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Abstract

We present ViewDF: a flexible and declarative framework for incremental maintenance
of materialized views (i.e., results of continuous queries) over streaming data. The
main component of the proposed framework is the View Delta Function (ViewDF),
which declaratively specifies how to update a materialized view when a new batch
of data arrives. We describe and experimentally evaluate a prototype system based
on this idea, which allows users to write ViewDFs directly and automatically translates
common classes of streaming queries into ViewDFs. Our approach generalizes existing
work on incremental view maintenance and enables new optimizations for views that
are common in stream analytics, including those with pattern matching and sliding
windows.

Keywords: Data stream management, View maintenance, Pattern matching

1. Introduction1

Traditional database management systems include On-Line Analytical Processing2

(OLAP) systems, focusing on deep analytics over read-only data, and On-Line Trans-3

actional Processing (OLTP) systems, optimized for frequent updates, insertions and4

deletions. Recently, new data management solutions have been proposed to handle the5

three Vs of big data: volume, velocity and variety. In particular, a new application6

area has appeared in response to high velocity: append-only data stream management7

[24]. Data streams naturally arise in many applications such as the Internet-of-Things8

(IoT), and include sensor measurements, GPS fixes, system logs, Web clicks, social9

media interactions, financial transactions and results of scientific experiments. In these10

applications, new data are continuously produced, while existing data such as past11

measurements are not modified.12

Early stream processing systems have operated in stream-in-stream-out-mode: data13

are processed sequentially as they arrive, without being stored permanently, and re-14

sults are streamed out for consumption by other systems and applications. To enable15

stream-in-stream-out processing, early research on data stream systems focused on16
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non-blocking, single-pass execution of lightweight SQL-like operators (see, e.g., the17

STREAM system [3]).18

On the other hand, modern stream systems tend to ingest data per-batch rather than19

per-tuple, and they allow persistent storage of histories of streams and results of con-20

tinuous queries (i.e., materialized views). Since raw data usually need to be processed21

before they are suitable for analysis, applications typically create materialized views22

containing aggregates, joins, or higher-level events and entities computed from indi-23

vidual streaming records. Furthermore, adding persistent storage to stream processing24

systems enables complex analytics over new and historical data without the compu-25

tational and administrative overhead of separate systems. For instance, infrastructure26

monitoring applications such as network or datacenter monitoring often correlate the27

current state of the entities being monitored with their past behaviour, e.g., to determine28

if and why a similar problem has occurred in the past and to suggest a solution before29

the problem spreads [7, 20]. Thus, historical data are required for real-time alerting30

and change detection as they provide context and a baseline for new data.31

Storage-enabled stream systems based on relational database systems, sometimes32

referred to as Data Stream Warehouses, include Data Depot [21], DBStream [6],33

PipelineDB [33], Tidal Race [21] and Truviso [27]. Additionally, Flink [9] and Spark34

Streaming [41] are two distributed data processing systems designed to support stream-35

ing and offline analytics. In this paper, we study a fundamental technical problem faced36

by these types of systems: materialized view maintenance over streaming data to en-37

able (nearly) real-time analytics.38

View maintenance—in particular incremental view maintenance (IVM)—is not a39

new problem [13, 25]. However, early work and recent developments (e.g., DBToaster40

[2]) focus on views with standard relational operators, possibly including group-by41

aggregation and subqueries with semijoins or antijoins [38]. In contrast, stream ana-42

lytics involve new operators such as sliding window aggregation and pattern matching43

[1, 12, 22]. Incrementally maintaining materialized views with these operators intro-44

duces new challenges.45

To address these challenges, various solutions have been proposed for sliding win-46

dow aggregation (see, e.g., [4, 30, 32, 36]), and event processing systems have been47

proposed for pattern matching on streaming data (see, e.g., [1, 15, 16, 39]). The solu-48

tion we present in this paper, named ViewDF, is a flexible and declarative framework49

for IVM over data streams that generalizes existing techniques and enables new opti-50

mizations for stream analytics.51

In traditional data warehouses, materialized views are specified as SQL queries52

over their source tables via a CREATE MATERIALIZED VIEW statement. The idea53

behind ViewDF is simple: we augment view definition statements with View Delta54

Functions (ViewDFs) that declaratively specify how to update views when a batch of55

new data arrives. An SQL-like declarative specification is desirable because it can56

be directly optimized and executed by an underlying database system. In addition to57

allowing users to write ViewDFs directly, we want to automatically translate queries to58

incremental ViewDFs whenever possible.59

To exploit temporal locality in the context of view maintenance, ViewDF relies60

on temporal partitioning. For a very simple example, when computing an aggregate61

function over a sliding window of length 60 minutes, we never need to access parts of62

2



tables containing data more than 60 minutes old.63

The contributions of this paper are as follows.64

1. We present the ViewDF framework for declarative incremental view mainte-65

nance over streaming data. The proposed framework exploits the append-only66

nature of data streams and the temporal locality of view maintenance. ViewDF67

allows users and applications to specify, using SQL, how a batch of new data68

affects the view.69

2. We present algorithms for automatically translating two useful classes of stream-70

ing queries into incremental ViewDFs: event processing queries and sliding win-71

dow aggregates. (However, ViewDF is a flexible framework and can be extended72

to other types of incrementally-computable queries.)73

3. We implemented a prototype ViewDF framework using PostgreSQL, and we74

experimentally show its effectiveness.75

The remainder of this paper is organized as follows. Section 2 introduces the76

ViewDF approach using a pattern matching query as an example; Section 3 discusses77

previous work; Section 4 gives the details of the ViewDF framework Section 5 presents78

translations of streaming queries to ViewDFs; Section 6 classifies the types of views79

that fit or do not fit the ViewDF framework; Section 7 presents experimental results;80

and Section 8 concludes the paper with directions for future work.81

2. Example and Solution Preview82

We introduce the ViewDF approach using an example drawn from network mon-83

itoring, which has been a popular motivating application for data stream analytics84

[6, 21, 22]. Suppose we have a data stream containing quality-of-service measurements85

obtained from the network, such as packet loss between various source-destination86

pairs (measured by sending control packets and checking how many arrive at their des-87

tination). Each record contains a timestamp, the source (src) and destination (dest)88

IP addresses, followed by the measurements taken at that time. Suppose that every89

minute, a batch of new records arrives with one record for each source-destination pair90

being monitored, containing the number of lost packets for the given pair over the past91

minute.92

Let us store the stream in table M . We partition M it into one-minute parts, each93

corresponding to one batch of data. Let M [i] be the ith part of M and let M [i..j]94

denote the union of the ith through jth parts for i < j. We assume that each part95

is a separate logical (and perhaps also physical) table that can be accessed directly.96

For concreteness, assume M [i] corresponds to a logical table named M i, and M [i..j]97

corresponds to UNION ALL of M i through M j.98

We now explain the partition subscripts. The idea is to divide the Unix timestamp99

of the ith part by its time span. For instance, a part storing data from January 1 2015 at100

0:00 hours has the subscript of 1420070400 (the Unix timestamp at that time) divided101

by 60 (the number of seconds in one minute), i.e., M [23667840]. The next part, storing102

data from January 1 2015 at 0:01 hours, is therefore M [23667841]. Similarly, for a103

table partitioned by hour, the subscript of the part starting at January 1 2015 at 0 hours104
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is 1420070400 divided by 3600 (the number of seconds in an hour), which is 394464.105

Note that the subscript of the oldest part reflects the timestamp of the oldest batch of106

data, and is not necessarily zero unless the given table or view has been collecting data107

since Unix time zero.108

Suppose we want to identify, at any point in time, all the source-destination pairs109

that have reported high packet loss (say, at least ten lost packets) for at least four con-110

secutive measurements; i.e., for at least four consecutive minutes. Additionally, for111

each such pair, suppose we want to report the number of consecutive measurements112

with high loss and the total number of lost packets during this interval. One way to113

define this view, call it View1, is shown below, assuming a syntax similar to that of114

event processing languages such as SASE [1]. The attributes src and dest define115

a source-destination pair being monitored, and loss measures the number of packets116

lost per-minute. The PATTERN expression [a, b, c, d+] indicates that we are117

looking for four or more consecutive tuples; a plus symbol means one or more tuple.118

The first three tuples will be bound to variables a, b and c, respectively, while the119

remaining tuples will be bound to d. The WHERE condition specifies that each tuple120

satisfying the pattern must have loss>10. The GROUP BY clause states that we are121

separately looking for patterns in each sequence corresponding to a particular source-122

destination pair. For each result tuple, ct counts the number of tuples satisfying the123

pattern, i.e., the number of consecutive measurements with at least ten lost packets, and124

sum_loss is the sum of the loss values over the tuples satisfying the pattern.125

CREATE VIEW View1 AS126

SELECT src, dest, count(*) AS ct,127

sum(loss) AS sum_loss128

FROM M PATTERN [a, b, c, d+]129

WHERE a.loss>10 AND b.loss>10130

AND c.loss>10 AND d.loss>10131

GROUP BY src, dest132

For example, consider the following sequence of timestamp and packet loss mea-133

surements for a particular source-destination pair. This pair is in the output at time134

10:04, with ct=4 and sum_loss=71. It is also reported at 10:05 with ct=5 and135

sum_loss=87. It is no longer reported at 10:06 because at that time, it has not pro-136

duced at least four consecutive measurements of at least 10 lost packets.137

2015-01-01 10:00, 6138

2015-01-01 10:01, 12139

2015-01-01 10:02, 15140

2015-01-01 10:03, 24141

2015-01-01 10:04, 20142

2015-01-01 10:05, 16143

2015-01-01 10:06, 7144

The contents of View1 change over time. As was the case with M , we parti-145

tion View1 into one-minute parts. When a new M [i] part is created for a new batch146

of packet loss measurements, a corresponding View1[i] part is created to store the147
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source-destination pairs reporting at least four consecutive high packet loss measure-148

ments as of that minute. Old parts of View1 may be deleted over time if they are no149

longer needed.150

A naive way to update View1 when a new batch of packet loss measurements151

arrives is to re-run the above pattern query on all of M—there may be a source-152

destination pair that has reported over 10 lost packets since the beginning of the stream,153

so without scanning all of M we could not compute the correct ct and sum_loss154

values for it. However, this strategy will not only find those source-destination pairs155

which have reported at least four consecutive high-loss measurements as of the current156

time, but it will also recompute all such patterns that happened in the past! Clearly, we157

need an incremental maintenance strategy.158

In this paper, we advocate expressing view updates directly in a declarative SQL-159

like manner. Observe that View1 is append-only: when a new batch of data creates160

a new part of M , a corresponding new part of View1 is created, and other parts of161

View1 do not change. As we will show below, ViewDF can directly specify the con-162

tents of a new part of a view, by referring to one or more parts of the source table(s) as163

well as one or more previous parts of the view itself.164

To produce an IVM strategy for View1, we define a Helper view that keeps track165

of ct and sum_loss for each source-destination pair each minute. When new data166

arrive, we incrementally compute a new part of the Helper view by referring to its167

previous part and to the new part of M . To compute the final answer, we select from168

Helper the source-destination pairs with ct at least 4.169

The View Delta Function (ViewDF) for Helper is shown below. There are three170

main components (more details in Section 4):171

CREATE VIEW Helper AS172

INITIALIZE Helper[i] AS173

SELECT src, dest, 1 AS ct, loss AS sum_loss174

FROM M[i]175

WHERE loss>10176

UPDATE Helper[j] AS177

SELECT src, dest, ct+1, sum_loss+loss178

FROM (179

SELECT New.src AS src,180

New.dest AS dest,181

Prev.ct AS ct,182

Prev.sum_loss AS sum_loss,183

New.loss AS loss184

FROM M[j] AS New185

LEFT OUTER JOIN Helper[j-1] AS Prev186

WHERE New.loss>10 )187

PARTITION LENGTH 60188

1. The INITIALIZE statement contains a query that defines the initial part (and,189

implicitly, the schema) of the view. Here, the first part of Helper contains the190

source-destination pairs that reported over 10 lost packets at that time. When the191

ViewDF is initially created, the INITIALIZE query is executed with references192

to parts resolved to their logical table names. The subscript i is set to that of193
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the newest part of M that currently exists, and the results are loaded into the194

corresponding Helper[i] part. This is the first non-empty part of Helper.195

2. The UPDATE statement contains a query that defines the contents of the ith view196

part. Here, whenever a new M [j] part is created for a new batch of data, the197

UPDATE query is executed and its results are loaded into a new Helper[j]198

part. Since both M and Helper are partitioned by minute, new parts will be199

created for them at the same pace. The UPDATE query performs a left outer join200

of the new part of M with the previous part of Helper, and updates ct (by201

incrementing it) and sum_loss (by adding to it the number of lost packets over202

the most recent minute) for the source-destination pairs that continue reporting203

over 10 lost packets. We need a left outer join because we want to examine all204

the source-destination pairs currently appearing in M [j], even if they do not have205

a record in Helper[j-1], i.e., they have not reported at least 10 lost packets206

in the previous minute.207

3. The PARTITION LENGTH statement specifies the time span of each part208

(Helper is partitioned by 60 seconds, and so is M ).209

It is now easy to define View2, which is an incremental ViewDF version of210

View1, as a simple selection query over the above Helper view.211

CREATE VIEW View2 AS212

INITIALIZE View2[i] AS213

SELECT src, dest, ct, sum_loss214

FROM Helper[i]215

WHERE ct>=4216

UPDATE View2[j] AS217

SELECT src, dest, ct, sum_loss218

FROM Helper[j]219

WHERE ct>=4220

PARTITION LENGTH 60221

Figure 1 illustrates the data required to compute a new part of View2; each table222

is divided into rectangles, with each rectangle corresponding to one part storing one223

minute of data. On the left, the naive approach needs to scan all of M in the worst224

case, as we explained earlier. On the right, the optimized approach, implemented in225

the ViewDF for View2, only needs data from the latest (rightmost) part of M and the226

previous part of the Helper view to create a new part of the Helper view; then, this227

new part suffices to update View2.228

As the above example shows, the proposed ViewDF framework enables a declara-229

tive specification of incremental view maintenance over streaming data. ViewDF ex-230

ploits the append-only nature of data streams and is applicable to views that themselves231

evolve in an append-only manner. To exploit temporal locality, ViewDF expresses view232

maintenance operations at a granularity of temporal parts, which avoids scanning large233

tables. This is critical for streaming queries, whose results can often be refreshed only234

by accessing recently-arrived data. Furthermore, the SQL-like foundation of ViewDF235

makes it compatible with, and leverages the query optimizer and engine of, any un-236

derlying database system. In Section 5, we will show how to automatically translate237
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M

View2

M

Helper

View2

Figure 1: Computing a new part of View2 using a naive view maintenance approach (left) vs. a ViewDF
incremental strategy (right).

queries such as View1 into incremental ViewDFs; additionally, our framework allows238

users to specify ViewDFs directly.239

3. Related Work240

This paper is an extended version of a workshop paper presented at the 2015 VLDB241

workshop on Business Intelligence for the Real Time Enterprise (BIRTE) [40]. There is242

new material on sliding window aggregation using the ViewDF approach (Section 5.2243

and 7.2), new material on dealing with out-of-order data (Section 4.3), a significant244

extension of the ViewDF framework description (Section 4.1), a new classification of245

materialized views that naturally fit the ViewDF framework (Section 6), and additional246

explanations and citations throughout the paper.247

ViewDF is related to previous work on incremental view maintenance (IVM). How-248

ever, previous work on IVM focuses on standard relational operators, possibly includ-249

ing group-by aggregation and subqueries with semijoins or antijoins [2, 13, 25, 38].250

ViewDF targets materialized views over append-only data streams that include tem-251

poral and sequential operators such as sliding windows and pattern matching. While252

many stand-alone algorithms and optimizations have been proposed for these types of253

queries [1, 4, 15, 16, 30, 32, 36, 39], to the best of our knowledge ViewDF is the first254

general and declarative framework for incremental view maintenance over streaming255

data.256

As we showed in Section 2, the ViewDF approach may require additional “Helper”257

views to make the final view incrementally maintainable. This is similar to the tra-258

ditional data warehouse notion of maintaining auxiliary views to make the final view259

self-maintainable without accessing raw data; see, e.g., [34]. Again, previous work in260

this space addresses standard relational operators rather than streaming operators.261

In addition to the classical view maintenance literature, there has been work that262

directly targets view maintenance over streams [19]. However, this work addressed263

the problem of computing a stream of insertions and deletions to a view over time,264
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whereas ViewDF addresses a different problem of incrementally propagating a batch265

of new data to materialized views.266

Conceptually, perhaps the closest work to ViewDF is ATLaS [37], which is a declar-267

ative system for user-defined functions (UDFs). A UDF specified in ATLaS has an INI-268

TIALIZE and ITERATE component, similar to a ViewDF (and possibly also a TERMI-269

NATE component). However, an ATLaS UDF specifies how to compute a function over270

a stream one tuple at a time, whereas a ViewDF specifies how to maintain a temporally-271

partitioned materialized view one batch (part) at a time. Furthermore, ATLaS does not272

use the notion of temporal partitioning, which is a critical component of ViewDF as it273

enables efficient IVM. Finally, ATLaS did not consider translating queries to UDFs.274

Temporal partitioning is a common technique for storing append-only data in data275

warehouses [6, 17, 21, 26]. Partition relationships have been used in previous work276

for view maintenance; for example, to compute monthly aggregates, it suffices to scan277

only those parts of the base table which contain data for that month. In ViewDF, we go278

a step further and allow view maintenance queries to reference parts of source tables as279

well as previous parts of the view itself. This enables new IVM strategies and further280

reduces the amount of data that need to be accessed during view maintenance.281

Finally, there has been recent work on incremental distributed computation; see,282

e.g., [11, 14, 28, 31]. However, this body of work focuses mainly on extending the283

map/reduce processing model to incremental computation rather than ViewDF’s goal284

of declarative specification of IVM over streaming data.285

4. The ViewDF Framework286

We now build on the material presented in Section 2 and discuss the details of287

ViewDF.288

4.1. System Description289

Figure 2 outlines the architecture of the ViewDF framework; in the remainder of290

the paper, we abuse terminology and refer to both an individual view definition and291

the framework as ViewDF. The bottom box represents an underlying database system,292

which stores base tables and (hierarchies of) materialized views. The database system293

also runs ad-hoc user queries and periodically runs the view update queries specified294

in the ViewDFs. The ViewDF layer is illustrated in the top box.295

The ViewDF layer accepts ViewDF definitions directly and also includes a trans-296

lation layer. In the latter, users enter CREATE VIEW statements containing selected297

classes of queries (e.g., View1 from Section 2), and these are automatically translated298

into ViewDF expressions for incremental maintenance. In Section 5, we describe the299

translation algorithms for event processing queries and sliding window aggregates.300

Recall the motivating example from Section 2. To exploit the temporal locality of301

streaming queries, ViewDF requires direct access into individual parts of tables and302

views. Thus, every streaming base table and view must be logically (and perhaps also303

physically) partitioned by time; however, there may be some dimension tables that304

store slowly-changing data and are not partitioned. Aside from logical temporal par-305

titioning, ViewDF does not require any particular physical data layout. For example,306
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CREATE VIEW
Definitions

ViewDF Definitions

View Maintainer
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ViewDF

ViewDFs

CREATE
VIEW

statements

Materialized Views

Base Tables

Queries

Data Streams

Figure 2: ViewDF architecture.

tables may be stored in row-oriented format and horizontally partitioned by time, or307

in matrix-based format, with one row per time series, vertically partitioned by time.308

Thus, ViewDF can use any underlying data management system that supports parti-309

tioning; e.g., PostgreSQL. Technically, even if partitioning is not supported, ViewDF310

can still be used if each part is defined as a separate table.311

Data streams are assumed to arrive in batches, e.g., every minute. For now, assume312

that data arrive in batch order (we will discuss out-of-order arrivals in Section 4.3).313

For example, a one-minute batch arriving at 10:00 is assumed to contain data with314

timestamps between 9:59:00 and 9:59:59. Base tables are typically partitioned such315

that each part corresponds to one batch. The time span of each part of a materialized316

view typically equals the maximum part size of the tables or views over which it is317

defined. Over time, small parts may be rolled-up into larger ones, as in, e.g., [21].318

For example, the most recent day may be partitioned by minute and older data may319

be partitioned by day. This way, historical queries spanning many days do not have320

to access thousands of small parts. Very old parts (of base tables and views) may be321

archived or deleted if they are no longer needed.322

The View Maintainer module loads new data and propagates changes throughout323

the views as per the ViewDF expressions. When a batch of new data arrives, a new part324

of the corresponding base table is created for it. This may trigger the creation of new325

parts of materialized views that depend on this base table.326

As we explained in Section 2, a ViewDF expression specifies an INITIALIZE327

query, and UPDATE query and the PARTITION LENGTH (time span of each part).328

9



The queries can be arbitrary SQL queries supported by the underlying database sys-329

tem, and they may contain partition references of the form Table[part]. As mentioned330

earlier, partition references allow us to exploit the temporal locality of materialized331

views over streaming data: rather than scanning all the source tables (or views), it of-332

ten suffices to access a small set of parts when refreshing the results. For concreteness,333

assume that partition references resolve at runtime to logical table names of the form334

Table part.335

As we discussed in Section 2, partition subscripts are consecutive integers com-336

puted by dividing the Unix time of a batch of data by the PARTITION LENGTH. We337

store an additional catalog table that maintains, for each base table and materialized338

view, its PARTITION LENGTH and a list of its parts that have already been created339

and loaded with data.340

An INITIALIZE query can reference one or more source tables, and one or more341

of their parts. At the time of initializing the view, we query the catalog table for the342

subscript of the most recent part of each source table and we take the minimum of343

these1. This becomes the value of the partition subscript i, i.e., the part which will344

store the output of the INITIALIZE query. We then translate partition references to345

logical table names, run the query, and insert its output into the ith part of the view.346

Finally, we add a row for this view to the catalog table and add i to the list of its parts.347

We now describe the UPDATE step. At any point in time, the catalog table can tell348

us the subscript of the newest part of each base table and materialized view. Adding349

one to these subscripts gives the next part that will be created for each table and view,350

i.e., the j in the next UPDATE query. For example, recall the Helper view from351

Section 2 and say j = 1000 at the current time. Now, a simple examination of the352

UDPATE query tells us which source table parts are required for Helper[1000],353

namely S[1000] and Helper[999]. And, now a simple query against the catalog354

table tells us if all of these required parts already exist. If so, we launch an update of355

Helper which will create Helper[1000].356

Generalizing the above example, the view maintainer works as follows. For each357

view V registered in the system, we maintain the subscript of the next part that is to be358

created, call it NEXT[V]. For each view V , we also maintain a bitmap with one entry359

for each part of each source table/view required to compute the next part of V , call it360

B[V]. When a new base table or view part is created, we scan through all the B[V]s361

and turn on all the bits corresponding to this new part. We then execute the UPDATE362

queries of all the views which have all their bits set to one. In other words, we run the363

UPDATE query of a view V as soon as all the required parts of its source tables/views364

have been created. When an UPDATE query of V terminates, we increment NEXT[V],365

the next part subscript, and we recalculate B[V] to see which parts required for the next366

part of V already exist.367

Returning to the above example, suppose NEXT=1000 for the Helper view, i.e.,368

we have just created Helper[999]. Its bitmap consists of two entries; at this point369

in time, one is for S[1000] and one is for Helper[999]. As soon as S[1000]370

1For instance, if the INITIALIZE query is a join of the newest parts of two base tables, S and T , and S
has parts up to 394464 but T only has parts up to 394462, then we take i = 394462.
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is created, we will have all the data we need to create Helper[1000] as per its371

UPDATE query.372

Our discussion thus far assumes that views are updated immediately after all the373

data they need becomes available. However, the ViewDF framework is compatible with374

other methods for ordering view updates, e.g., those which prioritize out-of-date views375

to improve freshness (see, e.g., [23]) or those which schedule related views together to376

minimize cache misses (see, e.g., [5]).377

4.2. Additional Examples378

So far, we assumed that views have the same PARTITION LENGTH and there-379

fore the same refresh frequency as their source table(s). Below, we give an exam-380

ple of a view partitioned by hour (3600 seconds) over a network measurement table381

M partitioned by minute. For brevity, we only show the INITIALIZE query. Ev-382

ery hour, this view computes hourly sums of lost packets for each source-destination383

pair. Suppose we are at the beginning of time. The first part of View3, storing384

data for the first hour, requires the first 60 minutes of time, i.e., the first 60 parts of385

M. Thus, View3[1] requires M[1..60], and, more generally, View3[i] requires386

M[i*60-59 .. i*60]. For View3, at initialization time we take the largest part387

subscript i of M, divide it by 60 (which is the ratio of the partition length of View3 and388

M) and round down. This gives us the subscript for the first part of View3.389

CREATE VIEW View3 AS390

INITIALIZE View3[i] AS391

SELECT src, dest, sum(loss) as sum_loss392

FROM M[i*60-59 .. i*60]393

GROUP BY src, dest394

...395

PARTITION LENGTH 3600396

Next, we give an example of a view that joins multiple streams, which is also397

supported in ViewDF. Suppose we have two base tables, M and N , both partitioned398

into one-minute parts. Suppose we want to materialize a band join of M and N into399

a view named J ; in a band join, a tuple from M joins with a tuple from N if the400

join predicate is satisfied and both tuples have timestamps belonging to the same one-401

minute part. A corresponding ViewDF is shown below, assuming a natural join. Note402

that J is also partitioned into one-minute parts.403

CREATE VIEW J AS404

INITIALIZE J[i] AS405

SELECT *406

FROM M[i] NATURAL JOIN N[i]407

UPDATE J[j] AS408

SELECT *409

FROM M[j] NATURAL JOIN N[j]410

PARTITION LENGTH 60411

Finally, we explain how an ad-hoc query can access an old part of a materialized412

view. Recall View2 from Section 2 and suppose we want to find all the source-413

destination pairs that have reported four consecutive high packet-loss measurements414
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as of January 1 2015 at 0:00 hours. We could divide the Unix timestamp of this date by415

60 and directly query the logical table View2_23667841, but this is cumbersome.416

Instead, in ViewDF we expose a PART_TIMESTAMP attribute for each view. The417

above query can be written as:418

SELECT *419

FROM View2420

WHERE PART_TIMESTAMP="2015/01/01 0:00"421

4.3. Dealing with Out-of-Order Data422

Stream processing systems usually assume that the inputs are ordered by arrival423

time, in which case the notion of delayed or out-of-order data is not relevant. How-424

ever, some storage-enabled stream systems and traditional data warehouses support425

two timestamps: system time, denoting the time of arrival or insertion of the data, and426

application time, denoting when the given tuple was actually created or valid in real life427

[8, 18]. In this case, tuples may be late or out-of-order with respect to their application428

timestamps.429

A simple solution to deal with some late arrivals is to buffer the input and re-order430

it in the buffer if necessary (see, e.g., [10]). However, the larger the buffer the longer431

the latency. Instead, most storage-enabled stream systems compute answers based on432

the data that have arrived so far and may recompute some answers in response to late433

data. Below, we show an example of how ViewDF can deal with this issue.434

Recall the example from Section 2, in which View2 maintains the source-435

destination pairs having high packet loss. Suppose a new batch of data has arrived436

and was loaded into the 9th part of the base table: M[9]. As shown in Figure 3, the437

new batch of data will trigger the creation of a new Hepler[9] part, which will be438

computed using M[9] and Helper[8]. Finally, View2[9] will be computed us-439

ing Helper[9]. Additionally, suppose that some late data, i.e., older measurements,440

have arrived into M[5]. This means that Helper[5] may have to be recomputed (by441

running its ViewDF UPDATE query, which requires M[5] and Helper[4]). Further-442

more, since Helper[5] may have changed, View2[5], shown in red in Figure 3,443

may have to be recomputed.444

Fortunately, the ViewDF UPDATE statements contain all the information we need445

to determine how late data arriving into some base table affect any views defined446

over this table. For instance, since Helper[j] is computed by joining M[j] with447

Helper[j-1], we know that late data in M[5] may affect Helper[5]. In turn,448

this may affect View2[5] since its UPDATE statement references Helper, and so449

on. Similar partition-based reasoning has been used in other work on storage-enabled450

stream processing [26, 27] (however, no prior system allows views to reference older451

parts of themselves, as ViewDF does).452

One consequence of propagating late data to materialized views is that previously453

computed view partitions, e.g., View2[5] from Section 2, may change in the future.454

In ViewDF, we maintain a last updated timestamp for each part of each view. This455

way, users and applications can identify parts that may have changed since they last456

accessed them.457
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Figure 3: An example of late-arriving data and its consequences on materialized views.

5. Translating Queries to ViewDFs458

While users may write ViewDFs directly, useful classes of streaming queries can459

be automatically rewritten into incremental ViewDFs. We show how to do this for460

event processing queries (similar to View1 from Section 2) and sliding window ag-461

gregates in Sections 5.1 and 5.2, respectively. These incremental ViewDFs can then be462

optimized and executed by the underlying database management system.463

5.1. Event Processing Queries464

The event processing queries we support have the following format.465

• The SELECT clause must include all the GROUP BY attributes, may include a466

COUNT(*) expression, and may include SUM() aggregates over any attributes.467

Aggregates are computed over all tuples that match the pattern specified in the468

query (recall ct and sum_loss in View1).469

• The FROM clause can only include a single input stream, call it InputStream470

(but the input to the event processing query can be a materialized view that joins471

multiple streams).472

• The PATTERN clause may contain an arbitrary number of variables, including473

those with plus symbols (denoting one or more tuple).474

• The WHERE clause may contain simple arithmetic predicates on any attributes475

such as a.loss>10 as well as predicates referencing two variables such as476

b.loss>a.loss (which can express patterns such as sequences of increasing477

loss values).478

• The GROUP BY clause must include one or more attributes from the input479

stream if the input stream is composed of multiple sequences (such as measure-480

ments from different source-destination pairs).481
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E[0][1] = loss>10 E[1][2] = loss>10 E[2][3] = loss>10 E[3][4] = loss>10

E[4][4] =
loss>10

Figure 4: FSM for View1.

The first step is to covert the pattern query into a Finite State Machine (FSM). The482

second step is to translate the FSM into two ViewDFs: a Helper view and a final view,483

similar to those shown in Section 2. We discuss these two steps below.484

5.1.1. Query to FSM Conversion485

An FSM F = (S[], E[][]) consists of a set of states S and a set of directed edges486

and their state transition predicates E. Figure 4 shows the FSM for View1. The set487

of states follows directly from the PATTERN clause; additionally, we include a begin488

state S[0]. The last state, S[4], is the accepting state.489

An edge E[i][j] connects states S[i] and S[j] and includes a state transition pred-490

icate that determines when to move S[i] to S[j]. These predicates correspond to the491

WHERE predicates in the query. In View1, to move from S[0] to S[1], we need a tuple492

with loss > 10; to move from S[1] to S[2], we need the next tuple in the sequence to493

also have loss > 10, and so on. If the state transition predicate is not satisfied at any494

point, e.g., the next loss measurement is below ten, we go back to the begin state.495

We refer to a state with a plus symbol, denoting one or more occurrences of a496

pattern, as a KleeneClosure state. These states have self-edges E[i][i]. In View1, we497

will remain in the accepting state S[4] as long as the next tuple has loss > 10.498

Algorithm 1 translates a pattern query Q into a FSM and a list auxlist that contains499

additional variables we will have to maintain in the Helper view. The set of states S[]500

is computed in lines 1-6 based on the PATTERN clause. The state transition predicates501

are computed in lines 7-19 by iterating through each WHERE predicate pred.502

If pred references a single pattern variable (state) S[p], then it can be one of two503

transition predicates. For a KleeneClosure state, it is E[p][p]; otherwise it is E[p −504

1][p]. In either case, we add the predicate to the corresponding edge label (lines 10505

and 12, respectively). The add function also performs some string editing: it replaces506

a PATTERN variable with “New”; e.g., a.loss>10 becomes New.loss>10. The507

add function also adds “AND” between different predicates for the same edge. For508

instance, if we have a.loss>10 AND a.loss<20, then E[0][1].add will be called509

twice and will result in New.loss>10 AND New.loss<20. These edits simplify510

the next step of converting the FSM into a ViewDF.511

Otherwise, if pred references two pattern variables S[p−1] and S[p], e.g., b.loss >512

a.loss, then this is a transition predicate E[p− 1][p]. In this case, the add function on513

line 16 replaces the S[p − 1] variable with “Prev” and the S[p] one with ”New”; e.g.,514

b.loss > a.loss becomes New.loss>Prev.loss. As before, an “AND” is515

added if there are multiple predicates for this edge. Furthermore, to evaluate such a516

predicate, we need to store some additional information in the Helper view, namely517
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Algorithm 1: GENERATE FSM
Input: A pattern query Q
Output: a FSM F (S[], E[][]), auxlist

1: S[0] := begin state;
2: j := 1;
3: for all variables v in the PATTERN clause do
4: S[j] := v;
5: j++;
6: end for
7: for all predicates pred in WHERE clause do
8: if pred references a single state S[p] then
9: if S[p].isKleeneClosure then

10: E[p][p].add(pred);
11: else
12: E[p− 1][p].add(pred);
13: end if
14: end if
15: if pred references two states S[p] and S[p− 1] then
16: E[p− 1][p].add(pred);
17: auxlist.addAttr(pred);
18: end if
19: end for

a.loss. In line 17, the addAttr function retrieves the attribute name referenced with the518

S[p−1] variable and appends “New” to it, i.e., for b.loss > a.loss, auxlist will519

contain New.loss.520

When given View1 as input, Algorithm 1 returns the FSM illustrated in Figure 4521

(however, the edge labels are actually New.loss>10) and an empty auxlist (there522

are no predicates referencing two pattern variables in View1).523

5.1.2. FSM to ViewDF Conversion524

Given a pattern query Q and the output of Algorithm 1 (i.e., the FSM and auxlist),525

we can now generate ViewDFs for the Helper view (Algorithm 2) and the final view526

V (Algorithm 3) corresponding to Q. Again, to explain these two algorithms, we use527

View1 as the input query.528

First, we discuss the Helper view. The output of Algorithm 2 given View1 and the529

corresponding FSM is shown below. Notice that the Helper ViewDF below is different530

(more general) than the one shown in Section 2, which was a hand-crafted ViewDF for531

a simple pattern query.532
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Algorithm 2: GENERATE HELPER VIEWDF
Input: A pattern query Q, FSM F (S[], E[][]), auxlist, partition length L

1: n := number of states in F ;
2: Write(“CREATE VIEW Helper AS”);
3: Write(“INITIALIZE Helper[i] AS SELECT”);
4: for all non-aggregate attributes a in SELECT clause of Q do
5: Write(“New.” + a + “,”);
6: end for
7: for all attributes a in SELECT clause of Q with SUM(a) do
8: Write(“New.” + a + “ AS sum ” + a + “,”);
9: end for

10: if SELECT clause of Q includes count(*) then
11: Write(“1 AS ct, ”);
12: end if
13: Write(auxlist);
14: Write(“1 AS state”);
15: Write(“FROM InputStream[i] AS New”);
16: Write(“WHERE ” + E[0][1]”);
17: Write(“UPDATE Helper[j] AS SELECT”);
18: for all non-aggregate attributes a in SELECT clause of Q do
19: Write(“New.” + a + “,”);
20: end for
21: for all attributes a in SELECT clause of Q with SUM(a) do
22: Write(“Prev.sum ” + a + “+ New.” + a);
23: end for
24: if SELECT clause of Q includes count(*) then
25: Write(“ct+1, ”);
26: end if
27: Write(auxlist);
28: Write(“CASE WHEN state=0 then 1”);
29: for k=0 to n− 1 do
30: if S[k].isKleeneClosure then
31: Write(“WHEN state=”+k+“AND ”+E[k][k]+“THEN state”);
32: end if
33: Write(“WHEN state=”+k+“AND ”+E[k][k+1]+“THEN state+1”);
34: end for
35: Write(“END”);
36: Write(“FROM ( SELECT * FROM InputStream[j] AS New”);
37: Write(“LEFT OUTER JOIN Helper[j-1] AS Prev”);
38: Write(“WHERE state <> 0”);
39: Write(“PARTITION LENGTH L”);

533

Here is how Algorithm 2 generated the above ViewDF for the Helper view. Lines 3-534

16 generate the INITIALIZE query. The SELECT statement, i.e., schema of the view,535

contains four parts: the non-aggregate attributes from the SELECT statement of the536

original query Q (lines 4-6), the attributes whose values we want to sum up (lines 7-9),537

a counter in case the original query includes count(*) (lines 10-12), and the attributes538

in auxlist (line 13; there are none for View1). Notice that ct is initialized to one and539

sum loss to the current value of loss. The Helper view also includes a state attribute540
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which keeps track of which state a source-destination pair is in (line 14). The WHERE541

clause is the state transition predicate E[0][1] (line 15). Here, we initialize the Helper542

view by selecting all source-destination pairs having loss>10. All such pairs have543

state = 1 at this point.544

CREATE VIEW Helper AS545

INITIALIZE Helper[i] AS546

SELECT New.src AS src, New.dest AS dest,547

New.loss AS sum_loss, 1 AS ct, 1 AS state548

FROM InputStream[i] AS New WHERE New.loss>10549

UPDATE Helper[j] AS550

SELECT New.src, New.dest,551

Prev.sum_loss+New.loss, 1+ct,552

CASE WHEN state=0 and New.loss>10 THEN state+1553

WHEN state=1 and New.loss>10 THEN state+1554

WHEN state=2 and New.loss>10 THEN state+1555

WHEN state=3 and New.loss>10 THEN state+1556

WHEN state=4 and New.loss>10 THEN state557

END,558

FROM (559

SELECT *560

FROM InputStream[j] AS New561

LEFT OUTER JOIN Helper[j-1] AS Prev)562

WHERE state <> 0563

PARTITION LENGTH L564

Lines 17-39 generate the UPDATE query. Its SELECT statement includes565

the non-aggregate attributes from the original query (lines 18-20), as in the INI-566

TIALIZE query. The attributes being summed up are incrementally maintained567

(Prev.sum_loss+New.loss; lines 21-23), as is the count of tuples matching the568

pattern (ct + 1; lines 24-26). The CASE statement (lines 28-35) updates the state of569

each source-destination pair. We consider all possible states and whether the state tran-570

sition predicates (including self-edges for KleeneClosure states; lines 30-32) are true.571

If a transition predicate is true, the state variable is incremented. Notice that source-572

destination pairs that are already tracked in the previous partition of Helper may be in573

states 1 through 4. Those which are not yet tracked are in state zero and may move574

to state one if E[0][1] is satisfied (i.e., loss>10). These tuples do not have matching575

records in Helper[j-1], in which case the outer join operator (line 37) assigns zero576

to the integer attribute state. This is how we know that these are new source-destination577

pairs which have not reported loss>10 in the last minute, i.e., they are in the begin578

state.579

Algorithm 3 generates the final view. Given the pattern matching query from580

View1 as input, the final view is shown below and named View4. The INITIAL-581

IZE and UPDATE queries are the same. Their SELECT statements include all the582

non-aggregate attributes of the original query (lines 5-7), plus all the aggregates (lines583

8-13). The main difference between this automatically-generated ViewDF and View2584

from Section 2 is the WHERE predicate. Here, the WHERE predicate checks to see if585

we are in the final (accepting) state (lines 15 and 19).586
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Algorithm 3: GENERATE FINAL VIEWDF
Input: A pattern query Q, FSM F (S[], E[][]), partition length L

1: n := number of states in F ;
2: Write(“CREATE VIEW V AS“);
3: Write(“INITIALIZE V[i] AS“);
4: Write(“SELECT”);
5: for all non-aggregate attributes a in SELECT clause of Q do
6: Write(a + “,”);
7: end for
8: for all attributes a in SELECT clause of Q with SUM(a) do
9: Write(sum ” + a + “,”);

10: end for
11: if SELECT clause of Q includes count(*) then
12: Write(“ct”);
13: end if
14: Write(“FROM Helper[i]”);
15: Write(“WHERE state=” + n);
16: Write(“UPDATE V[j] AS”);
17: Repeat lines 4-13
18: Write(“FROM Helper[j]”);
19: Write (“WHERE state=” + n);
20: Write(“PARTITION LENGTH L”);

587

CREATE VIEW View4 AS588

INITIALIZE View4[i] AS589

SELECT src, dest, ct, sum_loss590

FROM Helper[i]591

WHERE state=4592

UPDATE View4[j] AS593

SELECT src, dest, ct, sum_loss594

FROM Helper[j]595

WHERE state=4596

PARTITION LENGTH L597

We conclude the discussion of translating pattern queries to ViewDFs by noting598

that the final view stores the results of the query and the Helper view is needed only599

to update it. Thus, old parts of Helper may be deleted. However, as explained in600

Section 4.3, late-arriving data into the base table may cause some Helper parts (and601

some parts of the final view) to change. If we expect out-of-order data, we need to602

keep some recent parts of Helper. How many parts to keep depends on how late data603

can be.604

5.2. Sliding Window Aggregates605

In this section, we describe how to convert sliding window aggregates to ViewDFs.606

Incremental evaluation of sliding window aggregates has been studied in previous607

work; see, e.g., [4, 30, 32, 36]. Thus, rather than proposing a new incremental strategy,608

we show how to express existing optimizations in the ViewDF framework.609
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Figure 5: Computing distributive and subtractable aggregates over a sliding window.

Two types of aggregates can be optimized over sliding windows. Let E1 and E2610

be two multi-sets of numbers. An aggregate function f is distributive if f(E1 ∪ E2)611

can be computed from f(E1) and f(E2) alone. A distributive aggregate function f612

is subtractable, also referred to in the literature as invertible or differential, if for any613

E1 ⊆ E2, f(E2 − E1) can be computed from f(E1) and f(E2) alone. For example,614

sum, count, maximum and minimum are distributive, and sum and count are also sub-615

tractable. Average is neither distributive nor subtractable, but it can be computed from616

two subtractable functions, namely sum and count.617

Figure 5 illustrates how to incrementally evaluate distributive and subtractable ag-618

gregates over sliding windows. Assume a new batch of data arrives every minute, and,619

each minute, we want to compute the aggregates over a four-minute window. In the620

figure, we illustrate five minutes of data in the five grey rectangles. For distributive621

aggregates, we pre-compute the aggregate value for each minute and then merge the622

pre-computed aggregates that are in the scope of the current window. Above the rectan-623

gles, we show the maximum and sum values for each minute, as well as the cumulative624

sum (Csum) since the beginning of time which we will use for subtractable aggregates.625

To compute the maximum over minute 1 through 4, we take the maximum of the pre-626

computed max values for minutes 1 through 4. When the window slides, we take the627

maximum of the pre-computed max values for minutes 2 through 5, and so on.628

For subtractable aggregates such as sum, we can do better. As illustrated in the629

figure, to obtain the sum from minute 2 through 5, we take the cumulative sum at630

minute 5 and subtract the cumulative sum at minute 5 minus the window length, i.e., at631

minute 1.632

5.2.1. ViewDF Translation for Distributive Aggregates633

We now explain how to express the above optimization for distributive aggregates634

in the ViewDF framework using the following query template:635
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SELECT G, max(A)636

FROM S [WINDOW W minutes]637

GROUP BY G638

HAVING H639

G is a set of attributes, A is the aggregate attribute and H is a HAVING condition640

over the aggregate values. Assume S is an input stream that arrives in one-minute641

batches and that the window slides every minute. In each batch, there may be multiple642

tuples belonging to the same group (in contrast to the pattern matching example from643

Section 2, in which each batch contained exactly one record for each group, i.e., each644

source-destination pair).645

The translation to ViewDF is simple, so we omit the translation algorithm and only646

show the output below. The Helper view pre-aggregates the maximum value for each647

group in each minute. The final view, labeled View5, then takes the maximum of the648

pre-aggregated maximum values over the current window, and applies the HAVING649

predicate. The INITIALIZE and UPDATE queries are the same. Notice that we must650

compute the first W parts of the Helper view before it can initialize View5. Also,651

as was the case with pattern-matching queries, old parts of the Helper view may be652

deleted to save space. We only need the most recent W parts to update the view, plus653

any additional older parts to handle out-of-order processing.654

CREATE VIEW Helper AS655

INITIALIZE Helper[i] AS656

SELECT G, max(A) as max_A657

FROM S[i]658

GROUP BY G659

UDPATE Helper[j] AS660

SELECT G, max(A)661

FROM S[j]662

GROUP BY G663

PARTITION LENGTH 60664

CREATE VIEW View5 AS665

INITIALIZE View5[i] AS666

SELECT G, max(max_A) as max_A667

FROM Helper[i-W+1..i]668

GROUP BY G669

HAVING H670

UPDATE View5[j] AS671

SELECT G, max(max_A)672

FROM Helper[j-W+1..j]673

GROUP BY G674

HAVING H675

PARTITION LENGTH 60676

5.2.2. ViewDF Translation for Subtractable Aggregates677

Next, we re-use the query template from above, but we replace max with sum, to678

illustrate the optimization for subtractable aggregates. This time, the Helper view679
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stores the cumulative sum for each group, which is updated incrementally by combin-680

ing the previous part of the Helper view with the new part of the input stream. The681

final view, called View6 subtracts the cumulative sums stored in the (i −W )th part682

of the Helper view from those in the ith part, and applies the HAVING predicate,683

which now includes a sum_A>0 condition. This removes groups that do not exist in684

the current window—these groups have the same cumulative sum at the beginning and685

end of the current window.686

CREATE VIEW Helper AS687

INITIALIZE Helper[i] AS688

SELECT G, sum(A) AS sum_A689

FROM S[i]690

GROUP BY G691

UPDATE Helper[j] AS692

SELECT G, sum(Temp_Sum) AS sum_A693

FROM (694

SELECT G, sum(A) AS Temp_Sum695

FROM S[j]696

GROUP BY G697

UNION ALL698

SELECT G, sum_A AS Temp_Sum699

FROM Helper[j-1]700

) AS Temp701

GROUP BY G702

PARTITION LENGTH 60703

CREATE VIEW View6704

INITIALIZE View6[i] AS705

SELECT Temp.G, sum(Temp.Temp_Sum) AS sum_A706

FROM (707

SELECT G, sum_A AS Temp_Sum708

FROM Helper[i]709

UNION ALL710

SELECT G, sum_A*(-1) AS Temp_Sum711

FROM Helper[i-W]712

) AS Temp713

GROUP BY G714

HAVING sum_A>0 AND H715

UPDATE VIEW View6[j] AS716

SELECT Temp.G, sum(Temp.Temp_Sum) AS sum_A717

FROM (718

SELECT G, sum_A AS Temp_Sum719

FROM Helper[j]720

UNION ALL721

SELECT G, sum_A*(-1) AS Temp_Sum722

FROM Helper[j-W]723

) AS Temp724

GROUP BY G725

HAVING sum_A>0 AND H726
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PARTITION LENGTH 60727

There are two space-saving optimizations we can apply to subtractable aggregates.728

First, as before, we only need the W most recent parts of the Helper view. Second,729

the Helper view shown above keeps track of the cumulative sum for each group since730

the beginning of time; however, we only need the groups that appear in the current731

window. Thus, we can periodically remove groups that are no longer needed. These732

groups can be identified by the following query:733

SELECT Temp.G, sum(Temp.Temp_Sum) AS sum_A734

FROM (735

SELECT G, sum_A AS Temp_Sum736

FROM Helper[i]737

UNION ALL738

SELECT G, sum_A*(-1) AS Temp_Sum739

FROM Helper[i-W+1]740

) AS Temp741

GROUP BY G742

HAVING sum_A=0743

6. Discussion744

In this section, we discuss the limitations of our approach and we develop a classi-745

fication of materialized views that fit the ViewDF framework.746

Recall the main assumption from Section 4.1: the input consists of one or more747

timestamped data streams, and each table and view is partitioned by time such that748

each part can be accessed directly. In general, the ViewDF framework is effective for749

views whose updates can be expressed in a way that requires access to a small number750

of parts rather than the whole base table(s).751

One general class of views that fit the ViewDF approach are those with implicit752

or explicit timestamp predicates such as fixed or sliding windows. Such predicates753

naturally identify which parts store data that are required during a view update. In the754

worst case—for example, for non-distributive aggregates over sliding windows such755

as quantiles—the entire window needs to be accessed, which is still smaller than the756

entire table. For views over multiple streams, this class includes sliding window and757

band joins (recall Section 4.2).758

As discussed in Section 5.2.1, the sub-class of distributive aggregates over sliding759

windows can be expressed as ViewDFs even more efficiently. Rather than accessing760

the entire window, only two parts need to be accessed for every update, which provides761

substantial performance benefits (details to follow in Section 7).762

The second class of views compatible with the ViewDF approach are those which763

are incrementally maintainable by storing a constant amount of additional information.764

In the context of data streams, two examples of this class are subtractable aggregates765

(Section 5.2.2) and pattern matching (Section 5.1). In ViewDF the additional informa-766

tion can easily be stored in “Helper” views.767

On the other hand, the ViewDF approach cannot improve the efficiency of view768

updates where each update requires access to the entire input. For example, suppose769
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we want to maintain a statistical model over an entire data stream and update the model770

whenever a new batch of data arrives. We may need to recompute the model from771

scratch and therefore we cannot isolate an update to a small number of parts.772

Finally, we comment on the relationship between ViewDF and sequence and array773

languages such as AQuery [29] and SRQL [35]. This line of research has focused on ef-774

ficient evaluation of ad-hoc queries written in such languages, which include constructs775

such as sliding windows and order predicates (e.g., previous or next). Below, we dis-776

cuss some issues in implementing sequence views in ViewDF assuming an underlying777

sequence or array query engine.778

Consider a stream of stock quotes, with each stream item composed of a times-779

tamp, the stock name, and the current price. Consider the following stream fragment,780

illustrating stock prices for the Acme company.781

2015-01-01 10:58, Acme, $5.00782

2015-01-01 10:59, Acme, $4.95783

2015-01-01 11:00, Acme, $4.97784

2015-01-01 11:01, Acme, $4.98785

Suppose we want to materialize a view which identifies the times when the price786

of a stock was higher than its previous price. In the above example, the records at time787

11:00 and 11:01 would be included (and perhaps the record at 10:58, depending on788

the previous price of Acme stock). Assume this query can expressed in and evaluated789

by the underlying sequence query engine. Now suppose we write a corresponding790

ViewDF, partitioned by, say, hour, and specify in the UPDATE clause that the jth part791

(hour) of the view is to be computed over the jth part (hour) of the stream. This means792

that the first record of any hour will not have a previous record. Thus, the record at time793

11:00 would not be included in the output. This can be fixed by referring to two parts794

of the stream whenever updating the view: the current hour and the previous hour, but795

this comes at a cost of additional processing. Generalizing this example, we observe796

that sequence queries which may span partition boundaries may be implemented in797

ViewDF, but perhaps not optimally (unless we can specify Helper views to pre-compute798

the information required from other parts, as in our pattern matching example from799

Section 5.1).800

7. Experiments801

We implemented the ViewDF framework, including the translation layer for event-802

processing queries and sliding window aggregates, on top of PostgreSQL 9.1.3. In803

this section, we experimentally compare the performance of our system and translation804

layer with:805

1. a naive approach that recomputes the result whenever a batch of new data arrives;806

2. a “hard-coded” approach that simulates the ViewDF framework, including par-807

tition relationships and any required helper views. The hard-coded approach808

only uses the database to store and retrieve data (via JDBC) from the relevant809

partitions, using any available indexes. Query-specific incremental maintenance810

logic is implemented outside the database as a Java program, using similar phys-811

ical operators to those of PostgreSQL such as sort-merge join and sort-groupby.812
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The purpose of the experiments is to show that 1) the ViewDF approach is signif-813

icantly faster than the naive approach, and 2) the ViewDF approach performs on par814

with the hard-coded approach, i.e., incurs little or no overhead. The experiments were815

performed on a workstation with an AMD Phenom II X4 955 3200 MHz processor and816

8 GB of RAM, running Ubuntu 12.10. We set the size of the shared memory used by817

the database server to 600MB.818

As we will explain shortly, we generated several synthetic input streams with vari-819

ous distributions. These streams arrive in one-minute batches and resemble the network820

monitoring stream from Section 2. We wrote a PL/PGSQL program to create new parts821

of the base table storing the stream whenever new data arrive. We use Postgres’ native822

table partitioning via the table inheritance mechanism. Each runtime number we report823

is an average of 50 runs.824

7.1. Event Processing Queries825

We start with View1 from Section 2, which identifies source-destination pairs that826

have reported at least four consecutive measurements with high packet loss. We test827

1. a naive approach that reruns the pattern query whenever a batch of new data828

arrives;829

2. a hard-coded implementation of Helper and View2 from Section 2, in which830

we “SELECT *” from the required Helper and View2 parts but perform the831

outer join in Java as a sort-merge join;832

3. the ViewDF approach corresponding to Helper and View4 from Section 5.833

Recall that the naive approach may have to access the entire stream in case there834

is a source-destination pair that has been reporting high loss since the beginning of the835

stream. We will experiment with different values of scope, which forces a limit on how836

far back the naive algorithm may scan.837

In the first experiment, we measure the scalability of the tested approaches. Fig-838

ure 6 plots the execution time as a function of the number of records (i.e., source-839

destination pairs) in each data batch. For the naive approach, we set scope = 20, i.e.,840

any pair reporting high-loss measurements for more than 20 minutes will have incor-841

rect count and sum-loss numbers. We fix the proportion of loss measurements greater842

than ten to 10 percent (we will investigate the impact of these parameters on running843

time shortly). The ViewDF approach is significantly more efficient and scalable than844

the naive approach, and even slightly faster than the hard-coded approach, which high-845

lights the effectiveness of our translation algorithm. In particular, even with one million846

tuples per batch, ViewDF can still process the batch and update the view in under five847

seconds.848

Next, we fix the number of tuples per part to one million and vary the scope of849

the naive algorithm from 5 to 100. Results are shown in Figure 7. Since scope only850

affects the naive algorithm, Hardcoded and ViewDF have constant running time in this851

experiment. The naive algorithm becomes very slow as scope increases, as expected,852

due to having to process more and more data during view updates.853

Now, we vary the proportion of tuples with loss measurements greater than ten from854

10 to 100 percent while keeping the number of tuples per batch fixed at one million855
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Figure 7: Running time vs. scope for Naive, Hardcoded and ViewDF.

(and, for the naive algorithm, we set scope to a very small value of 4). Results are856

shown in Figure 8. As the proportion of high-loss tuples increases, all three methods857

take longer because there are more pattern matches that need to be generated, and858

because more partial matches need to be tracked in the Helper view. However, the859

naive approach does not worsen much: it always has to scan four partitions anyway860

and does not maintain any intermediate results. Again, ViewDF is slightly faster than861

Hardcoded, and remains faster than Naive regardless of the proportion of high-loss862

values even at this low value of scope. For higher values of scope, the performance gap863

between Naive and ViewDF is even greater.864

7.2. Sliding Window Aggregates865

In the previous experiment, the input stream contained exactly one record per866

source-destination pair per part. In this experiment, we generate ten records per pair867

per part and execute a MAX (distributive) and SUM (subtractable) window aggregate868

query. We test869

1. a naive approach that recomputes new results from scratch whenever the window870

slides;871
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Figure 9: Running time vs. data set size for sliding window MAX executed using the Naive, Hardcoded and
ViewDF approaches.

2. a hard-coded implementation that manually maintains the Helper view by sort-872

merging a new batch of data with the partial aggregates stored in the previous part873

of the Helper view;874

3. the ViewDF approach corresponding to Helper/View5 and Helper/View6875

from Section 5.2.876

Below, we report two running-time experiments for each type of aggregate: scala-877

bility with the number of tuples per data batch (up to 10 million tuples) and scalability878

with the window size (up to 100 minutes, i.e., batches).879

7.2.1. Distributive Aggregates (MAX)880

For sliding window MAX, Figure 9 shows scalability with the data size (fixing881

the window size at ten) and Figure 10 shows scalability with the window size (at 10882

million tuples per part). As the number of tuples per batch grows, all three methods take883

longer; however ViewDF and Hardcoded are significantly faster than Naive. Similarly,884

as the window size grows from 5 to 100 batches, Naive scales poorly, whereas ViewDF885

and Hardcoded are much faster and scale better. The performance of ViewDF and886

Hardcoded is virtually identical.887
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Figure 10: Running time vs. window size for sliding window MAX executed using the Naive, Hardcoded
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Figure 11: Running time vs. data set size for sliding window SUM executed using the Naive, Hardcoded and
ViewDF approaches.

7.2.2. Subtractable Aggregates (SUM)888

For sliding window SUM, Figure 11 illustrates scalability with the data size (again,889

fixing the window size at ten) and Figure 12 shows scalability with the window size890

(again, at 10 million tuples per part). The results are similar to those for MAX. Again,891

ViewDF (and Hardcoded) is significantly faster and scales better than Naive with the892

data size and window size; additionally, ViewDF and Hardcoded perform equally well.893

Since subtractable aggregates are also distributive, we can incrementally compute894

SUM using the approach we employed for MAX (Helper/View5). Of course, we895

do not expect this to be as efficient as the specialized optimization for subtractable896

aggregates, but it should still be much more efficient than Naive. This was indeed the897

case in our experiments. Returning to Figure 11, maintaining the sliding window SUM898

using the strategy for MAX was roughly 50 percent less efficient than the strategy for899

subtractable aggregates; e.g., at 10 million tuples per part, it took 49 seconds compared900

to 34 for Hardcoded and ViewDF.901
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8. Conclusions902

In this paper, we introduced ViewDF, a framework for declaratively specifying how903

to incrementally update materialized views over append-only streaming data. ViewDF904

assumes that tables and views are partitioned by time, and leverages partition relation-905

ships to avoid scanning an entire source table when updating a view. In addition to906

letting users write SQL queries that directly specify how to update a view, we showed907

how to automatically converting event-processing queries and sliding window aggre-908

gates into incremental view maintenance expressions.909

Several interesting directions for future work arise from this paper, including the910

following:911

1. Automatic translation from view definition queries to ViewDFs for other classes912

of useful streaming queries besides event processing and window aggregation—913

for example, time series analytics, graph analytics and iterative machine-learning914

operations such as prediction model building and incremental clustering.915

2. Cost-based selection of the most efficient incremental maintenance algorithm916

(ViewDF) when multiple options are available.917

3. Applying multi-query optimization to ViewDFs so that similar views, such as918

pattern-matching queries looking for similar patterns, may be updated together.919
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