelines for the treatment of
the illness are implemented. Figure 10 shows the branching timeline for such a
medical trial history.

Regular treatment

Branching point
(time when new guidelines are released)

Treatment A

Treatment B

The medical trial branching timeline

Treatment A, and Treatment B
which includes the Regular Treatment,

Fig. 10. An Example of a Branching Order.

The same branching timeline could as easily handle the situation where dif-
ferent versions of a particular treatment, say Treatment A, are implemented
based on certain parameters. In this case, the \Treatment A" branch would in
turn branch at a certain point into di�erent Treatment A versions. This situation
is also depicted in Figure 10.

To appear in Temporal Databases: Research and Practice, O. Etzion, S. Jajodia, S.
Sripada (editors), Springer Verlag, 1998.

15

Temporal History So far we have considered the various features of time; its
structure, the way it is represented, and how it is ordered. The �nal building
block of the design space of temporal models makes it possible to associate time
with entities to model di�erent temporal histories.

Components. One requirement of a temporal model is an ability to represent
and manage real-world entities as they evolve over time and assume di�erent
states (values). The set of these values forms the temporal history of the
entity.

Two basic types of temporal histories are considered in databases which in-
corporate time. These are valid and transaction time histories [SA85]. Valid
time denotes the time when an entity is e�ective (models reality), while trans-
action time represents the time when a transaction is posted to the database.
Usually valid and transaction times are the same. Other temporal histories
include event time [RS91,CK94] and decision time [EGS93] histories. Event
(decision) time denotes the time the event occured in the real-world. Valid,
transaction, and event times have been shown to be adequate in modeling
temporal histories [CK94].

Design Space. Since valid, transaction, and event time histories have di�erent
semantics, they are orthogonal. Figure 11 shows the various types that could
be used to model these di�erent histories. A temporal history consists of
objects and their associated timestamps.

T_history

P_getObjects
P_remove
P_insert
P_temporalOrder
P_history

T_validHistory T_eventHistoryT_transactionHistory

Fig. 11. The Types and Properties for Temporal Histories

Property P history de�ned in T history returns a collection of all times-
tamped objects that comprise the history. A history object also knows the
temporal order of its temporal primitives. The property P temporalOrder

returns the temporal order (which is an object of type T temporalOrder)
associated with a history object. The temporal order basically orders the
time intervals (or time instants) in the history. Another property de�ned on
history objects, P insert, timestamps and inserts an object in the history.
Property P remove drops a given object from the history at a speci�ed tem-
poral primitive. The P getObjects property allows the user to get the objects
in the history at (during) a given temporal primitive. The properties de�ned
on T history are re�ned in T validHistory, T transactionHistory, and

To appear in Temporal Databases: Research and Practice, O. Etzion, S. Jajodia, S.
Sripada (editors), Springer Verlag, 1998.

16

T eventHistory types to model the semantics of the di�erent kinds of his-
tories. Moreover, each history type can de�ne additional properties, if nec-
essary, to model its particular semantics. The clinical example described in
Section 3.1 illustrates the use of the properties de�ned on T history.

2.2 Relationships between Design Dimensions

In the previous section we described the building blocks (design dimensions) for
temporal models and identi�ed the design space of each dimension. We now look
at the interactions between the design dimensions. This will enable us to put the
building blocks together and structure the design space for temporal models.

A temporal history is composed of entities which are ordered in time. This
temporal ordering is over a collection of temporal primitives in the history, which
in turn are represented in a certain manner. Hence, the four dimensions can be
linked via the \has-a" relationship shown in Figure 12.

Determinate Discrete Instants

Indeterminate Discrete Instants

Determinate Continuous Instants

Determinate Discrete Intervals

Indeterminate Discrete Intervals

Determinate Continuous Intervals

Indeterminate Continuous Intervals

Determinate Discrete Spans

Indeterminate Discrete Spans

Determinate Continuous Spans

Indeterminate Continuous Spans

Event

Transaction

Valid

Temporal Model Design Space

has

has

has

Temporal Order

sub-Linear

Linear

Branching

Temporal History

Temporal Structure

Temporal Representation

Gregorian

Academic

Business

Financial

Fig. 12. Design Space for Temporal Models

To appear in Temporal Databases: Research and Practice, O. Etzion, S. Jajodia, S.
Sripada (editors), Springer Verlag, 1998.

17

Basically, a temporal model can be envisioned as having a notion of time,
which has an underlying temporal structure, a means to represent the temporal
structure, and di�erent temporal orders to order the temporal primitives within a
temporal structure. This notion of time, when combined with application objects
can be used to represent various temporal histories of the objects in the temporal
model.

Figure 12 gives the design space for temporal models. A temporal model can
support one or more of valid, transaction, event, and user-de�ned histories. Each
history in turn has a certain temporal order. This temporal order has properties
which are de�ned by the type of temporal history (linear or branching). A linear
history may or may not allow overlapping of anchored temporal primitives that
belong to it. If it does not allow overlapping, then such a history de�nes a total
order on the anchored temporal primitives that belong to it. Otherwise, it de�nes
a partial order on its anchored temporal primitives. Each order can then have
a temporal structure which is comprised of all or a subset of the 11 di�erent
temporal primitives that are shown in Figure 2. Finally, di�erent calendars can
be de�ned as a means to represent the temporal primitives.

The four dimensions are modeled in an object system by the respective types
shown in Figure 13. The \has a" relationship between the dimensions is modeled
using properties as shown in the �gure. An object of T temporalHistory repre-
sents a temporal history. Its temporal order is obtained using the P temporalOrder

property. A temporal order is an object of type T temporalOrder and has a cer-
tain temporal structure which is obtained using the P temporalPrimitives prop-
erty. The temporal structure is an object of type T temporalStructure. The
property P calendar gives the instance of T calendar which is used to represent
the temporal structure.

T_temporalFramework

T_calendar T_temporalStructure T_temporalOrder T_temporalHistory

P_temporalPrimitives P_temporalOrderP_calendar

Fig. 13. Relationships between Design Dimensions Types

The relationships shown in Figure 13 provide a temporal framework which
encompasses the design space for temporal models. The detailed type system,
shown in Figure 14, is based on the design dimensions identi�ed in Section 2
and their various features which are given in Figures 3, 7, and 11. As described
in Section 2.1, refactoring of types and multiple inheritance can be used to han-
dle identical properties that are de�ned over di�erent types in the inheritance

To appear in Temporal Databases: Research and Practice, O. Etzion, S. Jajodia, S.
Sripada (editors), Springer Verlag, 1998.

18

hierarchy shown in Figure 14. The framework can now be tailored for the tem-
poral needs of di�erent applications and temporal models. This is illustrated in
Section 3.

P_origin
P_calGranularities
P_functions

P_ub,P_lb, P_length

P_overlaps, P_during

P_starts, P_finishes, P_meets

P_union

P_intersection

P_difference

P_root
P_branches
P_in

T_validHistory

T_transactionHistory

T_eventHistory

P_history
P_temporalOrder
P_insert

P_getObjects
P_remove

T_history

Supertype Subtype

P_lb, P_ub

T_subLinearOrder

T_branchingOrder
P_temporalPrimitives

P_branchingOrder

T_linearOrder

T_temporalFramework

P_succ, P_pred

P_succ, P_pred

P_succ, P_pred

P_lb, P_ub, P_succ, P_pred

P_before

P_after

P_addDuration

P_subDuration

P_add, P_subtract

P_coefficient

P_calGranularities

P_leq, P_geq

P_elapsed

P_calendar

P_calElements

T_temporalStructure
T_interval

T_unanchPrim

T_anchPrim

T_instant

T_temporalOrder

T_indetDiscInstant

T_detDiscInstant

T_detContInstant

T_detDiscInterval

T_indetDiscInterval

T_detContInterval

T_indetContInterval

T_detDiscSpan

T_indetDiscSpan

T_detContSpan

T_indetContSpanT_calendar

Fig. 14. The Inheritance Hierarchy for the Temporal Framework

3 Tailoring the Temporal Framework

In this section, we illustrate how the temporal framework that is de�ned in
Section 2 can be tailored to accommodate applications and temporal models

To appear in Temporal Databases: Research and Practice, O. Etzion, S. Jajodia, S.
Sripada (editors), Springer Verlag, 1998.

19

{ }

{ } timestamped blood testsP_insert aBloodTest,aTimeStamp()

aBloodTest,aTimeStamp()P_remove aTimeStamp()

P_history

nullbloodTestOrder

{ }
ε

ε15 January 1995

Temporal Structure

Temporal Order

timeStampedMicrobiology

ε

Temporal History

ε ε

P_branchingOrder

P_calendar P_calendar

P_temporalOrder

P_temporalPrimitives

{ }

ε ε

year month day

ε

P_calGranularities

Temporal Representation

P_functions { }

P_origin

1582 years

Gregorian

20 February 1995

timeStampedHematology1

timeStampedHematology2

bloodTestHistory P_getObjects

Fig. 15. A Patient's Blood Test History

which have di�erent temporal requirements. In the �rst two sub-sections, we
give examples of two real-world applications that have di�erent temporal needs.
In the last sub-section, we give an example of a temporal object model and show
how the model can be derived from the temporal framework.

3.1 Clinical Data Management

In this section we give a real-world example from clinical data management that
illustrates the four design dimensions and the relationships between them which
were discussed in Section 2.

During the course of a patient's illness, di�erent blood tests are administered.
It is usually the case that multiple blood tests of the patient are carried out on
the same day. Suppose the patient was suspected of having an infection of the
blood, and therefore, had two di�erent blood tests on 15 January 1995. These
were the diagnostic hematology and microbiology blood tests. As a result of a

To appear in Temporal Databases: Research and Practice, O. Etzion, S. Jajodia, S.
Sripada (editors), Springer Verlag, 1998.

20

very raised white cell count the patient was given a course of antibiotics while
the results of the tests were awaited. A repeat hematology test was ordered on
20 February 1995. Suppose each blood test is represented by an object of the
type T bloodTest. The valid history of the patient's blood tests can then be
represented in the object database as an object of type T validHistory. Let
us call this object bloodTestHistory. To record the hematology and microbiology
blood tests, the objects hematology and microbiology whose type is T bloodTest

are �rst created and then entered into the object database using the following
property applications:

bloodTestHistory:P insert(microbiology; 15 January 1995)

bloodTestHistory:P insert(hematology1; 15 January 1995)

bloodTestHistory:P insert(hematology2; 20 February 1995)

If subsequently there is a need to determine which blood tests the patient
took in January 1995, this would be accomplished by the property applica-
tion bloodTestHistory:P getObjects([1 January 1995; 31 January 1995]). This
would return a collection of timestamped objects of T bloodTest representing
all the blood tests the patient took in January 1995. These objects would be the
(timestamped) hematology1 and the (timestamped) microbiology.

Figure 15 shows the di�erent temporal features that are needed to keep
track of a patient's blood tests over the course of a particular illness. The �gure
also illustrates the relationships between the di�erent design dimensions of the
temporal framework.

The patient has a blood test history represented by the object bloodTestHis-
tory. The P history property when applied to bloodTestHistory results in a collec-
tion object whose members are the timestamped objects timeStampedMicrobiol-
ogy, timeStampedHematology1, and timeStampedHematology2. The P insert(bloodTestHistory)
function object updates the blood test history when given an object of type
T bloodTest and an anchored temporal primitive. Similarly, the P getObjects(bloodTestHistory)
function object returns a collection of timestamped objects when given an an-
chored temporal primitive.

Applying the property P temporalOrder to bloodTestHistory results in the
object bloodTestOrder which represents the temporal order on di�erent blood
tests in bloodTestHistory. bloodTestOrder has a certain temporal structure which
is obtained by applying the P temporalPrimitives property. Finally, the prim-
itives in the temporal structure are represented using the Gregorian calendar,
Gregorian and the calendric granularities year, month, and day.

Let us now consider the various temporal features required to represent the
di�erent blood tests taken by a patient. Anchored, discrete, and determinate
temporal primitives are required to model the dates on which the patient takes
di�erent blood tests. These dates are represented using the Gregorian calendar.
Since the blood tests take place on speci�c days, the temporal primitives during
which the patient took blood tests form a total order. Lastly, a valid time history
is used to keep track of the di�erent times the blood tests were carried out. To

To appear in Temporal Databases: Research and Practice, O. Etzion, S. Jajodia, S.
Sripada (editors), Springer Verlag, 1998.

21

P_before

P_after

T_temporalStructure

T_temporalFramework

P_ub,P_lb, P_length

P_overlaps, P_during

P_starts, P_finishes, P_meets

P_union

P_intersection

P_difference

Supertype Subtype

P_history
P_temporalOrder
P_insert

P_getObjects
P_remove

P_addDuration

P_subDuration

T_anchPrim

P_temporalPrimitives

T_temporalOrder

P_origin
P_calGranularities
P_functions

T_linearOrder

T_history T_validHistory

P_leq, P_geq

P_elapsed

P_calendar

P_calElements

T_instant
P_succ, P_pred

T_detDiscInstant

T_interval T_detDiscInterval

T_calendar

Fig. 16. The Temporal Framework Inheritance Hierarchy for the Clinical Applicati on

support these temporal features, the temporal framework can be recon�gured
with the appropriate types and properties. These are given in Figure 16.

3.2 Time Series Management

The management of time series is important in many application areas such as
�nance, banking, and economic research. One of the main features of time se-
ries management is extensive calendar support [DDS94,LEW96]. Calendars map
time points to their corresponding data and provide a platform for granularity
conversions and temporal queries. Therefore, the temporal requirements of a time
series management system include elaborate calendric functionality (which al-
lows the de�nition of multiple calendars and granularities) and variable temporal
structure (which supports both anchored and unanchored temporal primitives,
and the di�erent operations on them).

Figure 17 shows how the temporal requirements of a time series manage-
ment system can be modeled using the types and properties of the temporal
framework. We note from the �gure that only the temporal structure and tem-
poral representation design dimensions are used to represent the temporal needs
of a time series. This demonstrates that it is not necessary for an application
requiring temporal features to have all four design dimensions in order to be ac-
commodated in the framework. One or more of the design dimensions speci�ed

To appear in Temporal Databases: Research and Practice, O. Etzion, S. Jajodia, S.
Sripada (editors), Springer Verlag, 1998.

22

T_temporalFramework

Supertype Subtype

P_leq, P_geq

P_elapsed

P_addDuration

P_subDuration

P_calendar

P_calElements

T_temporalStructure
P_duringP_overlaps,

P_starts, P_finishes, P_meets

T_detDiscSpan

P_before

P_after

P_add, P_subtract

P_coefficient

P_calGranularities

T_unanchPrim

B_difference

P_union

P_intersection

P_lengthP_lb, p_ub,

T_anchPrim

T_instant

T_interval T_detDiscInterval

T_detDiscInstant

T_calendar

P_origin
P_calGranularities
P_functions

Fig. 17. The Temporal Framework Inheritance Hierarchy for Time Series Management

in Section 2.1 can be used as long as the design criteria shown in Figure 12 holds.

3.3 TOODM - A Temporal Object-Oriented Data Model

In this section, we identify the temporal features of Rose & Segev's temporal
object-oriented data model (TOODM) [RS91] according to the design dimen-
sions described in Section 2.1, and show how these can be accommodated in
the temporal framework. We speci�cally concentrate on TOODM since it uses
object types and inheritance to model temporality. The temporal features of the
rest of the reported temporal object models [SC91,KS92,CITB92,PM92,BFG97]
are summarized and compared in Section 4. We �rst give an overview of the
temporal features of TOODM and then show how these features can be derived
using the types and properties of our temporal framework. There is no doubt
that TOODM has more functionality to o�er in addition to temporality, but
presenting that is beyond the scope of this work.

Overview of Temporal Features TOODM was designed by extending an
object-oriented entity-relationship data model to incorporate temporal struc-
tures and constraints. The functionality of TOODM includes: speci�cation and
enforcement of temporal constraints; support for past, present, and future time;
support for di�erent type and instance histories; and allowance for retro/proactive
updates. The type hierarchy of the TOODM system de�ned types used to model
temporality is given in Figure 18. The boxes with a dashed border represent types

To appear in Temporal Databases: Research and Practice, O. Etzion, S. Jajodia, S.
Sripada (editors), Springer Verlag, 1998.

23

Structure Representation Order History

Primitives Domain Determinacy
Anchored Continuous Determinate Gregorian Calendar Total Linear Valid
Unanchored Transaction

Event

Table 1. Temporal Design Dimension Features of TOODM

that have been introduced to model time, while the rest of the boxes represent
basic types.

Object

Class

Ptypes

Relative

TI TP

Absolute

TS[T]Sequence[T]Collections

V-Class

Time

Fig. 18. System De�ned Temporal Types in TOODM

The Object type is the root of the type tree. The type V-Class is used
to represent user-de�ned versionable classes. More speci�cally, if the instance
variables, messages/methods, or constraints of a type are allowed to change
(maintain histories), the type must be de�ned as a subtype of V-Class.

The Ptypes type models primitive types and is used to represent objects
which do not have any instance variables. Ptypes usually serve as domains for
the instance variables of other objects. The Time primitive type is used to rep-
resent temporal primitives. The TP type represents time points, while the TI

type represents time intervals. Time points can have speci�c di�erent calendar
granularities, namely Year, Month, Day, Week, Hour, Minute, and Second.

The TS[T] type represents a time sequence which is a collection of objects
ordered on time. TS[T] is a parametric type with the type T representing a
user or system de�ned type upon which a time sequence is being de�ned. For
every time-varying attribute in a (versionable) class, a corresponding subclass
(of TS[T]) is de�ned to represent the time sequence (history) of that attribute.
For example, if the salary history of an employee is to be maintained, a subclass
(e.g., TS[Salary]) of TS[T] has to be de�ned so that the salary instance variable

To appear in Temporal Databases: Research and Practice, O. Etzion, S. Jajodia, S.
Sripada (editors), Springer Verlag, 1998.

24

in the employee class (which is de�ned as a subclass of V-Class) can refer to it
to obtain the salary history of a particular employee. The history of an object of
type TS[T] is represented as a pair <T,TL>, where T is the data type and TL

de�nes the di�erent timelines and their granularities that are associated with T .
Three timelines are allowed in TOODM: valid time, record (transaction) time,
and event time (the time an event occurred). Each timeline associated with
an object is comprised of time points or time intervals and has an underlying
granularity.

Representing the Temporal Features of TOODM in the Temporal

Framework TOODM supports both anchored and unanchored primitives. These
are modeled by the Absolute and Relative types shown in Figure 18. The an-
chored temporal primitives supported are time instants and time intervals. A
continuous time domain is used to perceive the temporal primitives. Finally, the
temporal primitives are determinate.

Time points and time intervals are represented by using the Gregorian cal-
endar with granularities Year, Month, Day, Week, Hour, Minute, and Second.
Translations between granularities in operations are provided, with the default
being to convert to the coarser granularity. A (presumably total) linear order of
time is used to order the primitives in a temporal sequence. TOODM combines
time with facts to model di�erent temporal histories, namely, valid, transac-
tion, and event time histories. Table 1 summarizes the temporal features (design
space) of TOODM according to the design dimensions for temporal models that
were described in Section 2.1. Figure 19 shows the type system instance of our
temporal framework that corresponds to the TOODM time types shown in Fig-
ure 18 and described in Table 1.

The Time primitive type is represented using the T temporalStructure type.
The TP and TI types are represented using the T instant and T interval types,
respectively. Similarly, the Relative type is represented using the T unanchPrim

type. Since TOODM supports continuous and determinate temporal primitives,
the (concrete) types T detContInstant,T detContInterval, and T detContSpan

are used to model continuous and determinate instants, intervals, and spans, re-
spectively.

The Gregorian calendar and its di�erent calendric granularities are modeled
using the T calendar type. Time points and time intervals are ordered using the
T linearOrder type. Time sequences represented by the TS[T] type are modeled
by the history types in the temporal framework.More speci�cally, valid time (vt),
record time (rt), and event time (et) are modeled using the T validHistory,
T transactionHistory, and T eventHistory types.

TOODM models valid, transaction and event histories all together in one
structure as shown by the TS[Salary] type in the previous section. Our tem-
poral framework, however, provides di�erent types to model valid, transaction,
and event histories to allow their respective semantics to be modeled. More-
over, it uses properties to access the various components of histories. For ex-
ample, to represent the valid history of an employee's salary an object of type

To appear in Temporal Databases: Research and Practice, O. Etzion, S. Jajodia, S.
Sripada (editors), Springer Verlag, 1998.

25

Supertype Subtype

P_history
P_temporalOrder
P_insert

P_getObjects
P_remove

P_leq, P_geq

P_elapsed

P_addDuration

P_subDuration

P_calendar

P_calElements

T_temporalStructure
P_duringP_overlaps,

P_starts, P_finishes, P_meets

T_detContSpan

P_before

P_after

P_add, P_subtract

P_coefficient

P_calGranularities

T_unanchPrim

B_difference

P_union

P_intersection

P_lengthP_lb, p_ub,

T_anchPrim

T_instant

T_interval

T_temporalFramework T_temporalOrder

P_temporalPrimitives

T_linearOrder

T_history

T_validHistory

T_transactionHistory

T_eventHistory

T_detContInterval

T_detContInstant

T_calendar

P_origin
P_calGranularities
P_functions

Fig. 19. The Temporal Framework Inheritance Hierarchy for TOODM

T validHistory is �rst created. The P insert property then inserts objects of
type T integer (representing salary values) and objects of type T interval

(representing time intervals) into the salary valid history object. The transac-
tion and event time histories of the salary are similarly represented, except in
these histories the P insert property inserts timestamps which are time instants
(i.e., objects of type T instant).

4 Comparison of Temporal Object Models

In this section we use the temporal framework to compare and analyze the
temporal object models [RS91,SC91,KS92,CITB92,PM92,BFG97] that have ap-
peared in recent literature. The temporal features of these models are summa-
rized in Tables 1 and 2. Our criteria in comparing di�erent temporal object
models is based on the design dimensions identi�ed in Section 2.1. It is true that
the models may have other (salient) temporal di�erences, but our concern in this
work is comparing their temporal features in terms of the framework de�ned in
Section 2.

To appear in Temporal Databases: Research and Practice, O. Etzion, S. Jajodia, S.
Sripada (editors), Springer Verlag, 1998.

26

Similar to the methodology used in Section 2, object-oriented techniques are
used to classify temporal object models according to each design dimension. This
gives us an indication of how temporal object models range in their provision
for di�erent temporal features of a design dimension � from the most powerful
model (i.e., the one having the most number of temporal features) to the least
powerful model (i.e., the one having the least number of temporal features).

Model Structure Representation Order History

Primitives Domain Determinacy
OSAM*/T Anchored Discrete Determinate N/A Linear Valid

TMAD Anchored Discrete Determinate Gregorian Calendar Linear Valid
Transaction

TEDM Anchored Discrete Determinate N/A Linear Valid
Transaction
Event

T-3DIS Anchored Discrete Determinate Gregorian Calendar Partial Valid

T-Chimera Anchored Discrete Determinate N/A Linear Valid

Table 2. Design Dimension Features of di�erent Temporal Object Models

Temporal Structure. It can be noticed from Tables 1 and 2 that most of
the models support a very simple temporal structure, consisting of an-
chored primitives which are discrete and determinate. In fact, all models
in Table 2 support the same temporal structure, which consists of discrete
and determinate anchored temporal primitives. These primitives can be ac-
commodated in the temporal framework by the T anchPrim, T instant,
T detDiscinstant, T interval, and T detDiscInterval types, and their
respective properties. The temporal structure of TOODM is slightly en-
hanced with the presence of unanchored primitives. TOODM is also the
only model that supports the continuous temporal domain.

Figure 20 shows how the type inheritance hierarchy is used to classify tem-
poral object models according to their temporal structures. The temporal
structures of OSAM*/T, TMAD, TEDM, T-3DIS, and T-Chimera can be
modeled by a single type � that representing temporal primitives that are
anchored, discrete, and determinate. This means that any of these models
can be used to provide temporal support for applications that need a tem-
poral structure comprised of anchored temporal primitives which are dis-
crete and determinate. Similarly, the temporal structure of TOODM can be
be modeled by a type which represents anchored and unanchored temporal
primitives that are continuous and determinate. This implies that TOODM
is the only model that can support applications requiring a continuous time
domain, or unanchored temporal primitives.

To appear in Temporal Databases: Research and Practice, O. Etzion, S. Jajodia, S.
Sripada (editors), Springer Verlag, 1998.

27

Anchored & Determinate
Temporal Primitives

Anchored, Determinate, & Discrete
Temporal Primitives

TOODM

Anchored & Unanchored, Determinate & Continuous
Temporal Primitives

Supertype Subtype

OSAM*/T, TMAD, TEDM, T-3DIS, T_Chimera

Fig. 20. Classi�cation of Temporal Object Models according to their Temporal Struc-
tures

Temporal Representation. Temporal primitives in the OSAM*/T [SC91],
TEDM [CITB92], and T-Chimera [BFG97] models are simply represented
using natural numbers. The models do not provide any additional represen-
tational scheme which supports calendars and di�erent granularities. The
granularity of the temporal primitives is dependent on the application us-
ing the model. When a calendric representational scheme is provided for the
temporal primitives, it is comprised of a single underlying calendar, which
is usually Gregorian. This is the case in the TOODM [RS91], TMAD[KS92],
and T-3DIS [PM92] models.

Temporal Order. All models shown in Tables 1 and 2, except T-3DIS, support
a linear temporal order. The T-3DIS model supports a sub-linear temporal
order. These temporal orders are accommodated in the temporal framework
using the T subLinearOrder and T linearOrder types. Figure 21 shows
how the models can be classi�ed in an inheritance type hierarchy according
to their temporal orders. The type modeling a partial linear order of time
sits at the root of the hierarchy and represents the T-3DIS model. Since a
total linear order is also a partial order, the models supporting total linear
orders can be represented by a direct subtype of the root type.

Linear OrdersPartial Linear Orders

TOODM, OSAM*/T,TMAD,
TEDM, T-ChimeraT-3DIS

SubtypeSupertype

Fig. 21. Classi�cation of Temporal Object Models according to their Temporal Orders

To appear in Temporal Databases: Research and Practice, O. Etzion, S. Jajodia, S.
Sripada (editors), Springer Verlag, 1998.

28

Temporal History. Tables 1 and 2 show how the temporal object models range
in their support for the di�erent types of temporal histories. Figure 22 shows
how the models can be classi�ed according to the temporal histories they
support using a type inheritance hierarchy. The root type in Figure 22 rep-
resents the models which only support valid time histories. These are the
OSAM*/T, T-3DIS, and T-Chimera models. A direct subtype of the root
type inherits the valid time history and provides transaction time history as
well. This type represents the TMAD model. Similarly, the rest of the sub-
types inherit di�erent histories from their supertypes and add new histories
to their type as shown in Figure 22. From Figure 22, we see that applications
requiring only valid time histories can be supported by all models; applica-
tions requiring valid and transaction time can be supported by the TMAD,
TEDM, and TOODM models; and applications requiring valid, transaction,
and event time can be supported by the TEDM and TOODM models.

Valid & Transaction & Event
Time History

Valid & Transaction
Time History

T-Chimera
OSAM*/T, T-3DIS,

Supertype

Valid Time History

Subtype

TMAD TOODM, TEDM

Fig. 22. Classi�cation of Temporal Object Models according to their Temporal Histo-
ries

Overall Classi�cation. Having classi�ed the temporal object models accord-
ing to the individual design dimensions, we now treat the models as points
in the design space and use the object-oriented inheritance hierarchy to com-
pare the models on all the temporal features of the design dimensions that
they support. Figure 23 gives an inheritance hierarchy in which types are
used to represent the di�erent models, and the temporal features supported
by the models are used as a criteria for inheritance.
The abstract type at the root of the hierarchy represents the least powerful
temporal object model which supports a temporal structure comprised of
anchored primitives which are discrete and determinate, no temporal repre-
sentational scheme, a partial linear order, and a valid time history. This type
has two immediate subtypes. The �rst subtype represents the OSAM*/T and
the T-Chimera models. It inherits all the features of the root type and re�nes
its partial linear order to a total linear order. Similarly, the second subtype
represents the T-3DIS model, inherits all the features of the root type, and
adds a representational scheme which supports the Gregorian calendar. The
type representing OSAM*/T and T-Chimera also has two subtypes. The
�rst subtype represents the TEDM model and has all the features of its su-
pertype with the additional features of transaction and event time histories.

To appear in Temporal Databases: Research and Practice, O. Etzion, S. Jajodia, S.
Sripada (editors), Springer Verlag, 1998.

29

Temporal Structure:
Anchored, Discrete, &
Determinate

Temporal Representation:
None

Temporal Order:
Partial Linear

Temporal History:
Valid

Anchored, Discrete, &
Determinate

Temporal Representation:

Temporal Order:

Temporal History:

Temporal Structure:

Gregorian

Valid, Transaction

Total Linear

Anchored, Discrete, &
Determinate

Temporal Representation:

Temporal Order:
Partial Linear

Temporal History:
Valid

Temporal Structure:

Gregorian

Anchored, Discrete, &
Determinate

Temporal Representation:

Temporal Order:

Temporal History:

Temporal Structure:

Total Linear

None

Valid, Transaction, Event

Anchored, Discrete, &
Determinate

Temporal Representation:

Temporal Order:

Temporal History:
Valid

Temporal Structure:

None

Total Linear

TEDM

OSAM*/T, T-Chimera

Temporal Representation:

Temporal Order:

Temporal History:

Temporal Structure:

Total Linear

Valid, Transaction, Event

Anchored,
Continuous

Gregorian

& Determinate
Unanchored,

TMAD

T-3DIS

TOODM

fewer features (types)

more features (types)

Fig. 23. Overall Classi�cation of Temporal Object Models

To appear in Temporal Databases: Research and Practice, O. Etzion, S. Jajodia, S.
Sripada (editors), Springer Verlag, 1998.

30

The second subtype (which is also a subtype of the type representing T-3DIS
from which it inherits the representational scheme) represents the TMAD
model. This type has the additional feature of the transaction time history. A
direct subtype of the types representing TEDM and TMAD represents the
TOODM model. The type representing TOODM inherits the representa-
tional scheme from the type representing TMAD and the event time history
from the type representing TEDM. It also adds unanchored primitives and
the continuous time domain to its temporal structure. From Figure 23 it can
reasonably be concluded that OSAM*/T and T-Chimera are the two least
powerful temporal object models since they provide the least number of tem-
poral features. The TOODM model is the most powerful since it provides
the most number of temporal features.

The comparison of di�erent temporal object models made in this section
shows that there is signi�cant similarity in the temporal features supported
by the models. In fact, the temporal features supported by OSAM*/T and T-
Chimera are identical. The temporal features of TEDM are identical to those of
OSAM*/T and T-Chimera in the temporal structure, temporal representation,
and temporal order design dimensions. These commonalities substantiate the
need for a temporal framework which combines the diverse features of time
under a single infrastructure that allows design reuse.

We also note that temporal object models have not really taken advantage of
the richness of their underlying object model in supporting alternate features of a
design dimension. They have assumed a set of �xed particular underlying notions
of time. From a range of di�erent temporal features, a single temporal feature is
supported in most of the design dimensions. As such, not much advantage has
been gained over the temporal relational models in supporting applications that
have di�erent temporal needs. For example, engineering applications like CAD
would bene�t from a branching time model, while time series and �nancial ap-
plications require multiple calendars and granularities. The temporal framework
proposed in this work aims to exploit object-oriented technology in supporting
a wide range of applications with diverse temporal needs.

5 Discussion and Conclusions

In this work the di�erent design dimensions that span the design space of tempo-
ral object models are identi�ed. Object-oriented techniques are used to design an
infrastructure which supports the diverse notions of time under a single frame-
work. We demonstrate the expressiveness of the framework by showing how it
can be used to accommodate the temporal needs of di�erent real-world applica-
tions, and also re
ect di�erent temporal object models that have been reported
in the literature.

A similar objective is pursued by Wuu & Dayal [WD92] who provide an
abstract time type to model the most general semantics of time which can then
be subtyped (by the user or database designer) to model the various notions of

To appear in Temporal Databases: Research and Practice, O. Etzion, S. Jajodia, S.
Sripada (editors), Springer Verlag, 1998.

31

time required by speci�c applications. The temporal framework presented here
subsumes the work of Wuu & Dayal in that it provides the user or database
designer with explicit types and properties to model the diverse features of time.
Their approach requires signi�cant support from the user, including speci�cation
of the temporal schema, which is a complex, and non-trivial task. It is therefore
imperative for temporal object models to have a temporal infrastructure from
which users can choose the temporal features they need.

Using the object-oriented type system to structure the design space of tem-
poral object models and identify the dependencies within and among the design
dimensions helps us simplify the presentation of the otherwise complex domain
of time. The framework is extensible in that additional temporal features can
be added as long as the relationships between the design dimensions are main-
tained. The focus in this work is on the uni�ed provision of temporal features
which can be used by temporal object models according to their temporal needs.
Once these are in place, the model can then de�ne other object-oriented features
to support its application domain.

The temporal framework also provides a means of comparing temporal ob-
jects models according to the design dimensions identi�ed in Section 2.1. This
helps identify the strengths and weaknesses of the di�erent models. The di-
verse features of time are also identi�ed in [Sno95]. The focus however, is on
comparing various temporal object models and query languages based on their
ability to support valid and transaction time histories. In this work we show how
the generic aspects of temporal models can be captured and described using a
single framework. In [PLL96] a temporal reference framework for multimedia
synchronization is proposed and used to compare existing temporal speci�cation
schemes and their relationships to multimedia synchronization. The focus how-
ever, is on di�erent forms of temporal speci�cation, and not on di�erent notions
of time. The model of time used concentrates only on temporal primitives and
their representation schemes.

The temporal framework has been implemented in C++. A toolkit has been
developed which allows users/temporal model designers to interact with the
framework at a high level and generate speci�c framework instances for their own
applications. The next step is to build query semantics on top of the framework.
This will involve addressing issues such as: how the choices of di�erent design
dimensions a�ect the query semantics; what kind of query constructs are needed;
what properties should be provided; and how are these properties used, to name
a few.

References

[All84] J. F. Allen. Towards a General Theory of Action and Time. Arti�cial
Intelligence, 23(123):123{154, July 1984.

[ATGL96] A-R. Adl-Tabatabai, T. Gross, and G-Y. Lueh. Code Reuse in an Optimiz-
ing Compiler. In Proc. of the Int'l Conf on Object-Oriented Programming:
Systems, Languages, and Applications - OOPSLA '96, pages 51{68, Octo-
ber 1996.

To appear in Temporal Databases: Research and Practice, O. Etzion, S. Jajodia, S.
Sripada (editors), Springer Verlag, 1998.

32

[BFG97] E. Bertino, E. Ferrari, and G. Guerrini. T Chimera - A Temporal Object-
Oriented Data Model. Theory and Practice of Object Systems, 3(2):103{
125, 1997.

[BKP86] H. Barringer, R. Kuiper, and A. Pnueli. A Really Abstract Concurrent
Model and its Temporal Logic. In Proc. of the 13th ACM Symposium on
Principles of Programming Languages, pages 173{183, 1986.

[BP85] F. Barbic and B. Pernici. Time Modeling in O�ce Information Systems.
In Proc. ACM SIGMOD Int'l. Conf. on Management of Data, pages 51{62,
May 1985.

[CG93] T.S. Cheng and S.K. Gadia. An Object-Oriented Model for Temporal Data-
bases. In Proceedings of the International Workshop on an Infrastructure
for Temporal Databases, pages N1{N19, June 1993.

[Cho94] J. Chomicki. Temporal Query Languages: A Survey. In D. Gabbay and
H. Ohlbach, editors, Proceedings of the International Conference on Tem-
poral Logic, pages 506{534. Lecture Notes in Computer Science, Vol. 827,
Springer Verlag, July 1994.

[CITB92] W.W. Chu, I.T. Ieong, R.K. Taira, and C.M. Breant. A Temporal Evolu-
tionary Object-Oriented Data Model and Its Query Language for Medical
Image Management. In Proc. 18th Int'l Conf. on Very Large Data Bases,
pages 53{64, August 1992.

[CJR87] R.H. Campbell, G.M. Johnston, and V.F. Russo. Choices (Class Hierar-
chical Open Interface for Custom Embedded Systems). Operating Systems
Review, 21(3):9{17, 1987.

[CK94] S. Chakravarthy and S-K. Kim. Resolution of Time Concepts in Temporal
Databases. Information Sciences, 80(1-2):91{125, September 1994.

[CMR91] E. Corsetti, A. Montanari, and E. Ratto. Dealing with Di�erent Time
Granularities in Formal Speci�cations of Real-Time Systems. The Journal
of Real-Time Systems, 3(2):191{215, 1991.

[CPP95] C. Combi, F. Pinciroli, and G. Pozzi. Managing Di�erent Time Granular-
ities of Clinical Information by an Interval-Based Temporal Data Model.
Methods of Information in Medicine, 34(5):458{474, 1995.

[CPP96] C. Combi, F. Pinciroli, and G. Pozzi. Managing Time Granularity of
Narrative Clinical Information: The Temporal Data Model TIME-NESIS.
In L. Chittaro, S. Goodwin, H. Hamilton, and A. Montanari, editors,
Third International Workshop on Temporal Representation and Reasoning
(TIME'96), pages 88{93. IEEE Computer Society Press, 1996.

[CR88] J. Cli�ord and A. Rao. A Simple, General Structure for Temporal Domains.
In C. Rolland, F. Bodart, and M. Leonard, editors, Temporal Aspects in
Information Systems, pages 17{30. North-Holland, 1988.

[CS93] R. Chandra and A. Segev. Managing Temporal Financial Data in an Ex-
tensible Database. In Proc. 19th Int'l Conf. on Very Large Data Bases,
pages 302{313, August 1993.

[CSS94] R. Chandra, A. Segev, and M. Stonebraker. Implementing Calendars and
Temporal Rules in Next-Generation Databases. In Proc. 10th Int'l. Conf.
on Data Engineering, pages 264{273, February 1994.

[DDS94] W. Dreyer, A.K. Dittrich, and D. Schmidt. An Object-Oriented Data Model
for a Time Series Management System. In Proc. 7th International Working
Conference on Scienti�c and Statistical Database Management, pages 186{
195, September 1994.

[DS93] C.E. Dyreson and R.T. Snodgrass. Valid-time Indeterminacy. In Proc. 9th
Int'l. Conf. on Data Engineering, pages 335{343, April 1993.

To appear in Temporal Databases: Research and Practice, O. Etzion, S. Jajodia, S.
Sripada (editors), Springer Verlag, 1998.

33

[EGS93] O. Etzion, A. Gal, and A. Segev. Temporal Active Databases. In Pro-
ceedings of the International Workshop on an Infrastructure for Temporal
Databases, June 1993.

[Flo91] R. Flowerdew. Geographical Information Systems. John Wiley and Sons,
1991. Volume 1.

[GL�OS97] I.A. Goralwalla, Yuri Leontiev, M.T. �Ozsu, and Duane Szafron. Model-
ing Temporal Primitives: Back to Basics. In Proc. Sixth Int'l. Conf. on
Information and Knowledge Management, pages 24{31, November 1997.

[G�OS97] I.A. Goralwalla, M.T. �Ozsu, and D. Szafron. Modeling Medical Trials in
Pharmacoeconomics using a Temporal Object Model. Computers in Biol-
ogy and Medicine - Special Issue on Time-Oriented Systems in Medicine,
27(5):369 { 387, 1997.

[HKOS96] W.H. Harrison, H. Kilov, H.L. Ossher, and I. Simmonds. From Dynamic
Supertypes to Subjects: a Natural way to Specify and Develop Systems.
IBM Systems Journal, 35(2):244{256, 1996.

[JF88] R.E. Johnson and B. Foote. Designing Reusable Classes. Journal of Object-
Oriented Programming, 1(2):22{35, 1988.

[KGBW90] W. Kim, J.F. Garza, N. Ballou, and D. Wolek. Architecture of the ORION
Next-Generation Database System. IEEE Transactions on Knowledge and
Data Engineering, 2(1):109{124, March 1990.

[KKR90] P.C. Kanellakis, G.M. Kuper, and P.Z. Revesz. Constraint Query Lan-
guages. In Proc. of the 9th ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems, pages 299{313, April 1990.

[Kli93] N. Kline. An Update of the Temporal Database Bibliography. ACM SIG-
MOD Record, 22(4):66{80, December 1993.

[KS92] W. Kafer and H. Schoning. Realizing a Temporal Complex-Object Data
Model. In Proc. ACM SIGMOD Int'l. Conf. on Management of Data, pages
266{275, June 1992.

[LEW96] J.Y. Lee, R. Elmasri, and J. Won. Speci�cation of Calendars and Time
Series for Temporal Databases. In Proc. 15th International Conference on
Conceptual Modeling (ER'96), pages 341{356, October 1996. Proceedings
published as Lecture Notes in Computer Science, Volume 1157, Bernhard
Thalheim (editor), Springer-Verlag, 1996.

[MPB92] R. Maiocchi, B. Pernici, and F. Barbic. Automatic Deduction of Temporal
Information. ACM Transactions on Database Systems, 17(4):647{688, 1992.

[PLL96] M.J. Perez-Luque and T.D.C. Little. A Temporal Reference Framework for
Multimedia Synchronization. IEEE Journal on Selected Areas in Commu-
nications, 14(1):36{51, January 1996.

[PM92] N. Pissinou and K. Makki. A Framework for Temporal Object Databases.
In Proc. First Int'l. Conf. on Information and Knowledge Management,
pages 86{97, November 1992.

[Rev90] P.Z. Revesz. A Closed Form for Datalog Queries with Integer Order. In
International Conference on Database Theory, pages 187{201, 1990.

[RS91] E. Rose and A. Segev. TOODM - A Temporal Object-Oriented Data Model
with Temporal Constraints. In Proc. 10th Int'l Conf. on the Entity Rela-
tionship Approach, pages 205{229, October 1991.

[SA85] R. Snodgrass and I. Ahn. A Taxonomy of Time in Databases. In Proc.
ACM SIGMOD Int'l. Conf. on Management of Data, pages 236{246, May
1985.

To appear in Temporal Databases: Research and Practice, O. Etzion, S. Jajodia, S.
Sripada (editors), Springer Verlag, 1998.

34

[SC91] S.Y.W. Su and H.M. Chen. A Temporal Knowledge Representation Model
OSAM*/T and its Query Language OQL/T. In Proc. 17th Int'l Conf. on
Very Large Data bases, pages 431{442, 1991.

[Sci94] E. Sciore. Versioning and Con�guration Management in an Object-
Oriented Data Model. The VLDB Journal, 3:77{106, 1994.

[Sno86] R. Snodgrass. Research Concerning Time in Databases: Project Summaries.
ACM SIGMOD Record, 15(4), December 1986.

[Sno87] R.T. Snodgrass. The Temporal Query Language TQuel. ACM Transactions
on Database Systems, 12(2):247{298, June 1987.

[Sno92] R.T. Snodgrass. Temporal Databases. In Theories and Methods of Spatio-
Temporal Reasoning in Geographic Space, pages 22{64. Springer-Verlag,
LNCS 639, 1992.

[Sno95] R. Snodgrass. Temporal Object-Oriented Databases: A Critical Compar-
ison. In W. Kim, editor, Modern Database Systems: The Object Model,
Interoperability and Beyond, pages 386{408. Addison-Wesley/ACM Press,
1995.

[Soo91] M.D. Soo. Bibliography on Temporal Databases. ACM SIGMOD Record,
20(1):14{23, 1991.

[SRH90] M. Stonebraker, L.A. Rowe, and M. Hirohama. The Implementation of
POSTGRES. IEEE Transactions on Knowledge and Data Engineering,
2(1):125{142, March 1990.

[SS88] R. Stam and R. Snodgrass. A Bibliography on Temporal Databases1. IEEE
Database Engineering, 7(4):231{239, December 1988.

[TK96] V.J. Tsotras and A. Kumar. Temporal Database Bibliography Update.
ACM SIGMOD Record, 25(1):41{51, March 1996.

[WD92] G. Wuu and U. Dayal. A Uniform Model for Temporal Object-Oriented
Databases. In Proc. 8th Int'l. Conf. on Data Engineering, pages 584{593,
Tempe, USA, February 1992.

[WLH90] K. Wilkinson, P. Lyngbaek, and W. Hasan. The Iris Architecture and
Implementation. IEEE Transactions on Knowledge and Data Engineering,
2(1):63{75, March 1990.

To appear in Temporal Databases: Research and Practice, O. Etzion, S. Jajodia, S.
Sripada (editors), Springer Verlag, 1998.

35

