
Multi-Query Optimization of Sliding Window Aggregates by
Schedule Synchronization∗

Lukasz Golab†

University of Waterloo

lgolab@uwaterloo.ca

Kumar Gaurav Bijay
Indian Inst. of Tech., Bombay

gauravk@cse.iitb.ac.in

M. Tamer Özsu
University of Waterloo

tozsu@uwaterloo.ca

Categories and Subject Descriptors: H.2.4 [Database
Management]: Systems—Query Processing

General Terms: Algorithms, Design

Keywords: data streams, sliding windows, persistent queries,
multi-query optimization

1. INTRODUCTION
Data stream management systems process on-line data

such as sensor measurements, IP packet headers, stock quotes,
and transaction logs. Usually, only a sliding window of re-
cently arrived data is available at any given time for two
reasons: to avoid memory overflow and to emphasize recent
data that are likely to be more useful. Users issue per-
sistent queries that monitor the streaming data over some
period of time. As such, persistent queries often compute
sliding window aggregates, such as road traffic volume via
sensors embedded in a motorway, network bandwidth usage
statistics, or recent behaviour of stock prices. For efficiency,
answers of persistent queries are typically assumed to be
updated periodically with some user-specified frequency or
re-execution interval.

Similar monitoring queries may run in parallel at any
given time; for example, many queries may compute the
same aggregate function on the same attribute, but over dif-
ferent window lengths and with different frequencies. There-
fore, multi-query optimization is particularly important. One
of the primary goals of traditional multi-query optimization
is to detect common parts across multiple queries issued at
the same time and perform the common task only once.
In this paper, we argue that in the context of periodically
re-evaluated persistent queries, multi-query optimization re-
quires an additional step This is because queries that have
been identified as similar may be re-evaluated with differ-
ent frequencies and therefore may be scheduled at different
times. Thus, the purpose of the additional step is to syn-
chronize the re-execution times of similar queries.

The solution presented in this paper assumes that users
specify an upper bound on the interval between re-evaluations

∗This research is partially supported by Bell Canada, Nat-
ural Sciences and Engineering Research Council of Canada
(NSERC), and Communications and Information Technol-
ogy Ontario (CITO).
†Now at AT&T Labs, Florham Park, New Jersey, USA.

Copyright is held by the author/owner(s).
CIKM’06, November 5–11, 2006, Arlington, Virginia, USA.
ACM 1-59593-433-2/06/0011.

Figure 1: Shared evaluation of MAX aggregates.

of their queries and is based upon the following insight: it
may be cheaper to re-execute some queries more often if
their re-execution schedules can be synchronized with those
of similar queries, thereby amortizing the computation costs.
We also show that additional schedule synchronization is
possible when the system is forced to lengthen the desired
re-execution intervals during periods of overload. What fol-
lows is a brief overview of the proposed solution using a
simple running example; more details may be found in the
extended version of this paper [1].

2. QUERY EVALUATION
Assume that the current workload contains queries Q1

through Q7, each of which computes the MAX aggregate on a
numerical attribute a of stream S. Suppose that the queries
have the following window lengths (specified via the WINDOW

clause) and frequencies (specified via the SLIDE clause).

Q1 SELECT MAX(a) FROM S [WINDOW 10 min SLIDE 2 min]

Q2 SELECT MAX(a) FROM S [WINDOW 5 min SLIDE 2 min]

Q3 SELECT MAX(a) FROM S [WINDOW 6 min SLIDE 2 min]

Q4 SELECT MAX(a) FROM S [WINDOW 15 min SLIDE 3 min]

Q5 SELECT MAX(a) FROM S [WINDOW 12 min SLIDE 3 min]

Q6 SELECT MAX(a) FROM S [WINDOW 20 min SLIDE 5 min]

Q7 SELECT MAX(a) FROM S [WINDOW 30 min SLIDE 5 min]

Suppose that Q1, Q2, and Q3 are all due for re-evaluation.
They can be answered using a sliding window synopsis il-
lustrated in Figure 1. The window is partitioned into non-
overlapping intervals of one minute each and each interval
stores only its maximum value. Every minute, the synop-
sis is updated by deleting the oldest interval and appending
the maximum value that has arrived within the last minute.
To obtain the maximum over a sliding window of n minutes,
we take the maximum of the first n intervals. As illustrated,
the answers of Q2 and Q3 may effectively be computed for
free during the computation Q1—we stop after reading the
first five intervals and return an answer of Q2, then read the
next interval and return an answer of Q3, and then read the
remaining four intervals in order to answer Q1.



In general, we assume the existence of a set of rules spec-
ifying which queries may be efficiently executed together if
their re-execution times happen to coincide. In the above
example, all seven queries may share computation, provided
that the synopsis from Figure 1 contains 30 one-minute inter-
vals to cover the longest window referenced by Q7. Further-
more, we assume the existence of a query scheduler that de-
termines when to re-execute queries based upon the frequen-
cies specified in their SLIDE clauses (the classical earliest-
deadline-first algorithm may be used as a starting point for
designing such a scheduler [1]).

3. SCHEDULE SYNCHRONIZATION
Suppose that queries Q1 through Q7 are partitioned into

three groups according to their frequencies: group G1 con-
tains Q1, Q2, and Q3; group G2 contains Q4 and Q5; and
group G3 contains Q6 and Q7. An execution sequence of
Q1 through Q7 is illustrated on a time axis in Figure 2 (a).
Queries in G1 are re-executed jointly (as described in Sec-
tion 2) every two minutes, queries in G2 every three minutes,
and queries in G3 every five minutes. Furthermore, every six
minutes (the least common multiple of 2 and 3), queries in
G1 and G2 are all due for a re-execution and all five of them
may be re-executed together. Similarly, queries in G1 and
G3 are all due for a re-execution every ten minutes, and so
on. We call this technique conservative scheduling as it per-
forms no schedule synchronization—similar queries are exe-
cuted together only if they happen to be due for re-execution
at the same time.

Another possibility is to synchronize the schedules of all
similar queries that may be executed together in order to
take full advantage of overlapping computation. This means
that all seven queries from above would have to be sched-
uled every two minutes, as illustrated in Figure 2 (b) (this is
acceptable due to the assumption that users specify upper
bounds on the re-execution intervals of their queries). That
is, every two minutes, all 30 intervals of the synopsis are
scanned in order to answer Q7 and the remaining six queries
are answered at the same time. We refer to this technique as
aggressive scheduling and point out that it re-executes Q4
through Q7 more often than necessary.

We propose a technique called hybrid scheduling that is
a compromise between conservative and aggressive schedul-
ing. Using a relative cost model, hybrid scheduling deter-
mines whether it is more efficient for some groups of similar
queries to be re-executed more often than necessary in or-
der to synchronize their schedules with other groups. In
the context of our running example, the first step is to cal-
culate the cost of a single re-execution of each group. We
can compute all queries in G1 by scanning the ten youngest
intervals of the synopsis (recall that answers over shorter
windows, as needed by Q2 and Q3, will be computed along
the way). The cost is 9 (comparisons to determine the max-
imum of ten maximum values stored in each interval). By
similar reasoning, the cost of G2 is 14 and the cost of G3 is
29. Next, we want to compute the execution cost of G1 and
G2 incurred by conservative scheduling (recall Figure 2 (a)).
Every six minutes, queries in both groups are executed to-
gether for a cost of 14. Again, while scanning the synopsis to
compute the maximum over the 15-minute window needed
by Q4, the answers of other queries are computed along the
way. In the interim, queries in G1 are executed separately
twice, for a cost of 9 ∗ 2 = 18, and G2 once for a cost of 14.

Figure 2: Execution sequences using various

scheduling techniques.

Therefore, the total cost of executing queries in G1 and G2

is 46 per six minutes, or 7.67 per minute.
Now suppose that G2 is executed whenever G1 is due for

a refresh. In this case, both groups of queries are executed
every two minutes and their cost per minute is 14

2
= 7.

Therefore, the best way to execute queries in G1 and G2 is
in fact to schedule them both with a frequency of two min-
utes. In total, there are five possibilities: none of the groups
change their frequencies (which corresponds to conservative
scheduling and costs 11.63 per minute), G2 changes its fre-
quency to two minutes (11.4 per minute), both G2 and G3

change their frequency to two minutes (this corresponds to
aggressive scheduling and costs 14.5 per minute), G3 changes
its frequency to three minutes (12.67 per minute), and G3

changes its frequency to two minutes (16.83 per minute).
Hybrid scheduling chooses the most efficient of these five
possibilities, namely increasing the frequency of G2 to match
that of G1 and always executing queries in these two groups
together, as illustrated in Figure 2 (c).

We now show that additional computation sharing is pos-
sible during overload, when hybrid scheduling is unable to
execute all queries with the desired frequencies. A tech-
nique called late-pending sharing is shown in Figure 2 (d).
As indicated by the arrows, suppose that queries in G1 and
G2 are late by one minute. At this time, queries in G3 are
now pending. One possibility is to execute the late queries
first and then move on to the pending queries in G3. In
contrast, late-pending sharing recognizes that queries in all
three groups are similar and executes the three groups to-
gether. Although this shifts some of the system resources
away from clearing the backlog of late queries, it is beneficial
in terms of system throughput due to shared computation
(rather than scanning the synopsis twice, one scan suffices
to answer all seven queries).

4. REFERENCES
[1] L. Golab, K. G. Bijay, and M. T. Özsu. Multi-query

optimization of sliding window aggregates by schedule
synchronization. University of Waterloo Technical Report
CS-2006-26 (www.cs.uwaterloo.ca/research/tr/2006).


