Mining Frequent Itemsets in Time-Varying
Data Streams

Abstract large volume of the data makes it infeasible to process the entire
.) stream within limited memory [2]. Finally, fast data streams are
Atransactional data stream is an unbounded sequence of trans-created by continuous activities over long periods of time, usually
actions continuously generated, usually at a high rate. Mining monihs or years. It is natural that the underlying processes gen-
frequent itemsets in such a data stream is beneficial to many real'erating them can change over time, and thus, the data distribution
world applications but is also a challenging task since data streams may show important changes during this period. This is referred
are unbounded and have high arrival rat_es. Morgover, the distrib- {5 35data evolution time-varying data or concept-drifting data
ution of data streams can change over time, which makes the tasky3 17 24]. Updating and maintaining frequent itemsets for such
of maintaining frequent itemsets even harder. In this paper, we pro- time-varying data streams in real time is a challenging issue.
pose a false-negative oriented algorithm, called TWIM, that can ~ 7he problem of mining frequent items has been extensively
find most of th_e_frequent itemsets_, detect distribution changes,_andstudied 5, 8, 9, 15]. The common assumptions that the total num-
update the mining results accordingly. TWIM uses two tumbling her of jtems is too large for memory-intensive solutions to be fea-
windows, one for maintenance and one for change prediction. Wegip|e Mining frequent items over a data stream under this assump-
maintain a frequent itemset list and a candidate list for a data jon still remains an open problem. However, the task of mining
stream. Every time the two windows tumble, we check membersyequent itemsets is much harder than mining frequent items. Even

in both lists. New frequent itemsets will be added and itemsets N0y hen the number of distinct items is small, the number of itemsets
longer frequent will be removed. Experimental results show that ¢4 | still be exponential in the number of items, and maintaining

our algorithm per.forms as gooq as other false-negative algqrithms frequent itemsets requires considerably more memory.
on data streamwithoutdistribution change, and has the ability to Mining frequent itemsets is a continuous process that runs through-
detect changes over time-varying data streams in real-time with a ;¢ 5 data stream’s life-span. Since the total number of itemsets
high accuracy rate. is exponential, it is impractical to keep statistics for each itemset
due to bounded memory. Therefore, usually only the itemsets that
1. Introduction are already known to be frequent are recorded and monitored, and
statistics of other infrequent itemsets are discarded. However, as
The problem of mining frequent itemsets has long been recog- mentioned, data streams can change over time. Hence, an itemset
nized as an important issue for many applications such as fraudthat was once infrequent can become frequent if a stream changes
detection, trend learning, customer management, marketing andts distribution. Detecting such changes is an important task es-
advertising. Mining frequent itemsets in data stream applications pecially for online applications, such as leak detection, network
is also beneficial for a number of purposes such as knowledge dismonitoring, and decision support. However, since it is not feasi-
covery, trend learning, fraud detection, transaction prediction and ple to maintain all itemsets, it is hard to detect frequent itemsets
estimation [9, 12, 19]. However, the characteristics of stream datawhen distribution changes happen. Furthermore, even if we could
—unbounded, continuous, fast arriving, and time-changing — makedetect these itemsets, we would not be able to obtain their statis-
this a challenging task. Existing mining techniques that focus on tics (supports), since mining a data stream is a one-pass procedure
relational data cannot handle streaming data well [10]. and history information is not retrievable. Distribution changes
First, since a data stream is unbounded and usually has highover data streams might have considerable impact on the mining
arrival rate, it is not possible to rescan the whole stream, and thus,results, but few of the previous works have addressed this issue.
multi-scan data mining algorithms for traditional databases and A number of techniques have been proposed in recent years for
batch data cannot be applied to stream data directly. Second, thenining frequent itemsets over streaming data. However, as we dis-
cuss in Section 3, they have problems in meeting common require-
ments: ability to process large number of itemsets in real time,
low (preferably minimum) memory usage, and ability to cope with
time varying data streams.

Permission to make digital or hard copies of all or part of this work for In this paper, we develop a new algorithm, called TWIM, that
personal or classroom use is granted without fee provided that copies arg5 ., find most of the frequent itemsets in real time. It can also
not made or distributed for profit or commercial advantage and that copies . T L
bear this notice and the full citation on the first page. To copy otherwise, toper_'Ct the distribution chang_e apd update the_ mining results ac-
republish, to post on servers or to redistribute to lists, requires prior specificcordingly. Our approach maintains two tumbling windows over
permission and/or a fee. a data stream: a maintenance window and a prediction window.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

All current frequent itemsets are recorded and maintained in the Table 1. Meanings of symbols used

maintenance window, and we use the prediction window to keep [Symbols [Meanings |
track of candidates that have the potential of becoming frequent t,t timestamps o
if the distribution of stream values changes. Every time the win- we always let’ > ¢ in this paper
dows tumble, we check if new frequent itemsets and candidates I; a transaction
should be added, and if some existing ones need to be removed i an itemset thal; accesses
from the lists. Since we do not keep statistics for every itemset Dr, transactional data stream _

L - p stal ery N number of transactions at tinte
within the windows, memory usage is I|m|ted_. Experimental re- 7 set of items
sults show that TWIM is as effective as previous approaches for A an itemset
non-time-varyinglata streams, but is superior to them since it can sup(A) || A’s counter

also capture the distribution change for time-varying streams in number of transactions that suppgtt

real-time. S(A) the support of4 at timet
The contributions of this paper can be summarized as follows: S(A) = sup(A)/N
. L . Ar, set of frequent itemsets
e We formalize the problem of mining for frequent itemsets C set of candidates

over streams, and prove that the problem of mining the com- 5

0 | minimum support for frequent itemse
plete frequent itemsets over data streams is NP-hard.

if S(A) > dthend € Az,

0 minimum support for candidates
if 0 < S(A) <dthenAdeC
maintenance window

prediction window

7]

e We introduce a double-tumbling windows model for mining
frequent itemsets over data streams. Experimental results
show that this model can adapt to distribution changes effec-
tively and efficiently. Since one of the windows is a virtual
window, memory usage for this model is not larger than that
of the popular sliding window models.

W
Wp

that supportA. If S(A) = sup(A)/N: > §, whered is a prede-
fined threshold value, thed is a frequent itemset i+, under
current distribution.S(.A) is called thesupportof A.

Example 1.Consider a data streafz, with 7, = {71, 7>,
T5,7T4,T5} at timet and a set of item& = {a,b,c,d}. Let
I = {a,b,c}, I = {a,b,c,d}, Is = {¢,d}, I« = {a}, and

e We present a novel algorithm, TWIM, to mine frequent item-
sets over data streams. Unlike most of the existing frequent
itemset mining techniques, our algorithm is false-negative
oriented and is suitable for streams with distribution changes.
Furthermore, since TWIM maintains counters for candidate
itemsets long before they become frequent, once an item-
set becomes frequent, its estimated support is more accu-
rate than those algorithms that can only detect and record
changes in the last minute.

are A, = {(L},AQ = {C},A3 = {d}7./44 = {a,c}, andAs =
{¢c, d}, with supportsS(A;) = S(A2) = 0.8, andS(As) =
S(.A4) = S(As) =0.6.

Definition 2. Let sup(.A) be the total number of transactions

Is = {a,c,d}. If thresholdd = 0.5, then the frequent itemsets

The rest of the paper is organized as follows. In Section 2, we

Let Ar, = {A1, A2, ... A} be the complete set of frequent
itemsets inD7, under current distribution. The ultimate goal of

formally define our problem and prove that mining the complete mining frequent itemsets in data stredd, is to find Az, in

frequent itemsets is NP-hard. In Section 3, we discuss the relateob0|ynomia| time with limited memory space. However, it has been

work and compare them with our.proposal. Iq Section 4, the. Pro- proven that the problem of findindz, off-line is NP-hard [21].
posed TWIM algorithm for detecting frequent itemsets over time- T following theorem proves that on-line updatidg, for a data
varying data streams is presented. Experimental results are giveryiraam that grows in real-time is also NP-hard. ’

in Section 5. We conclude the paper in Section 6.

2. Problem Statement

LetZ = {41,12,...,in} be a set oftems A transactionT” ac-
cesses a subset of itemisC Z. A data stream is an unbounded

THEOREM 1. The problem of finding the complete set of fre-
quent itemsetsly, in a given transaction-based data streds,
with thresholdd is NP-hard.

PROOF If there exists an algorithm that can list all frequent
itemsetsAr, in polynomial time, then this algorithm should also

sequence of tuples that continuously arrive in real time. In this be able to count the total number of such frequent itemsets with

paper, we are interested in transactional data streams, where eactihe same efficiency. Thus, it suffices to show that counitifg, |
tuple corresponds to a transaction. Example of such transactionfor any givenDz, and threshold is NP-hard.

based data streams include online commerce, web analysis, bank- Let n be the total number of items i, and V; be the total
ing, and telecommunications applications, where each transactiomumber of transactions at time Construct a» x N, matrix M.
accesses a set of items from a certain item pool, such as inventoryEach elemenf/;, ; in M is a Boolean value); ; = 1iff iy €

customer list, or a list of phone numbers.

Let 7; = {T1,T>,...,Tn,} be the set of transactions at time
t. N is the total number of transactions received up to time
The data stream that contaiffs is denoted byDz,. Note that
the number of itemsg, is finite and usually not very large, while
the number of transaction#/;, will grow monotonically as time
progresses.

Table 1 summarizes the main symbols used in this paper.

Definition 1. Given a transactiod; € 7;, and a subset of
items. A C 7, if T; accessesA (i.e., A C I;), then we sayl};
supportsA.

T;, and O otherwise. Hence, there exists a one-to-one mapping
between strean7, and matrixM.

Any n x N, matrix M can be mapped to a monotone-2CNF
formula with N; clauses and: variables. Therefore, we can re-
duce the problem of countingdr, | to the problem of counting
the number of satisfying assignments for a monotone-2CNF for-
mula using polynomial time.

It has been proven that the problem of counting the number of
satisfying assignment of monotone-2CNF formulas with thresh-
old ¢ is #P-hard [11, 23]. Hence, countinglz,| is a NP-hard
problem. [

Note that in the proof]V; does not have to be infinite, and does window, and can update the mining results when stream distri-
not even have to be a large number. Therefore, even if techniquesdution changes. However, Moment is not suitable for streams
such as windowing that can reduce the number of transacliens that change distributions frequently, because there might be a long
are applied, the problem of mining the complete set of frequent overhead for updating CET when new nodes are added or an item-
itemsets still remains NP-hard. Furthermore, the size of the com-set is deleted. Furthermore, if the total number of the frequent
plete set of frequent itemsetsy, can be exponential. An extreme itemsets or their size is large, Moment could consume a large
case is that every transacti@h in D7, accesse$ (i.e. VT € 7Ty, amount of memory to store the tree structure and hash tables.
I; = T). For such cases, no algorithm can list, using polyno- Chang and Lee also adopt a sliding window model to mine re-
mial time and space. However, note that this proof holds even for cently frequent itemsets [4], which suffers from the same problem
the cases wherpAr, | is not exponential. Even when the actual of memory usage boundary and may not be feasible in practice.

size of A, is small, the time taken fasearching forAz, is still Most of the techniques proposed in literature are false-positive

exponential. oriented, that is, the itemsets they find may not be truly frequent
ones. False-positive techniques may consume more memory, and

3. Related Works are not suitable for many applications where accurate results, even

Mining frequent items and itemsets is a challenging task and if not complete, are preferred. Yu et al propose a false-negative
has attracted attention in recent years. Jiang and Gruenwald [14oriented algorithm, FDPM, for mining frequent itemsets [26]. The
provide a good review of research issues in frequent itemsets andyumber of counters used in FDPM is fixed, and thus memory us-
association rule mining over data streams. age is limited. However, this approach cannot detect distribution

The problem of mining frequeritemsand approximating fre- changes in the stream, because an itemset could be pruned long
quency counts has been extensively studied [5, 8, 9, 15]. Manybefore it becomes frequent.
of the works consider mainly the applications where total number
of items in a stream is very large, and therefore, under memory-4. TWIM: Algorithm for Mining Time-
intensive enyironments, itis not possible to sto.re. acounter even for Varying Data Streams
each of the items. However, the problem of mining frequent items
is much easier than the problem of mining frequent itemsets. Even In this section, we propose an algorithm called TWIM that uses
when the number of distinct items is small, which is true for many two tumbling windows to detect and maintain frequent itemsets
applications, the number of itemsets could be exponential. for any data stream. The algorithm is false-negative oriented: all

One of the classical frequent itemset mining techniques for re- itemsets that it finds are guaranteed to be frequent under current
lational DBMSs is Apriori [1], which is based on the heuristic that distribution, but there may be some frequent itemsets that it will
if one itemset is frequent, then its supersets may also be frequentmiss. However, TWIM usually achieves high recall according to
Apriori requires multiple scans over the entire data and hence can-our experimental results. Since it is a false-negative algorithm, its
not be directly applied in a streaming environment. Many Apriori- precision is alway300%.
like approaches for mining frequent itemsets over streaming data In order to detect distribution changes in time, we apply tum-
have been proposed in literature [4, 6, 16], and some of them canbling windows model oD+, (Section 4.1). A tumbling window
be applied on dynamic data streams. However, as will be discussediccepts streaming transactions in “batches” that span a fixed time
in Section 4.2, Apriori-based approaches suffer from a long de- interval [20]. When windows tumble, the supports of existing fre-
lay when discovering large sized frequent itemsets, and may missquent itemsets will be updated. If a distribution change occurs
some frequent itemsets that can be easily detected using TWIM. during the time span of the window, then some frequent itemsets

Yang and Sanver [25] propose a naive approach that can onlymay become infrequent, and vice versa. In most of the previous
mine frequent itemsets and association rules that contain only fewtechniques, itemsets that are not frequent at the point when the
items (usually less than 3). When the sizes of potential frequentcheck is performed are simply discarded. Since only the supports
itemsets are over 3, this algorithm may take intolerably long time for frequent itemsets are maintained, the infrequent itemsets that
to execute. become frequent due to the distribution change are hard to detect.

Manku and Motwani propose the Lossy Counting (LC) algo- Even if such itemsets can be somehow detected, since the histor-
rithm for mining frequent itemsets [18]. LC prunes itemsets with ical information are not retrievable, their estimated supports may
low frequency quickly, and thus only frequent itemsets will re- be far from the true values, which leads to poor precision. There-
main. Because LC has a very low runtime complexity and is fore, we maintain a candidate list that contains a list of itemsets
easy to implement, it is one of the most popular stream mining that have the potential to become frequent when the distribution
techniques adopted in real-world applications. However, as ex-of Dz, changes. Since the supports for the candidates are main-
perimentally demonstrated by a number of studies, LC may not tained long before they become frequent, their estimated supports
perform well in practice [6, 8, 26], and is not applicable to data have high accuracy. How to predict candidate itemsets and the
streams that change over time. procedure for reducing the size of candidate lists in order to re-

Chang and Lee [3] propose an algorithm named estDec for duce memory usage are discussed in Section 4.2.
finding recent frequent itemsets by setting a decay factor. Itis When windows tumble, the supports of all candidates are up-
based on the insight that historical data should play a less impor-dated. If a distribution change occurs, some infrequent itemsets
tant role in frequency counting. This approach does not have theare added to and some itemsets will be removed from the can-
ability to detect any itemsets that change from infrequent to fre- didate list according to certain criteria (Section 4.3). Candidates
quent due to distribution drifts. with supports greater thanare moved to frequent itemset list.

Chi et. al present an algorithm called Moment [7], which main- The main TWIM algorithm is given in Algorithm 1. We expand
tains closedfrequent itemsets [22] using a tree structure named each procedure in the following subsections. The experimental
CET. The Moment algorithm provides accurate results within the results show that TWIM is sensitive to distribution changes, and

can update its mining results accordingly in real-time.

Algorithm 1 TWIM Algorithm

1: INPUT: Transactional data streabr,

2: Tumbling windowW,, andWp

3: Thresholds andd

4: OUTPUT: A list of frequent itemsetglr, and their supports
5 A7, =9;,C=®; Ny =0;

6: sup(i1) = sup(iz) = ... = sup(in) = 0;

7: for all transactiori}, that arrives inD7, do

8: if Wy is not ready to tumbléhen

9: Update the supports for all frequent itemsets and candidates
10: else

11: /IWindows ready to tumble

12: Call MAINTAIN_CURRENT_FREQSETS;

13: /IMove infrequent itemsets fromd 7, to candidates

14: Call DETECT_NEW_FREQSETS;

15: /ICheck if any itemset in candidate becomes frequent
16: Call MAINTAIN_CANDIDATES;

17: //Add new candidates

18: Call UPDATE_CANDIDATE_SUP;

19: /lupdate supports for all candidates

20: Whr andWp tumble;

21: endif

22: end for

4.1 Tumbling windows design

For most real-life data streams, especially the ones with dis-

tribution changes, recent data are more important than historical

data. Based on this insight, we adopt a tumbling windows model
to concentrate on recently arrived data.

We define a time-based tumbling windd¥#, for a given data
stream, which we call thenaintenance windowince it is used
to maintain existing frequent itemsets. SmaWgy, is more sen-
sitive to distribution changes iDz,, however, it will also incur
higher overhead as the interval for updating frequent itemset list
and candidate list is shorter. On the other hand, lafiggrreduces

the maintenance overhead, but it cannot detect sudden distribution

changes.

Since data streams are time-varying, a frequent itemset can be'setsATt

come infrequent in the future, and vice versa. It is easy to deal
with the first case. Since we keep counters for all frequent item-
sets, we can check their supports periodically (every tifrig

precision of the mining result may be lower.

Figure 1 demonstrates the relationship between maintenance
window W), and prediction windowip» with an example. In
Figure 1,W,, andWp are the windows before tumbling, while
W4, andWp are windows afterwards When the end oV, is
reached, it will tumble to the new positidiv,,. Every timeW,,
tumbles,Wp will tumble at the same time. This is to ensure that
the endpoints oV, andWp are always aligned, so that frequent
itemsets and candidate itemsets can be updated at the same time.
Therefore, in Figure 1Wp tumbles to its new positiohl’;, even
before its time interval is fully spanned.

D+

Figure 1. Tumbling windows for a data stream

Mining frequent itemsets requires keeping counters for all item-
sets; however, the number of itemsets is exponential. Consequently,
itis not feasible to keep a counter for all of them, and thus, we only
keep counters for the following:

o A counter for each iteny; € I. Since total number of items

n is small (typically less than tens of thousands), it is fea-
sible to keep a counter for each item. If each counter is 4
bytes, then the memory requirement for storing all the coun-

ters usually will not exceed 4 MB.
A counter for each identified frequent itemset. As long as

the threshold valué is reasonable (i.e., not too low), the

number of frequent itemsets will not be large.
A counter for each itemset that has the potential to become

frequent. We call theseandidate itemsets The list of all
candidates is denoted &s The number of candidate item-
sets|C| is also quite limited, as long as the threshold value
(discussed in Section 4.2) is reasonable.

If a frequent itemset becomes infrequent at some point, instead
of deleting it right away, we move it from the set of frequent item-
toC, and reset its counter (but not remove it just in case it
becomes frequent again soon, as will be explained in more detail
in Section 4.3). Hence, the counter for an itemset is removed only
when this itemset is removed from candidatedist

tumbles), and remove the counters of those itemsets that are no L. .
longer frequent. However, in the latter case, since we do not keep4-2 Predicting candidates

any information about the currently infrequent itemsets, it is hard
to tell when the status changes. Furthermore, even if we can de

To deal with the difficulties of determining which infrequent
Htemsets may become frequent, as discussed in the previous sec-

tect a new frequent itemset, we would not be able to estimate itstions, we introduce a prediction stage to generate a list of candidate

support, as no history exists for it.

To deal with this problem, we define a second tumbling win-
dow called theprediction window(WWp) on the data streanid p
moves together with/,,, aligning the window endpoints. It keeps
history information for candidate itemsets that have the potential
to become frequent. The size @fp is larger thanWy,, and it
is predefined based on system resources, the threghal the
accuracy requirement of the support computation for candidates
Note that we do not actually maintalirp; it is a virtual window

itemset<, which includes itemsets that are most likely to become
frequent. The prediction stage happendidg andWp tumble,

so that statistics for these candidates can be collected within the
new windowWp.

Any itemsetA with § < S(A) < § is considered a candidate
and included irC. Hered is the support threshold for considering
an itemset as a candidate. Every tilfie- tumbles, we evaluate all
.candidates ir€. If the counter of one candidate itemset is below
0, it is removed fromC and its counter is released.is user de-

that is only used to keep statistics. Hence, the size (time length)fined: smalle® may result in a higher recall, but consumes more

of Wp can be as large as required. A large prediction window can

ensure high accuracy of the estimated supports for candidate item
sets, resulting in high precision. However, it cannot detect sudden

_1In this paper, if we need to discuss the maintenance and prediction win-

dows before and after tumbling, we always &g, and W p to denote
the old windows before tumbling, arid’;,, and\W, to denote the new

distribution changes, and may consume more memory as there argjindows after tumbling.

more itemsets maintained in the window. A smallép is more

2The guestion of which itemsets are predicted to have such potential will

sensitive to distribution changes and requires less memory, but thebe discussed in the following subsections.

memory since more candidates are generated; athigtiue can
reduce memory usage by sacrificing the number of resulting fre-
quent itemsets. Thus, tifevalue can be set based on application
requirements and available memory.

Every time Wy, and Wp tumble, the counters of all candi-
dates and the supports of all items will be updated. If one can-
didate itemsetd’ € C becomes frequent, thend” ¢ Ar,

A = A U A” might be a candidate. Similarly, if one infre-
quent item: becomes frequent at the time windows tumble, then
VA" € Ar,, A= {i} U A’ can be a candidate.

One simple solution is to add all such supersisto the can-
didate listC. However, this will result in a large increase of the
candidate list's size, since the total number.4for each.A’ or
{i} can be|A7,| in the worst case. The larger the candidate list,
the more memory required for storing counters, and the longer it
takes to update the list whéiy, andWp tumble.

As indicated earlier, many existing frequent itemset mining
techniques for streams are derived from the popular Apriori al-
gorithm [1]. When an itemsetl’ with sizek is determined to be

frequent, Apriori makes multiple passes to search for its supersets.

In the first run (or in our streaming case, the first tilha, and
Wp tumble afterA’ is detected), all its supersets with size- 1

|Wa| to detect the frequent itemsét, b, ¢, d}. However, if in-
stead, we start from the current largest itemsetdi, that is
{a,b,c} in this example, then itemsdi, b, ¢, d} is considered
a candidate, and can be detected as frequent next time windows
tumble. Hence, the time for detectidg, b, ¢, d} is only [Way|.
By definition, the completed s, can be obtained by simply com-
puting the power set dfa, b, ¢, d} minus null set. This approach
minimize both the delay in detection and the size of candidate list.

Definition 3. Given an itemset listd = {A1, A2, ..., Am},
for VA" = {A}, A3, ... A}, where A, Aj, ... A, € A, if A] U
Ay U UAL = A UAU...UA,, andr < m, then we sayd’
is acover seof A, denoted asA®.

Forexample, givenitemsetligt = {{a}, {b}, {c}, {d},{a, b},
{a,b,c}},AC = {{d},{a,b},{a,b,c}} is one cover set.

Definition 4. Given an itemset list4 and all its cover set
AT AS L AS i AS| = min(V[AS]), wherei = 1,...,q,
then we callA$ thesmallest cover seif A, denoted asA®€ .

For example, the smallest cover st of itemset list4 =
{{a}, {b}. {c}. {d}, {a. b}, {a,b, c}} is {{d}, {a,b,c}}.

When a candidate itemset or an infrequent item becomes fre-
quent, the candidate list can be expanded from either direction, i.e.,
combining the new frequent itemset with all current frequent items

are added to the candidate list. The size of candidate supersets inin Az, or with the smallest cover set ofz,. The decision as to

creases by at every run, until the largest itemset is detected. This

which direction to follow depends on the application. If the sizes

strategy successfully reduces the number of candidates; howeverpf the potential frequent itemsets are expected to be large, then the

in cases if the itemset siz&| is large, it may take extremely long
time until one large frequent itemset is detected.

Example 2. LetZ = {a,b,c¢,d, e}, where{a}, {b}, {c} and
{d} are frequent itemsets. Assume that, at the point wién
andWp tumble, iteme becomes frequent, hende;,}'s immediate
superset§a, e}, {b, e}, {c, e} and{d, e} will be regarded as can-
didates. If, by next timéV,; andWp tumble,{a, e} is detected
as frequent, thera, b, e}, {a, ¢, e} and{a, d, e} will be added to
the candidate list. Assuming the largest itemr{geb, ¢, d, e} is ac-
tually a frequent itemset, it will take timex |Wa,| for this itemset

to be detected. When the maintenance window size is large, this

delay could be unacceptably long. Furthermore, if the distribution
of the stream changes rapidly, the item&etb, ¢, d, e} may never
be detected as frequent.

Another problem may occur for such Apriori-like approaches,
as demonstrated in the following example.

Example 3. LetZ = {a,b,c,d}, wherea andb are frequent
items, and itemsefa, b} is the only candidate. Assume that next
time windows tumbleS({a, b}) < 6, and hence, itemsd, b}
will be discarded from the candidate |5t Assumingt time later,
¢ becomes a frequent item, we will haver, = {{a}, {b}, {c}},
andC = {{a,c},{b,c}}. If by the next run, both{a,c} and
{b, ¢} are determined to be frequent, then we might end up with
Az, = {{a}, {b}, {c} {a,c}, {b,c}, {a,b,c}}. Notice the prob-
lem here: itemsefa, b} is not included ind7,. However, since
{a, b, c} is a frequent itemset, by definitioga, b} must be fre-
quent as well. The problem occurs becadiaeb} has been dis-
carded long before. When the distribution changes &md}
turns from infrequent to frequent, it cannot be added to the can-
didate list if {a} and {b} are in. A7, all the time. Although by
simply adding all subsets dfa, b, ¢} in Az, we will be able to
add{a, b} back to the frequent itemset list, since Apriori-like ap-

proaches only check the supersets of the existing frequent itemsets,

the subsets of existing frequent itemsets are not considered.
Continuing with Example 3, assume that itehibecomes fre-
guent at timet’. Using Apriori-like approaches, it will taks x

smallest cover set could be a better option. On the other hand, if
small sized frequent itemsets are more likely, then Apriori-like ap-
proaches can be applied. However, in many real-world scenarios,
it is hard to make such predictions, especially when the distribu-
tion of the data streams is changing over time. Hence, we apply a
hybrid method in our approach.

4.2.1 Hybrid approach for generating candidates

Our hybrid candidate prediction technique is as follows. At the
time Wy andWp tumble:

e Step 1. Detect new frequent itemsets and move them from
candidate sef into set of frequent itemsetdz,. Also de-
tect any new frequent items and add them igte,. This

step will be discussed in detail in Section 4.3.

Step 2.UpdateAr, = Az, UP(A3C) — ¢, whereP(A5C)

is power set ofA7,’s smallest cover set. This step is for
eliminating the problem discussed in Example 3.

Step 3. Detect itemsets i€ whose supports have fallen
below 6. Replace each of these itemsets by its subsets of
length one smaller, and then remove it fraém For exam-

ple, if itemset{a, b, ¢, d} is not a candidate anymore, then
we add itemsetda, b, ¢}, {a, b, d}, {b,c,d} and{a,c,d}

into C, and then removéa, b, c,d}. This process can be
regarded as the reverse process of a Apriori-like approach.

Step 4.SetC = C — Ag,. After Steps 2 and 3, there could
be some candidates that are already included-ip, hence
we do not need to keep them in the candidatelliahymore.

Step 5. Let A" be one candidate itemset that becomes fre-
quent, or{j} wherej is an item that turns from infrequent
to frequent.

Step 5.1.VA = {i} U A’, wherei ¢ (T — A') and{i} €
Ax,,if AisnotinAr,, thenA is a new candidate.

Step 5.2.¥A" € (A7, — A)%°,if A= A" U A isnotin
A7, thenA is a new candidate.

Example4.Let] = {a,b,c,d}, A7, = {{a},{b},{c},{a, b},
{a,c},{a,b,c}}, andC = ¢. At the timeWy, andWp tumble:

Step 1. Assume that itemh becomes frequent, hencér, =
{{a}, {b}. {c}, {d}. {a. b}, {a,c}, {a,b,c}}.

Step2.Az, = A7 UP(AZ")—¢ = A7 UP({{d}, {a, b, c}})
—¢ = {{a},{b},{c}, {d},{a,b},{a,c}, {b,c}, {a, b, c}}. No-
tice that itemse{b, c} is added toA 7, .

Steps 3 and 4. Since currently = ¢, these two steps are
skipped.

Step 5.C = {{a,d}, {b,d},{c,d}, {a,b, c,d}}.

After time |Wy|, the two windows tumble again:

Case 1:sup({a,b,c,d}) > 0 and{a,b,c,d} becomes fre-

e Step 1.Let AFC = 4. Build a set of itemset8 = {B1, Bo,
o, Bm}. LetB; = A; forvVA; € Az,

e Step 2. Select the largest itemsé#, < B, i.e., |Bx| =
max(|Bi|),B: € B,i = 1,...,m. If there is a tie, then
select the one with larger corresponding itemsetlin. In
otherwords, if B,| = |B;| = max(|B;|) and|Ax| > |A,],
where A, and A, are the corresponding frequent itemsets
of By and B, according to step 1, then select item#gat
If there is still a tie, then randomly select one of the largest
itemsets. Set7 = A7 U {AL}.

e Step 3. ForVB; € B,i = 1,...,m, setB; = B; — Bk.
Remove all empty sets froif.

e Step 4.1f B = ¢, then stop. Else go to step 2.

Example5.Let A7, = {{a,b,c},{a,c,d},{a,d, e}, {a}, {b},
{c}, {d}, {e}}.

Step 1.A37 = ¢, andB = Ar,.

Step 2. Select the largest item#t = {a, b, c} € B. A" =

quent.
Step 11./4'1?, = {{CL}, {b}a {C}a {d}7 {CL, b}7 {a7 6}7 {ba C}a
{a,b,c}, {a,b,c,d}}.
Step 1.2 A7, = P({a,b,c,d}) — ¢.
Step 1.3C = {{a,d}, {b,d}, {c, d}}.
Step 1.4C =C — Az, = ¢. {A1} = {{a,b,c}}.
Step 1.5. All frequent itemsets detected. Step 3.8: = {a,c,d} — {a,b,c} = {d}; Bs = {a,d, e} —
Case 2:5({a,b,c,d}) < 6, and no new frequent itemset de- {a,b,c} = {d,e}. All the rest itemsets I8 are empty. Hence,
tected. B ={Bz,Bs} = {{d},{d,e}}. Goto Step 2.
Step 2.1 and step 2.247, remains unchanged. Step 2-2. Select the largest item#t= {d, e} € B. A5 =
Step 2.3C = {{a,d}, {b,d},{c,d},{a,b, c},{a,b,d}, AFC U{As} = {{a,b,c},{a,d, e}}.
{a,c,d},{b,c,d}}. Step 3-2.8 = ¢. Algorithm terminates. The final cover set of
Step 2.4. Itemsefa, b, c} is removed fromC because itis Az, is {{a,b,c},{a,d, e}}.
already a frequent itemset. The run time of this algorithm in the worst case(jslz,| —
Step 2.5. No new frequent itemset detected, thus this step does:) x A5, wheren is the total number of frequent items in the
not apply. stream. Hence, this algorithm is very efficient in practice.
Property: For each itemse#d with size k that moves from
infrequent to frequent at tumbling poititietC 4 be the list of new
candidates generated using our hybrid approach at Step & et For any itemset that changes its status from frequent to infre-
be the number of itemsets @, andg be the total time required quent, instead of discarding it immediately, we keep it in the can-
for all frequent itemsets i€ 4 to be detected. We can prove that didate listC for a while, in case distribution drifts back quickly
|Cal + (w8 < 2p — k, wherep is the total number of frequent and it becomes frequent again.
items in A, . (The proof is omitted due to page limit.) Every time Wy, and Wp tumble,C is updated: any itemset
Notice thatp, i.e. the number of frequent items, is determined A € C with S(A) < 6 along with its counter is removed, and
by the nature of the stream and is not related to the chosen miningnew qualified itemsets are added resulting in the creation of new
method. This property indicates that the time and memory usagecounters for them.
of our hybrid candidate generation approach are correlated. They For an itemset4 that has been in the candidate Iitfor a
are bounded to a constant that is not related to the size of mini-long time, if it becomes frequent at tintg, its support may not
mal cover setA%C. If, at time ¢, the size ofC 4 is large (which be greater than the threshdldmmediately, because the historical
indicates a large amount of memory consumption), then from this transactions (i.e., the transactions that arrive in the stream before
property, we know that the time for detecting all frequent itemsets ¢;) dominate in calculatings(.A4). Therefore, in order to detect
in C 4 will be very short, i.e., largéC 4| value indicates a smafl. new frequent itemsets in time, historical transactions need to be
Note that once all the frequent itemsets are detectgdwill be eliminated when updatin§(.A) for everyA € C.
removed fronC, therefore, the large memory usage only lasts for ~ Every timeWp tumbles, some of the old transactions will ex-
a short time period. On the other hand, if it takes longer to detect pire from Wp. For any itemsetA that remains inC, S(A) is
all frequent itemsets i@ 4, then the memory usage will be quite updated to eliminate the effect of those historical transactions that
limited, i.e., when3 is large,|C.4| must be small. Hence, this nice are no longer ifVp.
property guarantees that the overall memory usage of the proposed Since Wy, and Wp are time-based tumbling windows, they
hybrid approach is small, and its upper bound is only determined tumble every|Wy,| time units. At the timelW; and Wp tum-
by the number of frequent items in the stream. ble, the transactions that expire fro#ip are those transactions
. that arrived within the oldegi¥;,| time span inWp. Hence, we
4.2.2 Finding smallest cover set can keep a checkpoint evelif/| time intervals inW», denoted
Our candidate prediction technique uses smallest cover set ofaschk1, chka, ..., chkp, Wwherechk, is the oldest checkpoint, and
A, to discover the most number of frequent itemsets in the short-p = ||Wp|/|Wx|]. For eachA € C, we record the number
est time. In this section, we present an approximate algorithm thatof transactions arriving betweeitk; 1 andchk; that accessA,
can find a good cover sefor a given frequent itemset listl 7, denoted asup;(A). WhenWy, and Wp tumbles, transactions

efficiently in terms of both time and memory. example{{a, b, c}, {b, ¢, d}} is better than{{a, b, c}, {d}}, because if
3Informa||y, a good cover set is one with a small number of itemsets, {b,¢c,d} is determined to be frequent, many subsets can be added into
and the size of each itemset in this cover set is as large as possible. Fordz,.

4.2.3 Updating candidate support

before checkpointhk, are expired fromiVp. Hence,sup(A) is Z, when an item becomes frequent, it is easy to detect and its sup-

updated asup(A) = sup(A) — sup1(A). Note that after tum- port is accurate. However, for a newly selected frequent itepset
bling, a new checkpoint is added, anllk. becomes the oldest that comes from candidate liStits support will not be accurate, as
checkpoint. most of its historical information is not available. If we keep calcu-

The procedures for maintaining candidate {isand updating lating its support as'(A) = sup(.A) /Ny, whereN; is the number
candidate counters are given in Algorithm 2 and Algorithm 3, re- of all transactions received so far, thi§.4) will not reflect A’s
spectively. true support. Hence, we need to keep an offset4prdenoted
Algorithm 2 MAINTAIN_CANDIDATES offset(A), that represents the number of transactions that were

— missed in counting the frequency @f. .A’s support at any time

> @er;l;;ngl;g(ejg@g\'gog_mm £ ¢ > t should be modified t§(A) = sup(A)/(Ny — offset(A)),
3 forall AcCdo ' where N, is the total number of transactions received at tife
4: if S(A) < 6then as the data stream monotonically grows. Since the counters of
5: forall i € Ado candidate itemsets are updated every ti¥igr and Wp tumble
gi f”: Cu({A-{i}}) to eliminate the history effect (as mentioned in Section 4.2), their
: end for offsets also need to be reset to the beginning of theTigw
g ﬁ = C — {A}; removesup(A); removeoffset(A); Figure 2 demonstrates how the of%set isgcalculated. Assume
: 'we will explain the concept oéffset in Section 4.4. . .) . e
10: endif that an itemsetd is added to the candidate list at the beginning
11: end for of Wp (time t), and a counter is created for it. At the tiiEy,
12:.c=C- Ag; andWp tumble (timet'), we need to calculat§(A) to see if we
13: for all A" = detect_new_fregset@o can moveA to the set of frequent itemset$;,. Since we do not
14f forall {i} AT,t_ andi ¢ A’ do have.A’s historical information before time, we need to adjust
%g ?;é{ﬁj J?hén A’s offset toN;. Hence, we know thatffset(A) = N, wheret
17: C—¢C ut{A}; sup(A) = 0; offset(A) = Ny is the timestamp when starts being recorded.
18: end if M
19: end for Dr t— o \ Wp |
20: forall As. € ASC do ‘ :
g% Tf‘lj ;;16; tf]lt;;n 7777777777 offset(A) | S =sup(A)/ (Nroffset(A) .
23: C =CU{A}; sup(A) =0; offset(A)=Ng; N, o
24; end if 3
25: end for sup(A) starts
26: end for being recorded
Figure 2. Offset for itemset A
Algorithm 3 UPDATE_CANDIDATE_SUP Note that the supports for such itemsets are no longer based
1: forall A € Cdo on the whole history, unlike all items that we track throughout the
2: sup(A) = sup(A) — sup(A)1; entire life-span of the stream. However, using supports that only
31 offset(A) = Ny; depend on recent history should not affect TWIM’s effectiveness.
4: end for This is because the data stream is continuous with a distribution
g forcil]'f;j iti’}f’k?;oﬂexpire the oldest pointhk: that changes over time, and hence, the mining results over such
7- end for data stream is temporary — the result at tilhenay not be con-
8: Setall the records inhk), t0 0; sistent with the result at time (¢1 < t¢2). Therefore, calculating
9: /levery timeW), tumbles, a new checkpoint is addediig- supports using the whole history may not reflect tberent dis-

tribution correctly or promptly, not to mention the huge amount

of memory required for tracking the entire history for each item-

set. Our experiments demonstrate that our approach is sensitive to

both steady and slow changes, and rapid and significant changes,
Every timeWW), tumbles, we update support values for all the while the existing techniques cannot perform well, especially for

existing frequent itemsets. If the support of an itemdedrops the latter case.

below §, then we move it from the set of frequent itemsgts, .

to the candidate list, as indicated earlier, and the counter used ©. EXperiments

to re(;ord its frequency .Wi” be.res.et t.o Zero, i'e“P(A) = 0. In this section, we present a series of experiments to evalu-
This is to_ensure tha_t, if th_e dlstrlbutlon_ change_ IS r_10t rapld, ate TWIM’s performance in comparison with three others: SW
may stay in Fhe candld.at.e list for some time, as 'ts. history record method [4], which is a sliding window based technique suitable for
plays a dominant role in its support. By resetting its counter, we dynamic data streams, FDPM [26], which is also a false-negative
eliminate the effect of historical transactions and only focus on the algorithm, and Lossy dounting (LCj [18], which is a widely-adopted
most recent ones. This ensures th_at the decrease in its support cafy e positive algorithm. Since neither FDPM nor LC has the abil-
Ee de;ecte;l soone;.] During the tl_me-spari/IQtfl,fsup(;]zt) will ity to detect distribution changes, we conduct the experiments in
€ duIE)V ate ?)IS egc pl new ;rar;}sac/tion.lellrgves. ’ a;tf emf two stages. In the first stage, we compare these algorithms over
and Wp tumble, S(A) < ¢, thenA will be removed from the data streams without distribution drift. In the second stage, we

candidate list. introduce time-varying data streams.
New frequent itemsets will come from either the infrequent

items or the candidate list. Since we keep counters forallitesms 5.1 Experimental setup and data sets

4.3 Maintaining current frequent itemsets
and detecting new ones

Our experiments are carried out on a PC with 3GHz Pentium 4 during its entire lifespan, which is a very strong and usually incor-

processor and 1GB of RAM, running Windows XP. All algorithms
are implemented using C++.

We use synthetic data streams in our experiments to gain eas
control over the data distributions. We adopt parameters similar to

rect assumption for most real applications.

y5.3 Effect of threshold §

This set of experiments evaluate the effectiveness of the four

those used in previous studies [7, 26]. The total number of differ- algorithms with different values of threshadd For this set of ex-

ent items inZ is 1000, and the average size of transaction;in

periments, we set = ¢ — 0.3%. Note that threshold is mainly

is 8. The number of transactions in each data stream is 100,000used to control the size of candidate tistAs 6 gets smaller, more

Note that in real-world a data stream can be unbounded. How-candidate itemsets are selected, which leads to a higher memory
ever, none of the algorithms will be affected by the total number consumption. On the other hand, when mining a time-varying data
of transactions, as long as the stream is sufficiently large. Our stream, a largef may cause TWIM'’s recall to decrease since there
tumbling windows are time-based, and the sizes of the windows are fewer candidates. We demonstrate the effect of différeal-
are user determined based on the arrival rate of a data stream. Wees on mining time-varying streams in Section 5.5.1. In this set of
show in Section 5.5.2 how the window sizes affect our mining re- experiments, since the testing data stream has a steady distribution,
sults. For ease of representation, we fix the transaction arrival ratethe size ofC should not affect TWIM.
for all data streams in this experiment, hence, the siz&gpfand We apply TWIM, SW, FDPM and LC to data streabh (as
Wp can be represented using transaction counts. in Section 5.2) with Zipf 1.2, and varg from 0.4% to 2%. The

. . results are shown in Table 3, which demonstrate that the effective-
5.2 Effectiveness over streams with stable ness of TWIM is comparable with FDPM whérvaries. TWIM’s

distribution recall is improved with highe¥. Although SW always has a better

In these experiments, we evaluate the effectiveness of the fourecall than TWIM and FDPM, its precision never reached.C
algorithms over four data streams with Zipf-like distributions [27]. has a low precision even whéris high 2%).
The lower the Zipf factor, the more evenly distributed are the data.

A stream with higher Zipf factor is more skewed. Since FDPM and §Table.r3\,'”$esu'tssf\?vr varylrllngpM(S Valufc
LC cannot deal with time-varying streams, to fairly compare ef- R [P R P R [P[R] P
fectiveness, the test data streams do not have distribution changes. 77 To621 T 0761 05710651 L | L | 042
The objective of these experiments is to test the performance of 08% 083 11085/08110801 1] 1062
TWIM over streams with stable distribution. 12% [094 | 1 1 0871093 1| 11074
The sizes of the two tumbling windows g#& ;| = 500 trans- 2% [[098] 1] 1 [099] 1 [1]|1]0.77

actions, andWp| = 1500 transactions. The threshold valugs
andé are set td).8% and0.5%, respectively. We discuss in Sec- : :

tions 5.3 and 5.5.1 how these thresholds affect the performance of5'4 Effectiveness over dynamic streams
these algorithms. The size of the sliding window used in SW is
the same as the size of oUry,, i.e, 500 transactions. The error
parameter and reliability parameter used in FDPM and LC are set
to §/10 and0.1, respectivel§. According to earlier experiments,
this setting will make FDPM and LC perform better [18, 26]. The
recall (R) and precision (P) results are shown in Table 2.

To evaluate the effectiveness of these three algorithms over
time-varying data streams, we conducted several experiments.
We created two data streamk and Dg using the same statis-
tics as in Section 4.1, with Zipf = 1.5 and 50,000 transactions in
each stream. Both of the streams start changing their distributions
every 10,000 transactions. The changdigfis steady and slow.
It takes 4000 transactions f@ps to complete its change. On the

Table 2. Recall and precision comparison other handD¢ has a faster and more noticeable change: only 800

Stream| Zipf [TWIM SW FDPM LC transactions to change. The sizes of the two tumbling windows
RIP|R]P R[PIR[P are |War| = 400 transactions, angWWp| = 1500 transactions.

Dy | 08 1068]1]071]074{069[1]1]052 Threshold values and# are0.8% and0.5%, respectively. The

Dy 12 11 087]11]1079]083]080| 1) 1]062 mining results after each distribution change fog and D¢ are

Ds 20 (093] 1(092|09 |09 |1]|1]O0.84 given in Tables 4 and 5.

Dy 2.8 1 1 1 1 1 1|11(0.88

Table 4. Mining results over Ds

These results demonstrate that, when the distribution of a data [change #][TWIM SW EDPM LC
stream is near uniform, FDPM and SW perform slightly better than R [P| R P R P [R] P
TWIM. However, when Zipf is higher, the performance of TWIM change 1J] 0.91] 1| 0.85] 0.87] 0.82] 0.93| 1 | 0.66
is comparable to FDPM and better than SW. When the stream is | change 2| 0.93| 1 | 0.86| 0.92] 0.73] 0.87| 1 | 0.51
very skewed, TWIM, SW and FDPM can all find the exact answer. change 3| 0.88| 1| 0.74| 0.84]| 069 0.77| 1 | 0.44
On the other hand, although LC always has a recalDof%, its re- change 4] 088 | 1 | 0.77] 093] 0.72] 068 | 1 | 0.46
sults are unreliable, especially for streams with lower Zipf. These [change5]j 0.92] 1] 083] 0.86] 060] 0.68] 1 | 0.35
results demonstrate that TWIM performs at least as well as exist- .
ing algorithms on streamsithout distribution change. Note that Table 5. Mining results over _De
although the recall of FDPM is claimed to approach 1 at infinity change # LW'iV'P R Slw = RFD|PMP R LCP
[26], this only holds when the stream has no distribution change change 1 005 [T [072 082 087|082 1| 058
“The error parameteris used to control error bound. Smaltezan reduce change 2 0.97| 1] 0711 0771 0.78| 081} 1 | 0.51

! . change 3| 0.93| 1 | 069 0.80| 0.65| 0.74| 1 | 0.38

errors anq increase the recall o_f FI_D_PM and LC. The memory consumption change 4 T TT074 07110671066 1T 1041
of FDPM is reciprocal of the reliability parameter [26]. change 5| 0.88 | T [0.71] 0.89 | 053 [064 [1| 032

These results show that TWIM and SW adapt to time-varying Table 8. Varying |Wa,| and |Wp| over Ds

data streams, while neither FDPM nor LC is sensitive to distri- [TWan] [[Wp[[chgl] chg2] chg3] chg4] chg5 |
bution changes. The more severe the changes, the worse is the 200 | 10001 093] 0881 080 001 | 095
performance of FDPM and LC. Moreover, FDPM and LC’s per- 400 | 1500 || 0.87 | 0.92 | 0.85 | 0.88 | 0.90
formance keeps worsening when more distribution changes occur 600 | 2000 || 0.82 | 0.88 | 0.79 | 0.74 | 0.82
in a stream, whereas TWIM and SW are not affected by the num- 800 | 3000 || 0.75 | 0.73 | 0.72 | 0.67 | 0.69
ber of changes. SW performs worse than TWIM in both cases. 1000 | 4000 || 0.68 | 0.72 | 0.66 | 0.64 | 0.61
Mining results of TWIM over the stream with faster and more .

noticeable distribution change®§) are better than the one that Table 9. Varying W] and [Wp| over Dg
changes slowerl}s), while SW seems more suitable to slower [Wal| | Wpe| |[chgl|chg2] chg3| chg4]| chg5
and mild changes. Note that as mentioned in Section 4.1, we may 200 | 1000 || 0.99 | 0.97 | 0.93 | 0.95 | 0.88
improve the mining results of TWIM for such slow-drifting data 400 | 1500 || 094 | 097 | 091] 1 | 0.87
streams by reducing the sizes1fy; andWp. We demonstrate ggg gggg 8'23 8'2421 8'?3 g'gg 8'3?
the effect of different window sizes in Section 5.5.2. 1000 12000 T 078 T 081 1 081 T 075 073

5.5 TWIM Parameter Settings

The major memory requirements for TWIM are the counters
5.5.1 Effect of threshold J y requl v

used for all items, frequent itemsets, and candidates. To reflect the

We test TWIM on the time-varying streani3s and Ds de- memory usage of our approach, we report the maximal number of
scribed in Section 4.4, and vatyfrom 0.4% to 1%. The sizes counters that we create for each experiment.
of Wi, andWp are400 transactions and500 transactions, re- Table 10 presents the memory usage of TWIM, FDPM, and
spectively. Threshold valué is fixed at1.2%. The results are LC for mining data setd);, D, D3 and D4. Given that each
presented in Tables 6 and 7. counter takes 4 bytes, the memory requirement for mining these
Table 6. Results for varying 6 over Ds data streams using TWIM is aroun_d 60KB. Acco_rding to this t:fl-
Change 7 7% ble, the memory consumed by SW is about four times of TWIM’s
04 06 08 1 memory usage. TWIM uses slightly more memory than FDPM,
R [Pl R P R [Pl R [P and LC has the lowest memory requirement.
gﬂzﬂgzg 8:32 i gjgg i 8:32 i 8:;2 i Table 10. Maximal counters for mining Dy - D4
change 3| 0931|0891 |085|1|068]|1 Stream Maximal Counters
change4[[098 1 [0941|088 1[075]1 TWIM | SW | FDPM | LC
change 5[089 1 [0871|074 1[069] 1 D 11892 [47606 | 8478 | 7129
D2 14533 | 59438 | 10128 | 8722
Table 7. Results for varying 0 over Dg Ds 18002 | 71040 | 13502 | 11346
Change # 0 (%) Dy 16115 | 56442 | 11764 | 10098
04 0.6 0.8 T
R TPl R TPl R [Pl R P Table 11 shows TWIM’'s memory usage for the experiments
change1][0.98] 1] 092 1 [089 1 | 0.83[1 in Section 5.5.1, demonstrating that its memory consumption is
change2|[1 | 1| 1 |1]092|1]087]|1 inversely correlated to threshofd and the maximum memory re-
change3[[093 1091108410771 quirement is around 228KB faD; and 191KB forDs.
change4f[1 [1[095[1[091[1[085[1 To evaluate the effect of window sizes on memory usage, we
change 5]/ 095] 1095109010831 present in Table 12 the maximum number of counters created for

experiments in Section 5.5.2.

We see that the performance of TWIM can be improved by de- ' The maximum memory requirements for minifizy and Ds
creasingd. However, as discussed in Section 4.2, a towalue are around 251KB and 225KB, respectively. We can see that larger
may result in higher memory consumption. The extreme case iSwindows sizes result in more counters to be used. Furthermore,
¢ = 0. In this case, all infrequent itemsets will be treated as can- the number of counters used for a stream with slow distribution
didates, and thus the total number of counters is exponential. changes is larger than the number of counters for a stream that

5.5.2 Varying window sizes changes fast.

To evaluate the effect of tumbling window sizes, we test TWIM 5.7 CPU time analysis
on D5 and Dg, and vary the size dii’; from 200 transactions to
1000 transactions, arid» from 1000 transactions to 4000 trans- Since TWIM is a window-based approach while neither FDPM
actions. Threshold value$and§ are0.8% and0.5%, respec- nor LC use windows, it is hard to fairly compare their CPU times.
tively. The experimental results are shown in Tables 8 and 9. SinceHowever, to demonstrate that TWIM is efficient for high-speed
the precision value is always 1, we only show the recall value. data streams, we conducted a set of experiments.

We notice that larger windows size may reduce TWIM'’s recall, By analyzing Algorithm 1, we can see that TWIM performs
since sudden distribution changes will be missed. On the otherthe largest amount of work whéi,, | and|Wp| tumble. Hence,
hand, as mentioned in Section 4.1, large windows can ensure highve tested the average run time of TWIM at each tumble point for

accuracy of the estimated supports for candidate itemsets. streamsD; to Dg. The average run time for minin; to De
are 3.3ms, 4.0ms, 2.5ms, 3.7ms, 5.3ms, and 5.9ms, respecitively.
5.6 Memory usage These results show that TWIM is an efficient algorithm suitable

for online streams. We also notice that streams with distribu-

Table 11. Maximal counters when 4 varies
Stream 0 (%)
0.4 06 08 1
Max Ctr.-Ds || 64432 47210 36778 | 32002
Max Ctr.-Dg || 51301 | 42676 | 35209 | 28123
Table 12. Maximum counters when |W,| and
|Wp| varies
W] | [We| max Ctr. -Ds | max Ctr. -Dg
200 | 1000 42398 39901
400 | 1500 50006 44872
600 | 2000 56020 51922
800 | 3000 59891 54646
1000 | 4000 65335 59043

tion changesDs and Dg) require slightly longer processing time,
since A7, andC are updated more frequently.

6.

mining frequent itemsets. Our approach has the ability to detect

Conclusion
In this paper, we propose a novel algorithm called TWIM for

(7]

(8]

El

(10]

(11]

[12]

(23]

(14]

Y. Chi, H. Wang, P. Yu, and R. Muntz. Moment: Maintaining closed
frequent itemsets over a stream sliding windowPhoc. 2004 IEEE
Int. Conf. on Data Miningpages 59-66, 2004.

Cormode and Muthukrishnan. What's hot and what'’s not: tracking
most frequent items dynamically. Rroc. 22nd ACM
SIGACT-SIGMOD-SIGART Symp. Principles of Database Systems
pages 296-306, 2003.

Demaine, Lopez-Ortiz, and Munro. Frequency estimation of internet
packet streams with limited space.Pnoc. 10th Annual European
Symposium on Algorithmpages 348-360, 2002.

M. Gaber, A. Zaslavsky, and S. Krishnaswamy. Mining data
streams: A reviewACM SIGMOD Record(2):18-26, 2005.

D. Gunopulos, R. Khardon, H. Mannila, S. Saluja, and R. Sharma.
Discovering all most specific sentencEM Trans. Database Sys.
(2):140-174, 2003.

M. Halatchev and L. Gruenwald. Estimating missing values in
related sensor data streamsPimc. ACM SIGMOD Int. Conf. on
Management of Datgpages 83-94, 2005.

G. Hulten, L. Spencer, and P. Domingos. Mining time-chaning data
streams. IrProc. 7th ACM SIGKDD Int. Conf. on Knowledge
Discovery and Data Miningpages 97—-106, 2001.

N. Jiang and L. Gruenwald. Research issues in data stream
association rule minindcACM SIGMOD Record(1):14-19, 2006.

changes in a data stream and update mining results in real-time[15] R.Jinand G. Aggrawal. Efficient decision tree constructions on

We use two tumbling windows to maintain current frequent item-
sets and predict distribution changes. A list of candidate itemset
is generated and updated during mining. The candidates are th
itemsets that have the potential to become frequent if distribution

S

J16]

changes. Every time the two tumbling windows move, we apply a [17]
set of heuristics to update the candidate list and maintain frequent
itemsets. Candidates that become frequent are moved to the fre-
quent itemset list, new candidates are added, and itemsets that n6.8]
longer have supports greater than threshold vélaes removed.

Unlike most existing algorithms that are false-positive oriented,
our approach produces only true frequent itemsets, and require
less memory. Experimental results demonstrate that TWIM has

191

promising performance on mining data streams with or without [20]
distribution changes.

We are currently investigating a number of issues, including

proving the complexity for finding théth frequent itemset in a
data stream, developing more heuristics for maintaining candidate

itemsets, designing a more sophisticated and more efficient count
ing system, and analyzing the relationship among thresholds, win-

dow sizes, and memory space for different applications.

7.
(1]

(2]

(3]

(4

(5]

6]

References

R. Agrawal and R. Srikant. Fast algorithms for mining association
rules. InProc. 20th Int. Conf. on Very Large Data Baspages
487-499, 1994.

B. Babock, S. Babu, M. Datar, R. Motiwani, and J. Widom. Models
and issues in data stream system®ioc. 21st ACM
SIGACT-SIGMOD-SIGART Symp. Principles of Database Systems
pages 1-16, 2002.

J. Chang and W. Lee. Finding recent frequent itemsets adaptively
over online data streams. Rroc. 9th ACM SIGKDD Int. Conf. on
Knowledge Discovery and Data Miningages 487—-492, 2003.

J. Chang and W. Lee. A sliding window method for finding recently
frequent itemsets over online data streadosirnal of Information
Science and Engineeringages 753-762, 2004.

M. Charikar, K. Chen, and M. Farach-Colton. Finding frequent
items in data streams. Proc. Int. Colloguium on Automata,
Languages, and Programmingages 693—-703, 2002.

J. Cheng, Y. Ke, and W. Ng. Maintaining frequent itemsets over
high-speed data streams.Rmoc. Pacific-Asia Conf. on Knowledge
Discovery and Data Mining PAKDpages 462—467, 2006.

[21]

[22]

(23]

[24]

[25]

(26]

(27]

streaming data. IRroc. 9th ACM SIGKDD Int. Conf. on Knowledge
Discovery and Data Miningpages 571-576, 2003.

R. Karp, C. Papadimitriou, and S. Shenker. A simple algorithm for
finding frequent elements in sets and ba®SM Trans. Database
Sys, pages 51-55, 2003.

D. Kifer, S. Ben-David, and J. Gehrke. Detecting change in data
streams. IrProc. 30th Int. Conf. on Very Large Data Baspages
180-191, 2004.

Manku and Motwani. Approximate frequency counts over data
streams. IrProc. 28th Int. Conf. on Very Large Data Baspages
346-357, 2002.

D. Cai et. al. Maids: Mining alarming incidents from data streams.
In Proc. ACM SIGMOD Int. Conf. on Management of Dgtages
919-920, 2004.

D. Carney et. al. Monitoring streams - a new class of data
management application. Froc. 28th Int. Conf. on Very Large
Data Basespages 215-226, 2002.

F. Angiulli et. al. On the complexity of inducing categorical and
quantitative association rulegheoretical Computer Sciengeages
217-249, 2004.

J. Wang et. al. Closet+: Searching for the best strategies for mining
frequent closed itemsets. Rroc. 9th ACM SIGKDD Int. Conf. on
Knowledge Discovery and Data Miningages 236-245, 2003.

L. G. Valiant. The complexity of enumeration and reliability
problems.SIAM Journal on Computing3):410-421, 1979.

H. Wang, W. Fan, P. S. Yu, and J. Han. Mining concept-drifting data
streams using ensemble classifiersPtoc. 9th ACM SIGKDD Int.
Conf. on Knowledge Discovery and Data Minjqmages 226—235,
2003.

L. Yang and M. Sanver. Mining short association rules with one
database scan. Proc. Int. Conf. on Information and Knowledge
Engineering 2004.

J. Yu, Z. Chong, H. Lu, and A. Zhou. False positive or false
negative: Mining frequent itemsets from high speed transactional
data streams. IRroc. 30th Int. Conf. on Very Large Data Bases
pages 204-215, 2004.

G. K. Zipf. Human behavior and the principle of least-effort
Addison-Wesley, 1949.

