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ABSTRACT

A defining characteristic of continuous queries over on-line
data streams, possibly bounded by sliding windows, is the
potentially infinite and time-evolving nature of their inputs
and outputs. New items continually arrive on the input
streams and new results are continually produced. Addi-
tionally, inputs expire by falling out of range of their slid-
ing windows and results expire when they cease to satisfy
the query. This impacts continuous query processing in two
ways. First, data stream systems allow tables to be queried
alongside data streams, but in terms of query semantics, it is
not clear how updates of tables are different from insertions
and deletions caused by the movement of the sliding win-
dows. Second, many interesting queries need to store state,
which must be kept up-to-date as time goes on. Therefore,
query processing efficiency depends highly on the amount of
overhead involved in state maintenance.

In this paper, we show that the above issues can be solved
by understanding the update patterns of continuous queries
and exploiting them during query processing. We propose a
classification that defines four types of update characteris-
tics. Using our classification, we present a definition of con-
tinuous query semantics that clearly states the role of rela-
tions. We then propose the notion of update-pattern-aware
query processing, where physical implementations of query
operators, including the data structures used for storing in-
termediate state, vary depending on the update patterns of
their inputs and outputs. When tested on IP traffic logs,
our update-pattern-aware query plans routinely outperform
the existing techniques by an order of magnitude.

1. INTRODUCTION

On-line stream processing has recently become a popu-
lar data management problem, driven by emerging appli-
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cations such as sensor networks, Internet traffic analysis,
Web-based financial tickers, and transaction log analysis. A
number of recent projects aim at designing a data stream
management system (DSMS) capable of executing continu-
ous queries that run over a period of time and incrementally
produce new answers as new data arrive.

Due to the potentially infinite nature of data streams,
many queries cannot be computed in finite memory [2]. A
general solution for bounding the memory requirements of
continuous queries is to define sliding windows on the in-
coming streams. At any time, a time-based sliding window
of size T retains only those items which have arrived in the
last T' time units, whereas a count-based window of size N
retains the N most recent items. There are other ways of
bounding the memory requirements of continuous queries—
punctuations [22] and k-constraints [7] are two examples—
but they involve making assumptions about the nature of
the data arriving on the stream.

An important characteristic of continuous queries is that
their inputs and outputs evolve over time. New answers
are produced in response to the arrival of new data and
older data expire as the windows slide forward. Further-
more, some previously reported answers may cease to sat-
isfy the query at some point. We define an update pattern
of a continuous query as the order in which its results are
produced and deleted over time. The purpose of this paper
is to introduce the notion of update-pattern-aware modeling
and processing of continuous queries. In particular, we clas-
sify continuous queries based on their update patterns and
use this classification to a) provide a precise definition of the
semantics of continuous queries over streams, windows, and
relations, and b) introduce update-pattern-aware query pro-
cessing strategies that outperform the existing approaches.

Previous work on update patterns of queries over streams
has only distinguished between monotonic and non-monotonic
queries, with the conclusion that only monotonic queries are
feasible over infinite streams [16, 21]. Let Q(7) be the an-
swer of a continuous query ) at time 7. @ is monotonic if
Q(7) C Q(7+e¢) for all 7 and all € > 0. The update patterns
of monotonic queries are trivial to define because no result is
ever deleted from the answer set. Hence, this classification
is not sufficiently precise as it fails to classify non-monotonic
queries according to the pattern of deletions from their an-
swer set. This is a significant omission as most non-trivial
continuous queries are non-monotonic because they require
windowing when dealing with infinite streams. To see this,
consider the following generally accepted definition of con-
tinuous query semantics [11, 15].
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Figure 1: Example of a continuous query plan com-
puting a join of two streams.

DEFINITION 1. At any time 7, Q(7) must be equal to the
output of a corresponding one-time relational query whose
inputs are the current states of the streams, sliding windows,
and relations referenced in Q.

For now, assume that incoming tuples are processed imme-
diately and in order of arrival. According to Definition 1,
all queries over sliding windows are non-monotonic because
their results expire as the windows slide forward.

To motivate the need for a more detailed classification of
the update patterns of continuous queries, note that Defini-
tion 1 is imprecise because it does not distinguish between
the time-evolving state of the data streams versus relational
tables. Existing research either disallows relations in contin-
uous query plans (e.g., [4]), implicitly assumes that relations
are static, at least throughout the lifetime of the query (e.g.,
[1, 11, 17]), or allows arbitrary updates of relations [18]. If
updates of tables are allowed, one would intuitively think
that they are semantically different from updates of input
streams caused by the movement of the sliding windows.

Another issue that depends on the knowledge of update
patterns is the maintenance of operator state. Consider the
plan in Figure 1 for computing a join of two streams and
materializing the result. New tuples are processed by the
corresponding selection operators and surviving tuples are
inserted into the state of the join operator. For each arrival
in one of the two state buffers, the join operator probes
the other buffer and produces new results, which are then
inserted into the materialized result. If the input streams
are bounded by sliding windows, then the intermediate join
state must be kept up-to-date to ensure that old tuples do
not produce any new join results. Similarly, the materialized
output must conform to Definition 1, which is to say that
expired tuples must continually be deleted as the windows
slide forward. Clearly, updating (sub)results by sequentially
scanning the state buffers is exceedingly inefficient, therefore
we would like to know the order in which tuples arrive and
expire so that suitable data structures may be designed to
minimize the state maintenance overhead.

The three contributions of this work consist of the clas-
sification of update patterns of continuous queries, and two
applications of this classification: definition of precise query
semantics, and introduction of update-pattern-aware query
processing techniques. In particular:

e We present a classification of update patterns of con-
tinuous queries that forms the basis of update-pattern-
aware query processing. Our classification divides non-
monotonic queries into three types to highlight the dif-
ferences in their expiration patterns.

e Using this classification, we give a precise definition of
continuous query semantics that considers the update
patterns of relations and streams separately.

o We develop update-pattern-aware query plans, where
each branch in the plan is annotated with the up-
date patterns of the input flowing on it, and phys-
ical operator implementations vary according to the
nature of their inputs. In particular, operators use
update-pattern-aware data structures for intermediate
state maintenance. When tested on IP traffic logs, our
update-pattern-aware query plans significantly outper-
form the existing data stream processing techniques.

In the remainder of this paper, Section 2 discusses related
work in continuous query processing, Section 3 presents our
classification of update patterns of continuous queries, Sec-
tion 4 uses the classification to define continuous query se-
mantics, Section 5 develops update-pattern-aware query pro-
cessing strategies, Section 6 presents our experimental re-
sults, and Section 7 concludes the paper with suggestions
for future work.

2. PREVIOUS WORK IN CONTINUOUS
QUERY PROCESSING

We begin by reviewing related work in continuous query
processing. First, we make the following assumptions.

e A data stream is an append-only sequence of relational
tuples with the same schema.

e All sliding windows are assumed to be time-based. We
will comment on count-based windows in Section 7.

e Upon arrival at the system, each tuple is assigned a
nondecreasing timestamp ts. This allows us to ignore
communication delays and out-of-order arrival, which
were addressed in [1, 20].

e Each new tuple is processed immediately by all the op-
erators in the query before the next tuple is processed.
Consequently, results are produced in timestamp or-
der. More advanced scheduling strategies have been
proposed in [5, 9, 13] and are orthogonal to this work.

2.1 Continuous Query Operators

The main difference between standard relational opera-
tors and continuous query operators is that the latter must
incrementally produce new answers and may need to deal
with expiring tuples from sliding windows. The operator
implementations are presented in this section; more details
may be found in, e.g., [10, 11, 14, 15, 23].

Projection, selection, and union are unary operators
that process new tuples on-the-fly, either by discarding un-
wanted attributes (projection), dropping tuples that do not
satisfy the selection condition, or propagating the inputs up
the query plan (union). These operators are stateless and do
not have to be modified to work over sliding windows. Note
that only non-blocking merge union is allowed to ensure that
output is produced in arrival order [16].

Join and intersection are binary operators that store
both of their inputs. Each new arrival is inserted into its
state buffer and triggers the probing of the other input’s
state buffer to find matching results. New results are then
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Figure 2: Behaviour of the duplicate elimination op-
erator over a sliding window.

appended to the output stream. The state of both inputs
must be maintained so that expired tuples are not used dur-
ing the probing step to produce any new results. However,
expiration can be done periodically (lazily), as long as ex-
pired tuples can be identified and skipped during processing.
The tradeoff is that memory usage increases because we are
temporarily storing expired tuples.

Duplicate elimination over a sliding window stores both
its input and its current output. At all times, the output
must contain exactly one tuple with each distinct value v
present in the input. When a new tuple arrives, it is in-
serted into the input buffer, and matched against the stored
output. If the new tuple is not a duplicate, it is added to
the output state and appended to the output stream. When
a result tuple with value v expires from the output state,
we take immediate action as follows. The input buffer is
scanned to determine if there are any other tuples with value
v that have not expired (as in the window join, the input
buffer can be maintained lazily). If so, one of these tuples,
say the youngest, is inserted into the output state and ap-
pended to the output stream. An example is illustrated in
Figure 2. When the result tuple with value x expires from
the output, it is replaced with another tuple having value x
that has not yet expired.

Group-by incrementally updates the value of a given ag-
gregate for each group; we do not consider aggregation as
a separate operator as it can be represented as group-by
with a single group. For each new input, we add it to the
state buffer, determine which group it belongs to, and re-
turn an updated result for this group. The new result is
understood to replace a previously reported result for this
group. Also, for each tuple that expires from the input state,
we decrement the aggregate value of the appropriate group
and return a new result for this group on the output stream.
The input must be maintained eagerly so that the returned
aggregate values are up-to-date.

Negation stores its left and right inputs (call them Wi
and Wo, respectively) along with multiplicities of all the
distinct values occurring in each input. Let v1 and vz be the
number of tuples with value v in W7 and Wh, respectively.
For each distinct value v present in Wi, the output of the
negation operator consists of v3 tuples from Wi such that

1)3:{’0171)2 if v1 > vo (1)
0 otherwise.

A new arrival on W5 with value v is inserted into its state
buffer and the corresponding counter (v1) is incremented. If
v1 > v2, the new tuple is appended to the output stream.
Expiration from W; is handled (eagerly) by removing the
old tuple from the W; state and decrementing v;.

An arrival on Wy with value v is inserted into its state
buffer and increments vs. If v < v1, one result tuple with
value v (say the oldest) must be deleted from the answer

set to satisfy the negation condition in Equation 1. These
explicit deletions are usually implemented in the form of
negative tuples [3, 11] generated by the negation operator
and appended to the output stream. A negative tuple with
a particular set of attributes signals that the corresponding
result tuple is no longer part of the result. Finally, if a
tuple with value v expires from Ws, we decrement v2 and if
v1 > v2, we probe Wi and append one tuple from W; with
value v (say the youngest) to the output stream.

2.2 Determining when Results Expire

All stateful operators over sliding windows must remove
old tuples from their state buffers. Expiration from an indi-
vidual (time-based) sliding window is simple: a tuple expires
if its timestamp falls out of the range of the window. Expira-
tion from intermediate results can be determined as follows.
When a new tuple with timestamp t¢s arrives in a window,
we attach to it another timestamp, exp, that denotes the
expiration time of this tuple. exp is derived by adding one
window size to ts. If this tuple joins with a tuple from
another window, whose timestamps are ts’ and exp’, the ex-
piration timestamp of the result tuple is the minimum of
exp and exp’. That is, a composite result tuple expires if at
least one of its constituent tuples expires from its windows
(recall Definition 1). As discussed above, only the negation
operator can force some result tuples to expire earlier than
their exp timestamps by generating negative tuples.

2.3 Query Execution Strategies

As the input windows slide forward, continuous query op-
erators process two types of events: arrivals of new tuples
and expirations of old tuples. New tuples are inserted into
the operator state and processed as appropriate, whereas
the handling of expirations depends on the operator, and
involves removing the expired tuple from the state and pos-
sibly generating new results. Similarly, a materialized view
of the result is maintained by inserting new results into the
view and expiring stale results. Note that it may not be
sufficient to perform state expiration only when new tuples
arrive, unless the arrival rates are high. For example, sup-
pose that we materialize the result of a sliding window ag-
gregate. It may be the case that no new tuples arrive on
the input for some time, but the aggregate value changes
as a result of expiration from the input. In general, dupli-
cate elimination, group-by, and negation may produce new
output in response to expirations, therefore these operators
must maintain their state eagerly. There are two techniques
for maintaining correct query results: the negative tuple ap-
proach and the direct approach [11, 12].

2.3.1 Negative Tuple Approach

In the negative tuple approach, each window referenced in
the query is materialized and explicitly generates a negative
tuple for every expiration (in addition to pushing newly ar-
rived tuples into the plan). This generalizes the purpose of
negative tuples, which are now used to signal all expirations
explicitly (instead of being produced by the negation opera-
tor only if a result tuple expires because it no longer satisfies
the negation condition). Negative tuples propagate through
the query plan and are processed by operators in a similar
way as regular tuples, but they also cause operators to re-
move corresponding “real” tuples from their state. This is
illustrated in Figure 3, showing how the join query from Fig-
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Figure 3: Processing negative tuples generated by
expirations from a window over Stream 1.

ure 1 processes a particular negative tuple generated by an
expiration from the window over Stream 1 (expirations from
the other window are treated similarly and are not labeled
for clarity). Observe that the negative tuple is processed by
all the operators in the pipeline, so that the materialized
result may eventually receive a number of negative tuples,
corresponding to all the join results in which the original
negative tuple participated.

The negative tuple approach can be implemented effi-
ciently if the operator state is sorted by key so that expired
tuples can be looked up quickly in response to negative tu-
ples. The downside is that twice as many tuples must be
processed by the query because every tuple eventually ex-
pires from its window and generates a corresponding nega-
tive tuple. Furthermore, the input windows must be stored
so that we know when to generate negative tuples.

2.3.2 Direct Approach

Negation-free sliding window queries have the property
that expiration times of (intermediate and final) results can
be determined via exp timestamps, as explained in Sec-
tion 2.2. Hence, operators can access their state directly
and find expired tuples without the need for negative tu-
ples. The direct approach is illustrated in Figure 4 for the
same query as in Figure 3; again, only deletions from the
window over Stream 1 are illustrated. For every new arrival
into one of the join state buffers, expiration is performed at
the same time as the processing of the new tuple. However,
if there are no arrivals for some time (this interval may be
specified by the user as the maximum delay in reporting new
answers), each operator that stores state, including the final
materialized result, initiates expiration from its state buffer.

A technical issue with the direct approach is that newly
arrived tuples may not be processed immediately, therefore
the state of intermediate results may be delayed with respect
to the inputs. For example, in Figure 4, tuples with times-
tamps of up to 100 may have arrived on the input streams,
but the join operator may have only processed tuples with
timestamps up to 98. A solution to guarantee correct results
maintains a local clock at each operator, corresponding to
the timestamp of the tuple most recently processed by its
parent [11]. This way, the local clock of the join operator in
Figure 4 is 98 and it will not expire tuples out of its state
prematurely by assuming that the current time is 100.

2.3.3 Discussion
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Materialized result
If no new arrivals for /'C %

some time, perform
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New arrivals in join
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[ 1] Join state
() 0
TStream 1 IStream 2

Figure 4: Query execution using the direct approach
(only deletions from Stream 1 window are shown).

The direct approach does not incur the overhead of pro-
cessing negative tuples and does not have to store the base
windows (labeled as window state in Figure 3), but it may
be slower than the negative tuple approach for queries over
multiple windows [11]. This is because straightforward im-
plementations of state buffers may require a sequential scan
during insertions or deletions. For example, if the state
buffer is sorted by tuple arrival time, then insertions are
simple, but deletions require a sequential scan of the buffer.
On the other hand, sorting the buffer by expiration time
simplifies deletions, but insertions may require a sequential
scan to ensure that the new tuple is ordered correctly, un-
less the insertion order is the same as the expiration order.
To solve this problem, in Section 3, we will define the order
in which various continuous queries expire their results. In
Section 5, we will propose an update-pattern-aware query
execution technique that outperforms both the negative tu-
ple and the direct approaches.

3. UPDATE PATTERNS OF CONTINUOUS
QUERIES

3.1 Classification

Recall that continuous queries may be broadly divided
into two groups—monotonic and non-monotonic—with all
queries over sliding windows being non-monotonic. We now
present a more precise classification that sub-divides non-
monotonic queries into three types that exhibit progressively
more complex update patterns: weakest, weak, and strict.

e Monotonic queries produce an append-only output stream

and therefore do not incur deletions from their answer
set. Only stateless operators over infinite streams (pro-
jection, selection, union, and distributive aggregates)
can give rise to monotonic queries.

o Weakest non-monotonic queries do not store state and
do not reorder incoming tuples during processing; tu-
ples are either dropped or appended to the output
stream immediately. As a consequence, results expire
in the same order in which they were generated, i.e.,
first-in-first-out (FIFO). Projection and selection over
a single sliding window are weakest non-monotonic, as
is a merge-union of two windows.

e Weak non-monotonic queries may not expire results in
FIFO order, but have the property that the expiration
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Figure 5: Illustration of the update patterns of a
sliding window join.

time of each result tuple can be determined without
generating negative tuples on the output stream. Ex-
amples include join, duplicate elimination, and group-
by.

e Strict non-monotonic queries have the property that at
least some of their results expire at unpredictable times
and require the inputs to generate negative tuples to
explicitly signal these expirations. Negation over two
windows is one example.

All but the strict non-monotonic queries produce results
that can be materialized and maintained without the need
to generate negative tuples. This is why only negation-free
queries are compatible with the direct approach to state
maintenance defined in Section 2. Note that sliding win-
dow queries with strict non-monotonic patterns must also
be non-monotonic over infinite streams (e.g., negation). The
reason is that windowing alone does not produce premature
expirations (individual windows are weakest non-monotonic
because their results expire in FIFO order). Moreover, if an
operator is monotonic over streams, but possibly impractical
due to the need to store unbounded state, then it must be
weak non-monotonic over windows (e.g., join). The reason
is that storing state and referring to it during processing
creates possibilities for reordering incoming tuples, as will
be explained below.

3.2 Discussion

In Figure 5, we illustrate the behaviour of a sliding win-
dow join over two windows with the same size, W7 and Wa.
Wi-tuples are represented as light dots, whereas Wa-tuples
are drawn as dark dots. When tuple t arrives on Wa, suppose
that it joins with the Wi-tuple indicated by the arrow. Sim-
ilarly, when tuple u arrives next, it joins with the indicated
Wi-tuple. The three overlapping rectangles symbolize the
state of the input windows at three times: t’s arrival time,
u’s arrival time, and the time when the join result involving
u expires from the result (when at least one of the base tu-
ples that make up the result has expired from its window).
The update patterns are not FIFO because the u-result has
expired before the t-result, yet the t-result was generated
first.

To understand why duplicate elimination is weak non-
monotonic, recall the example in Figure 2. When the old
tuple with value x expires, we append a newer tuple with the
same value to the output stream. However, two tuples with
value y arrived after the newer z-tuple, yet one of them was

appended to the output stream before the z-tuple. Thus, the
expiration order is not the same as the order of insertion into
the result stream because some tuples may be appended to
the output stream not immediately after they arrive.

As described in Section 2, group-by produces a new result
for a given group whenever the aggregate value of this group
changes. Clearly, some groups may be updated more often
than others, therefore the expiration order of result tuples is
not FIFO. However, we know when each result tuple expires
(namely when a new result for the same group is produced
on the output stream) without the need for negative tuples.

Negation is strict non-monotonic because, as discussed in
Section 2, it produces negative tuples in some situations to
indicate that previously reported results no longer satisfy
the query. These expirations are not caused by the move-
ment of the sliding windows, but rather by the semantics of
the negation operator. Other tuples expire as predicted by
the exp timestamps and therefore do not require negative
tuples to be generated.

4. UPDATE-PATTERN-AWARE SEMANTICS
OF CONTINUOUS QUERIES

4.1 Defining the Meaning of Relations in Con-
tinuous Queries

The update pattern classification from Section 3.1 may be
used to define continuous query semantics in more detail,
including the precise role of relations. In the traditional
sense, a relation (or table) is an unordered multiset of tuples
with the same schema that supports arbitrary insertions,
deletions, and updates. Unless we assume that relations in
the context of continuous queries are static, the possibility of
arbitrary updates means that relations appear more difficult
to process than sliding windows over infinite streams.

To see this, recall the join query in Figure 1, and assume
that one of the inputs is a relation and the other is a sliding
window. According to Definition 1, an insertion into the
table requires a window scan to produce any new join results.
Similarly, a deletion from the table requires a window scan
to undo previously reported results containing the deleted
tuple. That is, negative tuples must be produced on the
output stream so that the result corresponds to the current
state of the relation. As a result, a join of a table with a
sliding window is strict non-monotonic, whereas a join of
two sliding windows is only weak non-monotonic.

According to the update pattern classification, any solu-
tion that considers updates of relations to be “easier” than
insertions and expirations from sliding windows must treat
a join of a table with a sliding window as a weakest non-
monotonic operator (for simplicity, assume that only the join
operator can consume a relation as one of its inputs; we de-
note such a join by l><IR). Given this constraint, our solution
is to define a non-retroactive relation (NRR) as a table that
allows arbitrary updates, but make the following distinction
between the semantics of table updates versus the seman-
tics of streams and sliding windows: updates of NRRs do
not affect previously arrived stream tuples. Consequently, a
join of a sliding window and a NRR, denoted X™%% does
not need to scan the other state buffer when processing an
update of the NRR; only arrivals on the streaming input
trigger the probing of the NRR and generation of new re-
sults. Thus, the streaming (or windowed) input does not



have to be stored, and furthermore, XV is monotonic if
the second input is a stream and weakest non-monotonic if
it is a window.

Aside from being simpler to implement, our definition of
NRRs is intuitive based on the nature of some of the data
stored by DSMSs in relations, namely metadata. For ex-
ample, an on-line financial ticker may store a table with
mappings between stock symbols and company names. In
this case, when a financial ticker updates its table of stock
symbols and company names by deleting a row correspond-
ing to a company that is no longer traded, all the previously
returned stock quotes for this company need not be deleted.
Similarly, adding a new stock symbol for a new company
should not involve attempting to join this stock symbol with
any previously arrived stream tuples, because there are no
prior stock quotes for this new company. Formally, we re-
quire that an update of a NRR at time 7 should only affect
stream tuples that arrive after time 7.

At this point, we note that the difference between streams,
NRRs, and relations is purely semantic. It is possible to
store metadata (or any other type of tabular data) as a
stream if we require insertions to be retroactive to previ-
ously arrived tuples, or as a traditional relation if arbitrary
insertions, deletions, and updates are to affect previously
arrived stream tuples. However, as explained above, the up-
date patterns and implementations of operators that allow
retroactive updates are more complicated.

4.2 Continuous Query Semantics

We propose the following definition of continuous query
semantics. We define a base stream as a data stream gener-
ated by a (possibly external) source and a derived stream as
one produced by an operator or a query. Any base stream
can be bounded by a sliding window, whose size may be
different for each stream. A continuous query @ references
one or more base streams (possibly bounded by sliding win-
dows), zero or more NRRs, and zero or more relations, runs
over a period of time, and produces the following output.

DEFINITION 2. Let Q(7) be the answer set of Q at time T
and let {NRR1(7),NRR2(7),...,NRRk(7)} be the state of
each of the k NRRs referenced in Q) at time 7. Let t.ts be the
generation time of a result tuple t. If Q does not reference
any NRRs, i.e., k =0, then Q(7) must be equivalent to the
output of a corresponding relational query Q' whose inputs
are the current states of the streams, sliding windows, and
relations referenced in Q. If k > 0, then in addition to the
above, each result tuple t in Q(7) must reflect the following
state of the NRRs referenced in Q: {NRR1(t.ts), NRRa(t.ts),
...,NRRy(t.ts)}.

The output of monotonic queries is an append-only stream,
whereas the output of non-monotonic queries (weakest, weak,
or strict) is a materialized view that reflects all the “real”
(insertions) and negative (deletions) tuples that have been
produced on the output stream.

5. UPDATE-PATTERN AWARE QUERY PRO-
CESSING

In this section, we present the design of an update-pattern-
aware query processor. As discussed in Section 2, our goal
is to decrease processing times and reduce the state main-
tenance overhead. The two existing query execution tech-
niques only satisfy one of these requirements: the negative

tuple approach performs state maintenance efficiently, but
performs twice as much processing, whereas the direct ap-
proach does not incur processing overhead, but performs
state maintenance inefficiently. Our technique satisfies both
goals by exploiting the update patterns of query operators.

5.1 Assumptions

All query plans, including all operator state, are assumed
to fit in main memory. We concentrate on processing indi-
vidual queries, though operator state may be shared across
similar queries, as in [3]. We represent logical and physical
query plans as operator trees. The allowed logical operators
were listed in Section 2.1. Additionally, our physical oper-
ator algebra includes X% and XV from Section 4.1, and
an improved implementation of duplicate elimination that
we will present in Section 5.3.1. In the remainder of this
section, we ignore monotonic queries such as selections over
infinite streams, as they do not expire results and therefore
do not require update pattern awareness (see, e.g., [6] for
optimization techniques for monotonic continuous queries,
such as filter reordering).

5.2 Update Pattern Propagation in Continu-
ous Query Plans

The first step towards update pattern awareness is to
define the update patterns of continuous queries based on
the update characteristics of individual operators. We use
our classification from Section 3 to label all the edges in a
(physical) query plan with the update patterns generated
by the corresponding sub-queries. We abbreviate weakest
non-monotonic patterns as WKS, weak non-monotonic as
WK, and strict non-monotonic as STR. Recall that WKS
patterns are the simplest, followed by WK and STR. To
annotate all the edges in the plan with update pattern in-
formation, we begin by labeling all the edges originating at
the leaf nodes (i.e., sliding windows) with WKS and apply
the following five rules as appropriate.

1. The output of unary weakest non-monotonic operators
and XVER ig the same as the input.

2. The output of binary weakest non-monotonic opera-
tors is STR if at least one if their inputs is STR, WK
if the inputs are either WKS or WK, and WKS if both
inputs are WKS.

3. The output of weak non-monotonic operators except
group-by is STR if at least one of their inputs is STR.
Otherwise, the output is WK.

4. The output of group-by is always WK, regardless of
the update patterns of its input.

5. The output of strict non-monotonic operators and X%
is always STR, regardless of the input types.

Rule 1 follows from the fact that weakest non-monotonic op-
erators do not interfere with the order of incoming tuples.
Rule 2 applies to merge-union, which also does not reorder
incoming tuples, therefore the output patterns correspond to
whichever input patterns are more complex. Rule 3 states
that WK operators produce output patterns at least as com-
plex as WK, and possibly STR if the inputs contain prema-
ture expirations. Rule 4 illustrates the peculiar behaviour
of group-by. Even if its input contains negative tuples, its
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Figure 6: Example of two query plans (for the same
query) annotated with update patterns.

output does not. This is due to the assumption that newly
generated aggregate values replace old values without ex-
plicitly producing negative tuples. Finally, Rule 5 follows
from the fact that STR queries and relations whose updates
are retroactive may produce unpredictable expirations.

An example of an annotated query plan containing selec-
tions, joins, and negation is shown in Figure 6; we will ex-
plain the purpose of this query in more detail in Section 6.1.
Two equivalent rewritings of the query are depicted. Ob-
serve that the two rewritings result in different update pat-
terns on some of the edges.

5.3 Update-Pattern-Aware Physical Optimiza-
tions

Given a query plan annotated with update patterns, we

propose two techniques to be employed by the update-pattern-

aware query processor: using different physical implementa-
tions of a given operator depending on the input update
patterns, and using update-pattern-aware data structures
for maintaining state buffers and storing the final result.

5.3.1 Operator Implementation

Recall from Section 2.1 that the implementation of du-
plicate elimination proposed in the literature stores both its
input and its output [11]. We use this implementation only if
the input exhibits STR update patterns. For WKS and WK
input patterns, we define a more efficient implementation,
denoted by §*. The idea is to avoid storing the entire in-
put if we are not expecting premature expirations caused by
negative tuples. Instead, for each tuple in the output state,
it suffices to additionally store the youngest tuple with the
same distinct value (if any); we call this additional state
auxiliary output state. When a new tuple arrives and does
not match any tuples in the stored output, we add the new
tuple to the output, as before. However, if the new tuple
is a duplicate, it means that it is the youngest tuple with
its particular distinct value, and is added to the auxiliary
output state. When an output tuple expires, we simply re-
turn on the output stream the corresponding youngest tuple
stored in the auxiliary state without accessing (and storing)
the input. Thus, instead of storing both the input and the
output, the space requirement of §* is at most twice the size
of the output. Since duplicate elimination never produces
an output whose size is larger than the input, 6™ is more
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Figure 7: Illustration of our data structure for stor-
ing the results of weak non-monotonic subqueries.

space-efficient than the existing implementation. Moreover,
the time overhead of inserting and expiring tuples is lower.

5.3.2 DataStructuresfor Soring Operator Sate and
Final Query Results

The second update-pattern-aware optimization involves
using suitable data structures for maintaining state buffers
and storing final results. First, we deal with the simple cases:
maintaining results whose inputs exhibit WKS patterns and
maintaining final group-by results. In the former case, re-
sults expire in order of generation, so we can implement the
state buffer as a list, with insertions appended to the end of
the list and deletions occurring from the beginning. In the
latter case, the result consists of aggregate values for each
group and can be stored as an array, indexed by group label.

Next, we deal with maintaining operator state with WK
input patterns, where the insertion order is different from
the expiration order. As discussed in Section 2.3.3, sorting
the state buffer by insertion time causes inefficient deletions,
whereas sorting by expiration time means that insertions
require a sequential scan of the state buffer. Our solution
partitions the state buffer by expiration time. Individual
partitions can then be sorted by expiration time for opera-
tors that must expire results eagerly, or by insertion time for
operators with lazy expiration'. An example is illustrated in
Figure 7 for five partitions (with each partition sorted by ex-
piration time), assuming that the current time is 50 and the
window size is 50. Our data structure may be thought of as
a circular array of partitions, therefore at time 60, the left-
most partition will contain tuples with expiration times of
101 through 110. Clearly, adding more partitions improves
insertion and deletion times (there is less state to scan), but
increases the space requirements as each partition is stored
as a separate structure. The partitioned state buffer is used,
for example, as the materialized view of the join query in
Figure 1 and as the left input to the negation operator on
the left of Figure 6.

Maintaining results of (sub)queries with STR patterns is
difficult because some result tuples may expire at unpre-
dictable times. If premature expirations are rare, we re-use
the structure from Figure 7 and periodically incur the cost
of scanning all the partitions to perform a deletion triggered
by the arrival of a negative tuple. Otherwise, if we are ex-
pecting the majority of deletions to occur via negative tu-
ples, then we employ the negative tuple approach. That is,
we generate negative tuples for every expiration and sort the
state by the negation attribute. The intuition is that if most
of the results expire prematurely, then we may as well expire
all the results via negative tuples and use a data structure

'Our data structure is similar to the calendar queue [8] if we
think of expirations as events that are scheduled according
to their expiration times.



that makes it easy to do so.

The choice between the two techniques for maintaining
results with STR update patterns depends on the frequency
of premature expiration, which, in turn, depends on the dis-
tribution of the attribute values in the two inputs to the
negation operator. For example, if the two inputs have dif-
ferent sets of values of the negation attribute, then prema-
ture expirations never happen. To see this, recall the opera-
tor description in Section 2.1 and note that negative tuples
are produced only if both inputs contain at least one tuple
each with a common attribute value.

5.4 Putting it All Together: Update-Pattern-
Aware Query Processing

5.4.1 Plan Generation and Cost Model

Each plan is annotated with update pattern information,
as in Section 5.2. Whenever duplicate elimination appears
in the plan with weakest or weak non-monotonic input, it
is replaced with 0*, as explained in Section 5.3.1. More-
over, each operator that stores state chooses an appropriate
data structure for the state buffer, depending on the update
patterns of its inputs, as discussed in Section 5.3.2. If a par-
titioned data structure is used, the number of partitions is
initially set to a user-defined default value. Similarly, in the
negative tuple approach, the state buffer is a hash table on
the key attribute with a user-defined number of buckets.

Each candidate plan is associated with a per-unit-time
cost, similar to [10, 14]. The cost includes inserting new
tuples into the state, processing them, expiring old tuples,
and processing negative tuples, if any. The per-unit-time
cost of insertions and expirations from a state buffer de-
pends on its implementation, the input arrival rate, and the
frequency of expirations (recall that some operators are per-
mitted to maintain state lazily, but others must expire old
tuples eagerly and possibly produce new results). Now, for
each operator, we define A1 and A2 to be its input rates
(if the operator is unary, then A2 = 0), Ao, to be its out-
put rate, N1 and N2 to be the expected sizes of its inputs
(again, N2 = 0 for unary operators), and N, to be the ex-
pected output size. We assume that these quantities may be
approximated on the basis of stream arrival rates, attribute
value distributions, and operator selectivities.

Selection, projection, and union process each tuple in con-
stant time, therefore their cost is ZZ Ai. Join and intersec-
tion cost A1N1 + A2N2 per unit time. The cost of 6™ is
roughly )\1% as every new tuple scans the output, which
is sorted by expiration time. Using the negative tuple ap-
proach doubles the cost of all of these operators. Letting C'
be the cost of re-computing an aggregate?, the cost of group-
by is 21 C regardless of whether negative tuples are used or
not (every tuple changes the value of an aggregate twice:
once when it arrives and once when it expires). Finally the
cost of negation is at least 2A1 log di + 2\2 log d2, where d;
and dz are the numbers of distinct values in the two inputs,
respectively. This assumes that the frequency counts stored
by the negation operator are sorted by value and can be
binary-searched (recall Section 2.1). Additionally, negation

2This depends on the number of groups and the complex-
ity of the aggregate. For instance, simple aggregates such
as SUM may be re-computed in constant time simply by
adding/subtracting the value of the new/old tuple to the
current value of the aggregate.

incurs the cost of probing the state of input 1 and generating
negative tuples in case of premature expirations.

5.4.2 Query Optimization

Though continuous query plans may be reordered in a way
similar to traditional relational plans (e.g., selection push-
down and join enumeration), we enforce one constraint: the
input to X® and MYEE cannot be strict non-monotonic,
therefore it is not possible to push these through a negation.
This is because a join involving a relation or a NRR is in-
capable of processing negative tuples—the “real” tuple that
corresponds to the negative tuple may have been deleted or
updated, therefore it may be impossible to reproduce the
join results involving the negative tuple.

We employ the following two update-pattern-aware opti-
mization heuristics: update pattern simplification and du-
plicate elimination pull-up. The first rule pushes down oper-
ators with simple (weakest non-monotonic) update patterns
and pulls up those with more complicated update patterns
(particularly strict non-monotonic, i.e., negation). This is
done to minimize the number of operators affected by nega-
tive tuples (especially joins and duplicate elimination, whose
processing costs increase if they have to process negative
tuples), and more generally, to reduce the update pattern
complexity in the largest possible sub-tree of the plan; see,
e.g., Figure 6. Other benefits of update pattern simplifica-
tion include being able to use §* more often and a greater
flexibility in reordering X® and MN®E  The second rule
pushes duplicate elimination below (before) a join so that
the output of §* can be shared as the input to the join.

These two rules are, for the most part, consistent with
well-known relational optimization rules. For example, push-
ing down weakest non-monotonic operators is analogous to
predicate push-down and pushing duplicate elimination be-
low joins is also sensible as duplicate elimination always de-
creases the cardinality of intermediate results. These simi-
larities are advantageous because they suggest that update
pattern awareness can be easily incorporated into relational
cost models and optimizers. However, one difference is that
relational optimizers typically push down the negation op-
erator if the negation condition is a simple predicate or if
it reduces the cardinality of intermediate results. However,
in our scenario, it may, in some cases, be cheaper to pull
up the negation operator in order to decrease the burden of
processing negative tuples.

Once an optimal plan is found, several parameters may be
adjusted to determine the amount of memory required by
the query. These include the lazy maintenance interval (if
the state is maintained lazily, the expiration cost is cheaper,
but the expected memory consumption increases) and the
number of partitions in the state buffer implementations.

5.4.3 Query Processing

Having found an optimal update-pattern-aware plan as
described above, our query execution strategy is as follows.
If the query is negation-free, then we use the direct ap-
proach, which enjoys reduced processing overhead due to
the absence of negative tuples and matches the expiration
efficiency of the negative tuple approach due to update-
pattern-aware data structures. If the query contains a nega-
tion operator, then we have two choices, as outlined in Sec-
tion 5.3.2. If the expected number of premature expirations
is small, then we use the direct approach and employ the



partitioned data structure from Figure 7 to store interme-
diate and final results. For example, in the plan on the left
of Figure 6, the final result is stored using the partitioned
data structure. Otherwise, if premature expirations are ex-
pected to be frequent, then all the operators below negation
use the direct approach without generating negative tuples,
but all the operators above negation use the negative tu-
ple approach. For example, applying this approach to the
plan on the left of Figure 6 means that the join operator
employs the direct approach and does not generate negative
tuples, but the negation operator generates a negative tuple
for every expiration. Thus, the final result is a hash table
on the negation attribute. Using the negative approach is
recommended only with negation pull-up. Otherwise, in the
context of the plan on the right of Figure 6, the join oper-
ator is forced to process a large number of negative tuples.
Of course, if the join operator generates a large number of
results, but the negation predicate reduces the cardinality
of intermediate results, then the update-pattern-aware op-
timizer is likely to choose the negative tuple approach with
negation push-down, depending on the sizes of the interme-
diate results.

6. EXPERIMENTS

6.1 Overview

We implemented the update-pattern-aware query proces-
sor using Sun Microsystems JDK 1.4.1. For comparison,
the negative tuple and direct approaches from [11, 12] were
also implemented, and are referred to as NT and DIRECT,
respectively. Our technique is abbreviated as UPA. Sliding
windows and state buffers are implemented as linked lists,
or circular arrays of linked lists in case of partitioned data
structures. Testing was performed on a Windows XP ma-
chine with a Pentium IV 1.8 Ghz processor and 512 Mb of
RAM. Query inputs consist of network traffic data obtained

from the Internet Traffic Archive at http://ita.ee.lbl.gov.

We use a trace that contains wide-area TCP connections be-
tween the Lawrence Berkeley Laboratory and the rest of the
world [19]. Each tuple in the trace consists of the following
fields: system-assigned timestamp ts, session duration, pro-
tocol type, payload size, source IP address, and destination
IP address. Furthermore, negative tuples contain a special
flag and result tuples have an additional timestamp, ezp,
used to determine the expiration time (recall Section 2.2).
Although the trace may be thought of as a single stream,
we break it up into several logical streams based on the
destination IP addresses. This simulates different outgoing
links and allows us to test join queries that combine similar
packets from each link.

Five types of queries are tested, the first four of which
are illustrated in Figure 8 and the last is as shown in Fig-
ure 6. Query 1 joins tuples from two outgoing links on
the source IP address, with the selection predicate being
either protocol=ftp or protocol=telnet. The former is a se-
lective predicate (the result size is approximately equal to
the size of the inputs), whereas the latter produces ten times
as many results (telnet is a more popular protocol type in
the trace). Query 1 tests the performance of our partitioned
data structure. Query 2 selects the distinct source IP ad-
dresses (or the distinct source-destination IP pairs) on an
outgoing link and is used to test our improved §* opera-
tor as well as the partitioned data structure. Query 3 per-
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Figure 8: Illustration of the first four query plans
used in our experiments.

forms a negation of two outgoing links on the source IP
address and tests the two possible choices for storing the
results of strict non-monotonic queries: using a partitioned
data structure or using the negative approach. Query 4 se-
lects the distinct source IP addresses on two outgoing links
and performs a join on the source IP address. It is used
to test the combined advantage of using partitioned data
structures for storing intermediate and final results, and the
efficiency of our improved duplicate elimination operator.
Finally, Query 5 performs a negation of two outgoing links
on the source IP address and joins a third link on the source
IP address having protocol = ftp. That is, Query 5 is es-
sentially a composition of queries 1 and 3. We will test both
rewritings of Query 5 illustrated in Figure 6 in order to show
that negation pull-up may be efficient in some situations.

As mentioned in Section 2, each incoming tuple is fully
processed before the next tuple is scheduled for processing.
As a result, we fix the stream arrival rates, and ignore queu-
ing delays and processing latencies caused by bursts of tuples
arriving at the same time; again, this has been discussed in
the context of data stream scheduling [5, 9, 13] and is or-
thogonal to our work.

There are four experimental parameters: sliding window
size, lazy expiration interval (for operators that maintain
state lazily), eager expiration interval (for operators such as
grouping, duplicate elimination, and negation, which must
react to expirations immediately), and the number of par-
titions in the state buffers. Depending on the query, the
window size varies anywhere from 100 Kilobytes to over 10
Megabytes. In terms of time, this corresponds to a range
of 2000 to 200000 time units, with an average of one tu-
ple arriving on each link during one time unit. This range
allows us to comment on the performance trends of vari-
ous techniques as the data size grows. For simplicity, the
lazy expiration interval is set to five percent of the window
size. Increasing this interval gives slightly better perfor-
mance and is not discussed further. Furthermore, due to
the fixed stream arrival rates, we set the eager expiration
interval to equal the tuple inter-arrival time. In NT, this
means that each new arrival into one of the input windows
triggers a window scan to determine if any negative tuples
must be generated. In DIRECT and UPA, each new ar-
rival causes a probe of the state of each operator that must
immediately react to expirations. Finally, the number of
state buffer partitions is set to 10, unless otherwise noted.
The reported performance figures correspond to the average
overall query execution times (including processing, tuple
insertion, and expiration) per 1000 tuples processed.
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6.2 Query1l

We begin by testing two variants of Query 1. Figure 9
illustrates the performance of the first variant, which uses
protocol=ftp as the selection predicate (recall that this is the
more selective predicate that produces small result sets). As
the window size grows, our approach is nearly twice as fast
as the other two. DIRECT outperforms NT because the
result size is relatively small and therefore the cost of scan-
ning the entire result set during updates is not as great as
the overhead of negative tuples. However, the performance
of DIRECT degrades as the window size grows. The sec-
ond variant of Query 1 is analyzed in Figure 10 and uses
protocol=telnet as the selection predicate. The result size is
approximately ten times as large as in the first variant. In
this case, DIRECT is by far the slowest because it is very
expensive to scan the large result. Our approach with ten
partitions (denoted by UPA(10)) initially performs well, but
becomes very slow as the window size, and the result size,
grows. However, increasing the number of partitions to fifty
(denoted by UPA(50)) yields processing times that are up
to one order of magnitude faster than NT for large window
sizes.

6.3 Query 2

Figure 11 illustrates the processing times of duplicate elim-
ination on the source IP address, whereas Figure 12 graphs
the processing times of duplicate elimination on source and
destination IP addresses. The former produces a small re-
sults set (roughly 2000 distinct IP addresses); the result set
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Figure 11: Processing times of Query 2 with dupli-
cate elimination on the source IP address.
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Figure 12: Processing times of Query 2 with dupli-
cate elimination on source and destination IP ad-
dress pairs.

of the latter is approximately ten times as large. Combin-
ing our efficient implementation of 6* with update-pattern-
aware data structures yields significant performance improve-
ments. In Figure 11, our approach is one order of magnitude
faster than the other two. In Figure 12, UPA is roughly twice
as fast as NT. Furthermore, DIREC'T performs poorly when
the result size is large. The reason why UPA has a greater
performance advantage when the result size is small is be-
cause the size of the auxiliary output state is also smaller,
and therefore it is faster to maintain and probe (recall Sec-
tion 5.3.1).

The average space requirements of Query 2 are graphed in
Figure 13 (duplicate elimination on the source IP address)
and Figure 14 (duplicate elimination on source and desti-
nation IP addresses). The former is very selective, there-
fore our approach is up to two orders of magnitude more
space-efficient that NT and DIRECT (recall that the space
requirements of 0™ are proportional to the output size, not
the input size). The latter is less selective, but our approach
is still significantly more space-efficient.

6.4 Query3

Figure 15 shows the running time of negation on the source
IP address for NT and UPA; recall that the direct approach
is not compatible with negation. Our approach of using a
partitioned data structure to store the result slightly outper-
forms NT for window sizes of up to roughly 500 Kilobytes.
This is because the result size is small and the penalty for
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scanning the entire result buffer when expiring a negative tu-
ple is lower than the overhead of generating negative tuples.
However, as the window size (and the result size) grows, our
approach begins to perform worse because the cost of expir-
ing negative tuples becomes high. We counted the number
of premature expirations in Query 3 and found it to be ap-
proximately 40 percent of the result set. This is a fairly high
proportion, which explains why our approach was competi-
tive only for small window sizes. Nevertheless, these results
prove that in some cases, it may be beneficial to use our
partitioned data structure instead of the negative approach.

6.5 Query4

Processing times of Query 4 are shown in Figure 16. As
expected, the results are similar to Queries 1 and 2 in that
our approach yields a significant performance improvement.
Again, the direct approach is the slowest, especially as the
window size grows and the result size grows accordingly. In
addition to faster processing times, our approach of evalu-
ating Query 4 is more space-efficient because the outputs of
the distinct operators are re-used as the inputs to the join,
as illustrated in Figure 8. Similar to Figure 13, our approach
is up to two orders of magnitude more space-efficient than
NT and DIRECT (exact results are omitted due to space
constraints).

6.6 Query5

In the final test, we execute the two plans for Query 5 il-
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lustrated in Figure 6. As discussed in the context of Query 3,
negation on the source IP address produces a relatively large
number of premature expirations and works best with the
negative tuple approach. Recall from Section 5.4.3 that in
these cases, we use the negative approach for all the oper-
ators above negation in the query plan. That is, the plan
on the left of Figure 6 is executed by maintaining the in-
termediate state directly and maintaining the final result
via negative tuples. In the plan on the right, negation is
pushed down, therefore our approach is equivalent to the
negative tuple approach throughout the plan. Figure 17
shows the processing times of Query 5 for the three possible
approaches: negative tuples, negative tuples with the join
pulled up (denoted NT(join up)), and our approach with
the join pushed down, where the join does not generate neg-
ative tuples.

First, note that NT(join up) outperforms NT because the
negation operator is more selective than the join and there-
fore the former plan costs less. However, our approach per-
forms best for sufficiently large window sizes because of the
decrease in the number of negative tuples that have to be
processed. NT(join up) is optimal for small window sizes
because the number of negative tuples generated is small
and the processing overhead is not as large as the penalty
of using a sub-optimal ordering. In general, our approach
may not always be advisable. For example, if the join in
Query 5 produced a large number of results, then pushing
the join below negation would be highly sub-optimal, de-
spite the savings in negative tuple processing. On the other
hand, if an ordering with the join pushed down is optimal to
begin with, then our approach can make the plan even more
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efficient by eliminating the overhead of processing negative
tuples below the negation operator.

7. CONCLUSIONS AND FUTURE WORK

This paper introduced the notion of update pattern aware-
ness in the context of continuous queries over relations, streams,
and sliding windows. We presented a classification of up-
date patterns of continuous queries and applied it to solve
two problems: 1) defining precise semantics of continuous
queries with a clearly defined role of relations and their up-
date patterns, and 2) efficient query execution over sliding
windows. Our experimental results showed significant im-
provements in query processing times and space consump-
tion achieved by update pattern awareness.

We intend to pursue the following two directions in future
work. First, we want to extend our update pattern analysis
to queries over count-based windows. The main difference is
that expiration times of such queries depend on the arrival
rates of the inputs and therefore cannot be predicted. A
straightforward solution is to consider all count-based win-
dow queries as strict non-monotonic and employ the nega-
tive tuple approach in their evaluation. However, there may
be special cases where more detailed update pattern aware-
ness is possible. Moreover, we intend to further explore con-
tinuous query optimization using update pattern knowledge.
One of several possible questions is whether update pattern
awareness can also be used to improve the adaptivity of slid-
ing window query plans to changing stream conditions.
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