
Multi-Query Optimization of Sliding Window Aggregates by

Schedule Synchronization∗

Lukasz Golab† Kumar Gaurav Bijay‡ M. Tamer Özsu§

Technical Report CS-2006-26
August 2006

∗This research is partially supported by Bell Canada, as well as grants from the Natural Sciences and Engineer-
ing Research Council (NSERC) of Canada, and Communications and Information Technology Ontario (CITO).

†David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada,
lgolab@uwaterloo.ca. Now at AT&T Labs, Florham Park, New Jersey, USA.

‡Department of Computer Science and Engineering, Indian Institute of Technology, Bombay, India, gau-
ravk@cse.iitb.ac.in. Work done while the author was visiting the University of Waterloo.

§David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada,
tozsu@uwaterloo.ca.

1



Abstract

Data stream systems process persistent queries, typically posed over sliding windows and
re-evaluated periodically as the windows slide forward. Due to their long-running nature, a
number of similar persistent queries may run in parallel at any given time, therefore multi-
query optimization is particularly important. In traditional multi-query optimization, one of
the primary goals is to detect common parts across multiple queries issued at the same time
and perform the common task only once. Another related goal is to check if a new query may
be answered using the answer of a related query which has been computed previously (and
is stored as a materialized view). In this paper, we argue that in the context of periodically
re-evaluated queries, multi-query optimization requires an additional step beyond common
sub-expression matching. This is because queries that have been identified as similar may
be re-evaluated with different frequencies and therefore may be scheduled at different times.
Thus, the additional step must attempt to synchronize the re-execution times of similar
queries in order to take advantage of computation sharing.

The solution presented in this paper focuses on periodically-evaluated aggregates over
sliding windows of various lengths, which are a common class of persistent queries used for
monitoring purposes. The proposed solution assumes that users specify an upper bound on
the interval between re-evaluations of their queries and is based upon the following insight:
it may be cheaper to re-execute some queries more often if their re-execution schedules can
be synchronized with those of similar queries, thereby amortizing the computation costs.
We also show that additional schedule synchronization is possible when the system is forced
to lengthen the desired re-execution intervals during periods of overload. Our solutions are
based upon a variant of the earliest-deadline-first algorithm that views persistent queries are
periodic tasks. Experimental results show significant improvements in system throughput
due to increased resource sharing.

1 Introduction

Data stream management systems (DSMSs) process on-line data such as sensor measurements,

IP packet headers, stock quotes, or transaction logs. Usually, only a sliding window of recently
arrived data is available at any given time for two reasons: to avoid memory overflow and

to emphasize recent data that are likely to be more useful. In addition to traditional one-
time queries evaluated over the current state of the sliding window(s), users pose persistent
(continuous) queries that monitor the streaming data. These monitoring queries often compute

sliding window aggregates, such as road traffic volume via sensors embedded in a motorway,
network bandwidth usage statistics, or recent behaviour of stock prices.

For all but the simplest queries, it may be infeasible for a DSMS to compute up-to-date results
whenever a new stream tuple arrives or an old tuple expires from its window. Additionally,

users may find it easier to deal with periodic output rather than a continuous output stream
[6, 11]. Consequently, much of the DSMS research assumes that answers are updated periodically

[1, 8, 10, 12, 27, 29, 34, 40]. For example, consider a query that monitors the median packet
length over a stream of IP packet headers (call it S), computed every two minutes over a ten-

minute window. Using syntax similar to the CQL stream query language [4], this query may be
specified as follows.

Q1: SELECT MEDIAN(length)

FROM S [WINDOW 10 min SLIDE 2 min]

2



The current workload may include many persistent queries similar to Q1, but having ad-
ditional WHERE predicates, different window sizes, or different periods (in the remainder of this

paper, we will use the expressions “SLIDE interval” and “period” interchangeably). For instance,
the workload may also include the following query.

Q2: SELECT MEDIAN(length)

FROM S [WINDOW 14 min SLIDE 3 min]

These two queries may be posed by different users (e.g., network engineers), or by the same user,
who wishes to summarize the network traffic at different granularities and may simultaneously

ask similar aggregate queries over different window lengths.
Other examples of applications that issue many aggregate queries in parallel over different

window lengths include detecting bursts of unusual activity identified by abnormally high or
low values of an aggregate such as SUM or COUNT [39, 41]. A burst of suspicious activity may

be a denial-of-service attack on a network or a stock with an unusually high trading volume.
Since the length of the burst is typically unknown apriori (e.g., a short-lived burst could produce

several unusual values in a span of a few seconds, whereas a longer-term burst would have to
generate a hundred suspicious packets over the last minute), a series of aggregates over a range
of window lengths needs to be monitored.

Given that many persistent (and likely similar) queries are expected to run concurrently,
multi-query optimization is particularly important. Traditionally, one of the primary goals of

multi-query optimization in relational systems has been to detect common parts across multi-
ple queries issued at the same time and perform the common task only once [33]. A related

issue occurs when a new query is posed, but the answer of a related query has been computed
previously and is now stored as a materialized view. In this case, it would be beneficial for the

new query to re-use the materialized view rather than computing it from scratch [18]. In our
context, an application of a reasonable set of sub-expression and view matching rules, suitably

augmented with DSMS-specific details such as sliding window lengths, identifies that Q1 and
Q2 are similar because the shorter window required by Q1 is contained in the longer window
maintained by Q2 [6, 40].

In this paper, we argue that multi-query optimization of periodically-refreshed queries issued
to a DSMS requires an additional step. For instance, even if Q1 and Q2 can be identified as

similar, they have different periods and therefore it is not obvious whether they can in fact share
computation. Thus, the additional step, which presents a novel challenge in joint evaluation of

periodically-refreshed persistent queries, is to enable computation sharing among similar queries,
even if they are re-evaluated with different frequencies and therefore get scheduled at different

times.
For a motivating example, consider a time axis with a possible execution sequence of Q1 and

Q2 from above illustrated in Figure 1 (a). The two queries are both due for a refresh every six
minutes (the least-common-multiple of their SLIDE intervals) and may be executed together at
those times. One way to do this is to save any temporary state used during the calculation of

Q1, process the remaining four minutes of data, and merge the computations to arrive at the
answer for Q2. In effect, over two-thirds of the work is amortized across two queries. However,

now suppose that the semantics of the SLIDE clause are defined as an upper bound on the
interval between two re-evaluations of the corresponding query (this assumption will be justified

3



Figure 1: Two possible ways to schedule queries Q1 and Q2.

in Section 3). In this case, it is possible to always schedule Q2 when Q1 is due for a refresh, as

shown in Figure 1 (b). Clearly, more computation is now shared, but the savings in processing
time may be defeated by the work expended on updating Q2 more often than necessary.

Motivated by the above issues, this paper presents a multi-query optimization solution for

sliding window aggregates, whose goal is to synchronize the re-execution schedules of similar
queries. Our specific contributions are as follows.

• We formalize the meaning of the SLIDE clause used in data stream query languages.

• We model sliding window queries as periodic tasks that must be scheduled according to

their deadlines. We demonstrate that the earliest-deadline-first (EDF) algorithm [36] may
be used as a starting point in the design of a DSMS query scheduler.

• We propose a cost-based heuristic for deciding whether a query should be re-executed more

often than necessary if its execution times can be synchronized with those of a similar query
(as in Figure 1 (b)).

• The workload of a DSMS, both in terms of persistent and one-time queries, is expected
to fluctuate over time. Moreover, it is well-known that many types of data streams have

bursty arrival rates [24, 28, 32, 41]. Therefore, it is likely that a DSMS may experience
periods of temporary overload. In response, we discover additional sharing opportunities

that arise during overload and exploit them to minimize the impact of overload on system
throughput. Suppose that Q1 is due for a refresh at time t and Q2 at time t + 1, but

the system was unable to run Q1 at time t. We have two choices at time t + 1: clear
the backlog by executing Q1 and other late queries before moving on to Q2, or recognize

that Q1 and Q2 are similar and execute them together before moving on to other late
queries (in which case Q2 is much cheaper to evaluate because it can re-use the answer
computed by Q1). We show that looking for similar queries in the “late query set” and

the “currently-scheduled query set” increases overall throughput.

The remainder of this paper is organized as follows. Section 2 introduces our system model

and assumptions. Section 3 discusses the semantics of periodically re-evaluated persistent
queries. Section 4 presents our scheduling techniques synchronizing the re-execution times of

similar queries. Our solutions are evaluated experimentally in Section 5 and compared to related
work in Section 6. Section 7 summarizes the paper and suggests directions for future work.

4



Figure 2: Answering a MAX query using a MAX synopsis.

2 Preliminaries

2.1 Single Query Evaluation

A data stream is assumed to be a sequence of timestamped relational tuples with a fixed schema,
possibly buffered to ensure timestamp order. Queries are posed over sliding windows specified
in units of time; a window of length w time units means that a stream tuple with timestamp

ts expires at time ts + w. We consider periodically-evaluated monitoring queries, each of which
runs for a specified lifetime, and includes a set of selection and group-by conditions, followed by

an aggregate function. The aggregate may be one of the following: SUM, COUNT, AVG, MAX, MIN,
COUNT DISTINCT, PERCENTILE, or TOP k (the last three may be exact or approximate).

Queries are evaluated by scanning appropriate synopses that summarize the underlying
window; one window may be linked to a number of synopses corresponding to various types of

aggregates over various attributes. A synopsis is associated with three parameters: the type of
aggregate used, s, which is the time between two consecutive synopsis updates1, and b, which

defines the longest window covered by the synopsis as bs. The window of length bs is partitioned
into b non-overlapping intervals of length s each and each of these intervals stores summary data.
Every s time units, the synopsis is updated to reflect the new state of the underlying window as

it slides forward. For example, a MAX synopsis stores the value of the maximum element in each
interval and is illustrated in Figure 2 for b = 8. Let t be the time of the last synopsis update.

At time t + s, the oldest interval (t − 8s, t − 7s] now summarizes expired tuples (of which the
largest tuple has value 8) and is removed. In its place, a new interval (t, t + s] is appended2.

More precisely, the maximum value of all tuples in the new interval, namely 7, is added to the
synopsis. As illustrated, query evaluation proceeds by reading the maximum values stored in

the synopsis and returning the overall maximum. This type of synopsis is a generalization of
the data structures proposed in [6, 40].

The approach of pre-aggregating each interval in the synopsis is suitable for distributive
aggregates [17] such as SUM, COUNT, MAX, and MIN. An aggregate f is distributive if, for two
disjoint sets X and Y , f(X ∪ Y ) = f(X)∪ f(Y ). For holistic aggregates [17] (an aggregate f is

holistic if, for two multi-sets X and Y , computing f(X∪Y ) requires space proportional to X∪Y ),
each interval must store additional information. For instance, storing the frequency counts of

1This means that the SLIDE intervals of queries using the synopsis must be multiples of s; this will be
formalized in Section 3.

2Note that newly arrived tuples are buffered until the newest interval fills up, therefore the aggregate value
over the newest interval can be pre-computed on-the-fly as new tuples arrive.

5



values occurring in each interval may be used for quantiles, TOP k, and COUNT DISTINCT. As
before, query execution involves scanning each interval, computing the overall frequency counts

in the entire window, and producing the final answer. Furthermore, as new tuples arrived and
are buffered, frequency counts of the newest interval may be pre-computed on-the-fly.

If the space complexity of storing frequency counts in each sub-window turns out to be

prohibitive, then approximate answers of non-distributive aggregates may be computed with
the help of sketches. In this case, each interval in the synopsis stores a sketch, which is a

compact approximation of the underlying distribution of values [5]. For example, approximate
COUNT DISTINCT queries can be computed using Flajolet-Martin (FM) [15] or Alon-Matias-

Szegedy (AMS) [3] sketches, whereas approximate quantiles and TOP k queries can use Count-
Min (CM) sketches [13]. In all cases, pre-computing the sketch of the newest interval and sketch

merging are straightforward because sketches are distributive.

2.2 Multi-Query Evaluation

Recall Figure 2 and observe that the synopsis illustrated therein may be used to answer MAX

queries over windows with lengths s, 2s, . . ., 8s. In particular, suppose that two MAX queries are
due for re-execution at the same time, one of which references a window of length 6s and the other

references a window of length 8s. As the latter is being computed by scanning the synopsis, the
former may be answered “for free”—we stop after reading the first six intervals (from youngest
to oldest) and return the maximum so far. Similarly, if SUM and COUNT are being computed over

some attribute, then AVG over the same attribute can simply divide the two answers already
computed (without having the re-scan the SUM and COUNT synopses). Furthermore, suppose that

two MAX queries have just been answered, one of which computing the maximum packet length
over a stream of TCP packets and the other computing the maximum length of UDP packets.

Clearly, taking the maximum of the two answers immediately yields an answer to a MAX query
over the length of all TCP and UDP packets combined.

The above examples motivate the need for synchronizing the re-execution times of similar
queries, in which case a significant fraction of the overall computation may be amortized across

multiple queries. In general, we assume that the DSMS contains a set of rules for grouping
similar queries that may be executed together. The definition of this rule set is orthogonal to
the scheduling solutions that will be presented in this paper3.

2.3 Dealing with Changes in the Query Workload

For completeness, we now briefly discuss what happens when the query workload changes. First,
in addition to persistent queries, a DSMS may accept one-time queries that are not registered

in advance. If appropriate synopses exist, then one-time queries may be answered efficiently.
Otherwise, we may reject the query, or the system may be configured to store the actual windows

in addition to synopses. In this case, one-time queries may be answered via sequential scan of the
window(s). Second, a persistent query whose lifetime expires may be removed from the system,

but its synopsis may still be in use by another query. Conversely, if appropriate synopses exist
(or the windows are stored), then a newly registered query may begin execution immediately.

3See, e.g., [20, 27, 35, 38] in the context of queries with group-by and aggregation.

6



Figure 3: Semantics of periodic query re-execution.

An interesting case occurs when a matching synopsis is found, but its window length is too
short for the new query. If so, then we can extend the time span of the synopsis by not deleting

its oldest intervals for several updates. Note that this causes a delay before the query begins
generating output. If all else fails, then we may build an appropriate synopsis for the new query
from scratch, but it will take one window length before the synopsis fills up with data.

3 Semantics of Periodic Query Re-Execution

Prior to discussing query scheduling, we formalize the definition of the SLIDE clause used to

determine how often a persistent query is to be re-executed. Consider query Q accessing one or
more synopses. As described in Section 2, a synopsis is updated when its buffer completes pre-
aggregating the current time interval, say (t− s, t] (recall that s is the interval between synopsis

updates). This means that at time t, all the buffers that have been computing aggregates over
this particular interval are ready to send pre-aggregated values to their synopses. After all the

updates have taken place at some time t+ ε, the synopses reflect the state of their window(s) as
of time t. We assume that ε << s, i.e., there should be ample time between synopsis updates

for executing queries.
Let Q have a SLIDE interval of 2s and let Q’s synopses have update times t + is, i ∈

�
. A

time line is illustrated in Figure 3, showing a re-execution of Q some time between t + ε and
t+ s. The answer of Q reflects the state of its synopses (and the underlying windows) as of time

t. We define a SLIDE interval of ns to mean that the number of times Q’s synopses are updated
between consecutive re-executions should be no more than n. Hence, the next re-evaluation of
Q should reflect the state of the synopses as of time t + 2s at the latest, therefore it should be

done before time t + 3s, as illustrated.
We make two practical remarks regarding the above definition. First, by defining only an

upper bound on the number of synopsis updates between query re-executions, it is assumed that
queries may be refreshed more often than specified. This assumption has two consequences.

First, if the system is lightly loaded, then it may in fact be possible to re-execute queries more
often; had the definition assumed a rigid re-execution interval, the system would experience

periods of idle time during underload. Second, allowing a query to be refreshed sooner than
required enables the synchronization of its re-execution times with those of a similar query, as

illustrated in Figure 1 (b). Again, had the definition required a fixed re-execution interval,
resource sharing would have been significantly limited, as illustrated in Figure 1 (a).

The second remark involves using the words should rather than must in the definition of

periodic re-execution. This accommodates periods of overload, which are likely to occur due to
fluctuations in the query workload and stream arrival rates. More precisely, it is assumed that

7



for each periodic query, the DSMS must follow the above definition whenever possible, but is
permitted to break it if necessary. Consequently, the definition allows at least the following two

solutions for handling overload. First, the DSMS may drop a fraction of queries when overload is
detected and block users from re-registering the dropped queries until the overload has subsided.
Second, the DSMS may continue to re-execute all of its queries during overload, but temporarily

increase all of their periods. The second solution is assumed in the remainder of this chapter as
it ensures fairness across the query workload.

Finally, it may be argued that some users are interested in tracking events that are expected
to occur regularly, say every three minutes, and would therefore insist that their queries be

refreshed exactly every three minutes. However, these situations are different from the queries
discussed in this paper in the following two ways. First, tracking a specific event is not a

periodic query, but rather a continuous query that keeps listening for new input and immediately
reacts upon observing the specified event (e.g., by raising an alarm). Second, event tracking

corresponds to selection queries, possibly with complex predicates, rather than aggregation over
sliding windows, which is the focus of this paper.

4 Multi-Query Scheduling

We are now ready to present our scheduling solutions for synchronizing the re-execution times
of queries that have been identified as similar (by means of some set of rules, as discussed in

Section 2). We begin by designing an earliest-deadline-first scheduler for periodically-executed
queries (Section 4.1) and we then extend it to schedule similar queries together (Section 4.2).

Next, we present two improvements for synchronizing the schedules of similar queries (Sec-
tions 4.3 and 4.4).

4.1 Earliest-Deadline-First Scheduling

Figure 3 suggests the following execution sequence: at time t, we update all the synopses
that are waiting for aggregates over the new interval (t − s, t], find all the queries due for a
refresh, and attempt to execute them before the synopses are updated again. However, only

shared sets of synopses need to be synchronized (for example, if the average is computed by
dividing the answers obtained from SUM and COUNT synopses, then these two synopses must be

updated at exactly the same time intervals). Thus, while the sequence that started at time t

is running, another sequence, corresponding to a different group of synopses and queries, may

begin. Without loss of generality, the remainder of this section deals with “local” scheduling
of one task sequence, containing queries that access the same group of synopses. Our solutions

are compatible with any underlying “global” scheduler, e.g., allocating a weighted time slice to
each local scheduler.

To reflect the SLIDE semantics defined in Section 3, each persistent query is modeled as a
task Ti with period nis. We denote the rth re-execution of Ti as T r

i and assign a time-until-
deadline to each task, denoted d(Ti), as follows. After T r

i is done, we set d(Ti) = ni. After each

update of the synopses, we set d(Ti) = d(Ti)−1. T r
i is said to execute on-time if d(Ti) ≥ 0 when

it is done. For example, in Figure 3, d(Ti) = 2 after the query is executed, d(Ti) = 1 in the time

interval (t + s + ε, t + 2s], d(Ti) = 0 at time t + 2s + ε until the next re-execution of the query

8



(i.e., the query is executed on-time), and d(Ti) = 2 again after the re-execution.
Due to unpredictable system conditions and dynamic query workloads, it may not be possible

to reliably estimate how long it will take to execute each T r
i , nor is it possible to schedule all

tasks off-line. Consequently, we have chosen the on-line earliest-deadline-first (EDF) algorithm
[36] as a starting point for a (local) query scheduler. A high-level pseudo-code is presented

as Algorithm 1; for now, each query is scheduled separately. We maintain a task queue Q(T )
containing the current query workload. New queries are translated into new tasks and added to

Q(T ); queries whose lifetimes have expired are removed. We assume that an update notification
is sent when the interval currently being pre-aggregated in the buffers fills up and the synopses

are due for an update. For clarity, Algorithm 1 and the remaining scheduling algorithms that
will follow assume that queries and window-slides are executed in isolation. Nevertheless, the

DSMS concurrency control techniques presented in [16] are fully compatible with the scheduling
algorithms described here.

Algorithm 1 Local scheduler

Input: task periods ni, task queue Q(T )
Local variables: array d(Ti), initially d(Ti) = ni

1 loop

2 if update notification arrives
3 update all synopses

4 decrement d(Ti) for all tasks Ti

5 end if

6 if Q(T ) is not empty
7 execute task Ti with the lowest value of d(Ti)
8 reset d(Ti) = ni

9 end if

10 end loop

The following observations regarding Algorithm 1 are worth noting:

• Even if Ti is re-executed late, we set d(Ti) = ni when it is done. The reasoning behind
this is that lateness may imply system overload, therefore attempting to make up for the

late re-execution by scheduling the next re-execution early could make the overload worse.

• Ties in line 7 may be broken arbitrarily. Alternatively, each query may be assigned a user-

defined priority, in which case the highest-priority task (of all the tasks whose deadline is
zero) is executed first.

• Algorithm 1 adaptively adjusts the query periods in response to system load. In underload,

tasks may be executed before their d(Ti)-values reach zero. During overload, the algorithm
attempts to clear the backlog by executing queries with the largest negative value of

d(Ti). Since tasks may be executed when their d(Ti)-values are negative, their periods
are lengthened implicitly. This behaviour may be thought of as a form of automatic load
shedding.

9



4.2 Scheduling Multiple Queries Together

Suppose that there are q groups of similar queries, call them G1, G2, . . . , Gq, that may be effi-

ciently re-executed together if they happen to be scheduled for re-execution at the same time.
Each group may contain queries having different SLIDE intervals and WINDOW lengths. For the

remainder of this section, suppose that one particular group, G1, contains seven queries, each
computing MAX over the same window and same attribute, and using a single MAX synopsis with

s = 1 minute. The WINDOW and SLIDE parameters of the queries are as follows.

Q1: ... [WINDOW 10 min SLIDE 2 min]

Q2: ... [WINDOW 5 min SLIDE 2 min]

Q3: ... [WINDOW 6 min SLIDE 2 min]

Q4: ... [WINDOW 15 min SLIDE 3 min]

Q5: ... [WINDOW 12 min SLIDE 3 min]

Q6: ... [WINDOW 20 min SLIDE 5 min]

Q7: ... [WINDOW 30 min SLIDE 5 min]

To incorporate multi-query scheduling into Algorithm 1, we let each group Gi be a single

task Ti, with period ni equal to the shortest period among its queries. We call this technique
aggressive scheduling. As illustrated in Figure 4 (a), aggressive scheduling executes all seven
queries in G1 every two minutes. Another simple technique jointly executes similar queries only

if they are due for a refresh at the same time. This can be achieved by splitting each group Gi into
sub-groups, Gi,1, Gi,2, . . . , Gi,qi

, containing queries with the same SLIDE interval. Furthermore,

each task Ti,j corresponds to all the queries in Gi,j, all of which are always executed together.
We call this technique conservative scheduling. In our example, G1 is partitioned into G1,1

containing Q1, Q2 and Q3 (with n1,1 = 2 minutes), G1,2 containing Q4 and Q5 (with n1,2 = 3
minutes), and G1,3 containing Q6 and Q7 (with n1,3 = 5 minutes). The resulting schedule is

shown in Figure 4 (b).
Algorithm 2 summarizes conservative scheduling. Line 10 ensures that queries across sub-

groups Gi,j of the same group Gi are executed together when the SLIDE intervals of different
sub-groups happen to coincide. For instance, every six minutes, G1,1 and G1,2 may be executed
together.

The meaning of “joint execution” in line 10 depends upon the types of queries present in the
group. In our example all the queries compute the same aggregate over the same attribute, but

their window lengths are different. Therefore, joint execution means that the shared synopsis is
scanned and answers over shorter windows are computed along the way (recall Section 2.2).

At this point, we remark that the following optimization applies to Algorithm 2 and its
improvement that will be discussed later in this section. If query Q is already registered with

the system and another query, Q′, arrives that is identical to Q (including the same window
size) except that its period is longer, then Q′ can share the result of Q. In other words, if we

are already computing the same query (Q) more often, then we may as well shorten the period
of Q′ and re-use the results generated by Q. Note that when the lifetime of Q expires, we may
need to reset the period of Q′ to its original value and possibly find a new sub-group Gi,j for Q′.

10



Algorithm 2 Conservative scheduler

Input: sub-group periods ni, task queue Q(T )

Local variables: array d(Ti,j), initially d(Ti,j) = ni,j

1 loop

2 if update notification arrives

3 update all synopses
4 decrement d(Ti,j) for all tasks Ti,j

5 end if

6 if Q(T ) is not empty
7 let v be the lowest d(Ti,j)-value of any task Ti,j

8 let V (T ) = {Ti,j | d(Ti,j) = v}
9 choose any task Ti,j from V (T )

10 jointly execute Ti,j and any other task Ti,m in V (T )
11 reset the d(T )-values of all tasks just executed

12 end if

13 end loop

Figure 4: Execution schedules of queries in group G1 using various scheduling techniques.

11



4.3 Hybrid Scheduling

The first of two improved scheduling techniques is called hybrid scheduling. Using a relative cost

model, it determines whether it is more efficient for some sub-groups to be re-executed more
often than necessary in order to synchronize their schedules with other sub-groups. The relative

cost of a schedule may be computed by adding the synopsis access costs (i.e., how many intervals
are accessed and what is needed to combine the pre-aggregated values from two intervals) as

well as any post-processing costs (e.g., sorting frequency counts to find the top-k largest ones or
combining answers from multiple synopses). Synopsis maintenance costs may be ignored as they

do not vary across schedules. We introduce hybrid scheduling using queries Q1 through Q7 from
Section 4.2; recall that they are partitioned by conservative scheduling into three sub-groups:

G1,1, G1,2, and G1,3.
The first step is to calculate the relative cost of a single re-execution of each sub-group. We

can compute all queries in G1,1 by scanning the ten youngest intervals of their MAX synopsis

(answers over shorter windows, as needed by Q2 and Q3, will be computed along the way).
The cost is 9 (comparisons to determine the maximum of ten maximum values stored in each

interval). Similarly, the cost of G1,2 is 14 and the cost of G1,3 is 29. Next, we want to compute the
execution cost of G1,1 and G1,2 incurred by conservative scheduling (recall Figure 4 (b)). Every

six minutes (least-common-multiple of n1,1 and n1,2), both sub-groups are executed together for
a cost of 14. Again, while scanning the synopsis to compute the maximum over the 15-minute

window needed by Q4, the answers of other queries are computed along the way. In the interim,
G1,1 is executed separately twice, for a cost of 9∗2 = 18, and G1,2 once for a cost of 14. The total

cost of executing queries in G1,1 and G1,2 is therefore 46 per six minutes, or 7.67 per minute.
Now suppose that G1,2 is executed whenever G1,1 is due for a refresh. In this case, both

sub-groups are executed every two minutes. The cost per minute is 14

2
= 7. Therefore, the

best way to execute sub-groups G1,1 and G1,2 is to schedule them both with a period of two
minutes. In total, there are five possibilities: none of the sub-groups change their periods (which

corresponds to conservative scheduling and costs 11.63 per minute), G1,2 shortens its period to
two minutes (11.4 per minute), both G1,2 and G1,3 shorten their periods to two minutes (14.5

per minute), G1,3 changes its period to three minutes (12.67 per minute), and G1,3 shortens
its period to two minutes (16.83 per minute). Hybrid scheduling chooses the most efficient of

these five possibilities, namely reducing the period of G1,2 to that of G1,1 and always executing
queries in these two sub-groups together, as illustrated in Figure 4 (c). Note that dynamic

programming may be used to memorize the optimal execution cost of overlapping subsets of the
sub-groups in order to prevent duplicate calculations, giving rise to a polynomial-time algorithm
for computing the optimal schedule.

Algorithm 2 may be used by hybrid scheduling without any modifications; the only difference
is that the periods of some sub-groups are now shorter. Hybrid scheduling is expected to

outperform aggressive and conservative scheduling as it performs the right amount of sharing—
whenever appropriate, it shortens the periods of some queries in order to synchronize their

re-evaluation times with other similar queries. However, hybrid scheduling is more expensive
to maintain. As the query workload changes, we need to re-calculate the cost of separate and

merged execution of various combinations of sub-groups. This is not expected to be a major
source of overhead because our cost model is simple and the optimal schedule may be computed

12



efficiently.

4.4 Additional Sharing during Overload

We now show that additional computation sharing is possible during overload, when some tasks

have negative d(Ti,j)-values. We define the late set to contain all tasks Ti,j with d(Ti,j) < 0 and
the pending set to contain all tasks Ti,j with d(Ti,j) = 0. Suppose that a particular execution of

queries in sub-group G1,1 is late with d(T1,1) = −2. Suppose further that a particular execution
of queries in sub-group G1,2 is also late, but with d(T1,2) = −1. Even though these two sub-
groups may be scheduled together (they belong to the same group), Algorithm 2 (conservative

scheduling) would not do this; it schedules G1,1 and any other tasks with d(Ti,j)-values of −2,
before moving on to G1,2. This is a missed sharing opportunity, which, if exploited, could help

clear the overload faster. We propose an extension of conservative or hybrid scheduling, called
late sharing, where matching sub-groups in the entire late set, not only those which have the

lowest d(Ti,j)-value, are scheduled together.
There are possibilities for even more sharing. Suppose that, in addition to G1,1 and G1,2

being late, G1,3 has a value of d(T1,3) = 0 at the current time. It is possible to schedule all
three sub-groups together. Even though this shifts some of the system resources away from

clearing the backlog of late tasks, it is beneficial in the long run because G1,3 will not become
late when the window slides again. Thus, the overall system throughput is likely to improve.
We call this technique late-pending sharing and summarize it in Algorithm 3. It differs from

Algorithm 2 in that it defines V (T ) to be the union of the late set and pending set during
overload (lines 8 and 9). Note that late sharing could be implemented by replacing line 9 with

“let V (T ) = {Ti,j | d(Ti,j) < 0}”.
A possible schedule produced by hybrid scheduling with late-pending sharing in the context

of our example from Section 4.2 is illustrated in Figure 4 (d). As indicated by the arrows,
suppose that G1,1 and G1,2 are late (with d(T1,1) = d(T1,2) = −1) and, at the same time, G1,3 is

pending (i.e., d(T1,3) = 0). All queries in all three sub-groups are executed together by hybrid
scheduling with late-pending sharing.

5 Experimental Evaluation

5.1 Setting

We implemented prototypes of our scheduling techniques and a simple query processor. The

implementation was done in Java 1.4.2 and tests were performed on a Linux PC with a Pentium-
IV 3 GHz processor and one Gb of RAM. The input consists of simulated IP packet headers with

randomly generated attribute values. Initially, the number of distinct source and destination IP
addresses is set to 1000 each, whereas the number of distinct protocols and ports is 100 each. We

will discuss experiments on one particular query workload that display the relative differences
between the scheduling algorithms. The workload consists of eight groups of persistent queries,
each group computing top-k lists and quantiles over the bandwidth usage for one of the following:

source IP address, destination IP address, source-destination pairs, protocol, port, and protocol-
port pairs. Three workload sizes are considered: five, 10, 20, or 30 queries per group, giving a

13



Algorithm 3 Hybrid scheduler with late-pending sharing

Input: sub-group periods ni, task queue Q(T )
Local variables: array d(Ti,j), initially d(Ti,j) = ni,j

1 loop

2 if update notification arrives
3 update all synopses

4 decrement d(Ti,j) for all tasks Ti,j

5 end if

6 if Q(T ) is not empty
7 let v be the lowest d(Ti,j)-value of any task Ti,j

8 if v < 0
9 let V (T ) = {Ti,j | d(Ti,j) ≤ 0}

10 else

11 let V (T ) = {Ti,j | d(Ti,j) = v}

12 end if

13 choose any task Ti,j from V (T )
14 jointly execute Ti,j and any other task Ti,m in V (T )

15 reset the d(T )-values of all tasks just executed
16 end if

17 end loop

total number of long-running queries of 40, 80, 160, and 240, respectively. Each query has a

randomly generated WINDOW length between 20 and 100 and a randomly generated SLIDE interval
between one and half of its window length. Additionally, one-time queries requesting bandwidth

usage statistics for a random source IP address are executed roughly every second.
Each group of queries shares a synopsis storing the appropriate counters. For simplicity, all

the synopses are updated at the same time and all queries have the same priority. The queue

Q(T ) (recall Algorithms 1 through 3) is implemented as a heap sorted by task deadlines. How-
ever, rather than storing time-to-deadline values and decrementing them whenever the synopses

are updated, it stores the actual deadline times, which need to be revised and re-inserted into
the heap only after a task has been executed.

Each experiment begins with a warm-up stage that fills the synopses. Next, each scheduling
technique is executed for 200 seconds. This is repeated five times with different random inputs

and the results are averaged. We measure the throughput, in queries re-executed per second, as
well as the average latency per query, defined by the additional number of times its synopsis is

updated between re-executions. For example, if a query requests a SLIDE of two seconds (i.e.,
two synopsis updates between re-executions) and the synopsis always slides three times between
each re-execution, then its average latency is one. However, if a query is re-executed too early,

then its latency remains at zero. Every experiment is repeated with two average data rates: 1500
and 3000 tuples per second. When using the higher data rate, we also double the number of

distinct values of all the packet fields in order to force queries to do more work when generating
answers (and cause overload). We omit results of varying the window size as the effects are

14



Table 1: Abbreviations of scheduling techniques

No-S No sharing

AS Aggressive scheduling

CS Conservative scheduling

HS Hybrid scheduling

H -LS Hybrid scheduling with late sharing

H -LP Hybrid scheduling with late-pending sharing

the same as when the data rates change (in both cases, queries must access more data during

re-execution).
Table 1 lists the scheduling techniques and their abbreviations. As a baseline, we imple-

mented a “no sharing” technique that is equivalent to Algorithm1 with tasks corresponding
to sub-groups Gi,j . That is, no-sharing is similar to conservative scheduling, but does not ex-
ecute two matching sub-groups together, even if they are due for a refresh at the same time.

We also implemented late sharing and late-pending sharing into conservative scheduling, but
these always performed worse than when used with hybrid scheduling, and will not be discussed

further.

5.2 Results with Low Data Rate

We begin by analyzing the results of experiments with a data rate of 1500 tuples per second.

Throughput is shown in Figure 5 and average latency in Figure 6, for 40, 80, 160, and 240 queries.
As expected, No-S and CS have the lowest throughput, with the gap between them growing as

the number of queries increases and it is more likely that similar queries with different periods
will be due for a refresh at the same time. Similarly, No-S and CS have high latency—No-S is

particularly bad—even for a small number of queries, meaning that they cause system overload
easily (overload occurs when the average latency is above zero). Note that HS alone easily

doubles the throughput of CS and reduces its latency by an order of magnitude. In particular,
we found that HS routinely shortened the periods of more than half the sub-groups in order to
enable shared computation (recall Section 4.3). That is, if g sub-groups are used by conservative

scheduling, it is often the case that hybrid scheduling requires only g

2
separately scheduled sub-

groups (tasks). Additional improvements in throughput and latency can be gained via H -LS

and H -LP, especially as the number of queries grows and the system falls into overload. Finally,
note that AS achieves very good throughput, but poor latency. This is because many queries

are needlessly refreshed before their deadlines.

5.3 Results with High Data Rate

Figures 7 and 8, respectively, graph the throughput and latency achieved with a data rate of

3000 tuples per second. In general, latencies are now higher and throughput is lower for all
techniques due to heavier overload. No-S and CS continue to yield poor throughput and high

latency (extremely high latency in case of no-sharing). However, the relative improvement of

15



Figure 5: Throughput measurements using a data rate of 1500 tuples per second.

Figure 6: Average latency measurements using a data rate of 1500 tuples per second.

HS is now more modest, even though it continues to shorten the periods of more than half
the sub-groups so that the queries within are always re-executed together. On the other hand,

H -LP more than doubles the throughput of HS and is the clear winner in throughput and
latency. This is because overload is now more severe, therefore exploiting additional sharing

opportunities across queries with different deadlines is crucial. Curiously, the throughput of AS
drops significantly in this experiment, most likely because it is now more costly to re-execute
queries, especially those over long window sizes that would normally be refreshed sporadically

(but are done frequently by AS).

6 Comparison with Related Work

There has been a great deal of recent interest in data stream management. In terms of multi-
query optimization in DSMSs, much of the previous work concentrates on shared execution of
filters and joins [11, 14, 19, 26, 30]. These works assume that incoming tuples are processed im-

16



Figure 7: Throughput measurements using a data rate of 3000 tuples per second.

Figure 8: Average latency measurements using a data rate of 3000 tuples per second.

mediately, typically by updating any materialized joins affected by the new tuple and matching
the new tuple against a query predicate index. Of the solutions that consider periodic query

execution, one deals with sharing state among simple sliding window aggregates [6], another dis-
cusses state and computation sharing for queries with selection and sliding window aggregation

[27], another discusses state sharing among aggregates having similar sets of group-by attributes
[38], while another concentrates on periodic re-evaluation of selections over infinite streams and
joins of streams with tables [12]. We are not aware of any work on synchronizing the schedules

of similar queries so that they can be executed together.
Semantics of sliding windows are defined in [29], wherein a periodically-sliding window is

represented as a sequence of overlapping extents. A new aggregate value is returned when
an extent closes, i.e., when no more tuples will be mapped to it. This definition corresponds

to the way we define synopsis updates: when the new interval computed by the buffer fills
up, it is inserted into the synopsis. However, our semantics of the SLIDE clause separate the

underlying synopsis updates from query execution times since it is not possible to execute all

17



queries instantaneously after every window-slide. To the best of our knowledge, our work is the
first to make this important distinction.

There has been recent work on scheduling in DSMSs [7, 9, 23, 31]. These consider scheduling
at the level of individual tuples and operators, i.e., choosing which tuple(s) to process at any
given time. The goals are to bound the sizes of inter-operator queues or control output latency.

To the best of our knowledge, our work is the first to discuss scheduling at the level of whole
queries, with the goal of sharing computation among similar queries that may have different

periods.
Also related to our scheduling approach is a deadline-based load shedding framework de-

scribed in [37], where a window-slide and all pending query re-executions are dropped if the
system can predict that there is insufficient time before the next window update (i.e., the next

deadline) to perform the scheduled tasks. Our approach is different for the following two rea-
sons. First, it does not require a mechanism for predicting the cost of advancing the windows

and re-executing queries. Second, query re-executions are never dropped, but rather the periods
of all queries are increased during overload. This avoids situations in which a query with a long
period has one of its re-executions dropped and must wait a long time for the next refresh.

We adapted the earliest-deadline-first algorithm (EDF) for scheduling sliding window queries.
As discussed in Section 4.1, the dynamic nature of the query workload, lack of reliable estimates

of task completion times, and desire to prioritize late tasks rather than dropping them eliminate
the use of other real-time and job-shop scheduling algorithms, among them rate-monotonic,

shortest-time-to-completion, least-slack, and highest-value-first [2, 22]. Given that EDF is known
to perform poorly during overload [21], one may wonder why we chose this algorithm as a basis

for a DSMS query scheduler. The answer is that EDF performs poorly in terms of the goals of
real-time systems, namely completing as many tasks as possible before their deadlines. EDF is

not optimal in this case because it gives priority to transactions which will likely not finish on
time because their deadlines are very close. However, EDF is a plausible technique in the context
of a DSMS, where the goal is to re-execute queries with the desired periods. Consequently,

it is better to prioritize queries with earliest re-execution deadlines rather than unnecessarily
executing another query that is not due for a refresh yet.

Moreover, it is known that EDF is optimal in terms of minimizing the maximum task lateness
[25]. However, one of the assumptions behind the proof is that tasks are executed separately.

An interesting area for future work involves finding an optimal scheduling algorithm for the
scenario presented in this chapter, namely shared execution of periodic tasks with the possibility

of overload. (both in terms of minimizing the maximum task lateness and maximizing system
throughput).

7 Conclusions and Future Work

In this paper, we identified and solved a novel problem in the context of multi-query optimization
of periodically-refreshed persistent queries: sharing computation among similar queries that have

different periods and therefore may be scheduled at different times. We argued that in addition
to the traditional multi-query optimization step of common sub-expression matching, a DSMS

must ensure that the schedules of similar queries are synchronized in order to take full advantage

18



of resource sharing. We then designed a query scheduling algorithm based upon the following
insight: some queries should be evaluated more frequently than necessary if it means that their

re-execution schedules can be synchronized with those of similar queries, thereby amortizing the
computation costs. The proposed scheduling algorithm was also extended to uncover additional
schedule synchronization opportunities during periods of system overload. Experimental results

showed the advantages of our techniques under various system conditions.
In future work, we intend to explore whether our hybrid scheduling technique can be gener-

alized to other scenarios involving periodic tasks, where executing some tasks more often than
necessary (i.e., prior to their deadlines) leads to shared computation and increased throughput.

We are also interested in extending our solutions to accommodate a wider class of queries, in-
cluding those consisting of multiple pipelined operators. A possible issue in this context involves

separate scheduling of parts of the same query.

References

[1] D. Abadi, D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S. Lee, M. Stonebraker,

N. Tatbul, and S. Zdonik. Aurora: A new model and architecture for data stream manage-
ment. The VLDB Journal, 12(2):120–139, Aug 2003.

[2] R. Abbott and H. Garcia-Molina. Scheduling real-time transactions: a performance evalu-

ation. In Proc. Int. Conf. on Very Large Data Bases (VLDB), pages 1–12, 1988.

[3] N. Alon, Y. Matias, and M. Szegedy. The space complexity of approximating the frequency

moments. In Proc. ACM Symp. on Theory of Computing (STOC), pages 20–29, 1996.

[4] A. Arasu, S. Babu, and J. Widom. The CQL continuous query language: Semantic foun-
dations and query execution. The VLDB Journal, to appear.

[5] A. Arasu and G. S. Manku. Approximate counts and quantiles over sliding windows. In
Proc. ACM SIGMOD-SIGACT-SIGART Symp. on Princ. of Database Sys. (PODS), pages

286–296, 2004.

[6] A. Arasu and J. Widom. Resource sharing in continuous sliding-window aggregates. In
Proc. Int. Conf. on Very Large Data Bases (VLDB), pages 336–347, 2004.

[7] B. Babcock, S. Babu, M. Datar, R. Motwani, and D. Thomas. Operator scheduling in data
stream systems. The VLDB Journal, 13(4):333–353, 2004.

[8] M. Cammert, J. Krämer, B. Seeger, and S.Vaupel. An approach to adaptive memory

management in data stream systems. In Proc. Int. Conf. on Data Eng. (ICDE), page 137,
2006.

[9] D. Carney, U. Cetintemel, A. Rasin, S. Zdonik, M. Cherniack, and M. Stonebraker. Oper-
ator scheduling in a data stream manager. In Proc. Int. Conf. on Very Large Data Bases

(VLDB), pages 838–849, 2003.

19



[10] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin, J. M. Hellerstein, W. Hong,
S. Krishnamurthy, S. Madden, V. Raman, F. Reiss, and M. Shah. TelegraphCQ: Continuous

dataflow processing for an uncertain world. In Proc. Biennial Conf. on Innovative Data
Sys. Res. (CIDR), pages 269–280, 2003.

[11] S. Chandrasekaran and M. J. Franklin. PSoup: a system for streaming queries over stream-
ing data. The VLDB Journal, 12(2):140–156, Aug 2003.

[12] J. Chen, D. DeWitt, F. Tian, and Y. Wang. NiagaraCQ: A scalable continuous query system
for internet databases. In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages

379–390, 2000.

[13] G. Cormode and S. Muthukrishnan. An improved data stream summary: The count-min
sketch and its applications. In Proc. Latin American Theoretical Informatics (LATIN),

pages 29–38, 2004.

[14] A. Dobra, M. Garofalakis, J. Gehrke, and R. Rastogi. Sketch-based multi-query processing

over data streams. In Proc. Int. Conf. on Extending Database Technology (EDBT), pages
551–568, 2004.

[15] P. Flajolet and G. N. Martin. Probabilistic counting. In Proc. Symp. on Foundations of
Comp. Sci. (FOCS), pages 76–82, 1983.

[16] L. Golab, K. G. Bijay, and M. T. Özsu. On concurrency control in sliding window queries

over data streams. In Proc. Int. Conf. on Extending Database Technology (EDBT), pages
608–626, 2006.

[17] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh. Data cube: A relational aggregation
operator generalizing group-by, cross-tab, and sub-total. In Proc. Int. Conf. on Data Eng.

(ICDE), pages 152–159, 1996.

[18] A. Halevy. Answering queries using views: a survey. The VLDB Journal, 10(4):270–294,

2001.

[19] M. Hammad, M. J. Franklin, W. Aref, and A. Elmagarmid. Scheduling for shared window
joins over data streams. In Proc. Int. Conf. on Very Large Data Bases (VLDB), pages

297–308, 2003.

[20] V. Harinarayan, A. Rajaraman, and J. Ullman. Implementing data cubes efficiently. In

Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 205–216, 1996.

[21] J. Haritsa, M. Carey, and M. Livny. Earliest-deadline scheduling for real-time database

systems. In In Proc. IEEE Real-Time Systems Symp., 1991.

[22] E. Jensen, C. Locke, and H. Tokuda. A time driven scheduling model for real-time operating
systems. In In Proc. IEEE Real-Time Sytems Symp., pages 112–122, 1985.

[23] Q. Jiang and S. Chakravarthy. Scheduling strategies for processing continuous queries over
streams. In Proc. British Nat. Conf. on Databases (BNCOD), pages 16–30, 2004.

20



[24] J. Kleinberg. Bursty and hierarchical structure in streams. In Proc. ACM SIGKDD Int.
Conf. on Knowledge Disc. and Data Mining, pages 91–101, 2002.

[25] J. Kleinberg and E. Tardos. Algorithm Design. Addison-Wesley, 2006.

[26] S. Krishnamurthy, M. Franklin, J. Hellerstein, and G. Jacobson. The case for precision
sharing. In Proc. Int. Conf. on Very Large Data Bases (VLDB), pages 972–986, 2004.

[27] S. Krishnamurthy, C. Wu, and M. Franklin. On-the-fly sharing for streamed aggregation.
In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 623–634, 2006.

[28] W. Leland, M. Taqqu, M. Willinger, and D. Wilson. On the self-similar nature of ethernet

traffic. IEEE/ACM Trans. on Networking, 2(1):1–15, 1994.

[29] J. Li, D. Maier, K. Tufte, V. Papadimos, and P. Tucker. Semantics and evaluation tech-
niques for window aggregates in data streams. In Proc. ACM SIGMOD Int. Conf. on
Management of Data, pages 311–322, 2005.

[30] S. Madden, M. Shah, J. Hellerstein, and V. Raman. Continuously adaptive continuous

queries over streams. In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages
49–60, 2002.

[31] Z. Ou, G. Yu, Y. Yu, S. Wu, X. Yang, and Q. Deng. Tick scheduling: A deadline based
optimal task scheduling approach for real-time data stream systems. In Proc. Int. Conf. on

Advances in Web-Age Inf. Management (WAIM), pages 725–730, 2005.

[32] V. Paxson and S. Floyd. Wide-area traffic: The failure of poisson modeling. IEEE/ACM
Trans. on Networking, 3(3):226–244, Jun 1995.

[33] T. Sellis. Multiple-query optimization. ACM Trans. Database Sys., 13(1):23–52, 1988.

[34] N. Shivakumar and H. Garćıa-Molina. Wave-indices: indexing evolving databases. In Proc.
ACM SIGMOD Int. Conf. on Management of Data, pages 381–392, 1997.

[35] D. Srivastava, S. Dar, H. Jagadish, and A. Levy. Answering queries with aggregation using

views. In Proc. Int. Conf. on Very Large Data Bases (VLDB), pages 318–329, 1996.

[36] J. Stankovic, M. Spuri, K. Ramamritham, and G. Buttazzo. Deadline Scheduling For Real-

Time Systems: EDF and Related Algorithms. Kluwer Academic Publishers, 1998.

[37] S. Wu, G. Yu, Y. Yu, Z. Ou, X. Yang, and Y. Gu. A deadline-sensitive approach for
real-time processing of sliding windows. In Proc. Int. Conf. on Advances in Web-Age Inf.

Management (WAIM), pages 566–577, 2005.

[38] R. Zhang, N. Koudas, B. C. Ooi, and D. Srivastava. Multiple aggregations over data

streams. In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 299–310, 2005.

[39] X. Zhang and D. Shasha. Better burst detection. In Proc. Int. Conf. on Data Eng. (ICDE),
page 146, 2006.

21



[40] Y. Zhu and D. Shasha. StatStream: Statistical monitoring of thousands of data streams in
real time. In Proc. Int. Conf. on Very Large Data Bases (VLDB), pages 358–369, 2002.

[41] Y. Zhu and D. Shasha. Efficient elastic burst detection in data streams. In Proc. ACM
SIGKDD Int. Conf. on Knowledge Disc. and Data Mining, pages 336–345, 2003.

22


