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Suppose a set of multiple top-k queries are Q = {q1, q2, ..., qx}
with the corresponding sets F = {f1, f2, ..., fx} and K =
{k1, k2, ..., kx}. The largest element in F is fmax, and the
largest element in K is kmax. Assume that the groups after
combination are G = {G1, ..., Gg}. We change the way a
little to show an execution plan. Suppose there is a valid
execution plan EP = {(f ′

1, k
′
1), (f

′
2, k

′
2), ..., (f

′
u, k

′
u)} where

f ′
i = 2i−1 ∗ f ′

1, f ′
u ≤ fmax, and k′u = kmax. Moreover, we

have k′i ≤ k′j where i, j ≤ u and i < j. That is, there are some
queries executed according to frequency f ′

i with the value of
k′i where i ≤ u. Given this execution plan EP , if we want to
execute Gi effectively, the time when Gi is first executed is
f1
i = 2j−1∗f ′

1 where 2j−1∗f ′
1 ≤ fi < 2j∗f ′

1, and kmax
i < k′j .

Let the cost-per-unit time with EP be m′, and let m∗
g be the

cost-per-unit time of the DP approach. Obviously, m∗
g ≤ m′.

Let m be the cost-per-unit time of no sharing approach.
First, we give an upper bound of m′ in the following lemma.

Then, we prove Theorem 7.1.
Lemma 11.1: m′ ≤ 2 ∗ kmax/f

′
1

Proof: For each element (f ′
i , k

′
i) in EP , the cost of

executing the query with the k′i value is k′i. In a cycle of
f ′
u, the total cost of executing this query is (f ′

u/f
′
i) ∗ k′i. For

all the elements in EP , the total cost is Σu
i=1(f

′
u/f

′
i) ∗ k′i.

Thus, we have

m′ = Σu
i=1(f

′
u/f

′
i) ∗ k′i/f ′

u

As f ′
i = 2i−1 ∗ f ′

1, we have

m′ = Σu
i=1k

′
i/(2

i−1 ∗ f ′
1)

Since k′i ≤ kmax and Σu
i=11/2

i−1 ≤ 2, we get

m′ ≤ 2 ∗ kmax/f
′
1

Proof of Theorem 4.1
Proof:

Obviously,

E(m/m∗
g|x, F,K) ≥ E(m/m′|x, F,K) (13)

According to conditional probability theory, we have

E(m/m′|x, F,K)

= Σp(f ′
1, kf ′

1
|x, F,K) ∗ E(m/m′|f ′

1, kf ′
1
, x, F,K)

= Σp(f ′
1, kf ′

1
|x, F,K) ∗ Σp(k′

1, k
′
2, ..., k

′
u|f ′

1, kf ′
1
, x, F,K)

∗E(m/m′|k′
1, k

′
2, ..., k

′
u, f

′
1, kf ′

1
, x, F,K) (14)

Replacing m′ with the inequality in Lemma 11.1, we have

E(m/m′|k′
1, k

′
2, ..., k

′
u, f

′
1, kf ′

1
, x, F,K) ≥

E(m|k′
1, k

′
2, ..., k

′
u, f

′
1, kf ′

1
, x, F,K)/(2 ∗ kmax/f

′
1) (15)

As each query in Q is independent, inequality (15) can be
reduced to

E(m/m′|k′
1, k

′
2, ..., k

′
u, f

′
1, kf ′

1
, x, F,K) ≥ x∗

E(m0|k′
1, k

′
2, ..., k

′
u, f

′
1, kf ′

1
, x, F,K)/(2 ∗ kmax/f

′
1) (16)

where m0 is the cost-per-unit time of one query executed
with no sharing according to its frequency upper bound.

Let Ai = {(f, k)|2i−1∗f ′
1 ≤ f < 2i∗f ′

1, 1 ≤ k ≤ k′i} where
(f, k) is a point in the area Ai, Ai∩Aj = ∅ and 1 ≤ i ≤ u−1.
Suppose Au = {(f, k)|2u−1 ∗ f ′

1 ≤ f < fmax, 1 ≤ k ≤ k′u}.
(f, k) can be considered as one query. Ai is shown in Figure
18. Suppose A = ∪u

i=1Ai and |A| is the area of A which is
the dashed area in Figure 18.

Given a query (f, k) in the area A, the cost-per-unit time is
k/f . Suppose the probability of (f, k) existing in A is p(f, k),
we know that

E(m0|k′1, k′2, ..., k′u, f ′
1, kf ′

1
, x, F,K)

≥ Σ(f,k)∈Ap(f, k) ∗ k/f (17)

Obviously, p(f, k) = 1/|A|. Thus, inequality (17) can be
reduced to

= 1/|A| ∗ Σ(f,k)∈Ak/f (18)

Since A > ∪u−1
i=1 Ai, we can reduce inequality (18) with

inequality (19)

≥ 1/|A| ∗ Σu−1
i=1 Σ(f,k)∈Ai

k/f (19)

As 2i−1 ∗ f ′
1 ≤ f < 2i ∗ f ′

1 and 1 ≤ k ≤ k′i, inequality (19)
can be reduced to

≥ (1/|A|) ∗ Σu−1
i=1 Σ

2i∗f ′
1−1

f=2i−1∗f ′
1
Σ

k′
i

k=1k/f

≥ (1/|A|) ∗ Σu−1
i=1 ((k

′
i)

2/2) ∗ Σ2i∗f ′
1−1

f=2i−1∗f ′
1
1/f (20)

According to the calculus theory, we have Σ2i∗f ′
1−1

f=2i−1∗f ′
1
1/f ≥

ln (2i ∗ f ′
1/(2

i−1 ∗ f ′
1). Thus, inequality (20) can be reduced

to inequality (21)

≥ (1/|A|) ∗ Σu−1
i=1 ((k

′
i)

2/2) ∗ ln (2i ∗ f ′
1/(2

i−1 ∗ f ′
1))

= Σu−1
i=1 (k

′
i)

2/(2 ∗ log2 e ∗ |A|)
(21)

According to the assumption, k′i ≥ k′1 and |A| ≤ k′u ∗fmax.
Thus, equality (21) can be reduced to

≥ (u− 1) ∗ (k′1)2/(2 ∗ log2 e ∗ k′u ∗ fmax)

(22)

Suppose the query with the frequency upper bound f ′
1 has a

kf ′
1

value. To satisfy this frequency upper bound, we know that
k′1 ≥ kf ′

1
. Thus, we can reduce inequality (22) to inequality

(23).

E(m0|k′1, k′2, ..., k′u, f ′
1, kf ′

1
, x, F,K)

≥ (u− 1) ∗ (kf ′
1
)2/(2 ∗ log2 e ∗ k′u ∗ fmax) (23)

As f ′
u = 2u−1 ∗ f ′

1 and 2u−1 ∗ f ′
1 ≤ fmax < 2u ∗ f ′

1,

u ≥ log2 fmax/f
′
1 (24)
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Fig. 18. The area of Ai and A where 1 ≤ i ≤ u

Based on inequalities (23) and (24), and k′u = kmax,

E(m0|k′
1, k

′
2, ..., k

′
u, f

′
1, kf ′

1
, x, F,K)

≥ (log2 fmax/f
′
1 − 1) ∗ ((kf ′

1
)2)/(2 ∗ log2 e ∗ k′

u ∗ fmax)

= (log2 fmax/f
′
1 − 1) ∗ ((kf ′

1
)2)

/(2 ∗ log2 e ∗ kmax ∗ fmax) (25)

According to inequalities (13), (14), (16), and (25), we get

E(m/m∗
g|x, F,K)

≥ Σp(f ′
1, kf ′

1
|x, F,K) ∗ Σp(k′

1, k
′
2, ..., k

′
u|f ′

1, kf ′
1
, x, F,K) ∗

x ∗ (log2 fmax/f
′
1 − 1) ∗ (kf ′

1
)2

/(2 ∗ log2 e ∗ kmax ∗ fmax) ∗ (2 ∗ kmax/f
′
1) (26)

For the above formula has nothing to do with k′1, k
′
2, ..., k

′
u,

we have

Σp(k′1, k
′
2, ..., k

′
u|f ′

1, kf ′
1
, x, F,K) = 1.

Thus, inequality (26) can be reduced to

= Σp(f ′
1, kf ′

1
|x, F,K) ∗ x ∗ (log2 fmax/f

′
1 − 1) ∗ (kf ′

1
)2

/(4 ∗ log2 e ∗ k2
max ∗ fmax/f

′
1) (27)

As f ′
1 and kf ′

1
are independent, we can reduce inequality

(27) to equality (28).

= Σfmax

f ′
1=1

p(f ′
1|x, F,K) ∗ Σkmax

kf′
1
=1p(kf ′

1
|x, F,K) ∗

x ∗ (log2 fmax/f
′
1 − 1) ∗ (kf ′

1
)2

/(4 ∗ log2 e ∗ k2
max ∗ fmax/f

′
1) (28)

Since p(kf ′
1
|x, F,K) = 1/kmax, equality (28) can be

reduced to

= Σfmax

f ′
1=1p(f

′
1|x, F,K) ∗ x ∗ (log2 fmax/f

′
1 − 1) ∗

Σkmax

kf′
1
=1(kf ′

1
)2/(4 ∗ log2 e ∗ ∗k3max ∗ fmax/f

′
1)

≥ Σfmax

f ′
1=1p(f

′
1|x, F,K) ∗ x ∗ (log2 fmax/f

′
1 − 1)

/(12 ∗ log2 e ∗ fmax/f
′
1) (29)

We shrink the range of f ′
1. We handle it in two cases.

When fmax/2x ≥ 1, we reduce inequality (29) to

≥ Σ
fmax/x

f ′
1=fmax/2x

p(f ′
1|x, F,K) ∗ x ∗ (log2 fmax/(fmax/x)− 1)

/(12 ∗ log2 e ∗ fmax/(fmax/2x))

= (p(f ′
1 ≥ fmax/2x)− p(f ′

1 ≥ fmax/x)) ∗ (log2 x− 1)

/(24 ∗ log2 e)

= ((1− 1/2x)x − (1− 1/x)x) ∗ (log2 x− 1)/(24 ∗ log2 e)

= ((1/e)1/2 − 1/e) ∗ (log2 x− 1)/(24 ∗ log2 e)

= Ω(log2 x)

When fmax/2x < 1, as f ′
1 ≥ 1, we have fmax/f

′
1 < 2x.

Thus,

(log2 fmax/f
′
1 − 1)/(12 ∗ log2 e ∗ fmax/f

′
1)

> (log22x− 1)/(12 ∗ log2 e ∗ 2x)

Then, inequality (29) can be reduced to

≥ Σ
fmax/x

f ′
1=1

p(f ′
1|x, F,K) ∗ x ∗ (log2 2x− 1)

/(12 ∗ log2 e ∗ 2x)
= (p(f ′

1 ≥ fmax/2x)− p(f ′
1 ≥ fmax/x)) ∗ (log2 2x− 1)

/(24 ∗ log2 e)

= ((1− 1/2x)x − (1− 1/x)x) ∗ (log2 2x− 1)

/(24 ∗ log2 e)

= ((1/e)1/2 − 1/e) ∗ (log2 2x− 1)/(24 ∗ log2 e)

= Ω(log2 x)
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The analysis shows that the cost-per-unit time of no sharing
is Ω(log2 x) times of that of DP in average, where x is the
original number of queries in the system.

Proof of Lemma 5.1
Proof: Let t1i−1 be the first time to execute Gi−1 in the

execution with mi−1 where t1i−1 ≤ fi−1. As fi−1 < fi and
t1i−1 ≤ fi−1, we have t1i−1 < fi. Then, fi/t1i−1 ≥ 1 (Note
that “/” in the formula is integer division operator). For t1i =
(fi/t

1
i−1)∗t1i−1, thus, t1i ≥ t1i−1. We know that fi−(fi/t

1
i−1)∗

t1i−1 ≤ t1i−1, that is fi − t1i ≤ t1i−1. We have t1i ≥ fi − t1i−1

As t1i ≥ t1i−1 and t1i ≥ fi − t1i−1, we have 2t1i ≥ t1i−1 +
fi − t1i−1 = fi. Thus, t1i ≥ fi/2

Proof of Theorem 5.1
Proof: According to Equation (11), we know that

GAcost(t1i ) = GAcost(t1i − 1) + kmax
i . Thus, we have

mi = (GAcost(t1i − 1) + kmax
i )/t1i (30)

The total cost in [0, t1i−1] is GAcost(t1i−1) = mi−1 ∗ t1i−1.
The total cost in [0, t1i − 1] is:

GAcost(t1i − 1) = t1i /t
1
i−1 ∗GAcost(t1i−1)− kmax

i−1

= t1i /t
1
i−1 ∗mi−1 ∗ t1i−1 − kmax

i−1

= t1i ∗mi−1 − kmax
i−1

Replacing GAcost(t1i−1) with t1i ∗mi−1−kmax
i−1 in Equation

(30),

mi = (t1i ∗mi−1+kmax
i −kmax

i−1 )/t1i = mi−1+(kmax
i −kmax

i−1 )/t1i

From Lemma 8.1, we have t1i ≥ fi/2. Thus, we get

mi ≤ mi−1 + 2(kmax
i − kmax

i−1 )/fi

Proof of Theorem 5.2
Proof: If we prove that ∀t, 1 ≤ t ≤ fi,

mi ≤ 2 ∗ (DPcost(i, t− 1) + kmax
i )/t (31)

then the theorem is proven. We use induction on i where 1 ≤
i ≤ g. The basis for the induction, when i = 1, is to verify
that inequality (31) holds. As discussed in Section 8, m1 =
kmax
1 /f1. We also know that ∀t, 1 ≤ t ≤ f1, DPcost(1, t −

1) = 0. Thus,

(DPcost(1, t− 1) + kmax
1 )/t = kmax

1 /t ≥ kmax
1 /f1 = m1

That is, ∀t, 1 ≤ t ≤ f1, we know

m1 ≤ (DPcost(1, t−1)+kmax
1 )/t ≤ 2∗(DPcost(1, t−1)+kmax

1 )/t

For the induction step, suppose ∀t, 1 ≤ t ≤ fi−1, we have
mi−1 ≤ 2 ∗ (DPcost(i− 1, t− 1)+ kmax

i−1 )/t. That is, ∀t, 1 ≤
t ≤ fi−1,

DPcost(i− 1, t− 1) + kmax
i−1 ≥ mi−1 ∗ t/2 (32)

As discussed earlier in Section 8, when 1 ≤ t ≤ fi, we
have

DPcost(i, t− 1) = DPcost(i− 1, t− 1) (33)

If we want to prove ∀t, 1 ≤ t ≤ fi,

mi ≤ 2 ∗ (DPcost(i, t− 1) + kmax
i )/t (34)

we should prove

mi ≤ 2 ∗ (DPcost(i− 1, t− 1) + kmax
i )/t (35)

according to equation (33) and inequality (34). From the
definition of DPcost(i− 1, t− 1), we know

DPcost(i−1, t−1)+kmax
i−1 = min(

∑
DPcost(i−1, tj−1)+kmax

i−1 )
(36)

where ∀t, 1 ≤ t ≤ fi, ∀tj , 1 ≤ tj ≤ fi−1 and
∑

tj = t.
Replacing DPcost(i− 1, t− 1) in inequality (35) with the

formula in equation (36), our goal is to prove

mi ≤ 2∗(min(
∑

DPcost(i−1, tj−1)+kmax
i−1 )−kmax

i−1 +kmax
i )/t.

(37)

According to inequality (32), we have

mi−1 ∗ tj/2 ≤ DPcost(i− 1, tj − 1) + kmax
i−1 (38)

for each 1 ≤ tj ≤ fi−1. Thus, if we want to prove inequality
(37), we should prove

mi ≤ 2 ∗ (min(
∑

mi−1 ∗ tj/2)− kmax
i−1 + kmax

i )/t

= 2 ∗ (mi−1 ∗ t/2− kmax
i−1 + kmax

i )/t

= mi−1 + 2 ∗ (kmax
i − kmax

i−1 )/t (39)

As 1 ≤ t ≤ fi, we should prove

mi ≤ mi−1 + 2 ∗ (kmax
i − kmax

i−1 )/fi (40)

to achieve our original goal (34). From Theorem 8.1, Inequal-
ity (40) is proven. Then, our original goal (34) is achieved.
That is, ∀t, 1 ≤ t ≤ fi,

mi ≤ 2 ∗ (DPcost(i, t− 1) + kmax
i )/t

The results on real data sets for multiple streams are shown
in Figure 19, Figure 20, Figure 21 and Figure 22. The trends
are the same with those of synthetic data set for multiple
streams.
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Fig. 19. The performance of DP, GA, INCO, IN and NS with different ranges of N
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Fig. 20. The performance of DP, GA, INCO, IN and NS with different ranges of w
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Fig. 21. The performance of DP, GA, INCO, IN and NS with different ranges of x
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Fig. 22. The performance of DP, GA, INCO, IN and NS with different ranges of k




