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Suppose a set of multiple top-k queries are Q = {q1, g2, -.., ¢z }
with the corresponding sets F' = {f1, fa,..., fo} and K =
{k1, ko, ...,k }. The largest element in F' is f,,4., and the
largest element in K is k;,q,. Assume that the groups after
combination are G = {G1,...,G4}. We change the way a
little to show an execution plan. Suppose there is a valid
execution plan EP = {(f{,k}), (f3,k5), ..., (f.,k.)} where
fl=2" % fl, fl < fmaz> and k!, = kyq.. Moreover, we
have k; < k where i,j < wand i < j. That is, there are some
queries executed according to frequency f/ with the value of
k; where ¢ < u. Given this execution plan EP, if we want to
execute G; effectively, the time when G; is first executed is
[ =271 f] where 277« fl < f; < 27 f], and k"% < K.
Let the cost-per-unit time with EP be m/’, and let m; be the
cost-per-unit time of the DP approach. Obviously, my < m'.
Let m be the cost-per-unit time of no sharing approach.
First, we give an upper bound of m/ in the following lemma.
Then, we prove Theorem 7.1.
Lemma 11.1: m' < 2% kpaz/f1
Proof: For each element (f/,k;) in EP, the cost of
executing the query with the k] value is k}. In a cycle of
v, the total cost of executing this query is (f},/f!) * k}. For
all the elements in EP, the total cost is X, (f.,/f]) = k.
Thus, we have

m' =X (fu/ f]) * ki/ f.
As fl =271« f{, we have

m' =i ki/ (271 * f1)
Since k! < kpar and X% ,1/2071 < 2, we get

m’ < 2*kmar/f{

Proof of Theorem 4.1
Proof:
Obviously,

E(m/m}|z, F,K) > E(m/m|z, F,K) (13)

According to conditional probability theory, we have
E(m/m/|z, F, K)
= Sp(fi,kyle, F, K) « E(m/m/|fi, kg, F, K)
= Ep(f{, kf{ |, F\, K) * Zp(ki, kb, ..., k&\f{, kf{,:v, F K)
*B(m/m/ Ky, Ky, oo Koy 1, kpr @, FK) (14)

Replacing m’ with the inequality in Lemma 11.1, we have
E(m/m' K, Ky, oo, Ko, [l by, B K) >
E(m|k/13 ké? ey k:u f{a kf{vma F7 K)/(2 * kmaz/f{) (15)

As each query in @ is independent, inequality (15) can be
reduced to
E(m/m/|k/17 k’27 "'7]6;7 f{7 kf{7m7Fa K) Z T*

E(mO‘kiak/27 [RXS) k’;vf{kal’axaF7 K)/(2 * kmaz/f{) (16)
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where mg is the cost-per-unit time of one query executed
with no sharing according to its frequency upper bound.

Let A; = {(f, k)27 % f] < f < 2'xf],1 < k < k[} where
(f, k) is a point in the area A;, A;NA; =@ and1 <i < wu—1.
Suppose A, = {(f,k)|2* % f] < f < fmaz, 1 <k <K}
(f, k) can be considered as one query. A; is shown in Figure
18. Suppose A = UY_, A; and |A| is the area of A which is
the dashed area in Figure 18.

Given a query (f, k) in the area A, the cost-per-unit time is
k/ f. Suppose the probability of (f, k) existing in A is p(f, k),
we know that

E(m0|kzi,k'2, ...,k’;,f{,k’f{,x,F, K)

> Nrryeap(f, k) xk/f (17)

Obviously, p(f, k) = 1/|A|. Thus, inequality (17) can be
reduced to

= 1/|A|* X ryeak/f

Since A > UYZ'A;, we can reduce inequality (18) with
inequality (19)

(18)

> 1/|A| %S S ayea k) f

As 207 x f] < f < 20x f{ and 1 < k < k!, inequality (19)
can be reduced to

19)

u—152'*f1—1 (k]
> (1/|A|)*zizllzf:;,l*ﬁzk:lk/f
> (1/JA]) = S5 (k)2 /2) « D105 1/ 20

Acs:ording tq the calculus theory, we have E;:gi,—ll* f 1/f >
In (2¢ % f/(2°=! x f{). Thus, inequality (20) can be reduced

to inequality (21)

(L/1A]) = S0 ((R)?/2) # In (27 f{/(277 % £1))
= N5 (K)?/(2loga ex |A])

Y

2

According to the assumption, k] > k| and |A| < k., * fraz-
Thus, equality (21) can be reduced to
> (u—1) % (K)?/(2%logs e x k., % frmaz)
(22)
Suppose the query with the frequency upper bound f; has a
k¢ value. To satisfy this frequency upper bound, we know that
K >k ;- Thus, we can reduce inequality (22) to inequality
(23).
E(mokY, kb, ...,k'u7f{,kf{7x,F, K)
> (u— 1) * (kjf{)Q/(Q*logz e*k; *fmax) (23)

As f{l = 2“71 * f{ and 2“71 * f{ < fmaz < 2% fi?

u > 109> fmaz/ [ (24)
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Fig. 18. Theareaof A; and Awhere1 < i < u

Based on inequalities (23) and (24), and k!, = kmaz»

E(m0|k/l7ké7"'7k;7f{7kf{7‘r7F7K)
> (logs fmas/fi = 1) % ((ky)?)/(2 % logs €% ki,  fnac)

(logs fmaz/fi — 1) % ((ky)?)

/(2 * lOQQ € * k'max * fmaac)

(25)

According to inequalities (13), (14), (16), and (25), we get

E(m/my|z, F, K)
> Sp(f1, kg la, FK) # Sp(ky, K, o k| f1, kgy w, FL K
@5 (logs fmaw/f1 — 1) * (kgy)?

/(2*1092 e*kmaz *f'mam) * (2*kmaz/f{) (26)

For the above formula has nothing to do with k7, k5, ..., k!,
we have

Sp(ky, ko k| f1, kg, o, FLK) = 1

Thus, inequality (26) can be reduced to

= Ep(f{akf{|va’K)*x*(l092 fmaz/fii]‘)*(kf{)Q
/(4* lOgQ € * k‘?naa: * fmaT/f]/_) (27)

As f] and k¢ are independent, we can reduce inequality
(27) to equality (28).
= SEeip(file, B K) « 0 plhy o, FLK) «
z* (loga fmaz/f1 — 1) * (kf{)Q

(45 1ogs €% kiaq * frmaz/f1) (28)

Since p(ky/|z, F, K) = 1/kpnas, equality (28) can be

reduced to

= SRpp(file ) <@ % (0g2 fmas/fi =14
EZZﬁl(kﬁ)z/M xlogy e x %k3 % fmac/fl)
St p(file, F, K) 2% (1095 fraz/ f —1)
/(12 %1ogs €% frmax/ 1)

We shrink the range of f{. We handle it in two cases.
When f,q./22 > 1, we reduce inequality (29) to

> el p(file, FLK) x @ % (10g2 frac/(fmaz/7) = 1)
/(12x log> € * fmaz/(fmax/22))
= (p(fi = fmaz/22) = p(fi = fmaz/x)) * (log2 & — 1)
/(24 % loga €)
= (1-1/2z)" — (1 —1/x)") * (logz = — 1)/(24 * loga €)
(1/e)** =1/e) * (loga @ — 1)/(24 % logs €)
= Q(logz x)

v

(29)

When fra./22 < 1, as f] > 1, we have fra./f] < 2.
Thus,

(ZOQQ fmaa:/f{ - 1)/(12 i lOg2 ex fmaz/f{)
> (logo2x — 1)/(12 x logs € * 2x)

Then, inequality (29) can be reduced to

> E;’{”:"'f/zp(fﬂx,F, K) % (logy 22 — 1)
/(12 x logs e * 2x)
= UL > fman/22) — UL > fnan/2)) * (l0gs 22 — 1)
/(24 % logs €)
= ((1-1/22)" — (1 —1/2)") * (log2 2z — 1)
/(24 % logs e)
((1/e)/? = 1/e) * (loga 20 — 1) /(24 % logs €)
= Q(logz z)
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The analysis shows that the cost-per-unit time of no sharing
is Q(loga x) times of that of DP in average, where x is the
original number of queries in the system.
Proof of Lemma 5.1
Proof: Let t._, be the first time to execute G;_; in the
execution with m;_; where t}fl < fi—1. As fi_1 < f; and
tl | < fi_1, we have t!_; < f;. Then, f;/t} | > 1 (Note
that “/” in the formula is integer division operator). For ¢} =
(fi/tl )=t |, thus, t} >t} |. We know that f;—(fi/t} ;)=
ti, <tl | thatis fi —t} <tl ;. Wehave t! > f, —t!
As t} >t} | and t} > f; —tl |, we have 2t} >t} | +
fi - tzlfl = f1 Thus, tzl > f1/2 ]
Proof of Theorem 5.1
Proof: According to Equation (11), we know that
GAcost(t}) = GAcost(t} — 1) + k"®. Thus, we have

m; = (GAcost(t} — 1) 4+ k™) /t (30)

The total cost in [0, t}_;]is GAcost(t}_;) = m;_1 *t}_;.
The total cost in [0, t} — 1] is:

GAcost(t; —1) = t/t}_, + GAcost(t;_,) — k%"
= tzl/tzl71 * My;—1 *t}71 _ Zrialr
= t} *m;_q — kM4

Replacing G Acost(t} —1) with t}xm;_1 —k™% in Equation
(30),

mi = (g xmioy + KT =K [t = ma+ (R =R /6

From Lemma 8.1, we have t} > fi/2. Thus, we get

m; < miy + 2k — k5)/ fi

(]
Proof of Theorem 5.2
Proof: If we prove that Vt,1 <t < f;,
m; < 2% (DPcost(i,t — 1) + k") /t (31

then the theorem is proven. We use induction on ¢ where 1 <
1 < g. The basis for the induction, when ¢ = 1, is to verify
that inequality (31) holds. As discussed in Section 8, m; =
keT/ f1. We also know that Vt,1 < t < f1, DPcost(1,t —
1) = 0. Thus,

(DPcost(1,t — 1) + k") /t = E**® [t > k"% [ fr = mq

That is, Vi,1 < t < f;, we know
m1 < (DPcost(1,t—1)+k7"**)/t < 2«(DPcost(1,t—1)+k7"**)/t

For the induction step, suppose Vt,1 <t < f;_1, we have
m;—1 < 2% (DPcost(i—1,t— 1)+ k["%*)/t. That is, Vt,1 <
t< fic1,

DPcost(i — 1,t — 1) + k"9 > m;_1 /2 (32)
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As discussed earlier in Section 8, when 1 < t < f;, we
have

DPcost(i,t — 1) = DPcost(i — 1,t — 1) (33)
If we want to prove Vi, 1 <t < f;,
m; < 2% (DPcost(i,t — 1) + k") /t (34)
we should prove
m; < 2% (DPcost(i —1,t — 1) + k["**)/t (35)

according to equation (33) and inequality (34). From the
definition of DPcost(i — 1,t — 1), we know

max

DPcost(i—1,t—1)+k{27" = mm(z DPcost(i—1,t;—1)+

1)
(36)
where Vt71 S t S fi’ th, 1 S tj S fi,1 and th =t.

Replacing D Pcost(i — 1,t — 1) in inequality (35) with the
formula in equation (36), our goal is to prove

m; < 2*(min(z DPcost(i—1,t;—1)+k{"7")— k"5 + ki) /t.
(37

According to inequality (32), we have
mi_1 *t;/2 < DPcost(i — 1,t; — 1) + k*%" (38)

for each 1 < t; < f;_1. Thus, if we want to prove inequality
(37), we should prove

25 (min(Y_ mio1 +15/2) = KI5+ K0T) ft
2 (i1 /2 = KT+ k) 1

m;

= my_1+ 2% (K" — k) /t (39)
As 1 <t < f;, we should prove
m; <mi—q + 2% (K" — k")) fi (40)

to achieve our original goal (34). From Theorem 8.1, Inequal-
ity (40) is proven. Then, our original goal (34) is achieved.
That is, Vt,1 <t < f;,

m; < 2x (DPcost(i,t — 1) + k") /¢

0

The results on real data sets for multiple streams are shown

in Figure 19, Figure 20, Figure 21 and Figure 22. The trends

are the same with those of synthetic data set for multiple
streams.
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Fig. 19. The performance of DP, GA, INCO, IN and NS with different ranges of N
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Fig. 20. The performance of DP, GA, INCO, IN and NS with different ranges of w
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Fig. 21. The performance of DP, GA, INCO, IN and NS with different ranges of «
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Fig. 22. The performance of DP, GA, INCO, IN and NS with different ranges of &





