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Abstract

Many applications store data items for a pre-determined,
finite length of time. Examples include sliding windows over
on-line data streams, where old data are dropped as the
window slides forward. Previous research on management
of data with finite lifetimes has emphasized on-line query
processing in main memory. In this paper, we address the
problem of indexing time-evolving data on disk for off-line
analysis. In order to reduce the I/O costs of index updates,
existing work partitions the data chronologically. This way,
only the oldest partition is examined for expirations, only
the youngest partition incurs insertions, and the remain-
ing partitions “in the middle” are not accessed. However,
this solution is based upon the assumption that the order
in which the data are inserted is equivalent to the expira-
tion order, which means that the lifetime of each data item
is the same. We motivate the need to break this assumption,
demonstrate that the existing solutions no longer apply, and
propose new index partitioning strategies that yield low up-
date costs and fast access times.

1 Introduction

A traditional database stores data items assumed to be
valid indefinitely, or at least until modified by a user or ap-
plication. However, many applications deal with data that
are valid for a pre-determined, finite length of time [19].
Data stream processing is one example, where sliding win-
dows are defined on the inputs in order to avoid memory
overflow and emphasize recently arrived data. For instance,
a weather monitoring application may track the average
temperature and humidity reported by various stations over
the last hour. This involves maintaining a one-hour sliding
window, wherein each data point has a lifetime of one hour
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before it expires.

Research on data stream management typically assumes
that sliding windows are stored in main memory for fast on-
line processing; e.g., [1, 2, 4, 12, 13, 15]. In contrast, this
paper studies the maintenance of time-evolving data that
may be spooled to disk for off-line analysis. We consider
applications that monitor data generated by one or more
sources, perform light-weightprocessing on-the-fly, and pe-
riodically append new data to a disk-based archive. The
archive is responsible for removing expired data and facili-
tating complex off-line queries that are too expensive to be
done on-line. Examples include network traffic analysis,
where the archive is mined by an Internet Service Provider
(ISP) in order to discover recent usage patterns and plan
changes in the network infrastructure [3]; transaction log-
ging, where recent point-of-sale purchase records or tele-
phone call logs are examined for customer behaviour anal-
ysis and fraud detection [6, 14]; and networks of sensors
that measure physical phenomena such as temperature and
humidity, where recent observations are used to discover
trends and make predictions [7].

As in traditional database applications, query perfor-
mance can be improved if appropriate indices are built.
However, maintaining a disk-based index over time-
evolving data is challenging because new data must be con-
tinually inserted and old data deleted. One way to reduce
the I/O complexity of index maintenance is to perform pe-
riodic batch-updates. Additionally, it is desirable to avoid
bringing the entire index into memory during every update.
This can be done by partitioning the data so as to localize
updates to a small number of disk pages. For example, if an
index over a sliding window is partitioned chronologically
[9, 20], then only the youngest partition incurs insertions,
while only the oldest partition needs to be checked for ex-
pirations (the remaining partitions “in the middle” are not
accessed).

Chronological partitioning is based upon the assumption
that the order in which data are inserted is equivalent to the
expiration order, which means that the lifetime of each data
item is the same. This assumption holds if the application
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Equal lifetimes Variable lifetimes
Memory FIFO queue [13] Calendar queue [13]

Disk Wave index [20]

Table 1. Classification of previous work on
maintenance of time-evolving data.

only maintains sliding windows, but we may also choose
to store (indexed) materialized results derived from one or
more base windows, such as those of a sliding window join
[12, 15]. If many queries over the archive compute the same
join, then materializing the join result removes the need for
each interested query to compute it from scratch1. Instead,
the index may be used by each interested query to efficiently
extract relevant data for further processing. However, a
newly arrived item may join with several items from the
other window(s), of which some have arrived recently and
others are about to expire. Given that a join result expires
when at least one of the base data items expires from its
window, the results of a join operation may have different
lifetimes [13, 16]. Consequently, the insertion order of the
results is different from their expiration order.

In addition to introducing variable lifetimes by way of
materialized results, sources may explicitly assign different
lifetimes to the data that they generate. For example, one
sensor may produce temperature measurements every ten
minutes (giving each value a lifetime of ten minutes before
being replaced with a new value), whereas another sensor
may report humidity values every fifteen minutes. Simi-
larly, various sources may be polled explicitly with different
frequencies. For instance, the humidity sensor may require
more energy to compute and/or transmit a new value than
the temperature sensor, and should therefore be polled less
often in order to save battery power [17].

As illustrated in Table 1, previous work on storing time-
evolving data may be classified according to two criteria:
main memory versus secondary storage, and equal versus
variable lifetimes of the data items. To the best of our
knowledge, this paper is the first to address the most chal-
lenging of the four scenarios: disk-based indexing of data
items having variable lifetimes. In the remainder of this pa-
per, Section 2 explains our assumptions and the limitations
of previous work, Section 3 presents our index partitioning
techniques, Section 4 experimentally shows the advantages
of our solutions in terms of index update and access times,
Section 5 compares the contributions of this paper with re-
lated work, and Section 6 concludes the paper with sugges-
tions for future research.

1Deciding which sub-expressions to materialize is an orthogonal prob-
lem that we do not pursue here; see, e.g., [2, 5] for possible solutions in
the context of data streams and sliding windows.

2 Preliminaries

The problem addressed in this paper concerns indexing
a time-evolving set of data items with associated lifetimes,
such that index lookups and periodic updates may be done
efficiently. We assume that the lifetime, and therefore the
expiration time, of each item is known, but the lifetimes of
various items may have different lengths, up to some pre-
determined upper bound. New data are continually gener-
ated by one or more sources and buffered in main mem-
ory between index updates. During an update, new items
which have arrived since the last update are inserted and
items whose lifetimes have expired must be deleted. This
involves bringing one or more pages into memory, updating
them, and writing them back to disk. Two access types must
be supported: probes (retrieval of items having a particular
search key value or range), and scans of the entire index.
Probes may be performed by queries that access a shared
materialized result and extract a relevant subset of the data
for further processing. Scans are performed by complex
queries that must examine the entire data set in order to up-
date their answers.

Index probes and scans may be done efficiently if the in-
dex is clustered on the search key. On the other hand, if the
index stores data whose insertion order is equivalent to the
expiration order, then chronological clustering leads to effi-
cient updates—insertions are appended to the new end and
deletions occur at the old end. However, the disadvantage of
chronological clustering is that records with the same search
key may be scattered across a very large number of disk
pages, causing index probes to incur a prohibitively high
number of disk I/Os.

In order to balance the access and update times, a sliding
window index has been proposed in [20] that chronologi-
cally divides the window into n equal partitions, each of
which is separately indexed and clustered by search key.
An example is shown in Figure 1, where a window of
size 16 minutes that is updated every 2 minutes is split
into four sub-indices: I1, I2, I3, and I4. Triangles indi-
cate directories—each associated with a single sub-index—
which could be B+-trees, R-trees, or any other data structure
as appropriate. Rectangles represent data records, which
are stored on disk. On the left, the window is partitioned
by insertion time. On the right, an equivalent partitioning is
shown by expiration time; the window size of 16 is added to
each item’s insertion time to determine the expiration time.
As illustrated, an update at time 18 inserts newly arrived tu-
ples between times 17 and 18 (which will expire between
times 33 and 34) into I1, at the same time deleting tuples
which have arrived between times one and 2 (or which have
expired between times 17 and 18). The advantage of this
approach is that only one sub-index is affected by any given
update; for instance, only I1 changes at times 18 and 20,
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Figure 1. Two equivalent illustrations of a partitioned sliding window index.

only I2 will change at times 22 and 24, and so on. The
tradeoff is that access times are slower because multiple
sub-indices are probed to obtain the answer.

A partitioned index similar to that in Figure 1 is inappro-
priate for disk-based storage of data with variable lifetimes.
First, suppose that we partition the index by insertion time,
as on the left of Figure 1. At time 18, only I1 is accessed
in order to insert new items, as before. However, all four
sub-indices need to be scanned in order to determine which
records have expired (it is no longer the case that only the
items inserted between times one and 2 expire at time 18).
This may require a large number of disk I/Os and cause un-
acceptably slow updates. Similarly, partitioning the index
according to deletion times, as in the bottom of Figure 1,
means that all the expired items at time 18 can be found in
I1, but there may be insertions into every sub-index (it is
not the case that all records inserted between times 17 and
18 will expire between times 33 and 34). Again, all the
sub-indices may need to be read into memory during index
updates.

3 Proposed Solution

As seen in the previous section, a partitioned index bal-
ances two requirements: clustering by search key for effi-
cient probing and by insertion (or expiration) time so that
updates are confined to a single sub-index. Disk-based
indexing of time-evolving data with variable lifetimes in-
volves three conflicting requirements: clustering by search
key for efficient probing, by insertion time for efficient in-
sertions, and by expiration time for efficient deletions. In
this section, we propose a solution, which we call doubly
partitioned index, that reconciles these three constraints.
The idea is to simultaneously partition the index on inser-
tion and expiration times.

3.1 Double Partitioning

A simple example of a doubly partitioned index (we will
present an improved variant shortly) is shown in Figure 2,
given that the lifetimes of all the data records are at most
16 minutes and that updates are performed every 2 minutes.
As before, each sub-index contains a directory on the search

Figure 2. Example of a doubly partitioned in-
dex, showing an update at time 18 (bottom).

key and stores data records on disk, clustered by search key.
However, the ranges of insertion and expiration times are
now chronologically divided into two partitions each, cre-
ating a total of four sub-indices. As illustrated, at time 16,
sub-index I1 stores data items inserted between times one
and 8 that will expire between times 17 and 24 (the other
three sub-indices may be described similarly). The update
illustrated on the bottom of Figure 2 takes place at time 18,
inserts new items into I1 and I2, and deletes expired items
from I1 and I3. Observe that I4 does not have to be ac-
cessed during this update, or during the next three updates
at times 20, 22, and 24. Then, the next four updates at times
26, 28, 30, and 32 will insert into I3 and I4, and delete from
I2 and I4 (I1 will not be accessed). In general, increasing
the number of partitions leads to more sub-indices not be-
ing accessed during updates, thereby decreasing the index
maintenance costs.

The flaw with chronological partitioning of the insertion
and expiration times is that the sub-indices may have widely
different sizes. Recall Figure 2 and note that at time 16, I2

stores items that arrived between times one and 8 and will
expire between times 25 and 32. That is, I2 is empty at this
time because there are no items whose lifetimes are larger
than 16. As a result, the other sub-indices are large and their
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Figure 3. Example of a round-robin doubly
partitioned index, showing an update at time
18 (bottom).

update costs may dominate the overall maintenance cost.
We address this problem by adjusting the intervals spanned
by each sub-index. The improved technique, which we call
round-robin partitioning, is illustrated in Figure 3 for the
same parameters as in Figure 2 (items have lifetimes of up
to 16 minutes and index updates are done every two min-
utes). The two rows of intervals underneath each sub-index
correspond to the insertion time and expiration time ranges,
respectively. As can be seen, rather than dividing the in-
sertion and expiration time ranges chronologically, round-
robin partitioning distributes updates in a round-robin fash-
ion such that no sub-index experiences two consecutive in-
sertions or expirations. For instance, the update illustrated
on the bottom of Figure 3 takes place at time 18, inserts
new tuples into I1 and I2 and expires tuples from I1 and I3.
The next update at time 20 inserts new tuples into I3 and
I4, and deletes old tuples from I2 and I4. The fact that con-
secutive updates are spread out over different sub-indices
ensures that the sub-indices have similar sizes. As we will
experimentally show in Section 4, this property translates to
more efficient index updates.

Doubly partitioned indices are compatible with two
bulk-update strategies. In what we call Rebuild, updated
sub-indices are completely rebuilt and reclustered, such that
all the records with the same search key are stored con-
tiguously in one dynamically-sized bucket (spanning one
or more contiguous disk pages). In what we call NoRe-
build, each sub-index allocates multiple fixed-size buckets
for each search key (usually not contiguously). Therefore,
updates may cause additional buckets to be created or exist-
ing buckets to be deleted, if empty.

Let n be the number of sub-indices, G be the number

Algorithm 1 Round-robin doubly partitioned index

Initial stage at time τ

1 for i = 0 to S
rG
− 1

2 for j = 0 to G− 1
3 IjE+1 through I(j+1)E are assigned

an insertion time range of
τ − S + (iG + j)r + 1 to τ − S + (iG + j + 1)r

4 for i = 0 to S
rE
− 1

5 for j = 0 to E − 1
6 Ij+1, IE+j+1, . . . , I(G−1)E+j+1 are assigned

an expiration time range of
τ + S + (iG + j)r + 1 to τ + S + (iG + j + 1)r

7 Insert initial result tuples to appropriate sub-indices

Periodic update stage at time τ + jr, j = 1, 2, . . .

1 for each sub-index with expiration time range of
τ + (j − 1)r + 1 to τ + jr

2 Replace above range with
τ + (j − 1)r + 1 + S to τ + jr + S

3 Delete tuples with expiration times of
τ + (j − 1)r + 1 to τ + jr

4 for each sub-index with insertion time range of
τ + (j − 1)r + 1− S to τ + jr − S

5 Replace above range with
τ + (j − 1)r + 1 to τ + jr

6 Insert new result tuples to appropriate sub-indices

of partitions of generation (insertion) times, and E be the
number of partitions of expiration times (n = G × E)2.
Furthermore, let S be the upper bound on the lifetimes of
data items and r be the time interval between two consec-
utive index updates. Algorithm 1 implements the round-
robin doubly partitioned index and contains two stages: the
initial stage and the periodic update stage. We start with a
set of data that are assumed to be valid at some time τ . In
the initial stage, we make a partitioning of the insertion and
expiration times, insert the data records into the appropriate
sub-indices, and build the corresponding sub-index directo-
ries. In the update stage, we periodically access some of the
sub-indices in order to adjust the insertion and expiration
times that they span, insert and/or delete tuples in the appro-
priate sub-indices according to the insertion and expiration
times, and update the corresponding sub-index directories.
A detailed implementation of insertions and deletions is not
shown in the algorithm as this depends on the clustering
technique (Rebuild versus NoRebuild). Similarly, specific
details concerning directory updates are omitted since the
algorithm is compatible with a wide range of directory data
structures.

2For example, in Figures 2 and 3, G = 2, E = 2, and n = G×E = 4.
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3.2 Cost Analysis

The number of sub-indices accessed during each update
is G + E − 1. To choose optimal values for G and E with
respect to the number of sub-index accesses, we minimize
G + E given that G× E = n and G, E ≥ 2, which yields
G=E=

√
n. For simplicity, we assume that n is a perfect

square.
Increasing n increases the space requirements (each sub-

index requires its own directory on the search key) and leads
to slower query times because index scans and probes need
to access all n sub-indices. Additionally, more individ-
ual sub-indices are accessed during updates as n increases.
However, the sub-indices are faster to update because they
are smaller, and the fraction of the data that need to be up-
dated decreases. For instance, setting G = E = 2 (as in
Figures 2 and 3) means that three of the four sub-indices
are scanned during updates, but increasing G and E to four
means that only seven of sixteen sub-indices are accessed.
As will be shown in Section 4, increasing n initially de-
creases update times, but eventually a breakpoint is reached
where the individual sub-indices are small and making any
further splits is not helpful (note that the breakpoint value
of n is expected to be higher for larger data sets).

The other part of the maintenance and query costs is
contributed by the operations done after a sub-index is ac-
cessed. Fixing G and E, Rebuild should be faster to query
(only one bucket is accessed to find all records with a given
search key), but slower to update (especially as the data
size grows, because rebuilding large indices may be expen-
sive). Access into NoRebuild is slower because records with
the same search key may be scattered across many buck-
ets, but NoRebuild should be faster to update because in-
dividual updates are less costly than rebuilding an entire
sub-index. Furthermore the total size of NoRebuild may
be larger than Rebuild because some pre-allocated buckets
may not be full.

3.3 Handling Fluctuating Stream Condi-
tions

Round-robin partitioning creates sub-indices with sim-
ilar sizes if the amount of new data arriving between up-
dates does not change. However, in the worst case, the data
rate may alternate between slow and bursty periods, causing
the round-robin allocation policy to create some sub-indices
that are very large and some that are very small. The al-
gorithmic solution in this case is to randomize the update
allocation policy. In practice, though, we expect random
fluctuations in the data rate. Furthermore, the change in
the data rate may be persistent for several index updates, or
short-lived between two consecutive updates. In both cases,
we expect round-robin partitioning to adapt to the new con-

ditions. Given a persistent change, round-robin update al-
location ensures that updates are spread out across the sub-
indices. Thus, if the number of new data items increases (or
decreases), then each sub-index will in turn get larger (or
smaller), until all the sub-indices have similar sizes again.
Using chronological partitioning, the same sub-index would
receive a number of consecutive updates and become either
much larger or much smaller than the others. If a change
is short-lived, it is also better to begin with equal sub-index
sizes. Otherwise, a burst of new data could be inserted into
a large sub-index, which would become even larger.

4 Experiments

This section contains an overview of our implementa-
tion (Section 4.1) and experimental results. Sections 4.2
through 4.4 present results of experiments with a small data
set of approximately 500 Megabytes (this corresponds to
data generated over a time of 500000 time units, with an av-
erage of one record generated per time unit). In Section 4.5,
we investigate index performance over larger data sets with
sizes of up to 5 Gigabytes (i.e., data produced over a time
of 5 million time units, with an average of one record gen-
erated per time unit). Our experimental findings are sum-
marized in Section 4.6.

4.1 Implementation Details

We implemented the doubly partitioned indices (Rebuild
and NoRebuild) using Sun Microsystems JDK 1.4.1, and
tested them on a Linux PC with a Pentium IV 2.4Ghz
processor and 2 Gigabytes of RAM. For comparison, we
also implemented two chronologically-partitioned indexing
strategies from [20] (recall Figure 1): REINDEX, which is
similar to Rebuild in that it reclusters sub-indices after up-
dates, and DEL, which is similar to NoRebuild as it main-
tains multiple fixed-size buckets per key. Both REINDEX
and DEL may be partitioned by insertion time (abbreviated
R-ins or D-ins, respectively) or by expiration time (abbre-
viated R-exp or D-exp). We will refer to the indexing tech-
niques by their abbreviations, followed by the value of n

(number of sub-indices) or values of G and E (number of
partitions of insertion and expiration times, respectively),
e.g., R-ins4 or Rebuild2x2.

Each test consists of an initial building stage and an up-
date stage. In the building stage, we populate the index us-
ing records with randomly generated lifetimes and search
key values (the latter are generated from a uniform or Power
Law distribution). The total data size in the initial stage
varies from 500 Megabyte to five Gigabytes. Next, we gen-
erate periodic updates using the same lifetime and search
key distribution, and insert them into the index, at the same
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Figure 4. Structure of an individual sub-
index.

time removing expired tuples. After each update, we per-
form an index probe (retrieving tuples having a randomly
chosen search key value) and an index scan, and report the
average processing time for each operation. We perform
36 updates until the amount of new data generated equals
the initial data size. This corresponds to an index update
frequency of roughly 14000 to 140000 time units, with a
relative data rate of one record per time unit.

Each indexing technique consists of an array of sub-
indices, with each sub-index containing a main-memory di-
rectory (implemented as a linked list sorted by search key)
and a random access file storing the results. The file is a
collection of buckets storing tuples with the same search
key, sorted by expiration time. Individual data records are
1000 bytes long and contain an integer search key, an inte-
ger expiration timestamp, as well as a string that abstractly
represents the contents of the data. The structure of an in-
dividual sub-index in NoRebuild and DEL is illustrated in
Figure 4, showing the directory with offset pointers to lo-
cations of buckets in the file (note that there may be more
than one bucket per search key in case of overflow). We also
store how many records are in each bucket as not all buck-
ets are full. Rebuild and REINDEX are structured similarly,
except that one variable-size bucket is maintained for each
search key.

A number of simplifications have been made to focus
the experiments on the relative performance of doubly par-
titioned indices. First, bucket sizes are not adjusted upon
overflow; this issue was studied in [8] in the context of
skewed distributionsand is orthogonal to this work. Instead,
we implemented a simple strategy that allocates another
bucket of the same size for the given key. We also ignore the
fact that empty buckets should be garbage-collected period-
ically by compacting the file, because this operation adds a

Figure 5. Relative performance of Rebuild4x4,
Rebuild2x8, and Rebuild8x2.

constant amount of time to the maintenance costs of each in-
dexing technique. Second, the number of search key values
is fixed at 100 in order to bound the length of the directory.
Otherwise, query times may be dominated by the time it
takes to scan a long list; handling a larger set of key values
can be done with a more efficient directory, such as a B+-
tree, and is orthogonal to this work. Third, the number of
tuples per bucket in NoRebuild and DEL is based upon the
initial distribution of key values in the building stage, such
that each sub-index contains an average of 2.5 buckets per
search key. We found this value to be a good compromise
between few large buckets per key (which wastes space be-
cause many newly allocated buckets never fill up) and too
many buckets (which results in slower query times).

4.2 Optimal Values for G and E

We begin by validating our results from Section 3.2 re-
garding the optimal assignment of values for G and E

given a value for n. Figure 5 shows the normalized update,
probe, and scan times for Rebuild4x4, Rebuild2x8, and Re-
build8x2, given a uniform distribution of search key values;
other index types and a Power Law distribution of key val-
ues give similar results. Rebuild4x4 performs best in terms
of scan and probe times, though the difference is negligible
because all three techniques probe the same number of sub-
indices to obtain query results and all the sub-indices have
roughly equal sizes. The average update time of Rebuild4x4
is approximately 20 percent lower than the other techniques
because the number of sub-indices updated by Rebuild4x4
is 7, versus 9 for the other two strategies. Notably, Re-
build8x2 can be updated faster than Rebuild2x8 because
tuples inside buckets are ordered by expiration time, and
therefore deletions are simple (tuples are removed from the
front of the bucket) but insertions are more complex (whole
bucket must be scanned). Since the number of insertions is
determined by the number of partitions in the lower level,
the technique with a smaller value of E wins.
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Figure 6. Update times of index partitioning
techniques given a small window size.

4.3 Performance of Doubly Partitioned
Indices

We now compare our doubly partitioned indices with the
existing algorithms. As per the previous experiment, we
test our techniques only with the following splits: 2x2, 3x3,
4x4, and 5x5. We omit results for R-exp and D-exp be-
cause these always incur longer update times than R-ins
and D-ins. As before, this is because insertions are more
expensive than deletions if buckets are sorted by expiration
time, therefore splitting an index by expiration time forces
insertions into every sub-index. Moreover, we only report
results with search keys generated from a uniform distribu-
tion for this and all remaining experiments. Results using
a Power Law distribution (with the power law coefficient
equal to unity) produce similar relative results, except that
NoRebuild and DEL are slower to update due to their simple
bucket re-allocation mechanism.

Figures 6, 7, and 8 show the average update, probe,
and scan times, respectively, as functions of n (number of
sub-indices). Figure 6 additionally shows the update times
of doubly partitioned indices with chronological partition-
ing (denoted by chr) in order to single out the benefits of
round-robin partitioning. Even chronological partitioning
outperforms the existing strategies by a factor of two as n

grows, with round-robin partitioning additionally improv-
ing the update times by ten to 20 percent. As explained in
Section 3.2, NoRebuild is faster to update than Rebuild, but
is slower to probe and scan.

The update overhead of Rebuild relative to NoRebuild
is roughly five percent for n < 9 and decreases to un-
der two percent for large n. The relative savings in index
probe times of Rebuild are less than one percent. This is be-
cause we use a relatively small data size in this experiment
(roughly 500 Megabytes), meaning that the individual sub-
indices are small and can be rebuilt quickly. Additionally,
all the buckets with a particular search key may be found
with a small number of disk accesses, even if the buckets

Figure 7. Probe times of index partitioning
techniques given a small window size.

Figure 8. Scan times of index partitioning
techniques given a small window size.

are scattered across the file. Hence, probing NoRebuild is
only slightly more expensive than probing Rebuild, where
records with the same search keys are found in the same
bucket. In general, Rebuild and NoRebuild perform probes
slightly faster than R-ins and D-ins because the sub-indices
in our techniques have similar sizes, and therefore we do
not encounter “bad cases” where probing one or more large
sub-indices inflates the access cost.

As n increases, the access times grow because more sub-
indices must be probed separately, whereas update times de-
crease initially, but begin growing for n ≥ 25 (or n ≥ 9 for
R-ins and D-ins). As mentioned in Section 3.2, this is due
to two factors influencing the update costs: as n increases,
the amount of data to be updated decreases, but the num-
ber of individual sub-index accesses increases. The latter
is the reason why the update costs of R-ins and D-ins start
increasing for smaller values of n than those for our dou-
bly partitioned techniques: the existing techniques access
all n sub-indices during updates, whereas our techniques
only access G + E − 1 = 2

√
n− 1 sub-indices.

Given a fixed value of n, Rebuild and R-ins both have
the lowest space requirements, followed by NoRebuild and
D-ins. NoRebuild and D-ins incur the overhead of pre-
allocating buckets which may never fill up (the exact space
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penalty depends on the bucket allocation strategy, which is
orthogonal to this work). As n increases, all techniques re-
quire more space in order to store sub-index directories.

To measure the overhead associated with our indexing
techniques, we also tested chronological and round-robin
partitioning without indices. Update times were down by
approximately 20 percent because index directories did not
have to be updated and files were not reclustered. How-
ever, probes and scans both required a sequential scan of
the data, and took approximately the same amount of time
as index scans in Figure 8, namely on the order of 600 sec-
onds. Thus, our indexing techniques incur modest update
overhead, but allow probe times that are two orders of mag-
nitude faster than sequential scan.

4.4 Fluctuating Stream Conditions

In this experiment, the data rate varies randomly by a
factor of up to four. We set the total amount of data items
generated to be approximately the same as in the previous
experiment in order to enable a head-to-head comparison.
The average access times did not exhibit any interesting
changes aside from being slower by several percent, there-
fore we focus on the update times, as illustrated in Figure 9
for selected techniques (R and NoR denote Rebuild and
NoRebuild, respectively). The darkened portion of each bar
corresponds to the increase in update time caused by the
fluctuating data rate.

Doubly partitioned indices are more adaptable to fluc-
tuating data rates than R-ins and D-ins. NoRebuild and
Rebuild are more significantly affected by fluctuations for
larger values of n, whereas R-ins and D-ins exhibit the worst
performance for small values of n. This can be explained as
follows. Rebuild and NoRebuild use round-robin partition-
ing, meaning that updates are scattered across sub-indices,
therefore a large value of n means that it takes longer for
the new data rate to take effect in all the sub-indices. On
the other hand, R-ins and D-ins use chronological partition-
ing, therefore a large value of n means that the sub-indices
have shorter time spans and therefore bursty updates spread
out faster across the sub-indices. Finally, Rebuild and R-ins
are more resilient to fluctuations than NoRebuild and D-ins
because the latter two use a simple (non-adaptive) bucket
allocation technique.

4.5 Scaling up to Large Index Sizes

This test investigates the behaviour of our techniques
when indexing large amounts of data (five Gigabytes). The
average update, probe, and scan times as functions of n are
shown in Figures 10, 11, and 12, respectively. Doubly par-
titioned indices are now up to three times as fast to update
as the existing techniques. Additionally, the gap between

Figure 9. Effect of data rate fluctuations on
index update performance.

the update and query times of Rebuild versus NoRebuild is
now wider. Rebuild is two to three percent faster to probe,
but between five (for n = 25) and nine (for n = 4) percent
slower to update; the corresponding percentages from Fig-
ure 7 are less than one percent and roughly three percent,
respectively. This is the expected outcome of indexing a
large data set: Rebuild becomes slower to update because
it must recluster larger sub-indices, whereas NoRebuild be-
comes slower to probe because there are more result tuples
with the same search key, spread over multiple buckets and
possibly multiple disk pages.

Another difference between Figures 10 and 6 is the be-
haviour of update times as n grows. In Figure 6, there is a
turning point (at n = 16 for NoRebuild and Rebuild) after
which update times do not decrease. This is not the case
in Figure 10, where update times continue to drop for all
tested values of n. This is because the window size, and
hence individual sub-index sizes, are larger, therefore the
drop in performance caused by making the sub-indices too
small is not an issue for n ≤ 25.

4.6 Lessons Learned

We make the following recommendations regarding the
best index partitioning strategy. The guidelines depend on
the data size and the expected number of queries to be exe-
cuted over the archive between updates.

• For a small window size and small number of queries,
NoRebuild4x4 is a good choice as it incurs low update
times.

• For a small window size and large number of queries,
Rebuild2x2 works best because its probe and scan
times are low. The probing times of R-ins1, and R-
ins2 are slightly lower than those of Rebuild2x2, but
updating R-ins is slower.
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Figure 10. Update times of index partitioning
techniques given a large data set.

Figure 11. Probe times of index partitioning
techniques given a large data set.

• For a large window size and small number of queries,
we suggest using NoRebuild, but with a smaller value
of n than recommended for small window sizes to en-
sure that probing times are not excessively high (e.g.,
NoRebuild3x3).

• For a large window size and large number of queries,
Rebuild becomes expensive to update, therefore we
recommend Rebuild2x2 or Rebuild3x3 only if fast
probing times are crucial. Otherwise, NoRebuild2x2
is a better (more balanced) choice.

5 Comparison with Related Work

This work is closely related to indexing time-evolving
and spatio-temporal data, data stream processing, and ana-
lyzing the expiration order of queries over sliding windows.
We summarize the differences between our contributions
and the related work below.

Previous work on indexing sliding windows in secondary
storage partitions the data by arrival time [20], which, as we
have shown, is not suitable for data that do not expire in

Figure 12. Scan times of index partitioning
techniques given a large data set.

order of arrival, i.e., data with variable lifetimes. There has
also been previous work on storing large sliding windows
on disk and avoiding deletions altogether by materializing
multiple append-only prefixes of the window [10]. Again,
the underlying assumption in [10] is that the lifetimes of
all the data items are equal to the window length, thereby
making it inappropriate in the context of date items with
variable lifetimes.

The expiration patterns of the results of sliding window
queries were first analyzed in our previous work on update-
pattern-aware query processing [13]. However, our previ-
ous work assumed that all the data fit in main memory and
that intermediate results are partitioned by expiration time.
This is sufficient in the main-memory scenario because the
goal is to make expirations more efficient (by not having to
scan the entire result); insertions may be scattered across the
entire result because of the luxury of random access in main
memory. In this paper, the fact that the data are stored on
disk means that both insertions and expirations must be lo-
calized to a small number of sub-indices in order to prevent
the entire index from being brought into main memory dur-
ing each update. Consequently, a doubly partitioned index
is more appropriate.

In Section 4.6, our recommendations regarding the best
index partitioning strategy depend upon the number of
queries executed between index updates. Given that the
query workload may fluctuate over time, it may be advan-
tageous to switch to a different indexing technique at some
point. This problem is similar to plan migration in the con-
text of sliding window queries that store state [22]. Two
possible solutions are either stopping the old plan, migrat-
ing the state, and starting the new plan, or running both
plans in parallel and discarding the old plan when all the
windows roll over. Both strategies are compatible with our
indices in that we can migrate from one index type to an-
other either by discarding the old index and building a new
index, or maintaining both indices in parallel until the old
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index gradually empties out.
In general, maintaining time-evolving data with finite

lifetimes is related to spatio-temporal interval indexing (see,
e.g., [18] for a survey). The important difference in our
work is that we do not explicitly index the actual (insertion
or expiration time) intervals, but rather we index individual
records by their search keys. It is possible to maintain an
interval index over the time intervals spanned by individ-
ual sub-indices (see, e.g., [21]), in which case looking up
sub-indices which are affected by a given update could be
faster. However, we did not need to employ this optimiza-
tion in this work because the number of sub-indices we were
dealing with was relatively small.

6 Conclusions

In this paper, we identified and solved an open problem
in the context of maintenance of time-evolving data: index-
ing data with variable lifetimes in secondary storage. The
insight behind our solution was to simultaneously partition
the data by insertion and expiration times in order to ensure
fast bulk-updates. Experimental results showed significant
improvements in index update times as compared to pre-
vious work on sliding window indices, especially for large
data sets. Our solutions are applicable in a wide range of ap-
plications that perform complex off-line mining of stream-
ing data.

We are interested in two directions for future research.
First, we want to study the issues and tradeoffs involved in
on-line migration from one type of doubly partitioned in-
dex to another, e.g., adjusting the number of sub-indices or
changing the clustering method from Rebuild to NoRebuild.
Second, we intend to address issues of update consistency
due to making changes in-place or replacing an entire sub-
index with a copy on which updates have been made. In
particular, we plan to extend our recent work on concur-
rency control in sliding window queries [11] to cover the
case of indexing data with variable lifetimes.
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