
1

Optimizing multi-top-k queries over uncertain
data streams

Tao Chen, Lei Chen, Member, IEEE, M. Tamer Özsu, Fellow, IEEE, and Nong Xiao

Abstract—Query processing over uncertain data streams, in particular top-k query processing, has become increasingly important due
to its wide application in many fields such as sensor network monitoring and internet traffic control. In many real applications, multiple
top-k queries are registered in the system. Sharing the results of these queries is a key factor in saving the computation cost and
providing real time response. However, due to the complex semantics of uncertain top-k query processing, it is nontrivial to implement
sharing among different top-k queries and few works have addressed the sharing issue. In this paper, we formulate various types
of sharing among multiple top-k queries over uncertain data streams based on the frequency upper bound of each top-k query. We
present an optimal dynamic programming solution as well as a more efficient (in terms of time and space complexity) greedy algorithm
to compute the execution plan of executing queries for saving the computation cost between them. Experiments have demonstrated
that the greedy algorithm can find the optimal solution in most cases, and it can almost achieve the same performance (in terms of
latency and throughput) as the dynamic programming approach.

Index Terms—data streams, uncertain data streams, top-k query, multi-query optimization.

F

1 INTRODUCTION

There are many applications in which data naturally occur
in the form of a sequence of values, such as sensor data,
financial tickers, on-line auctions, Internet traffic, web usage
logs, and telephone call records [12], [13]. These data can
be modeled as data streams, which are unbounded data sets
produced incrementally over time [6]. Often, due to possible
errors caused by limitations of monitoring equipment, human
operator mistakes, and interference in data transfer, these data
may be incomplete, unreliable, or noisy, with the result that
uncertainty is inherent in these data stream applications. Much
work has focused on uncertain data streams [10], [18], [2],
[20], [16], and the semantics of possible worlds has been
widely adopted in dealing with them [25], [26], [17], [28],
[9], [22]. A possible world is a possible instance combination
of tuples [25], usually within a sliding window. For a given
timestamp, the tuples in the sliding window result in a number
of possible worlds, whose number exponentially increases with
the number of tuples in the sliding window.

The applications listed above typically issue a large number
of monitoring queries. These are queries that are registered to
the system, and they are executed periodically. An important
sub-class of these queries are top-k queries. For example traffic
monitoring applications typically wish to determine the top-k
speeds of cars that pass through a control point, and volcano
monitoring applications monitor top-k readings from sensors
that produce uncertain data streams [20], [16]. We discuss
traffic monitoring in more detail below. Previous work has
considered executing these queries one-at-a-time, but there

• E-mail: taochen@nudt.edu.cn
• E-mail: leichen@cse.ust.hk
• E-mail: tamer.ozsu@uwaterloo.ca
• E-mail: nongxiao@nudt.edu.cn

are considerable benefits to handling them collectively by
exploiting similarities. This is the well known multi-query
optimization problem, which is known to be very hard in
relational DBMSs. This problem is particularly difficult over
uncertain data streams.

Consider the car traffic monitoring application mentioned
above where sensors are used at a monitoring point to detect
speeds of cars. There are three sensors deployed at the
monitoring point. Sensor S0 is activated alone, and sensors
S1 and S2 are activated at the same time. These sensors send
the speeds of cars every 5 minutes. Due to external factors, the
speed readings may be inaccurate, or may be correct only with
some probability. Table 1 shows sample uncertain data from
9:01 AM to 9:20 AM. We assume that the sliding window
size is 20 minutes, which includes six speed readings, each
with a certain probability; e.g., it records a speed of 80 km
per hour at 9:05 with a probability of 0.3, and so on. There
may be dependencies among the speed readings such as, for
example, R2 and R3 cannot be true at the same time, and
neither can R5 and R6. These are called generation rules and
denoted as GR1 = {R2, R3} and GR2 = {R5, R6}. Traffic
controllers would be interested in knowing, for example, the
top-3 speed readings in the last 20 minutes. Thus, a continuous
query would be run periodically to compute the results. We
use CQL, an expressive SQL-based declarative language for
registering continuous queries against streams and updatable
relations [3] to describe this continuous query:

Q1: SELECT top-3
FROM SENSOR [Range 20 mins]
WHERE SENSOR.location=X
FREQUENCY 2 mins

The semantics of FREQUENCY is similar to SLIDE se-
mantics, which is the upper bound specification [11]. FRE-
QUENCY specifies the upper bounds on the re-execution
intervals of their queries. That is, the interval between two
consecutive executions is no more than the upper bound.

2

TABLE 1
The uncertain data set in one sliding window

ID Time Speed(km) Prob. Sensor
R1 09:05:00 AM 80 0.3 S0

R2 09:10:00 AM 65 0.4 S1

R3 09:10:00 AM 45 0.5 S2

R4 09:15:00 AM 30 1 S0

R5 09:20:00 AM 50 0.8 S1

R6 09:20:00 AM 25 0.2 S2

TABLE 2
The possible worlds of uncertain data set

Possible world Prob. Top-2 Top-3
W1=R1,R2,R4,R5 0.096 R1,R2 R1,R2,R5
W2=R1,R2,R4,R6 0.024 R1,R2 R1,R2,R4
W3=R1,R3,R4,R5 0.12 R1,R5 R1,R5,R3
W4=R1,R3,R4,R6 0.03 R1,R3 R1,R3,R4
W5=R1,R4,R5 0.024 R1,R5 R1,R4,R5
W6=R1,R4,R6 0.006 R1,R4 R1,R4,R6
W7=R2,R4,R5 0.224 R2,R5 R2,R4,R5
W8=R2,R4,R6 0.056 R2,R4 R2,R4,R6
W9=R3,R4,R5 0.28 R5,R3 R3,R4,R5
W10=R3,R4,R6 0.07 R3,R4 R3,R4,R6
W11=R4,R5 0.056 R5,R4 R4,R5
W12=R4,R6 0.014 R4,R6 R4,R6

TABLE 3
The top-2 & top-3 probability of each tuple in one sliding window

ID Top-2 Prob. Top-3 Prob.
R1 0.3 0.3
R2 0.4 0.4
R3 0.38 0.5
R4 0.202 0.784
R5 0.704 0.8
R6 0.014 0.173

To answer top-k queries over an uncertain data stream,
the semantics of possible worlds is applied. Table 2 shows
the possible worlds in the above example. As the sum of
the probabilities of R2 and R3 is less than 1, there are
three choices for R2 and R3. There are two choices for
R5 and R6 since the sum of the probabilities of them is
equal to 1. There are two choices for R1. There is only one
choice for R4. Thus, there are 2*3*1*2=12 possible words.
The probability of the possible world W12, for example, is
(1 − 0.3) ∗ (1 − 0.4 − 0.5) ∗ 1 ∗ 0.2 = 0.014. Answering
the query, “What are the top-3 speed readings in the last 20
minutes?” requires searching all the possible worlds listed in
Table II to determine three highest speed readings, each of
them is associated with an aggregate probability derived from
the possible worlds that it ranks as one of the top-3 readings.
The top-k probability of a tuple in the sliding window is the
sum of the probabilities of the possible worlds containing the
tuple as one of the top-k ranked tuples. A possible answer to
the above query can be computed by the Pk− topk algorithm
[20], which returns k tuples in the sliding window that have
the highest top-k probability among all tuples. In this example,
Pk − topk computes the top-3 probability of each tuple as
shown in the third column of Table 3. For example, the Top-3
probability of R1 is the sum of the probabilities of the possible
worlds W1, W2, W3, W4, W5 and W6 which contain R1 as
one of the top-3 ranked tuples. Thus, the Top-3 probability of
R1 is 0.096+0.024+0.12+0.03+0.024+0.006 = 0.3. The
results of Q1 are R3, R4, and R5 which have the highest top-3
probability among all; their probabilities are highlighted with
bold font in the third column of Table 3. The second column
of Table 3 shows the answers to Q2, R2 and R5.

Q2: SELECT top-2
FROM SENSOR [Range 20 mins]
WHERE SENSOR.location=X
FREQUENCY 2 mins

Due to complex possible worlds, the top-2 probability of
each speed reading is not the same as its top-3 probability;
therefore, the results of Q2 are not the largest two readings
of the results of Q1. In other words, we cannot obtain the
results of the top-2 query directly from the results of the top-
3 query. How to reuse results of a top-k query to compute
results of another top-k′ query where k ≥ k′ is challenging.
This is the problem that we address in this paper. Among the
monitoring queries registered in the system, there are likely
to be many with different frequencies and with different k
values. In addition to Q1 and Q2 discussed above, consider
the following monitoring queries:

Q3: SELECT top-4
FROM SENSOR [Range 20 mins]
WHERE SENSOR.location=X
FREQUENCY 3 mins

Q4: SELECT top-3
FROM SENSOR [Range 20 mins]
WHERE SENSOR.location=X
FREQUENCY 5 mins

Q5: SELECT top-5
FROM SENSOR [Range 20 mins]
WHERE SENSOR.location=X
FREQUENCY 5 mins

Q6: SELECT top-2
FROM SENSOR [Range 20 mins]
WHERE SENSOR.location=X
FREQUENCY 7 mins

Our objective is to find the solution which maximizes the
sharing among queries Q1 to Q6. The commonalities between
these queries fall into three categories: some have the same
frequency, but different k values ({Q1, Q2} and {Q4, Q5}),
some have the same k values, but have different frequencies
({Q1, Q4}), others have different k values and different
frequencies ({Q2, Q3} and {Q5, Q6}). We have already
argued that queries in the first category require care in sharing
results. Queries in the second category can share results at
times that are multiples of the frequencies; for example, Q1
and Q4 can share the result when they are executed at time
t = 10 and so on; in fact only one of them needs to be executed
at t = 10. When Q1 and Q4 are executed according to their
frequency upper bounds, the execution time of Q1 and Q4
are shown in Figure 1. However, this level of sharing is not
efficient and can be improved. For example, if Q4 can be
refreshed every two minutes, the results of Q4 are returned
whenever Q1 is executed; we do not need to execute Q4
individually any more. In this situation, the execution time
of Q1 and Q4 are shown in Figure 2. Thus, we could improve
sharing when queries are refreshed more often than specified.
Queries in the third category cannot share any results with each
other. These are the sharing problems studied in this paper.
Note, again, that the semantics of FREQUENCY is an upper
bound specification, similar to SLIDE semantics [11], which
ensures that it is possible to re-execute queries more often
when the system is lightly loaded, as well as enabling queries
with different FREQUENCY to be executed simultaneously to
share computation. Thus, a query whose frequency is specified
as three minutes can be executed every one minute, every two
minutes, or as long as the interval between two executions is
no more than three minutes.

To address this problem, we first consider how to share
the results of queries with the same frequency, but different

3

..
..
..
..
..
.

..
..
..
..
..

......

......

15

1816141210864

(b) The execution time of Q4 when Q4 are executed every five minutes
5 200

2020
 (a) The execution time of Q1 when Q1 are executed every two minutes

10

Fig. 1. The execution time of Q1 and Q4 with their frequency upper bounds

......
1816141210864

(b) The execution time of Q4 when Q4 are executed every two minutes

2020
(a) The execution time of Q1 when Q1 are executed every two minutes

......
1610864 2020

......
1816141210864 2020

......
1816141210864 2020

Fig. 2. The execution time of Q1 and Q4 when Q4 is executed every 2 minutes

k values. That is, some intermediate results of the queries
in the first category can be shared. For the second category,
we exploit the FREQUENCY semantics discussed above to
execute the queries more often if their execution time can
be synchronized with those queries that have the same k
but lower frequency. When we execute queries with lower
frequency, results of queries with higher frequency can also
be returned. There is almost no additional overhead when
sharing between the queries in these two categories, and the
queries significantly benefit from joint execution. For the third
category, we also exploit the FREQUENCY semantics to share
computation. When the queries with higher frequency are
executed more often, additional overhead may be incurred
since the k values are different. The additional overhead might
be more than the savings in computation time if queries
are refreshed too often. Therefore, we need a strategy to
find an optimal running schedule (execution plan) for these
queries to balance the additional overhead and the savings in
computation time. In this paper, we report an optimal dynamic
programming solution and a faster greedy algorithm. The
theoretical analysis and experimental results confirm that our
proposed solutions can significantly reduce the computation
cost through sharing.

The rest of the paper is organized as follows. We review the
related work and state the differences from our approaches in
Section 2. In Section 3, we discuss how Pk-topk can be used
to process a single query. In Section 4, we solve the sharing
problem for queries with the same frequency upper bounds
but with different k values. We propose a combination rule
to combine the groups with different frequency upper bounds
without additional overheads in Section 5. We formalize the
sharing problem for multiple top-k queries after combination
in Section 6. Then, we propose an optimal dynamic pro-
gramming solution (Section 7) and a faster greedy algorithm
(Section 8) to solve the sharing problems. We show how our
algorithms can be extended to multiple data streams in Section
9. Experimental evaluations are given in Section 10. Finally,
we conclude in Section 11.

2 RELATED WORK

Top-k queries over uncertain data have received recent atten-
tion. Soliman et al. [25] first presented U-topk and U-kRanks
to compute top-k tuples over uncertain data. A U-topk query
returns the vector of k tuples that has the maximum probability
in all possible worlds. A U-kRanks query returns k tuples in
which the i-th tuple ranks as the largest i in all possible worlds
where 1 ≤ i ≤ k. Hua et al. [17] proposed PT-k query,

a probabilistic threshold top-k query, which returns all the
tuples whose probability of being in the top-k is greater than a
threshold p. Expected rank method [9] first defined the rank of
a tuple in each possible world, and then computed the expected
rank of each tuple across all possible worlds. It returned the
k best tuples according to the expected rank. Zhang et al.
[28] defined the Global-Topk probability of a tuple as the
sum of the probabilities of all possible worlds whose top-k
answer contains this tuple, and then returned the k tuples with
the highest Global-Topk probability. Li et al. [22] proposed a
unified approach to ranking in probabilistic databases, which
defines a unified parameterized ranking function (PRF) to
compute the total ordering of all the tuples and selects the
k best tuples under this ordering. All of the above works
consider only individual top-k query processing over uncertain
data.

There are many works focusing on uncertain data streams.
However, most of them concentrate on computing statistical
aggregates and clustering data [10], [18], [2]. The first work
on top-k queries over uncertain data stream was presented by
Jin et al. [20], which used Pk-Topk definition to rank tuples by
their probability of being the top-k among all possible worlds
and returned exactly k tuples. Hua et al. [16] presented a
probabilistic threshold method to continuously monitor top-k
uncertain data streams. However, neither of these works are
applicable to solving the sharing problems of multiple top-k
queries over uncertain data streams.

For multiple queries over certain data, traditional methods
target detecting common parts across multiple queries [24],
which is the base solution for multiple top-k queries; that is,
identifying similar top-k queries. There are also some works
that focus on multi-query optimization over data streams.
However, many of them concentrate on sharing execution of
filters, joins, selections, and aggregations [14], [23], [4], [21],
[27], and none of them can be applied to multiple top-k query
processing over uncertain data streams due to the complex
semantics of uncertainty.

Krishnamurthy et al. [21] present a sharing scheme for
aggregation over data streams. This is the first paper to deal
with two kinds of variations for sharing aggregates. It chops
the input stream into time slices for different windows, and
breaks the input data into disjoint sets of tuples for different
predicates. In our problem, the top-k probability of each tuple
is associated with the possible worlds which is related with all
the tuples in a sliding window. Thus, the way to break input
streams and input data in [21] cannot obtain the correct top-k
result using the semantics of uncertainty.

Our problem is also different from real-time scheduling
problems for the following two reasons. First, each task in
real-time scheduling has fixed deadlines which must be met
[7], [1], [15]. The latest work for periodic real-time scheduling
also makes the assumption of deadline periodic tasks [7]. For
our problem, each query has a frequency upper bound which
is more flexible and complex, but no fixed deadlines. We must
ensure that the interval between two consecutive executions is
no more than the frequency upper bound. Second, the goal of
real-time scheduling is to meet the deadlines of tasks or to
minimize the number of late tasks. Our goal is to share the

4

computation among queries as much as possible and satisfy
the frequency semantics at the same time.

Recent work on scheduling in DSMSs presented scheduling
methods at the level of tuples and operators [5], [8], [19].
They choose which tuples or which operators to process at
any given time. The goals are to reduce output latency or the
sizes of inter-operator queues. We extend SLIDE semantics
to FREQUENCY semantics. SLIDE semantics means the
query can be executed at a frequency which is no more than
SLIDE, while FREQUENCY means the interval between two
consecutive executions is no more than FREQUENCY which
is more flexible, but also more complex.

3 PROCESSING A SINGLE QUERY

We first discuss how to process a single query, which provides
basis for further discussion of sharing and query optimization.

Let T be an uncertain stream containing a sequence of
tuples Ti, each of which is associated with a membership
probability Pr(Ti). We use a time-based sliding window
over T . Suppose the current window is S with size W .
A possible world pw from S is a possible combination of
a set of tuples with probability Pr(pw). When tuples are
independent without any generation rules, we have Pr(pw) =∏

Ti∈pw Pr(Ti)
∏

Ti ̸∈pw(1 − Pr(Ti)). We focus on the case
where the tuples are dependent with generation rules.

Definition 3.1: A generation rule is a set of dependent
tuples, R where each element ∇ ∈ R is a set of dependent
tuples.

For a tuple Ti which is not involved in any gen-
eration rule, we can make up a generation rule with
only one tuple Ti. Then, we can easily get Pr(pw) =∏

∇∈R,∇∩pw=Ti
Pr(Ti)

∏
∇∈R,∇∩pw=∅(1− ΣTi∈∇Pr(Ti)).

Definition 3.2: Given a ranking function f : Ti → R, the
top-k results of a possible world pw, denoted as Topk(pw),
are the k tuples who rank highest in pw. The top-k probability
of a tuple Ti is the sum of the probabilities of all possible
worlds in which Ti belongs to the top-k answer, Prk(Ti) =∑

Ti∈Topk(pw) Pr(pw).
First, we assume the tuples are independent without any

generation rules. We rank the tuples in the sliding window
S in descending order according to the ranking function f .
Prk(Ti) can be computed by the product of the probability
of Ti and the probability that no more than k− 1 tuples rank
higher than Ti. Let Pr+(Ti, j) be the probability that there
are j tuples that rank higher than Ti, and Pr−(Ti, k − 1) the
probability that no more than k − 1 tuples rank higher than
Ti in S. Then Pr−(Ti, k − 1) = Σk−1

j=0Pr+(Ti, j). Thus, the
top-k probability of Ti is

Prk(Ti) = Pr(Ti) ∗ Pr
−
(Ti, k − 1) = Pr(Ti) ∗ Σ

k−1
j=0Pr

+
(Ti, j). (1)

For T1 ∈ S, there is no tuple that ranks higher than T1, thus,
Pr+(T1, 0) = 1. For tuple T2 ∈ S, Pr+(T2, 0) = 1−Pr(T1),
and Pr+(T2, 1) = Pr(T1). Generally, for tuple Ti ∈ S where
1 ≤ i ≤ n, Pr+(Ti, j) is:

Pr
+
(Ti, j) =


Pr+(Ti−1, j) ∗ (1 − Pr(Ti−1)) if j = 0
Pr+(Ti−1, j − 1) ∗ Pr(Ti−1) + Pr+(Ti−1, j)
∗(1 − Pr(Ti−1)) if j < i − 1 and j ≤ k − 1

Pr+(Ti−1, j − 1) ∗ Pr(Ti−1) if j = i − 1 and j ≤ k − 1
(2)

After computing all the Pr+(Ti, j) values, the top-k prob-
ability of Ti can be computed as Prk(Ti) = Pr(Ti) ∗
Σk−1

j=0Pr+(Ti, j).
Theorem 3.1: It costs O(n ∗ k) to compute the result of

a top-k query when the tuples are independent without any
generation rules.

Now we consider the generation rules between tuples.
That is, some tuples cannot appear in a possible world at
the same time and these tuples are dependent. We convert
the computation of the top-k probability between dependent
tuples to the computation of the top-k probability between
independent tuples. Then, the sharing computation can also
be applied to the situation with generation rules. Recall that
the set of generation rules are R where each element ∇ ∈ R
is a set of dependent tuples. For each Ti, we compute the set
of tuples that are independent of Ti. If Ti ranks higher than all
the tuples in ∇, ∇ can be ignored. For each ∇ ∈ R, if Ti ranks
lower than all the tuples in ∇, we combine all tuples in ∇ as
a single tuple with the probability Pr(∇) =

∑
Tj∈∇ Pr(Tj).

If Ti ranks between the tuples in ∇, we combine the tuples
in ∇ which rank higher than Ti and ignore the remaining
tuples in ∇. After scanning all the generation rules in R, the
remaining tuples are independent of Ti. Then, we compute
top-k probability of Ti according to equations (1) and (2).
Therefore, it costs O(n ∗ k) to compute the top-k probability
of Ti. The top-k probability of all the tuples can be computed
in O(n2 ∗ k).

Theorem 3.2: It costs O(n2 ∗ k) to compute the result of
a top-k query when the tuples are dependent with generation
rules.

4 SHARING AMONG QUERIES WITH SAME
FREQUENCY UPPER BOUND

As mentioned in the introduction, there are three types of
queries with sharing possibilities. In this section, we consider
queries in the first category. The second and third categories,
which are the most common, are discussed in Sections 5 and
6. Table 4 outlines the major notations used in this paper.

TABLE 4
Notations

G, F , K, x groups of queries, the corresponding set of frequencies,
the set of k values, and the number of queries in G

G,F ,K,g the group set of queries, the corresponding set of
frequencies, the set of k values, and the number of groups

Gi, fi, kmax
i

the id, and the frequency of group i in G,
and the largest k value in group i where 1 ≤ i ≤ g

t1i the time that Gi is first executed

EP , EPi
an execution plan for G and an execution plan
for the group Gi in G

Gcost(t) the cost of executing G in [0, t] for an arbitrary plan

DPcost(i, t)
the minimum cost of executing the first i groups in [0, t]
for the dynamic programming algorithm where 1 ≤ i ≤ g.

GAcost(t)
the cost of executing G in [0, t]
for the greedy algorithm

s(i, t)
the last time that we execute Gi in [0, t]
for the dynamic programming algorithm

e(t) the group number in the first i groups executed at time t
for the greedy algorithm

We first start with the formalization of the problem. We
divide the set of queries Q into r groups G = {G1, ..., Gr}
according to the frequency upper bounds of queries so that
queries with the same frequency upper bound are in the same

5

group. Let Gi denote a group whose queries have the same
frequency bound, fi. Each Gi is sorted in ascending order
based on fi. Let kmax

i denote the largest k of queries in
Gi. After grouping, we have intra-group sharing and inter-
group sharing. The first category (i.e., queries with the same
frequency upper bound but different k values) represents intra-
group sharing, while the second and the third categories
represent inter-group sharing.

As discussed in Section 1, the results of a top-k′ query
cannot be derived directly from that of another top-k query
even when k ≥ k′. However, we can reuse the intermediate
results of a top-k query to compute answers for a top-k′ query
when k ≥ k′.

Now let us consider another top-k′ query in Gi (k′ < k)
with the same frequency upper bound. The top-k′ probability
of Ti is Prk′(Ti) = Pr(Ti)∗Σk′−1

j=0 Pr+(Ti, j). Since k′ < k,
we can find that Pr+(Ti, j) (0 ≤ j ≤ k′ − 1) is already
computed when we compute the answer for the top-k query.
Thus, the top-k′ probability of each tuple can be derived when
we compute the top-k probability of each tuple.

For example, suppose the tuples in a sliding window over
an uncertain data stream after ranking are {T1, T2, T3, T4, T5}
with the corresponding probabilities {0.7, 0.2, 1, 0.3, 0.5}. To
compute the top-3 probability of each tuple, we first initial-
ize Pr+(T1, 0) = 1. According to equation (2), we have
Pr+(T2, 0) = Pr+(T1, 0)∗(1−Pr(T1)) = 1∗(1−0.7) = 0.3,
Pr+(T2, 1) = Pr+(T1, 0) ∗ Pr(T1) = 1 ∗ 0.7 = 0.7,
Pr+(T3, 0) = Pr+(T2, 0) ∗ (1−Pr(T2)) = 0.3 ∗ (1− 0.2) =
0.24, Pr+(T3, 1) = Pr+(T2, 0)∗Pr(T2)+Pr+(T2, 1)∗ (1−
Pr(T2)) = 0.3 ∗ 0.2 + 0.7 ∗ 0.8 = 0.62 and Pr+(T3, 2) =
Pr+(T2, 1) ∗ Pr(T2) = 0.7 ∗ 0.2 = 0.14. We get Pr3(T3) =
Pr(T3) ∗ (Pr+(T3, 0) + Pr+(T3, 1) + Pr+(T3, 2)). If we
also want to compute the top-2 probability of T3, we can
get it easily: Pr2(T3) = Pr(T3)∗ (Pr+(T3, 0)+Pr+(T3, 1))
since Pr+(T3, 0) and Pr+(T3, 1) are already computed in the
computation of the top-3 probability.

Theorem 4.1: It costs O(n ∗ k) to compute the results of
both top-k query and top-k′ query when k ≥ k′ without any
generation rules.

Now we consider the generation rules between tuples. For
each Ti, we compute the set of tuples that are independent of
Ti. After scanning all the generation rules in R, the remaining
tuples are independent of Ti. Then we compute the top-k
probability of Ti according to equations (1) and (2). At the
same time, we can also get the top-k′ probability of Ti where
k ≥ k′ by sharing the intermediate computations. Therefore, it
costs O(n∗k) to compute the top-k probability of Ti. The top-
k probability of all the tuples can be computed in O(n2 ∗ k).

Consider the uncertain table and the query Q1 in Section 1.
Recall that we have two generation rules: GR1 = {R2, R3}
and GR2 = {R5, R6}. Let us compute Pr3(R4). R4 is
ranked lower than all the tuples in GR1. There is no more
than one tuple which can appear in a possible world. We
combine all the tuples in GR1 into a combination tuple
RGR1 with probability Pr(RGR1) = Pr(R2) + Pr(R3) =
0.4 + 0.5 = 0.9. R4 is ranked between tuples in GR2. There
is only R5 in GR1 which is ranked higher than R4. After
the process, the independent tuples which are ranked higher

than R4 is {R1, RGR1 , R5}. Now, this problem is converted
to the computation of the top-k probability between inde-
pendent tuples. According to equations (1) and (2), we have
Pr3(R4) = 0.784. We can also compute Pr2(R4) = 0.202
by reusing the intermediate results in the computation of its
top-3 probability the same way as above.

Theorem 4.2: It costs O(n2 ∗ k) to compute the results
of both top-k query and top-k′ query when k ≥ k′ with
generation rules.

5 COMBINATION RULE TO COMBINE GROUPS
WITH DIFFERENT FREQUENCY UPPER BOUNDS

According to Theorem 4.2, queries with same frequency upper
bounds can share computation. For queries with different
frequency upper bounds, our objective is to share computation
among queries that have different frequency upper bounds,
which include the second and the third types of queries
described in Section 1. We can exploit the FREQUENCY
semantics to execute some queries more often so that they
can be synchronized with those queries that have a higher
k but lower frequency. In this case, there is no overhead to
execute queries more often based on the Theorem 4.2. Thus,
we present the following combination rule to combine some
groups with different frequency upper bounds.

Combination rule: As explained in Section 4, Q is divided
into r groups G = {G1, ..., Gr} where i < j implies fi < fj .
If kmax

i ≥ kmax
j , we set the frequency of Gj to fi, and thus

the results of Gj are returned when Gi is executed. Gi and Gj

are combined into the same group with the frequency bound
fi and the largest k value kmax

i as defined in the previous
section. This combination step will continue until there are no
pair of groups (Gi, Gj) such that kmax

i ≥ kmax
j if i < j.

Lemma 5.1: Assume that the query groups after combina-
tion are G = {G1, ..., Gg}; for any two groups Gi, Gj in G,
if i < j, then we have fi < fj and kmax

i < kmax
j .

Type 2 queries (same k value) are distributed to different
groups (different frequency bounds), which can be processed
together with type 3 queries since different groups have
different frequency bounds.

Consider the example in Section 1 where there is a set
Q = {q1, q2, ..., q6} of six top-k queries submitted by different
users. Note that the unit time is a minute in this example.
According to the frequency upper bound, we can divide Q into
four subgroups: G1 = {q1, q2}, G2 = {q3}, G3 = {q4, q5},
and G4 = {q6}. That is, G = {G1, G2, G3, G4}, which is
ranked in ascending order based on fi. The corresponding
set of frequency upper bounds is {f1 = 2, f2 = 3, f3 =
5, f4 = 7}, and the set of the largest k values is {kmax

1 =
3, kmax

2 = 4, kmax
3 = 5, kmax

4 = 2}. Since kmax
3 > kmax

4 , we
set the frequency of G4 to f3. Then as shown in Section 4,
the results of G4 can be computed based on the intermediate
results generated from G3 when G3 is executed. Thus, we
combine G3 and G4 into the same group with f3 and kmax

3 .
After combination, the group set is G = {G1, G2, G3},

the corresponding set of frequency bounds is {f1 = 2, f2 =
3, f3 = 5}, and the set of the largest k values is {kmax

1 =

6

3, kmax
2 = 4, kmax

3 = 5}. In the rest of this paper, we name the
combined query group {G1, G2, G3}, as Query Example1.

For each group after combination, we can use intra-group
sharing described in Section 4. We denote this level of sharing
after combination as INCO. That is, INCO includes three
steps. The first step is the division step which divides the
set of queries into groups according to the frequency upper
bounds so that queries with the same frequency upper bound
will be assigned to the same group; the second step is the
combination step which combines some query groups with
different frequency upper bounds based on Theorem 4.2; the
third step is the intra-group sharing for each combined group.

6 SHARING AMONG QUERIES BETWEEN
GROUPS AFTER COMBINATION

In this section, we address inter-group sharing for the com-
bination groups. Sharing among these queries is achieved by
selectively executing groups of queries with higher frequency
together with groups of queries with lower frequency. In this
case, the cost of executing selected groups depends on the
largest k of the groups.

As mentioned in Section 4, the execution cost of each query
depends on n (the number of tuples in a sliding window) and
k. Without loss of generality, we omit parameter n in the
cost computation. For Query Example1, if we execute them
according to their original frequency upper bounds, the total
cost in 5 minutes is 3∗2+4+5 = 15. If G2 is executed every
two minutes, G1 and G2 can be executed simultaneously. In
5 minutes, G1 and G2 are executed at times 2 and 4. The cost
to execute G1 and G2 at time 2 is kmax

2 = 4 since they can
share the intermediate results according to Section 4. The total
cost in 5 minutes is 4 ∗ 2 + 5 = 13. Thus, the total cost can
be saved although G2 is executed more frequently. This is the
main idea of sharing the results among queries with different k
and different frequencies f . Clearly, there are many alternative
schedules for running the queries at different frequencies as
long as they satisfy the frequency upper bound constraints.
How to select an optimal one with less computation cost is
the problem that we investigate here. In the following, we
give the related definitions and define the problem of finding
an optimal execution plan for a group of top-k queries.

Definition 6.1: The query cycle for the groups in G is the
interval between two consecutive executions of Gg .

Note that by the time Gg is executed for the first time,
all Gi (1 ≤ i < g) have executed multiple times since
their frequency upper bounds are lower, hence they execute
more frequently. Consequently, the execution plan of G can
be defined as follows.

Definition 6.2: An execution plan for a set of query groups
G, EPG = {EP1, ...EPi, ..., EPg}, indicates the execu-
tion time of each query group, EPi, in each query cy-
cle, where execution time of each query group EPi =
{t1i , t2i , ..., tmi , ..., tNi

i } and EPg = {t1g}, where t1g is the first
(and only) execution of Gg in a given cycle and t1g ≤ fg, Ni is
the number of times Gi is executed in a query cycle (⌈t1g/fi⌉
is lower bound of Ni), tmi − tm−1

i ≤ fi, and t1g − tNi
i ≤ fi.

Note that we only need to consider execution plans in one
query cycle. For Query Example1, we give an execution plan
EP = {EP1, EP2, EP3} where EP1 = {t11 = 2, t21 = 4, t31 =
5}, EP2 = {t12 = 2, t22 = 5}, EP3 = {t13 = 5}, as shown in
Figure 3. That is, G1 is executed at times 2, 4, and 5; G2 is
executed at times 2 and 5; and G3 is executed at time 5. The
interval between two consecutive executions of G1 is no more
than f1 = 2, which is also the case for G2 and G3.

f
1
=2

(c) The execution time of G
3
,EP

3
={5}

(b) The execution time of G
2
,EP

2
={2,5}

2 50

≤ f
2
=3

50

f
3
=5≤

42 50

≤ f
1
=2 ≤

(a) The execution time of G
1
,EP

1
={2,4,5}

f
1
=2≤

≤ f
2
=3

Fig. 3. EPi in the execution plan EP = {{2, 4, 5}, {2, 5}, {5}}

Given an execution plan, its corresponding execution cost
is defined as follows.

Definition 6.3: Given a set G of query groups and its
execution plan EP = {EP1, EP2, ..., EPg}, let t1g be the time
when Gg is first executed. We define Gcost(t) as the total cost
of executing queries in G in [0, t] (t ≤ t1g). The execution cost
of each query is its actual execution time. The cost-per-unit
time is Gcost(t1g)/t

1
g.

Gcost(t) can be computed as follows:

Gcost(t) =


Gcost(t − 1) if there is

no group executed at time t
Gcost(t − 1) + ko if there is

a group with the ko value executed at time t

(3)

Different plans have different t1g which result in different
total cost Gcost(t1g). Finding the optimal plan (in terms of
computation cost) is a problem that we will address, which is
formally defined as follows.

Definition 6.4: Given a set G of query groups, for i =
1, 2, ..., g, Gi has a frequency upper bound fi and a top k
value kmax

i , and fi < fj , kmax
i < kmax

j if i < j. We define
the sharing problem of G as finding an execution plan EP for
G that minimizes the total execution cost-per-unit time.

To compare different plans, we use the cost-per-unit time
as the metric. The plan with the minimum cost-per-unit time
is considered the best plan. A naive method to find the
best execution plan that minimizes the cost-per-unit time is
to exhaustively enumerate all the possible plans, which is
inefficient since there will be an exponential number of plans
to investigate.

Given Query Example1 and an execution plan EP =
{EP1, EP2, EP3} where EP1 = {2, 4, 5}, EP2 =
{2, 5}, EP3 = {5}, for each time t less than five minutes,
we compute Gcost(g, t). As shown in Figure 3, no group is
executed at time 1. We have Gcost(1) = 0. At time 2, G1

and G2 can be executed simultaneously. The execution cost at
this time depends on kmax

2 value of G2 since kmax
2 > kmax

1 .
Thus, Gcost(2) = Gcost(1) + kmax

2 = 4. Similarly, at time
3, no group is executed, Gcost(3) = Gcost(2), and at time
4, G1 is executed, Gcost(4) = Gcost(3) + kmax

1 = 7.
Finally, G3 is executed at time 5, and the results of all
the groups are returned. The execution cost at this time
depends on kmax

3 value since kmax
3 is the largest. Thus we

7

have Gcost(5) = Gcost(4) + kmax
3 = 12. The cost-per-

minute is 12/5 = 2.4. Given another execution plan where
EP1 = {2, 4}, EP2 = {2, 4}, EP3 = {4} as illustrated in
Figure 4, we obtain the execution cost-per-minute 9/4 = 2.25.
After enumerating all possible plans, the most efficient plan
can be found as EP = {{2, 4}, {2, 4}, 4}. That is, G2 is
executed at time 2, and the results of both G1 and G2 are
returned, followed by G3’s execution at time 4, returning the
results of G1, G2 and G3. It is clear that enumerating all
possible execution plans is inefficient, thus, we propose a
dynamic programming-based approach in the next section.

(c) The execution time of G
3
,EP

3
={4}

(b) The execution time of G
2
,EP

2
={2,4}

2 40

≤ f
2
=3

40

f
3
=5≤

2 40

≤ f
1
=2

(a) The execution time of G
1
,EP

1
={2,4}

f
1
=2≤

≤ f
2
=3

Fig. 4. EPi in the execution plan EP = {{2, 4}, {2, 4}, 4}

7 DYNAMIC PROGRAMMING SOLUTION

In order to find the optimal execution of the groups that
minimize the cost-per-unit time without enumerating all the
possible plans, we analyze the execution of G. Note that Gg

has the first (and only) execution of G in a given cycle. That
is, in the optimal execution, Gg has only one execution time,
while other groups may have more than one execution time
to satisfy the frequency upper bounds. Thus, we analyze the
execution of Gg . There are fg choices for first execution
of Gg. Once we set the time t1g for first execution of Gg ,
we need to find the optimal execution for the other groups
{G1, G2, .., Gg−1} in [0, t1g].

Let DPcost(i, t) be the minimum cost of executing the
first i groups in [0, t] where 1 ≤ i ≤ g and 0 ≤ t ≤ fg − 1.
The problem here is to compute DPcost(i, t) for the optimal
execution of the first i groups in [0, t]. We propose a
dynamic programming approach (denoted as DP) to compute
DPcost(i, t). When i = g and t = t1g − 1 where 1 ≤ t1g ≤ fg ,
we get DPcost(g, t1g −1). Clearly, there are fg choices for t1g
and for each choice, the cost of executing all the groups in [0,
t1g] is DPcost(g, t1g) = DPcost(g, t1g − 1) + kmax

g . The cost-
per-unit time is DPcost(g, t1g)/t

1
g. Thus, an execution plan

that minimizes (DPcost(g, t1g − 1)+ kmax
g)/t1g among all the

possible t1g values is the best plan.
We compute DPcost(i, t) recursively. When i = 1, the

optimal execution of G1 is to execute it every f1 time units.
Thus, we have

DPcost(1, t) = (⌊t/f1⌋) ∗ kmax
1 (4)

This is illustrated in Figure 5(a). If 2 ≤ i ≤ g and 0 ≤ t < fi,
no executions of Gi are necessary. Thus, the execution of the
first i groups in [0, t] with minimum cost DPcost(i, t) is the
same as the execution of the first i − 1 groups in [0, t]. We
have

DPcost(i, t) = DPcost(i− 1, t) (5)

for t < fi, as shown in Figure 5(b). When 2 ≤ i ≤ g and
fi ≤ t ≤ fg − 1, assume that the last time to execute Gi

is tli in the optimal execution of the first i groups in [0, t],
where t − fi + 1 ≤ tli ≤ t. DPcost(i, t) is equal to the
minimum costs of executing the first i groups in [0, tli − 1]
and in [tli + 1, t], plus the cost of executing Gi at time tli.
Recall that the execution of the first i groups in [tli + 1, t] is
equal to the execution of the first i groups in [0, t− tli]. Thus,
the minimum cost of executing the first i groups in [tli +1, t]
equals to the minimum cost of executing the first i groups in
[0, t− tli]. Thus, we obtain

DPcost(i, t) = DPcost(i, tli−1)+kmax
i +DPcost(i, t− tli) (6)

Figure 5(c) illustrates this computation of DPcost(i, t).
There are only fi possible values for tli, namely tli = t− fi +
1, t− fi + 2, ..., t. Since the optimal execution plan must use
one of these values for tli, we need to check them all to find
the best. Thus, the recursive definition for the minimum cost
DPcost(i, t) of executing the first i groups in [0, t] becomes

DPcost(i, t) =


(⌊t/fi⌋) ∗ kmax

i if i = 1 and 0 ≤ t ≤ fg − 1
DPcost(i − 1, t) if 2 ≤ i ≤ g and 0 ≤ t < fi
min

(t−fi+1)≤tl
i
≤t

(DPcost(i, tli − 1) + kmax
i +

DPcost(i, t − tli))if 2 ≤ i ≤ g and fi ≤ t ≤ fg − 1
(7)

2≤i≤g and f
i
≤t≤f

g
-1

2≤i≤g and 0≤t<f
i

DPcost(i,t)=(t/f
i
)*k

i

max

t2*f
i

f
i

f
g
-1

f
g
-1

(c)

(b)

DPcost(i,t)=DPcost(i,t
i

l
-1)+k

i

max
+DPcost(i,t-t

i

l
)

t-f
i
+1

t

DPcost(i,t)=DPcost(i-1,t)

f
i

0

DPcost(i,t-t
i

l
)

t
i

l

DPcost(i,t
i

l
-1)

t0

k
i

max

f
g
-1

(a)

DPcost(i,f
i
)=k

i

max

0
i=1 and 0≤t≤f

g
-1

DPcost(i,2*f
i
)=2*k

i

max

Fig. 5. The illustration of computing DPcost(i, t)

According to Equation 7, We develop a dynamic program-
ming solution to compute DPcost(i, t).

Rather than computing the solution recursively, we compute
the minimum cost by using a tabular, bottom-up approach.
Algorithm 1 uses a table DPcost[1 − g, 1 − [fg − 1]] for
storing the DPcost(i, t) values, and an auxiliary table s[1 −
g, 1 − [fg − 1]] that records the time tli which has achieved
the minimum cost in computing, that is, s(i, t) = tli such that
DPcost(i, t) = DPcost(i, tli−1)+kmax

i +DPcost(i, t−tli).
The inputs are two sequences F = {f1, f2, ..., fg} and
K = {kmax

1 , kmax
2 , ..., kmax

g }.
In Algorithm 1, there are three nested loops. The first loop

takes at most g values, the second loop takes at most fg values,
and the third loop takes at most fg values. Thus, the nested
loop structure yields a running time of O(g ∗ fg ∗ fg) for this
algorithm. It requires O(g∗fg) space to store the DPcost and
s tables.

To correctly implement the bottom-up approach, we must
determine which entries of the table are used in computing
DPcost(i, t). Equation (7) shows that DPcost(i, t) of execut-
ing the first i groups in [0, t] depends only on DPcost(i−1, t),
DPcost(i, tli− 1), and DPcost(i, t− tli). Thus, the algorithm
should fill DPcost table in a manner that corresponds to
solving the problem on increasing values of i and t. Table

8
TABLE 5

The values of DPcost(i, t) for Query Example1
t = 0 t = 1 t = 2

i = 1 DPcost(1, 0) = 0 DPcost(1, 1) = 0 DPcost(1, 2) = 3

i = 2
DPcost(2, 0) = 0 DPcost(2, 1) = Gocst(1, 1) = 0 DPcost(2, 2) = DPcost(1, 2) = 3

(since t = 1 and 0 ≤ t < f2) (since t = 2 and 1 < t < f2)

i = 3
DPcost(3, 0) = 0 DPcost(3, 1) = Gocst(2, 1) = 0 DPcost(3, 2) = DPcost(2, 2) = 3

(since t = 1 and 0 ≤ t < f3) (since t = 2 and 1 < t < f3)

TABLE 6
The values of DPcost(i, t) for Query Example1

t = 3 t = 4
i = 1 DPcost(1, 3) = 3 DPcost(1, 4) = 6

i = 2

DPcost(2, 3) = min
1≤tl

i
≤3

(DPcost(2, tli − 1) + 4+ DPcost(2, 4) = min
2≤tl

i
≤4

(DPcost(2, tli − 1) + 4+

DPcost(2, t − tli)) = 4(since t = 3 and f2 ≤ t < f3) DPcost(2, t − tli)) = 7(since t = 4 and f2 < t < f3)
(DPcost(2, 0) + 4 + DPcost(2, 2)) = 7 tl2 = 1 (DPcost(2, 1) + 4 + DPcost(2, 2)) = 7 tl2 = 2

(DPcost(2, 1) + 4 + DPcost(2, 1)) = 4 tl2 = 2 (DPcost(2, 2) + 4 + DPcost(2, 1)) = 7 tl2 = 3

(DPcost(2, 2) + 4 + DPcost(2, 0)) = 7 tl2 = 3 (DPcost(2, 3) + 4 + DPcost(2, 0)) = 8 tl2 = 4

i = 3
DPcost(3, 3) = DPcost(2, 3) = 4 DPcost(3, 4) = DPcost(2, 4) = 7

(since t = 3 and 1 < t < f3) (since t = 4 and 1 < t < f3)

Algorithm 1 The Dynamic Programming DP(F ,K,DPcost,s)

for each timestamp t in [0, f1 − 1] do
let the minimum cost DPcost[1, t] be 0;
set the last time s[1, t] to execute group G1 in [0, t] as -1;

end for
for each timestamp t in [f1, fg − 1] do

set the minimum cost DPcost[1, t] as (⌊t/f1⌋) ∗ kmax
1 ;

if group G1 is executed at t according to frequency f1 then
let the time s[1, t] when G1 is last executed be t;

else
set the time s[1, t] as the time s[1, t − 1] when G1 is last executed ;

end if
end for
for each query group Gi from group G2 to group Gg do

for each timestamp t in [0, fi − 1] do
let the minimum cost DPcost[i, t] be the total cost DPcost[i − 1, t];
set the last time s[i, t] to execute group Gi in [0, t] as -1;

end for
for each timestamp t in [fi, fg − 1] do

set the initial value of DPcost[i, t] as ∞;
for each timestamp tli in [t − fi + 1, t] do

compute the minimum cost temp = DPcost[i, tli − 1] + kmax
i +

DPcost[i, t − tli] in [0, t];
if temp is less than the computed minimum cost DPcost[i, t] then

let the minimum cost DPcost[i, t] be the new minimum cost temp;
set the last time s[i, t] to execute Gi with DPcost[i, t] as tli;

end if
end for

end for
end for

5 and Table 6 illustrate this procedure for Query Example1.
Each horizontal row contains the entries for the first i groups
in [0, fg−1]. The algorithm computes the rows bottom-up, and
left to right within each row. The minimum execution costs
are DPcost(3, 1) = 0, DPcost(3, 2) = 3, DPcost(3, 3) = 4,
and DPcost(3, 4) = 7. Remember that an execution plan
that minimizes (DPcost(3, t13 − 1) + kmax

3)/t13 among all
the possible t13 (1 ≤ t13 ≤ 5 where 5 is the value of f3)
values is the best plan. Thus, the execution plan with the
minimum (Gcost(3, 3) + kmax

3)/4 = (Gcost(3, 3) + 5)/4 is
the optimal plan. Gcost(3, 3) = Gcost(2, 3) since t = 3 and
t < f3. Gcost(2, 3) = min1≤tli≤3(Gcost(2, tli − 1) + 4 +

Gcost(2, t − tli)) since t = 3 and f2 ≤ t < f3. We can
see that Gcost(2, 3) = (Gcost(2, 1) + 4 + Gcost(2, 1)) = 4
according to Table 6.

When queries are executed according to their frequency
upper bounds, there is no sharing between them. The following
Theorem proves that the cost-per-unit time of no sharing is
Ω(log2 x) times of that of our DP approach on average.

Theorem 7.1: E(m/m∗
g|x, F,K) = Ω(log2 x) where m∗

g

is the cost-per-unit time of the DP approach, m is the cost-

per-unit time of no sharing approach, and F , K and x are the
set of frequencies, the set of k values and the original number
of queries, respectively.

Proof: Please see online supplemental materials.

8 GREEDY ALGORITHM

Theorem 7.1 states that DP can save considerable computation
cost compared with no sharing. However, the running time
of DP is O(g ∗ fg ∗ fg) and it requires O(g ∗ fg) space to
store the DPcost and s tables. In this section, we present
a much faster greedy algorithm (denoted as GA) to compute
the execution plan of executing all the queries. Recall that
when we use DP to compute DPcost(i, t), where 1 ≤ i ≤
g and 0 ≤ t ≤ fg − 1, we have to check all the possible
timestamps (t − fi + 1, t − fi + 2, ..., t) for the last time to
execute Gi, which is not efficient. Therefore, we propose a
faster greedy algorithm that chooses the time to execute Gi

without investigating all the candidate timestamps. The greedy
rule tries to choose a time for executing Gi that saves as much
computation as possible. The time cost and space cost of the
new proposed GA are both O(fg).

When i = 1, the optimal execution of G1 is to execute it at
time f1, thus t11 = f1. When 2 ≤ i ≤ g, we set the time that
Gi will be first executed according to the following rule.

Greedy rule: The first time to execute Gi (t1i) is the last
time when Gi−1 is executed in [0, fi].

This greedy rule is used because we would like to share
the results of Gi with some other groups to save computation
and to minimize the added cost of executing Gi. Meanwhile,
we want to execute Gi as late as possible since the cost of
executing Gi is the largest among the first i groups. Thus, we
set the last time of executing Gi−1 as the first time to execute
Gi; the incurred added cost is kmax

i − kmax
i−1 .

The question now is to compute the last time of execution of
Gi−1 in [0, fi]. Let GAcost(t) be the total cost of executing
the first i groups in [0, t] according to the greedy rule. After
we set the first time to execute G1 as t11 = f1, we have
GAcost(t) = 0 when 0 ≤ t < t11, and we also have

GAcost(t11) = GAcost(t11 − 1) + kmax
1 (8)

as shown in Figure 6(a). Assume the first time to execute Gi−1

is t1i−1 and the first time to execute Gi is t1i where t1i ≤ fi.
According to greedy rule, we have t1i = (fi/t

1
i−1) ∗ t1i−1(The

“/” is integer division operator). For t1i−1 < t < t1i , as t1i−1

9

is the query cycle of the first i − 1 groups, we can define
GAcost(t) as follows:

GAcost(t) = GAcost(t1i−1) +GAcost(t− t1i−1) (9)

This is illustrated in Figure 6(b). When Gi is executed at time
t1i , we have

GAcost(t1i) = GAcost(t1i − 1) + kmax
i (10)

Thus, the recursive definition for the cost GAcost(t) be-
comes

GAcost(t) =


0 if i = 1 and 0 < t < t1i
GAcost(t1i−1) +GAcost(t− t1i−1)if 2 ≤ i ≤ g

and t1i−1 < t < t1i
GAcost(t1i − 1) + kmax

i if 1 ≤ i ≤ g
and t = t1i

(11)

t
i-1

l
t
i

l

2≤i≤g and t
i-1

l<t≤t
i

l

t
i

lt

(b)

GAcost(t
i

l
)=GAcost(t

i

l
-1)+k

i

max

GAcost(t)=GAcost(t
i-1

l
)+GAcost(t-t

i-1

l
)

t0

(a)

GAcost(t)=0

0
i=1 and 0≤t≤t

i

l

GAcost(t
i

l
)=GAcost(t

i

l
-1)+k

i

max

Fig. 6. The illustration of computing GAcost(t)

When i = g, the cost-per-unit time can be computed as
GAcost(t1g)/t

1
g = GAcost(t1g − 1) + kmax

g /t1g.
To keep track of the execution of the first i groups at time

t, we use e(t) to record which group is executed at time t.
That is, e(t) is set to be the group number that is executed at
time t. Recall that t1i−1 is the query cycle of the first i − 1
groups. Thus, we obtain:

e(t) =

 0 if i = 1 and 0 < t < t1i
e(t− t1i−1) if 2 ≤ i ≤ g and t1i−1 < t < t1i
i if 1 ≤ i ≤ g and t = t1i

(12)

We can use a table with fg−1 columns, GAcost[fg−1], to
record these costs; the detailed steps are given in Algorithm 2.
Similarly, we can use a table with fg − 1 columns, e[1− fg],
to store all the e(t) values. Algorithm 2 has a running time
of O(fg). It requires O(fg) to store the e tables, and O(g) to
store K and F sequences. According to Lemma 5.1, different
groups have different frequency upper bounds, thus fg ≥ g.
Algorithm 2 has a space complexity of O(fg).

Algorithm 2 The Greedy Algorithm GA(F ,K,c,e)

for each timestamp t in [0, f1 − 1] do
let the cost GAcost[t] of executing group G1 in [0, t] be 0;
set the group number e[t] which is executed at time t as 0;

end for
let the cost GAcost[f1] of executing group G1 in [0, f1] be f1;
set the group number e[f1] which is executed at time f1 as 1;
set the time tm when G1 is first executed as f1;
for each group Gi from G2 to Gg do

set the time tl when Gi−1 is first executed as tm;
let the time tm when Gi is first executed be (fi/tl) ∗ tl;
for each timestamp t in [tl + 1, tm − 1] do

let the cost GAcost[t] of executing the first i groups in [0, t] be
GAcost[tl] + GAcost[t − tl];
set the group number e[t] which is executed at time t as e[t − tl]

end for
set the cost GAcost[tm] be GAcost[tm − 1] + kmax

i ;
set the group number e[tm] which is executed at time tm to be i;

end for

Table 7 shows the procedure of computing GAcost(t) for
Query Example1. In the table, each horizontal row contains
the cost for executing the first i groups in [0, t1i]. When
i = 1, the corresponding row records the cost for [0,tl]
where tl = f1. For each row i, the costs at timestamps after
the first execution time of Gi are not listed; they will be
computed when we consider the next group. The minimum
cost-per-minute for all three groups is GAcost(4)/4 = 9/4.
The execution plan with this cost-per-minute is {(2, 2), (4, 3)}.
That is, we execute G2 at time 2 and the results of G1 and G2

are returned. Then, we execute G3 at time 4 and the results
of all the groups are returned.

Obviously, GA is not optimal in some cases. Consider
another example where G = {G1, G2, G3}, named Query
Example 2, with the set of corresponding frequency upper
bounds {30, 51, 60}, and the set of k values {2, 3, 4}. Using
the DP approach, the optimal execution is {(30, 2), (60, 3)};
that is, G2 is executed at time 30 and the results of G1 and
G2 are returned, followed by G3 executed at time 60 and the
results of all the groups returned. But according to GA, the best
execution is {(30, 1), (51, 3)}. That is, G1 is executed at time
30 and the results of G1 are returned, then, G3 is executed at
time 51 and the results of all the groups are returned. Although
GA does not always yield the optimal execution plan, it has
lower time and space complexity than DP – both are O(fg),
which is lower than that of DP.

We have already shown that the execution plan obtained by
DP is optimal. We now analyze the bound of GA relative to
DP in terms of the cost-per-unit time for the execution plan,
which shows that the cost-per-unit time of the execution plan
obtained by GA is at most 2 times than that computed by DP.
In fact, from the experimental results that we report later, the
worst case seldom happens, and on average the cost-per-unit
time of GA is almost the same as that of DP.

Recall that GA follows the greedy rule for the time t1i
to execute Gi where t1i ≤ fi. Let mi be the cost-per-
unit time of executing the first i groups using GA. Then,
mi = GAcost(t1i)/t

1
i . If we use DP, the cost-per-unit time

for the first i groups is m∗
i = min(DPcost(t− 1)+ kmax

i)/t
where 1 ≤ t ≤ fi. In order to compare GA with DP, we want
to compute the performance bound for each step i in terms of
cost-per-unit time (i.e., we compare mi with m∗

i at each step).
For GA, we first compute the relationship between mi and

mi−1 in two consecutive steps i − 1 and i. According to the
greedy rule, the first time to execute Gi, (i.e.,t1i), is the last
time of executing Gi−1 in [0, fi]. The added cost at time t1i is
a fixed value, that is kmax

i − kmax
i−1 . Thus, t1i is a key factor in

computing the relationship between mi and mi−1. We wish t1i
to be as large as possible to minimize the added cost-per-unit
time from mi to mi−1. The following lemma shows the lower
bound of t1i .

Lemma 8.1: Suppose t1i is the last time to execute group
Gi−1 in the execution of first i − 1 groups with mi−1 in [0,
fi]. Then, t1i ≥ fi/2.

Proof: Please see online supplemental materials.
Lemma 8.1 proves that the last time to execute group Gi−1

is no less than fi/2. We use it to compute the relationship
between mi and mi−1.

10
TABLE 7

The values of GAcost(t) for Query Example1
t = 0 t = 1 t = 2 t = 3 t = 4

i = 1 GAcost(0) = 0 GAcost(1) = 0 GAcost(2) = 3

i = 2
GAcost(2) = GAcost(2) + 4 − 3 = 4 GAcost(4) = GAcost(2) + GAcost(4 − 2) = 8

(since t = 2 and t = t12) t12 = 2 (since t12 = 2)

i = 3
GAcost(4) = GAcost(4) + 5 − 4 = 9

(since t = 4 and t = t13) t13 = 4

Theorem 8.1: Let mi be the cost-per-unit time of executing
the first i groups {G1, G2, ..., Gi} where 1 ≤ i ≤ g in GA.
Then mi ≤ mi−1 + 2(kmax

i − kmax
i−1)/fi.

Proof: Please see online supplemental materials.
Theorem 8.1 shows the relationship between two steps

in GA in terms of cost-per-unit time. Suppose there is a
performance bound of GA and DP at step i − 1. Then, we
can use Theorem 8.1 to get the performance bound of these
two methods at the next step i.

Theorem 8.2: Let DPcost(i, t−1) be the minimum cost of
executing the first i groups in [0, t−1] using the DP approach.
Then, we have mi ≤ 2 ∗ min(DPcost(i, t − 1) + kmax

i)/t
where 1 ≤ t ≤ fi.

Proof: Please see online supplemental materials.
Theorem 8.2 shows that the performance bound of GA

relative to DP is 2 for each step. Corollary 8.1 shows the
performance bound for the final step.

Corollary 8.1: Let mg and m∗
g denote the cost-per-unit time

of the solution computed by the DP and the GA approaches,
repectively. Then, mg/m

∗
g ≤ 2.

9 EXTENSION TO MULTIPLE STREAMS

The above discussion focuses on a single stream, but our
solutions can be easily extended to multiple streams. If the
number of streams is N , and the number of tuples of each
stream in a sliding window is w, then n = w ∗N . The top-k
probability of each stream is the sum of the top-k probabilities
of w tuples of each stream in the sliding window [16].

Suppose the set of multiple streams is {T1, T2, ...TN}, where
each Ti contains a sequence of tuples Ti1, Ti2, ..., each of
which is associated with a membership probability Pr(Tij).
We use a time-based sliding window over the streams. Suppose
the current window is S with size w. Each stream has w
tuples in the sliding window. A possible world pw from S
is a possible combination of set of the tuples from all the
streams. The top-k probability of stream Ti is Prk(Ti) =∑

1≤j≤w Prk(Tij) where Prk(Tij) is the top-k probability
of the tuple Tij . According to the top-k probability of Ti, Pk-
topk returns k streams with the highest top-k probabilities.

We have shown in Section 4 how to compute the top-k
probability of each tuple Tij . Once that is computed, it takes
O(w) to compute the top-k probabilities of each stream. Then,
it costs O(w∗N) = n to compute the top-k probabilities of all
the streams. As the cost to compute the top-k probability of all
the tuples is O(n2 ∗k), it costs O(n2 ∗k)+O(n) = O(n2 ∗k)
to compute top-k probabilities of all the data streams.

Suppose there is another top-k′ query over the same set of
streams in the system. The top-k′ probability of each stream
depends on the top-k′ probability of each tuple in this stream.
In Section 4, we have shown that we can use the intermediate
results of computing top-k probability of one tuple to compute
top-k′ probability of this tuple where k′ < k. Thus, the results

of top-k′ query can be returned when we compute the results
of top-k query over multiple streams. The cost to compute
top-k query over multiple streams is O(n2 ∗ k), which is the
same as that of single stream.

10 EXPERIMENTS

In this section, we report experimental results comparing the
dynamic programming approach (DP), the greedy algorithm
(GA), intra-group sharing between queries with same fre-
quency upper bounds (IN), INCO described in Section 5, and
no sharing approach (NS). All the algorithms were imple-
mented using Microsoft Visual C++ V6.0 and the experiments
were conducted on a PC with a 3.0 GHz Pentium 4 CPU, 1.0
GB of RAM, running the Microsoft Windows XP operating
system.

10.1 Experiment Setting

Query Sets. We use a synthetic query set where the fre-
quency upper bound f and the k values of each query are
drawn from uniform or Gaussian distributions. We developed
several generators, each of which generates one distribution
on f as well as k, using uniform and Gaussian distribu-
tions. First, we specify the number of queries x submit-
ted to the system. Assuming that the set of multiple top-k
queries are Q = {q1, q2, ..., qx} with the corresponding sets
F = {f1, f2, ..., fx} and K = {k1, k2, ..., kx}, we generate
all the values for both F and K from uniform or Gaussian
distributions. The default parameters for fi for the uniform
distribution range from 1 to 40, while they are 40 and 5
for the Gaussian distribution. For the uniform distribution ki
ranges from 2 to 100 for the single stream, 2 to 20 for the
synthetic data of multiple streams, and 2 to 5 for the real
data of multiple streams. For Gaussian distribution, the default
parameters for ki are 100 and 10 for the single stream, 5 to
20 for the synthetic data of multiple streams, and 2 to 5 for
the real data of multiple streams.

We refer to the results derived from these two distributions
by the concatenation of the short names for each distribution
for F then K. For example, uu indicates that f and k are both
generated by uniform distribution. We show the results of uu
in the following, and comment on other combinations briefly.

Data Sets. We use one synthetic data set and one real
data set for single stream. Suppose there are n tuples in one
sliding window, each of which has a value and a probability.
We generate n synthetic tuples from an uniform distribution
for the values and the probabilities. The method discussed in
Section 4 is used to compute top-k probability of each tuple.
To create an uncertain data stream, we repeatedly generate n
tuples from uniform distributions for both the property and
the probability. For the real single stream data set, we use
the International Ice Patrol (IIP) Iceberg Sightings Database3

11

[20], which collects information on iceberg activity in North
Atlantic to monitor iceberg danger near the Grand Banks of
Newfoundland by sighting icebergs, plotting and predicting
iceberg drift, and broadcasting all known icebergs to prevent
icebergs threatening. Each sighting record contains the date,
location, shape, size, number of days drifted, etc. It can be
considered as a tuple in the sliding window. We choose the
number of days drifted as the property of the tuple and convert
its visibility into existential probability with six values: 0.8,
0.7, 0.6, 0.5, 0.4, 0.3, and 0.2. To detect iceberg drift and
prevent icebergs threats, it is important to continuously report
the top-k records with the highest numbers of days drifted for a
given interval; e.g., the top-2 records with the highest numbers
of days drifted in the last one month. This real application
is also used by Jin et al. [20]. We gathered 44440 sighting
records from 1998 to 2007. Then, we created an uncertain data
stream by repeatedly choosing these records randomly. Then,
we randomly chose two consecutive tuples in the stream as
a generation rule where the sum of probabilities of these two
tuples are no more than 1.

For the synthetic data set of multiple streams, suppose there
are N streams and w is the number of tuples of each stream
in one sliding window. We repeatedly generate w tuples from
uniform distributions for each of the streams. We also use the
seismic data sets collected by the wireless sensor network that
monitors Reventador, which is an active volcano in Ecuador
(http://www.eecs.harvard.edu/∼werner/projects/volcano2005
/data.shtml). Many sensors are deployed at Reventador; we
chose 8, 10, 12, 14 and 16 sensors where data from each sensor
can be considered as an uncertain stream. The seismic data
reported by each sensor is treated as an uncertain stream, and
each data record is considered as a tuple. The probability of
each tuple in a stream is 1/w where w is the number of tuples
of each stream in a sliding window, similar to the experimental
configuration in [16]. To detect the eruption, it is interesting
to continuously report the top-k monitoring streams/locations
with the highest seismic values in a given interval; e.g., the
top-2 monitoring streams/locations with the highest seismic
values in the last 60 seconds. The answer to these queries
can be used to detect the locations where eruptions possibly
happen. This real application is also described in [16].

Test parameters. Table 8 outlines the test parameters used
in this paper. The values of F and K are already described
in the above statements of the query sets. The default value
of x is 20. The default of n for single stream is 10000. The
default values of N and w for the synthetic data set of multiple
streams are 100 and 100, while they are 16 and 1000 for real
data set of multiple streams.
The metrics. We measure the following to test performance:
1. The execution cost-per-second;
2. The throughput: number of queries executed-per-second;
3. The latency: average latency-per-query. Latency deserves
some explanation. It, in effect, computes the latencies of
queries due to system load, i.e., some queries that are supposed
to execute before time ti may in fact be delayed and may
be executed at time tj (tj > ti). Latency measures this
phenomenon. The latency of each query is defined as the sum
of the additional time between any two consecutive executions.

10.2 Experimental Results

We conduct the experiments with different numbers of queries,
different numbers of tuples in a sliding window, and different k
values for single stream. For multiple streams, we additionally
test different numbers of streams. All these parameters affect
the system performance.

10.2.1 Single Stream Synthetic Data Sets

We first report the results on single stream synthetic data under
different parameters.

The results with different numbers of queries: We first
study the effects of x, the total number of queries. Figure 7(a)
shows that the total execution cost-per-second increases as x
increases; however, the costs of both DP and GA increase at
a much slower rate than that of NS. The cost gap between
DP and NS, and GA and NS, quickly increases as x becomes
larger. Although the cost of INCO increases slower than that
of IN and NS, its cost is still greater than DP and GA at each
point.

The throughput is shown in Figure 7(b). GA almost achieves
the same throughput as DP. As the number of queries in-
creases, the throughput of DP and GA grow quickly as more
queries share computations. The throughputs of DP and GA
are much better than those of INCO, which are better than IN
or NS.

Figure 7(c) shows the latency of each method as the number
of queries increases. The latency of NS increases quickly since
more queries are executed later than their frequency upper
bounds. The latency of IN increases slower than NS, but is still
much worse than the latencies of DP and GA, which are better
than that of INCO. All the results in Figure 7 demonstrate that
DP and GA scale well w.r.t the number of queries.

The results with different number of tuples in a sliding
window: In this experiment, we examine the effects of n, the
number of tuples in a sliding window. Figure 8(a) shows the
cost-per-second with different n values. The costs of DP and
GA are almost the same, and are lower than that of INCO,
which is much lower than those of IN and NS. The throughput
is shown in Figure 8(b). Again, GA achieves almost the same
throughput as DP. As n increases, the throughput of each
method decreases as the time of executing each query becomes
larger. The throughputs of DP and GA are still higher than
INCO, which are much higher than those of IN and NS.
Figure 8(c) shows the latency of each method as the number
of tuples increases. The latency of each method increases with
the increase of n. Again, the latencies of DP and GA increase
at a slower rate than those of INCO, which increases at a
much slower rate than NS and IN. When n becomes larger, the
cost of each query increases. That is the reason that the cost-
per-second, the throughput, and the latency become worse.
However, the cost-per-second and the latencies of DP and GA
increase at a much slower rate than those of INCO, NS and
IN, and the throughputs are higher than those of INCO, IN
and NS at each point. This is because the queries can share
more computations in DP and GA than in INCO, IN, and NS.

The results with different k ranges: It is interesting to
study the cost, throughput and latency for various k. We test

12

TABLE 8
The test parameters

parameter meaning value
x the number of queries 10, 20, 30, 40
N the number of streams of multiple streams [20,100] for the synthetic data and [8,16] for the real data

w
the number of tuples of each stream in one sliding

window in the context of multiple streams [20,100] for the synthetic data and [200,1000] for the real data
n the number of tuples in one sliding window from 2000 to 10000 while it is n = N ∗ w for multiple streams
F the set of frequency upper bounds for all x queries
K the set of the k values for all x queries

10 20 30 40
0

50

100

150

x:number of queries

T
he

 c
os

t p
er

 s
ec

on
d

NS IN INCO GA DP

(a) The cost-per-second

10 20 30 40
0

20

40

60

x:number of queriesT
he

 th
ro

ug
hp

ut
(q

ue
rie

s/
se

c)

(b) The throughput

10 20 30 40
0

5

10

15

20

25

x:number of queriesT
he

 la
te

nc
y

pe
r

qu
er

y(
se

cs
)

(c) The latency

Fig. 7. The performance of DP, GA, INCO, IN and NS with different numbers of queries

2 4 6 8 10
0

50

100

150

n:number of tuples *1000

T
he

 c
os

t p
er

 s
ec

on
d

(a) The cost-per-second

2 4 6 8 10
0

50

100

150

n:number of tuples *1000T
he

 th
ro

ug
hp

ut
(q

ue
rie

s/
se

c)

(b) The throughput

2 4 6 8 10
0

5

10

15

n:number of tuples *1000T
he

 la
te

nc
y

pe
r

qu
er

y(
se

cs
)

(c) The latency

Fig. 8. The performance of DP, GA, INCO, IN and NS with different numbers of tuples

200 400 600 800 1000
0

100

200

300

400

The range of k value

T
he

 c
os

t p
er

 s
ec

on
d

(a) The cost-per-second

200 400 600 800 1000
0

5

10

15

20

The range of k valueT
he

 th
ro

ug
hp

ut
(q

ue
rie

s/
se

c)

(b) The throughput

200 400 600 800 1000
0

20

40

60

80

The range of k valueT
he

 la
te

nc
y

pe
r

qu
er

y(
se

cs
)

(c) The latency

Fig. 9. The performance of DP, GA, INCO, IN and NS with different ranges of k

k with different ranges, [2,200], [2,400], [2,600], [2,800], and
[2,1000]. The trend of each measure in Figure 9 is similar
to that in Figure 8. The results confirm that the cost of the
query depends on n and k. Figure 9 shows that DP and GA
also scale well w.r.t the range of k, while NS and IN do not.
In this figure, the throughput of each method drops with the
increase of k. This is because the cost of executing a query is
O(n2 ∗ k), which is proportional to k.

We also conduct experiments for other distribution combi-
nations. The trends of each measure for ug, gu and gg are
similar to those for uu. For the gg combination, we observe
that the ratios of the cost-per-second of NS and IN relative to
DP and GA are larger than those of uu, ug and gu, and similar

trends exist for the latency and throughput. After analyzing
all the data combinations carefully, we find that the reason
for different performance on gg compared to that of other
combinations is that queries can share more computations in
gg as the values of f and k are more centralized.

10.2.2 Single Stream Real Data Sets
The results over the real data set are shown in Figures 10,
11, and 12. The parameters in these experiments are set to
the values described earlier for the synthetic data set of single
stream. We observe that the performance of GA and DP are
almost the same, and they are better than INCO, which is
much better than IN and NS. This confirms that our proposals

13

10 20 30 40
0

50

100

150

200

x:number of queries

T
he

 c
os

t p
er

 s
ec

on
d

(a) The cost-per-second

10 20 30 40
0

20

40

60

x:number of queriesT
he

 th
ro

ug
hp

ut
(q

ue
rie

s/
se

c)

(b) The throughput

10 20 30 40
0

5

10

15

20

25

x:number of queriesT
he

 la
te

nc
y

pe
r

qu
er

y(
se

cs
)

(c) The latency

Fig. 10. The performance of DP, GA, INCO, IN and NS with different ranges of x

2 4 6 8 10
0

10

20

30

40

n:number of tuples *1000

T
he

 c
os

t p
er

 s
ec

on
d

(a) The cost-per-second

2 4 60 8 10
0

50

100

150

n:number of tuples *1000T
he

 th
ro

ug
hp

ut
(q

ue
rie

s/
se

c)

(b) The throughput

2 4 6 8 10
0

2

4

6

8

n:number of tuples *1000T
he

 la
te

nc
y

pe
r

qu
er

y(
se

cs
)

(c) The latency

Fig. 11. The performance of DP, GA, INCO, IN and NS with different number of tuples

200 400 600 800 1000
0

50

100

150

200

The range of k value

T
he

 c
os

t p
er

 s
ec

on
d

(a) The cost-per-second

200 400 600 800 1000
0

5

10

15

20

25

The range of k valueT
he

 th
ro

ug
hp

ut
(q

ue
rie

s/
se

c)

(b) The throughput

200 400 600 800 1000
0

10

20

30

40

50

The range of k valueT
he

 la
te

nc
y

pe
r

qu
er

y(
se

cs
)

(c) The latency

Fig. 12. The performance of DP, GA, INCO, IN and NS with different ranges of k

also work well on real data.

10.2.3 Multiple Stream Synthetic Data Sets and Real
Data Sets

In these experiments, we use synthetic data sets and real data
sets for multiple streams to conduct the experiments with
different number of streams, different number of tuples in a
sliding window, different number of queries, and different k
ranges. The parameters in these experiments are set to the
values described earlier. As the number of streams increases
or the number of tuples of each stream in the sliding window
increases, the total number of tuples increases. For synthetic
data sets, Figures 13 and 14 show the results when the total
number of tuples increases. The trends are the same as those of
the single stream. Figures 15 and 16 show that the performance
of our algorithms are much better than IN and NS with
different range of x and k. For real data sets, we can observe
the similar trends as those of synthetic data sets. Due to the
space limit, we put the results for the real data sets in the
online supplemental material.

10.2.4 The Runtime of DP and GA
Next, we study the runtime of DP and GA with different ranges
of f : [1,10000],[1,20000],[1,30000], and [1,40000]. Figure 17
shows that when the range of f increases, the runtime of GA
and DP also increases. The runtime of GA is less than that
of DP in each range of f . The results verify our theoretical
analysis of the complexity of DP and GA.

10000 20000 30000 40000
0

500

1000

1500

2000

The range of f value

R
un

tim
e

(m
s)

GA
DP

Fig. 17. The runtime of DP and GA with different range of f

10.2.5 The ratio of DP and NS in terms of the cost-per-
unit time
Finally, in order to compare the ratio of DP and NS in terms
of the cost-per-unit time, we use the results of real data sets

14

20 40 60 80 100
0

10

20

30

40

50

N: the number of streams

T
he

 c
os

t p
er

 s
ec

on
d

(a) The cost-per-second

20 40 60 80 100
0

50

100

150

200

N: the number of streamsT
he

 th
ro

ug
hp

ut
(q

ue
rie

s/
se

c)

(b) The throughput

20 40 60 80 100
0

2

4

6

8

N: the number of streamsT
he

 la
te

nc
y

pe
r

qu
er

y(
se

cs
)

(c) The latency

Fig. 13. The performance of DP, GA, INCO, IN and NS with different ranges of N

20 40 60 80 100
0

20

40

60

w: the number of tuples of
 each stream in the sliding window

T
he

 c
os

t p
er

 s
ec

on
d

(a) The cost-per-second

20 40 60 80 100
0

50

100

150

w: the number of tuples of
each stream in the sliding windowT

he
 th

ro
ug

hp
ut

(q
ue

rie
s/

se
c)

(b) The throughput

20 40 60 80 100
0

2

4

6

8

w: the number of tuples of
each stream in the sliding windowT

he
 la

te
nc

y
pe

r
qu

er
y(

se
cs

)

(c) The latency

Fig. 14. The performance of DP, GA, INCO, IN and NS with different ranges of w

10 20 30 40
0

100

200

300

400

x:number of queries

T
he

 c
os

t p
er

 s
ec

on
d

(a) The cost-per-second

10 20 30 40
0

50

100

150

x:number of queriesT
he

 th
ro

ug
hp

ut
(q

ue
rie

s/
se

c)

(b) The throughput

10 20 30 40
0

5

10

15

x:number of queriesT
he

 la
te

nc
y

pe
r

qu
er

y(
se

cs
)

(c) The latency

Fig. 15. The performance of DP, GA, INCO, IN and NS with different ranges of x

10 20 30 40 50
0

10

20

30

40

50

The range of k value

T
he

 c
os

t p
er

 s
ec

on
d

(a) The cost-per-second

10 20 30 40 50
0

20

40

60

80

The range of k valueT
he

 th
ro

ug
hp

ut
(q

ue
rie

s/
se

c)

(b) The throughput

10 20 30 40 50
0

2

4

6

8

The range of k valueT
he

 la
te

nc
y

pe
r

qu
er

y(
se

cs
)

(c) The latency

Fig. 16. The performance of DP, GA, INCO, IN and NS with different ranges of k

for multiple stream when x changes from 40 to 100. We see
from Table 9 that the ratio of DP and NS in terms of the cost-
per-unit time can satisfy the bound log2 x, which verifies our
theoretical analysis in Section 7.

11 CONCLUSIONS

Querying over uncertain data streams, in particular top-k
querying is important. There are many applications that require
this functionality as discussed in the Introduction. These appli-
cations always involve a large number of similar top-k queries.

TABLE 9
The ratio of DP and NS in terms of the cost-per-unit time and the bound

x DP NS The ratio log2 x
40 168.3900 31.3742 5.3671 5.3219
60 232.6250 39.0000 5.9647 5.9069
80 338.6500 39.0000 8.6833 6.3219
100 383.6250 47.0000 8.1622 6.4919

Although there have been some studies considering top-k
querying over uncertain data streams, all of them consider

15

individual queries and cannot be directly used for sharing com-
putation among multiple top-k queries. This sharing problem is
very challenging for the uncertain top-k queries with different
frequency upper bounds and different k values. In this paper,
we formulate the problem, and present an optimal dynamic
programming solution and a greedy algorithm. We show that
a naive method of enumerating all possible plans is not effi-
cient, and the dynamic programming is optimal as it satisfies
the optimal substructure and overlapping subproblems. The
solution computed by the dynamic programming is the best
plan for executing queries. Although the greedy algorithm is
not optimal, it is more efficient than the dynamic programming
solution in terms of time and space. The experiments we
conducted verify the effectiveness of our proposed solutions.

Our approaches can also support other top-k definitions.
There are seven top-k definitions in literature so far, as
discussed in Section 2. According to the similarity between
results of different top-k queries, we divide these definitions
into two classes. In the first class, top-k results are completely
disjoint from top-k+1 results; PT-k, Global-topk, PT-topk and
U-topk are in this class. In the second class, top-k results are
a subset of top-k + 1 results; U-kRanks, and Expected Rank
are in this class. Our approaches can support both categories
of definitions.

REFERENCES

[1] R. Abbott and H. Garcia-Molina. Scheduling real-time transactions:
a performance evaluation. In Proceedings of the 14th International
Conference on Very Large Data Bases, pages 1–12, 1988.

[2] C. C. Aggarwal and P. S. Yu. A framework for clustering uncertain data
streams. In Proceedings of IEEE 24th International Conference on on
Data Engineering, pages 150–159, 2008.

[3] A. Arasu, S. Babu, and J. Widom. The cql continuous query language:
Semantic foundations and query execution. The Very Large Data Bases
Journal, 15(2):121–142, 2006.

[4] A. Arasu and J. Widom. Resource sharing in continuous sliding-window
aggregates. In Proceedings of the 30th International Conference on Very
Large Data Bases, pages 336–347, 2004.

[5] B. Babcock, S. Babu, M. Datar, R. Motwani, and D. Thomas. Operator
scheduling in data stream systems. The VLDB Journal, 13(4):333–353,
2004.

[6] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models
and issues in data stream systems. In Proceedings of the Twenty-First
ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems, pages 1–16, 2002.

[7] V. Bonifaci, H. L. Chan, A. M. Spaccamela, and N. Megow. Algorithms
and complexity for periodic real-time scheduling. In Proceedings of the
Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 1350–1359, 2010.

[8] D. Carney, U. Cetintemel, A. Rasin, S. Zdonik, M. Cherniack, and
M. Stonebraker. Operator scheduling in a data stream manager. In
Proceedings of the 29th International Conference on Very Large Data
Bases, pages 838–849, 2003.

[9] G. Cormode, F.F.Li, and K.Yi. Semantics of ranking queries for
probabilistic data and expected ranks. In Proceedings of IEEE 25th
International Conference on Data Engineering, pages 305 – 316, 2009.

[10] G. Cormode and M. N. Garofalakis. Sketching probabilistic data
streams. In Proceedings of the ACM SIGMOD International Conference
on Management of Data, pages 281–292, 2007.

[11] L. Golab, K.G. Bijay, and M. T. Özsu. Multi-query optimization of slid-
ing window aggregates by schedule synchronization. In Proceedings of
the 15th ACM International Conference on Information and Knowledge
Management, pages 844–845, 2006.

[12] L. Golab and M. T. Özsu. Issues in data stream management. SIGMOD
Record, 32(2):5–14, 2003.

[13] L. Golab and M. T. Özsu. Data Stream Management. Morgan &
Claypool, 2010.

[14] M. Hammad, M. J. Franklin, W. Aref, and A. Elmagarmid. Scheduling
for shared window joins over data streams. In Proceedings of the 29th
International Conference on Very Large Data Bases, pages 297–308,
2003.

[15] J. Haritsa, M. Carey, and M. Livny. Earliest-deadline scheduling for real-
time database systems. In Proceedings of the 12th Real-Time Systems
Symposium, pages 232–242, 1991.

[16] M. Hua and J. Pei. Continuously monitoring top-k uncertain data
streams:a probabilistic threshold method. Journal of Distributed &
Parallel Databases, 26:29–65, 2009.

[17] M. Hua, J. Pei, W. Zhang, and X. Lin. Ranking queries on uncertain
data: A probabilistic threshold approach. In Proceedings of the ACM
SIGMOD International Conference on Management of Data, pages 673–
686, 2008.

[18] T. S. Jayram, A. McGregor, S. Muthukrishnan, and E. Vee. Estimating
statistical aggregates on probabilistic data streams. In Proceedings of
theTwenty-Sixth ACM SIGMOD-SIGACT-SIGART Symposium on Prin-
ciples of Database Systems, pages 243–252, 2007.

[19] Q. Jiang and S. Chakravarthy. Scheduling strategies for processing
continuous queries over streams. In Proceedings of the 21st British
National Conference on Databases, pages 16–30, 2004.

[20] C. Q. Jin, K. Yi, L. Chen, J. X. Yu, and X. M. Lin. Sliding-window top-
k queries on uncertain streams. In Proceedings of the 34th International
Conference on Very Large Data Bases, pages 301–312, 2008.

[21] S. Krishnamurthy, C. Wu, and M. Franklin. On-the-fly sharing for
streamed aggregation. In Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data, pages 623–634, 2006.

[22] J. Li, B. Saha, and A. Deshpande. A unified approach to ranking
in probabilistic databases. In Proceedings of the 35th International
Conference on Very Large Data Bases, pages 502–513, 2009.

[23] S. Madden, M. Shah, J. Hellerstein, and V. Raman. Continuously
adaptive continuous queries over streams. In Proceedings of the ACM
SIGMOD International Conference on Management of Data, pages 49–
60, 2002.

[24] T. Sellis. Multiple-query optimization. ACM Transactions on Database
Systems, 13(1):23–52, 1988.

[25] M. A. Soliman, I. F. Ilyas, and K. C.-C. Chang. Top-k query processing
in uncertain databases. In Proceedings of IEEE 23rd International
Conference on on Data Engineering, pages 896–905, 2007.

[26] K. Yi, F. Li, G. Kollios, and D. Srivastava. Efficient processing of top-k
queries in uncertain databases with x-relations. IEEE Transactions on
Knowledge and Data Engineering, 20(12):1669–1682, 2009.

[27] R. Zhang, N. Koudas, B. C. Ooi, and D. Srivastava. Multiple ag-
gregations over data streams. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, pages 299–310, 2005.

[28] X. Zhang and J. Chomicki. On the semantics and evaluation of top-
k queries in probabilistic databases. In Proceedings of IEEE 24th
International Conference on Data Engineering Workshops, pages 556–
563, 2008.

Tao Chen is an Assistant Professor in Beijing Institute of Radiation Medicine, China.

Her research interests include uncertain databases, bioinformatics.

Lei Chen is an Associate Professor in Hong Kong University of Science and Technology.

His research interests include uncertain databases, graph databases.

M. Tamer Özsu is a Professor of Computer Science at the University of Waterloo. Dr.

Özsu’s current research focuses on large scale data distribution and management of

unconventional data (e.g., XML, graphs, RDF, streams). He is a Fellow of ACM and

IEEE, and a member of Sigma Xi.

Nong Xiao is currently a Professor in the College of Computer at the National

University of Defense Technology. His research interests mainly include storage and

grid computing.

