
On Concurrency Control in Sliding Window

Queries over Data Streams?

Lukasz Golab1, Kumar Gaurav Bijay2, and M. Tamer Özsu1

1 School of Computer Science, University of Waterloo, Canada.
{lgolab,tozsu}@uwaterloo.ca

2 Department of Computer Science and Engineering, IIT Bombay, India.
gauravk@cse.iitb.ac.in

Abstract. Data stream systems execute a dynamic workload of long-
running and one-time queries, with the streaming inputs typically bounded
by sliding windows. For efficiency, windows may be advanced periodically
by replacing the oldest part of the window with a batch of new data.
Existing work on stream processing assumes that a window cannot be
advanced while it is being accessed by a query. In this paper, we argue
that concurrent processing of queries (reads) and window-slides (writes)
is required by data stream systems in order to allow prioritized query
scheduling and improve the freshness of answers. We prove that the tra-
ditional notion of conflict serializability is insufficient in this context and
define stronger isolation levels that restrict the allowed serialization or-
ders. We also design and experimentally evaluate a transaction scheduler
that efficiently enforces the new isolation levels.

1 Introduction

A Data Stream Management System (DSMS) executes two types of queries—
long-running and snapshot—whose input streams are typically bounded by slid-
ing windows. Long-running queries return updated answers periodically and of-
ten involve complex aggregation for monitoring purposes. Snapshot queries are
analogous to traditional database queries in that they can be submitted to the
DSMS at any time, are executed once, and return an answer over the current
state of the inputs. Snapshot queries may be used to obtain further details in
response to a change in the result of a long-running query.

Previous work on sliding window query processing [1–5] and stream query
languages [6–8] assumes that windows slide periodically by replacing the oldest
part of the window with a batch of fresh data. A periodically-sliding window
can be modeled as a circular array of sub-windows, each spanning an equal time
interval for time-based windows (e.g., a ten-minute window that slides every
minute) or an equal number of tuples for tuple-based windows (e.g., a 100-tuple

? This research is partially supported by the Natural Sciences and Engineering Re-
search Council of Canada (NSERC) and Communications and Information Technol-
ogy Ontario (CITO).

Fig. 1. Examples of query and window update sequences in a DSMS

window that slides every ten tuples). We define a window update as the process
of replacing the oldest sub-window with newly arrived data, thereby sliding the
window forward by one sub-window. We will use the terms window update,
window movement, and window-slide interchangeably.

As the windows slide forward, a DSMS executes a dynamic workload of long-
running and snapshot queries. Suppose that query execution involves accessing a
window, one sub-window at a time (we will discuss this in more detail in Sect. 2).
Combined with periodic window movements, we can model DSMS data access
in terms of two atomic operations: sub-window scan (read) and replacement of
the oldest sub-window with new data (write). Thus, a window update is a single
write operation, whereas a query is a sequence of sub-window read operations
such that each sub-window is read exactly once.

A window may slide while being accessed by a query, resulting in a read-write
conflict. Consider a sequence of operations illustrated in Fig. 1 (a), where the
processing times of window updates (U) and queries (Q1, Q2, and Q3) are shown
on a time axis. This represents an ideal scenario, where it is possible to execute all
three queries between every pair of window updates, thereby avoiding read-write
conflicts. However, the system environment, such as the query workload, stream
arrival rates, and availability of system resources, can change greatly during the
lifetime of a long-running query. Thus, a more realistic sequence is shown in
Fig.1 (b), where Q2 takes longer to execute than expected. Q3 is still running
when the second update is ready to be applied, causing a delay in performing the
update, and, in turn, causing another read-write conflict when Q3 is re-executed
and the third update is about to take place.

It may appear that read-write conflicts can be prevented by increasing the
time interval between window updates, i.e., the sub-window size. However, all
sub-windows must have the same size so that the overall window size is fixed
at all times. Therefore, either the system must be taken off-line to re-partition
the entire window, or two sets of sub-windows must be maintained during the

transition period until the window “rolls over” and all the sub-windows have the
new size. The first case is inappropriate for an on-line DSMS, whereas the second
solution does not immediately eliminate read-write conflicts until the transition
period is over.

Existing data stream solutions avoid read-write conflicts by serially executing
queries and window movements. In other words, a query locks the window that
it is scanning in order to prevent concurrent window movements. Interleaved
execution of updates while a window is being scanned by a query is advantageous,
provided that the following issue is resolved. Consider suspending the processing
of Q3 in order to perform a window update, as in Fig.1 (c). Recall that each
query is assumed to perform a sequence of atomic sub-window reads, therefore
it may be interrupted after it has read one or more sub-windows. It must be
ensured that when resumed, Q3 can correctly read the updated window state. If
so, then the answer of Q3 is slightly delayed (by the time taken to perform the
update), but it is more up-to-date because it reflects the second update as well
as the first. Otherwise, we are worse off than in Fig. 1 (b), because the answer
of Q3 is delayed, but it is still not up-to-date. Another example is illustrated
in Fig. 1 (d), where Q3 is suspended not only to perform a window update, but
also to run Q1 immediately afterwards. This is desirable if Q1 is an important
query that requires an immediate and up-to-date answer.

This paper studies concurrency control issues in a DSMS with periodic win-
dow movements, periodic executions of long-running queries, and on-demand
snapshot querying. Our goal is to provide query scheduling flexibility and guar-
antee up-to-date results. The particular contributions of this paper are as follows.

– By modeling window movements and queries as transactions consisting of
atomic sub-window reads and writes, we extend concurrency theory to cover
queries over periodically-advancing windows. We show that conflict serial-
izability is not sufficient in the presence of interleaved queries and window
movements because some serialization orders produce incorrect answers.

– We propose two isolation levels that are stronger than conflict serializability
in that they restrict the permissible serialization orders.

– We design a transaction scheduler that efficiently enforces the desired iso-
lation levels. The main idea is to exploit the access patterns of queries and
window updates. The scheduler is proven to be optimal in the sense that it
aborts the smallest possible number of transactions while allowing immediate
(optimistic) scheduling of window updates.

– We perform an experimental evaluation of the transaction scheduler under
various query workloads and system parameters, showing improved query
freshness and response times with a minimal drop in throughput.

The remainder of this paper is organized as follows. Section 2 explains our
system model and assumptions. Section 3 defines new isolation levels for DSMS
transactions, and Sect. 4 presents a transaction scheduler for enforcing them.
Section 5 presents experimental results, Sect. 6 compares the contributions of
this paper to previous work, and Sect. 7 concludes the paper.

Fig. 2. Window summary for computing the maximum

2 System Model and Assumptions

2.1 Data and Query Model

A data stream is assumed to consist of relational tuples with a fixed schema.
Without loss of generality, we assume that each stream is bounded by a time-
based window. A window of time-length nt is stored as a circular array of n

sub-windows, each spanning a time-length of t (each window may have different
values for n and t). Every t time units, the oldest sub-window is replaced with
a buffer containing incoming tuples that have arrived in the last t time units.
Additionally, the DSMS may materialize intermediate results of selected queries
or sub-queries, e.g., sliding window joins [2], which may also be stored as arrays
of sub-windows [9]. We assume that t is significantly larger than the time taken
to perform a window update (otherwise, the system would spend all of its time
advancing the windows rather than executing queries).

Given that long-running queries are used for monitoring purposes, they typ-
ically compute aggregates over a single window or a join of several windows;
a selection predicate may precede the aggregate and a group-by condition may
follow it. Each long-running query Q also specifies its desired re-execution fre-
quency. The frequency must be a multiple of t, i.e., Q will be scheduled for
re-execution every m window updates, where 1 ≤ m < n. The DSMS attempts
to execute all the queries with the desired frequencies, but it cannot guarantee
that this will be the case at all times due to unpredictable system conditions.

Queries are executed using one of two techniques (a discussion of other pos-
sible evaluation methods and justification of our choice may be found in the
extended version of this paper [10]). First, a default access plan scans the entire
window (or windows), one sub-window at a time, and computes the query from
scratch. Second, aggregates may be computed by accessing a summary, which
contains pre-aggregated values for each sub-window. An example is illustrated
in Fig. 2, showing a summary that stores the maximum of all the values in each
sub-window. A single scan of the summary, from youngest sub-window to old-
est, may be used to compute the maximum over windows of different lengths.
As illustrated, max1 is the maximum over a window of size 6t, which is re-used
to compute the maximum over a window of size 10t (max2). The size of a sum-
mary depends on the type of aggregate. Associative aggregates, such as MAX and
MIN, require one value per sub-window (in case of group-by, a separate value is
stored for each group). Non-associative aggregates, such as median, top-k, and
COUNT DISTINCT, need access to the frequency counts of all the distinct values

Fig. 3. Assumed system architecture

on each sub-window. Alternatively, approximate answers to complex aggregates
may be computed by storing summaries that contain estimates of the distribu-
tion of values in each sub-window. Examples include Count-Min sketch [11] and
Flajolet-Martin sketch [12]. In all cases, query evaluation involves scanning and
merging each sub-window summary, from youngest sub-window to oldest.

2.2 System Architecture

The assumed system architecture is illustrated in Fig. 3. Let w[i] denote the re-
placement of the ith sub-window with newly arrived data, for 0 ≤ i ≤ n−1. Each
data stream generates periodic write-only transactions Tj in subscript order, de-
fined as Tj = {wj[j mod n]}. They are processed by the transaction manager,
which immediately propagates updates to all the summaries and materialized
results that reference this window (e.g., new tuples are passed to the join oper-
ator, which probes the other window and generates new join results). For each
stream, the transaction manager initially executes T0 through Tn−1 to fill up the
windows. Thereafter, each Tj has the effect of moving the window forward by
one sub-window. In order to ensure that queries have access to the latest data,
the transaction scheduler executes each Tj as soon as a buffer is full.

Snapshot queries are executed by scanning a suitable summary, if available, or
accessing the underlying window(s). Answers are returned in the form of a table.
Long-running queries are re-executed periodically throughout their lifetimes and
generate a stream of updated answers. A new long-running query is inserted
into the query manager, or may be rejected if the system is overloaded. The
query manager then determines an appropriate execution strategy for the new
query, e.g., whether an existing summary may be used or a new summary should
be built, and whether the new query may be merged into a group of similar
queries for shared processing. The design of the query manager is an orthogonal
topic, which we pursue in separate work. In this paper, we define an interface
between the query manager and the transaction scheduler, which consists of
read-only transactions corresponding to re-execution of one or several similar

queries. We define r[i] be a scan (read) of the ith sub-window, or its summary,
for 0 ≤ i ≤ n − 1 (without loss of generality, in the rest of the paper, we will
refer to either of these as a sub-window). A snapshot query or a particular re-
execution of one or more long-running queries is a read-only transaction TQk,
defined as TQk = {rQk[0], rQk[1], . . ., rQk[n− 1]}. That is, each TQk performs a
scan of a window, sub-result, or summary, by reading each sub-window exactly
once (queries over windows shorter than nt may be defined similarly). We assume
that sub-windows may be read in arbitrary order.

3 Conflict Serializability in the Context of Sliding

Window Queries

3.1 Serializability and Serialization Orders

We begin by analyzing the isolation level requirements of queries over periodically-
sliding windows. Due to space constraints, we assume that queries access a single
window and deal with materialized sub-results in the extended version of this
paper [10]. First, we define the possible types of conflicts arising from concurrent
execution of transactions. A conflict occurs when two interleaved transactions
operate on the same sub-window and at least one of the operations is a write.
Clearly, a read-write conflict occurs whenever Tj interrupts TQk, as in Fig. 1 (c)
and (d). This is because each TQk reads every sub-window, including the sub-
window overwritten by Tj. Since we assumed that window movements are exe-
cuted immediately, we can ignore write-write conflicts. The traditional method
for dealing with conflicts requires an execution history H to be serializable. We
show that serializability is insufficient in our context using the following example.

Assume a sliding window partitioned into five sub-windows, numbered zero
through four, with sub-window zero being the oldest at the current time. Con-
sider the following four histories—Ha, Hb, Hc, and Hd—with cj or cQk denoting
that transaction Tj or TQk, respectively, has committed (we omit the initial
transactions T0 through T4 that fill up the window).

Ha = rQ1[0] w5[0] c5 w6[1] c6 rQ1[1] rQ1[2] rQ1[3] rQ1[4] cQ1

Hb = rQ1[0] w5[0] c5 rQ1[1] w6[1] c6 rQ1[2] rQ1[3] rQ1[4] cQ1

Hc = rQ1[4] w5[0] c5 rQ1[3] rQ1[2] rQ1[1] w6[1] c6 rQ1[0] cQ1

Hd = rQ1[4] w5[0] c5 rQ1[0] rQ1[3] rQ1[2] w6[1] c6 rQ1[1] cQ1

Each history represents interleaved execution of a read-only transaction TQ1 and
two window movements, T5 and T6. Note that Hc and Hd reorder the read oper-
ations within TQ1; we will say more about ordering atomic operations in Sect. 4.
The associated serialization graphs are drawn in Fig.4. The direction of the
edges corresponds to the order in which conflicting operations are serialized. In
particular, there are two pairs of conflicting operations in each schedule: rQ1[0]
and w5[0], and rQ1[1] and w6[1]. Note that all four graphs are acyclic, therefore
all four histories are serializable, but their serialization orders are different.

Let us analyze the data read by TQ1. For each history, consider the state of
the sliding window shown in Fig. 5, where the first sub-windows on the left (s0

Fig. 4. Serialization graphs for Ha, Hb, Hc, and Hd

Fig. 5. Differences in the results returned by TQ1 in Ha, Hb, Hc, and Hd

through s4) correspond to the initial state of the window after T0 through T4 were
executed. Next, T5 advances the window forward by one sub-window, which may
be thought of as overwriting the old copy of sub-window s0 (on the far left) with
a new copy, appended after s4. Thus, the state of the window after T5 commits is
represented by the contiguous sequence of sub-windows {s1, s2, s3, s4, s0}. Then,
T6 advances the window again by appending a new copy of s1 on the far right
and implicitly deleting the old copy of s1 on the left. Hence, the state of the
window after T6 commits is equivalent to the contiguous sequence of sub-windows
{s2, s3, s4, s0, s1}. Shaded sub-windows represent those which were read by TQ1

in each of the four histories, as explained next.

First, consider SG(Ha) and note that Ha serializes T6 before TQ1, meaning
that the window movement caused by T6 (creation of a new version of sub-
window s1) is reflected in the query. However, Ha serializes an earlier window
update T5 after TQ1, therefore the prior window movement caused by T5 (creation
of a new version of s0) is hidden from the query. Hence, Ha causes TQ1 to read
an old copy of s0 and a new copy of s1, as illustrated in Fig. 5 (a), which does not
correspond to a window state at any point in time. This is because the shaded
rectangles do not form a contiguous sequence of five sub-windows. Next, recall
that Hb serializes both window movements after TQ1, therefore the query reads
old versions of s0 and s1, as illustrated in Fig. 5 (b). This corresponds to the
state of the window after T4 commits. By similar reasoning, Hc allows TQ1 to
read the state of the window after T5 commits (Fig. 5 (c)), and only Hd ensures
that TQ1 reads the most up-to-date state of the window that reflects both T5

and T6 (Fig. 5 (d)). Again, this is because only SG(Hd) serializes both window
movements before TQk, meaning that TQk sees both updates.

3.2 Isolation Levels for Sliding Window Queries

Having shown that the serialization order affects the semantics of read-only
transactions, we propose two stronger isolation levels that restrict the allowed
serialization orders.

Definition 1. A serializable history H is said to be window-serializable (WS)
if all of its committed TQk transactions read a true state of the sliding window as
of some point in the past or present (i.e., a contiguous sequence of sub-windows
is read, as in Fig.5 (b), (c), and (d)).

Definition 2. A window-serializable history H is said to be latest-window-
serializable (LWS) if all of its committed TQk transactions read the state of
the sliding window that reflects all the window update transactions that have
committed before TQk commits.

Note that only LWS guarantees that queries read the most up-to-date state
of the window Motivated by Fig. 4, we prove the following results.

Theorem 1. A history H is window-serializable iff SG(H) has the following
property: for any TQk, if any Ti is serialized before TQk, then for all Tj serialized
after TQk, i < j.

Proof. Suppose that H is WS. If all transactions TQk contained in H incur
at most one concurrent window movement, then clearly, SG(H) satisfies the
desired property. Otherwise, note that for TQk to read a sliding window state
from some point in the past or present, it must be the case that either TQk

is isolated from all the concurrent window updates, or it only reads the least
recent update, or it only reads the two oldest updates, and so on. In all cases,
SG(H) contains less recent updates serialized before the query and more recent
updates serialized after the query, as wanted. Now suppose that SG(H) satisfies
the property that all Tj serialized after any TQk have higher subscripts than
those serialized before TQk. Let m be the maximum subscript of any transaction
Ti serialized before TQk. It follows that TQk reads a sliding window state that
resulted from applying all the updates up to Tm and therefore H is WS. 2

Theorem 2. A history H is latest-window-serializable iff SG(H) has the
following property: for any TQk, all concurrent Ti transactions must be serialized
before TQk.

Proof. Suppose that H is LWS and let TQk be any query that incurs at
least one concurrent window movement. It follows that TQk reads a state of the
window that results from applying all the concurrent updates. Hence, concurrent
window updates must be serialized before queries, as wanted. Now suppose that
SG(H) does not contain any links pointing from any TQk to any Ti. This means
that there are no queries that have been interrupted by window updates which
the queries then did not see. Hence, H is LWS. 2

4 Transaction Scheduler Design

4.1 Producing LWS Histories

We now present the design of a DSMS transaction scheduler that produces LWS
histories. Recall from Sect. 2 that write-only transactions Tj must be executed

Algorithm 1 DSMS Transaction Scheduler

1 let L be the list of currently running TQk transactions
2 loop

3 if new transaction Tj arrives for scheduling then

4 execute wj[j mod n], cj

5 for each TQk in L

6 if BQk[j mod n] = true then

7 execute aQk (abort TQk)
8 elseif new transaction TQk arrives for scheduling then

9 add TQk to L

10 for i = 0 to n− 1
11 set BQk[i] = false
12 if L is not empty then

13 choose any TQl from L

14 execute next operation of TQl, call it rQl[m]
15 set BQl[m] = true
16 if no more read operations left in TQl then

17 execute cQl

18 remove TQl and BQl from L

with highest priority so that queries have access to an up-to-date version of
the window. Given this assumption, our scheduler executes window movements
optimistically and uses serialization graph testing (SGT) to abort any read-
only transaction that causes a read-write conflict. In general, SGT may suffer
from high space usage and long running time if many conflicts among many
transactions must be tracked over time [13]. Fortunately, in our context, the
serialization graph is simple and can be pruned dynamically. In particular, for
each currently running TQk, it suffices to monitor concurrent window movements
Tj and ensure that all interleaved Tj are serialized before TQk (recall Fig. 4). Once
TQk commits, it is guaranteed not to cause LWS violations at any point in the
future, and therefore its node can be safely deleted from the serialization graph.

The scheduler is summarized as Algorithm1. Lines 3 and 4 serially execute
window movements immediately (technically, line 4 must wait for an acknowl-
edgement that the write operation has been performed). Lines 8 through 11
initialize a bit array BQk for each newly arrived TQk, where bit i is set if TQk

has already read sub-window i. Lines 12 through 18 execute read-only trans-
actions, one sub-window scan at a time, and set the corresponding bit in BQk

to true. Again, before committing TQl in line 17, the algorithm must wait for
an acknowledgement of performing the read operation from line 14. Note that
Algorithm1 allows multiple read-only transactions to be executed at the same
time in any order (line 13) because they do not conflict with one another. Lines
5 through 7 resolve LWS conflicts, as proven below.

Theorem 3. Algorithm1 produces LWS histories.

Proof. As per Definition 2, we need to show that all committed read-only
transactions TQk have the property that any window movements Tj that were

executed at the same time as TQk are serialized before TQk. First, note that
the only time that a new LWS violation may possibly appear is after a win-
dow update Tj commits while one or more TQk transactions are still running.
Furthermore, a LWS conflict appears only if any Tj has updated a sub-window
(an older copy of) which has already been read by any of the currently run-
ning TQk transactions, in which case Tj would be serialized before TQk. This
occurs if BQk[j mod n] is set for any currently running TQk. In this case, Algo-
rithm 1 aborts TQk (line 7), ensuring that all TQk committed in line 17 satisfy
Definition 2. 2

Algorithm1 supports read-only transactions with different priorities, such as
snapshot queries or “important” long-running queries (as in Q1 from Fig. 1 (d)).
To do this, we assume that the query manager embeds a priority p within each
TQk and we change line 13 in Algorithm1 to read: “let TQl be the transaction in L

with the highest value of p”. Consequently, if a low-priority TQk is currently being
executed, then a higher-priority TQm transaction has the effect of suspending
TQk. This extension does not impact the correctness of Algorithm1 as it does
not introduce any new LWS conflicts.

4.2 Optimal Ordering of Read Operations

Given that Algorithm1 may abort read-only transactions in order to guarantee
LWS, we want to minimize the required number of aborts. The idea is to shuffle
the read operations within TQk given the following insight. Since aborts occur
when a sub-window is being updated but an older version of it has already been
read by a concurrent TQk transaction, we should execute TQk by first reading
the sub-window which is scheduled to be updated the farthest out into the
future. More precisely, we define the time-to-update (TTU) of a sub-window as
the number of window-movement transactions Tj that must be applied until this
sub-window is updated. When the scheduler chooses a read-only transaction TQk

to process, it always executes the remaining read operation of TQk whose sub-
window has the highest TTU value at the given time. The revised scheduler is
shown below as Algorithm2 (again, adding support for multiple priority levels
can be done by changing line 17 to process the highest-priority transaction).
There are two main changes. First, lines 6 through 8 update the TTU values of
each sub-window after every window movement. The newly updated sub-window
receives a value of n (it will take n write-only transaction until this sub-window
is updated again), whereas the TTU values of the remaining sub-windows are
decremented. Furthermore, line 18 selects m to be the index of the sub-window
which has the highest TTU value and has not been read by TQl.

The idea in Algorithm2 is similar to the Longest Forward Distance (LFD)
cache replacement algorithm [14], which always evicts the page whose next access
is latest. LFD is optimal in the off-line case in terms of the number of page faults,
given that the system knows the entire page request sequence and that all page
faults have the same cost.

Theorem 4. Algorithm2 is optimal for ensuring LWS in the sense that it
performs the fewest possible aborts for any history H.

Algorithm 2 DSMS Transaction Scheduler with TTU

1 let L be the list of currently running TQk transactions
2 let TTU [n] be an array of sub-window TTU values
3 loop

4 if new transaction Tj arrives for scheduling then

5 execute wj[j mod n], cj

6 for i = 0 to n− 1
7 set TTU [i] = TTU [i] − 1
8 set TTU [j mod n] = n

9 for each TQk in L

10 if BQk[j mod n] = true then

11 execute aQk (abort TQk)
12 elseif new transaction TQk arrives for scheduling then

13 add TQk to L

14 for i = 0 to n− 1
15 set BQk[i] = false
16 if L is not empty then

17 choose any TQl from L

18 let m =argmax
BQl [i]=falseTTU [i]

19 execute rQl[m]
20 set BQl[m] = true
21 if no more read operations left in TQl then

22 execute cQl

23 remove TQl and BQl from L

Proof. Let A be the scheduler in Algorithm 2 and let S be any other transac-
tion scheduler that serializes transactions in the same way as A, but only differs
in the ordering of read operations inside one or more read-only transactions.
That is, S corresponds to Algorithm 1 with some arbitrary implementation of
the meaning of “next operation” in line 14. We need to prove that S performs
no fewer aborts than A for any history H. Let Hi be the prefix of H containing
the first i read operations (interleaved with zero or more write operations, and
zero or more commit or abort operations). The proof proceeds by inductively
transforming the sequence of read operations produced by S into that produced
by A, one read operation at a time. To accomplish this, we let S0 = S and define
a transaction scheduler Si+1 that, given Si, has the following two properties.

1. Both Si and Si+1 order all the read operations in Hi in the same way as A.
2. Si+1 orders all the read operations in Hi+1 in the same way as A and per-

forms no more aborts than Si in Hi+1.

Let rk[y] be the (i + 1)st read operation executed by Si and rk[z] be the
(i + 1)st read operation executed by Si+1. Due to our assumption that A and
S only differ in the ordering of read operations inside read-only transactions,
the (i + 1)st read operations done by Si and Si+1 both belong to the same
transaction, call it TQk. Thus, sub-window z (mod n) has the highest TTU

value at this time. Now, if z = y then Si+1 = Si and we are done (property 2
holds). Otherwise, Si+1 and Si differ in the (i+1)st read operation. First, suppose
that TQk is not interrupted by any write-only transactions before the next read
operation. Then, TQk is not aborted by Si or by Si+1 in Hi+1 and we are done
(property 2 holds). Next, suppose that TQk is interrupted by at least one write-
only transaction before the next read operation. The remainder of the proof is
broken into the following three cases, which collectively prove property 2.

In the first case, suppose that the set of interrupting transactions contains
Ty, but not Tz. Given that sub-window z (mod n) has the highest TTU value at
this time, and that write-only transactions are generated and serially executed
in increasing order of their subscripts, the most recent write-only transaction
can have a subscript no higher than z − 1. Then, Si aborts TQk in Hi+1. This
is because TQk has already read an old version of sub-window y (mod n) and
therefore Ty would have been serialized after TQk. However, Si+1 does not abort
TQk in Hi+1. To see this, observe that TQk could not have possibly read any
of the sub-windows that have just been updated. This is due to the fact that
those sub-windows must have lower TTU values than sub-window z (mod n)
and must necessarily be scheduled after sub-window z (mod n) by Si+1.

In the second case, suppose that the set of interrupting transactions does not
contain Ty or Tz. By the same reasoning, the most recent write-only transaction
can have a subscript no higher than y − 1. Again, Si+1 does not abort TQk in
Hi+1 because TQk could not have possibly read any of the sub-windows updated
by or before Ty−1 (they all have lower TTU values than sub-window z (mod n).
In terms of satisfying property 2, it does not matter what Si does in this case.

Finally, in the third case, suppose that the set of interrupting transactions
contains both Ty and Tz. Then, both Si and Si+1 abort TQk in Hi+1 because
both schedulers allow TQk to read a sub-window that has now been updated. 2

5 Experiments

5.1 Implementation Details and Experimental Procedure

We implemented the following transaction schedulers: Algorithm2 (abbreviated
TTU), Algorithm1 (which does not re-order the read operations within transac-
tions, abbreviated LWS), a scheduler similar to Algorithm2 that only enforces
window-serializability (abbreviated WS), and a scheduler that executes trans-
actions serially (as in current DSMSs, abbreviated Serial). The implementation
was done in Java 1.4.2, while the experiments were performed on a Pentium-IV
PC with a 3 GHz CPU and 1 Gb of RAM, running Linux. The input stream is
a sequence of simulated IP packet headers with randomly generated values, e.g.,
the source and destination addresses have one of one thousand random values,
whereas the packet length is a random integer between one and 100. The average
data rate is one packet per millisecond, but the specific rate over a particular
sub-window is allowed to deviate from the average rate by a factor of up to ten.

We use a long-running query workload representative of an on-line network
traffic analysis application (see, e.g., [15, 16]), consisting of top-k queries over

Fig. 6. Freshness, response time, and inter-execution time of query Q2

the source or destination IP addresses, and percentiles over the total bandwidth
consumed by (or directed to) distinct IP addresses. The window sizes referenced
by queries are generated randomly between one and n, where n is the total num-
ber of sub-windows. Similar aggregates over different window sizes are evaluated
together. For simplicity of implementation, long-running queries are executed
by scanning the window and building a hash table on the required attribute.
Snapshot queries are chosen from a set of simple aggregates over a random sub-
set of the source and destination IP addresses. Each query references the same
time-based window, which is stored in main memory.

After initializing the sliding window using a randomly generated input stream,
we test each of the four transaction schedulers over an identical query workload.
The tests proceed for a time equal to the window length. We then repeat each
test five times using different input streams and calculate the average of each
measurement being reported. The parameters being varied in (and across) the
experiments are the query workload, the window size (controlled via the number
of sub-windows), and the length of each sub-window (which controls the fre-
quency of window movements). The following performance metrics are used to
evaluate the four transaction schedulers (as illustrated on a time line in Fig. 6).

– Query freshness is the difference between the time that a query reports an
answer and the time of the last window update reflected in the answer.

– Response time is the difference between the query execution start time and
end time. This metric is particularly important for snapshot queries, which
are usually time-sensitive.

– Inter-execution time of a long-running query is the length of the interval
between its re-executions. A DSMS is expected to tolerate slightly longer
inter-execution times if the returned answers are more up-to-date. The mo-
tivation for this is that even if we return an older answer earlier, we would
have to re-execute the query soon in order to produce an answer that reflects
the new state of the window.

5.2 Experiments with Long-Running Queries

We begin by executing Serial, WS, LWS, and TTU on a workload consisting
of long-running queries and interleaved window movements. We test two sub-
window sizes: t = 1 sec. and t = 5 sec., with the number of sub-windows varied

Fig. 7. Comparison of query freshness for Serial, WS, LWS, and TTU

from ten to 100. The number of queries is set to 40 for t = 1 sec. and 100 for
t = 5 sec. For now, we assume that snapshot queries are not posed. We measure
the average freshness, inter-execution time, and throughput.

The average query freshness is shown in Fig. 7 (the lower the value, the bet-
ter). TTU and LWS clearly outperform WS and Serial because the first two
guarantee latest-window-serializable schedules, where queries have access to an
up-to-date state of the window. Freshness deteriorates for all four schedulers as
the sub-window size grows to t = 5 sec. and window movements become less
frequent. Moreover, increasing the number of sub-windows (or equivalently, in-
creasing the window length) generally has an adverse effect on freshness because
the query execution times increase. Note that Serial performs slightly better
than WS because WS adds to the query execution time by performing concur-
rent window movements, yet the answer does not reflect any of the updates.
Overall, TTU provides the best query freshness in all tested scenarios.

The average query inter-execution times are illustrated in Fig. 8. Each cluster
of eight bars corresponds, in order, to Serial, WS, LWS, and TTU for t = 1 sec.,
followed by Serial, WS, LWS, and TTU for t = 5 sec. Serial has the best (lowest)
inter-execution times because it does not incur the overhead of serialization graph
testing, therefore its total query execution time is slightly lower. Notably, LWS
(corresponding to the third and seventh bars in each cluster) performs the worst
because it aborts a significant percentage of transactions (see [10] for full details).
For instance, aborting every second re-execution of a long-running query means
that its inter-execution time doubles. In general, increasing the sub-window size
to t = 5 sec. (and hence, increasing the total window size) leads to longer inter-
execution times for all four schedulers as the queries take longer to process.
Similarly, increasing the number of sub-windows increases the query evaluation
times and therefore negatively affects the inter-execution times. Overall, Serial
yields the best query inter-execution times, with WS and TTU following closely
behind, whereas LWS performs badly due to aborted transactions.

We briefly mention that throughput measurements revealed a very small
penalty incurred by TTU versus Serial—typically below two percent and at

Fig. 8. Comparison of query inter-execution times for Serial, WS, LWS, and TTU

most four percent. This is because the serialization graph testing done by TTU
consists of simple bit operations after each window movement and causes neg-
ligible overhead. Furthermore, TTU did not abort any transactions in any of
the tests. This is because during normal execution, a long-running query does
not incur more than one concurrent window update, unless suspended for a long
time in order to run a heavy workload of snapshot queries. Since Algorithm2
ensures that read-only transactions postpone reading the sub-window that is
about to be updated until the end, aborts can be easily avoided if the number
of concurrent window updates is small. On the other hand, we found that the
throughput of LWS was always lower than the other techniques because of a
high proportion of aborted transactions. Full details may be found in [10].

5.3 Experiments with Long-Running and Snapshot Queries

Next, we report the results of experiments with a mixed workload of long-running
and snapshot queries (and concurrent window movements). We fix the sub-
window size at five seconds, the number of long-running queries at 100, and
the number of snapshot queries per sub-window length at five. Snapshot queries
are scheduled at random times with an average time between requests set to one
second. We report the average snapshot query response time, and we separately
measure the average freshness of snapshot and long-running queries.

Average snapshot query response times are illustrated in Fig. 9 (a). TTU
and WS perform best and yield nearly identical response times. The response
times of LWS are noticeably longer because it is forced to abort and restart
some queries. Serial exhibits the worst results because it is unable to suspend
a long-running query and execute a snapshot query immediately; in general,
Serial is inappropriate for any situation involving prioritized scheduling. As the
number of sub-windows increases, the response time achieved by each of the four
schedulers worsens because it is now more costly to execute each query.

(a) (b)

Fig. 9. Comparison of snapshot query response time (a) and freshness (b) for Serial,
WS, LWS, and TTU

Figure 9 (b) plots the average snapshot query freshness. TTU outperforms
the other schedulers because it guarantees latest-window serializability and did
not abort any read transactions. The performance of LWS is somewhat worse
because some of the transactions corresponding to snapshot queries are aborted
and restarted at a later time. WS and Serial do not guarantee latest-window
serializability and therefore exhibit the worst performance. Overall, TTU yields
the best results in terms of snapshot query freshness and is tied for best in terms
of the response time.

Finally, we separately examine the average freshness of long-running queries
in order to verify that the performance edge of TTU in the context of snapshot
query freshness does not come at a cost of poor long-running query freshness.
We found that TTU maintains its superiority in producing the most up-to-date
results of long-running queries (see [10] for full details).

6 Comparison with Related Work

The concurrency control mechanisms presented in this paper are compatible with
any DSMS that employs periodic updates of sliding windows and query results,
e.g., [2–8]. Our techniques are also applicable to a system such as PSoup [17],
where mobile users connect to a DSMS intermittently and retrieve the latest
results of sliding window queries. In our context, these asynchronous requests
may be modeled as snapshot queries posed at various times. Given that mobile
users may have low connectivity with the system (e.g., via a wireless channel), it
is particularly important to guarantee low response times and up-to-date query
answers. Our transaction scheduler fulfills both of these requirements.

As discussed in Sect. 2, we assumed an evaluation model in which queries
are re-executed by scanning one or more windows or summaries, or a mate-
rialized sub-result. Similar techniques were used in [1,3, 5]. Our procedure for
incremental maintenance of materialized join results—using a batch of newly
arrived tuples from one window to probe the other window and generate new
results—is similar to the lazy multi-way join from [18]. In general, our query

model of a final aggregation function applied on a window or materialized sub-
result is similar to NiagaraCQ [2], but less expressive than, e.g., Aurora [6] and
STREAM [7]. However, we believe that our model is sufficiently expressive for
many applications that require long-running queries for monitoring purposes,
while at the same time being simple enough to allow straightforward solutions
of concurrency control issues.

Our transaction model resembles multi-level concurrency control and multi-
granularity locking as it considers a sub-window, rather than an entire window,
to be an atomic data object. The novelty of our solution is that the order in
which read operations are performed is chosen in such a way as to minimize the
number of aborted transactions.

Our transaction scheduler employed serialization graph testing. Other schedul-
ing techniques include two-phase locking and timestamping [13]. However, two-
phase locking may not be appropriate in our context because it is not clear how
to force a particular serialization order using locks. Moreover, the possible prob-
lem with using timestamping for DSMS concurrency control is the difficulty of
ensuring latest-window serializability. Suppose that each transaction receives a
timestamp when it is passed to the transaction scheduler and that serialization
order is determined by timestamps. In this case, any concurrent window update
transaction is assigned a higher timestamp than a read-only transaction and is
therefore serialized before the read-only transaction. Hence, Algorithm2 would
be forced to abort every read-only transaction that is interrupted by a window
movement. A similar issue appears if we want to adapt multi-versioning con-
currency control techniques to enforce latest-window serializability, among them
snapshot isolation and commit-order preserving serializability [19].

7 Conclusions and Future Work

This paper presented DSMS concurrency control mechanisms that allow a win-
dow to slide forward while it, or an associated summary structure, is being
scanned by a query. Our solution is based upon a model that views DSMS data
access as a mix of concurrent read-only and write-only transactions. We proved
that conflict serializability is insufficiently strong to guarantee correct and up-
to-date query results, and defined more appropriate isolation levels. We also
implemented a transaction scheduler for enforcing the new isolation levels that
is provably optimal in reducing the number of aborted transactions. Our sched-
uler was experimentally shown to improve query freshness and response times
while maintaining high transaction throughput.

We are interested in the following two directions for future work. First, we
want to extend our query execution model and investigate concurrency control
issues in query plans containing an arbitrary number of pipelined window op-
erators. One issue in this context is synchronization among the levels in the
pipeline, e.g., updates to the individual windows may take some time as they
are propagated up the pipeline to the final query operator. Another problem
appears when the same sub-query occurs more than once within a query, in

which case our current assumption of queries scanning each window once may
not hold (unless the sub-query can be flattened). Second, we want to extend our
treatment of DSMS concurrency control to include the semantics of data loss
and crash recovery, e.g., loss of data for a particular time interval, which might
make it impossible for queries to read a full window.

References

1. Arasu, A., Widom, J.: Resource sharing in continuous sliding-window aggregates.
In: Proc. VLDB Conference (2004) 336–347

2. Chen, J., DeWitt, D., Tian, F., Wang, Y.: NiagaraCQ: A scalable continuous query
system for Internet databases. In: Proc. SIGMOD Conference (2000) 379–390

3. Golab, L., Garg, S., Özsu, M.T.: On indexing sliding windows over on-line data
streams. In: Proc. EDBT Conference (2004) 712–729

4. Shivakumar, N., Garćıa-Molina, H.: Wave-indices: indexing evolving databases.
In: Proc. SIGMOD Conference (1997) 381–392

5. Zhu, Y., Shasha, D.: StatStream: Statistical monitoring of thousands of data
streams in real time. In: Proc. VLDB Conference (2002) 358–369

6. Abadi, D., et al.: Aurora: A new model and architecture for data stream manage-
ment. VLDB Journal 12 (2003) 120–139

7. Arasu, A., Babu, S., Widom, J.: The CQL continuous query language: Semantic
foundations and query execution. VLDB Journal 14 (2005) to appear

8. Chandrasekaran, S., et al.: TelegraphCQ: Continuous dataflow processing for an
uncertain world. In: Proc. CIDR Conference (2003) 269–280

9. Golab, L., Özsu, M.T.: Update-pattern aware modeling and processing of contin-
uous queries. In: Proc. SIGMOD Conference (2005) 658–669

10. Golab, L., Bijay, K.G., Özsu, M.T.: On concurrency control in sliding window
queries over data streams. University of Waterloo Technical Report CS-2005-28.
Available at http://www.cs.uwaterloo.ca/research/tr/cs-2005-28.pdf.

11. Cormode, G., Muthukrishnan, S.: An improved data stream summary: The count-
min sketch and its applications. In: Proc. Latin American Theoretical Informatics
Conference (LATIN) (2004) 29–38

12. Flajolet, P., Martin, G.N.: Probabilistic counting. In: Proc. FOCS Conference.
(1983) 76–82

13. Bernstein, P., Hadzilacos, V., Goodman, N.: Concurrency Control and Recovery
in Database Systems. Addison-Wesley (1987)

14. Belady, L.: A study of replacement algorithms for virtual storage computers. IBM
Syst. J. 5 (1966) 78–101

15. Cormode, G., et al.: Holistic UDAFs at streaming speeds. In: Proc. SIGMOD
Conference (2004) 35–46

16. Cranor, C., Johnson, T., Spatscheck, O., Shkapenyuk, V.: Gigascope: High perfor-
mance network monitoring with an SQL interface. In: Proc. SIGMOD Conference
(2003) 647–651

17. Chandrasekaran, S., Franklin, M.: PSoup: a system for streaming queries over
streaming data. VLDB Journal 12 (2003) 140–156

18. Golab, L., Özsu, M.T.: Processing sliding window multi-joins in continuous queries
over data streams. In: Proc. VLDB Conference (2003) 500–511

19. Weikum, G., Vossen, G.: Transactional Information Systems. Theory, Algorithms,
and the Practice of Concurrency Control and Recovery. Morgan Kauffman (2002)

