Online supplemental materials accompanying the paper

Suppose a set of multiple top- k queries are $Q=\left\{q_{1}, q_{2}, \ldots, q_{x}\right\}$ with the corresponding sets $F=\left\{f_{1}, f_{2}, \ldots, f_{x}\right\}$ and $K=$ $\left\{k_{1}, k_{2}, \ldots, k_{x}\right\}$. The largest element in F is $f_{\text {max }}$, and the largest element in K is $k_{\max }$. Assume that the groups after combination are $\mathcal{G}=\left\{G_{1}, \ldots, G_{g}\right\}$. We change the way a little to show an execution plan. Suppose there is a valid execution plan $E P=\left\{\left(f_{1}^{\prime}, k_{1}^{\prime}\right),\left(f_{2}^{\prime}, k_{2}^{\prime}\right), \ldots,\left(f_{u}^{\prime}, k_{u}^{\prime}\right)\right\}$ where $f_{i}^{\prime}=2^{i-1} * f_{1}^{\prime}, f_{u}^{\prime} \leq f_{\max }$, and $k_{u}^{\prime}=k_{\max }$. Moreover, we have $k_{i}^{\prime} \leq k_{j}^{\prime}$ where $i, j \leq u$ and $i<j$. That is, there are some queries executed according to frequency f_{i}^{\prime} with the value of k_{i}^{\prime} where $i \leq u$. Given this execution plan $E P$, if we want to execute G_{i} effectively, the time when G_{i} is first executed is $f_{i}^{1}=2^{j-1} * f_{1}^{\prime}$ where $2^{j-1} * f_{1}^{\prime} \leq f_{i}<2^{j} * f_{1}^{\prime}$, and $k_{i}^{\max }<k_{j}^{\prime}$. Let the cost-per-unit time with $E P$ be m^{\prime}, and let m_{g}^{*} be the cost-per-unit time of the DP approach. Obviously, $m_{g}^{*} \leq m^{\prime}$. Let m be the cost-per-unit time of no sharing approach.

First, we give an upper bound of m^{\prime} in the following lemma. Then, we prove Theorem 7.1.

Lemma 11.1: $m^{\prime} \leq 2 * k_{\max } / f_{1}^{\prime}$

Proof: For each element $\left(f_{i}^{\prime}, k_{i}^{\prime}\right)$ in $E P$, the cost of executing the query with the k_{i}^{\prime} value is k_{i}^{\prime}. In a cycle of f_{u}^{\prime}, the total cost of executing this query is $\left(f_{u}^{\prime} / f_{i}^{\prime}\right) * k_{i}^{\prime}$. For all the elements in $E P$, the total cost is $\Sigma_{i=1}^{u}\left(f_{u}^{\prime} / f_{i}^{\prime}\right) * k_{i}^{\prime}$. Thus, we have

$$
m^{\prime}=\Sigma_{i=1}^{u}\left(f_{u}^{\prime} / f_{i}^{\prime}\right) * k_{i}^{\prime} / f_{u}^{\prime}
$$

As $f_{i}^{\prime}=2^{i-1} * f_{1}^{\prime}$, we have

$$
m^{\prime}=\Sigma_{i=1}^{u} k_{i}^{\prime} /\left(2^{i-1} * f_{1}^{\prime}\right)
$$

Since $k_{i}^{\prime} \leq k_{\max }$ and $\Sigma_{i=1}^{u} 1 / 2^{i-1} \leq 2$, we get

$$
m^{\prime} \leq 2 * k_{\max } / f_{1}^{\prime}
$$

Proof of Theorem 4.1

Proof:
Obviously,

$$
\begin{equation*}
E\left(m / m_{g}^{*} \mid x, F, K\right) \geq E\left(m / m^{\prime} \mid x, F, K\right) \tag{13}
\end{equation*}
$$

According to conditional probability theory, we have

$$
\begin{align*}
& E\left(m / m^{\prime} \mid x, F, K\right) \\
&= \Sigma p\left(f_{1}^{\prime}, k_{f_{1}^{\prime}} \mid x, F, K\right) * E\left(m / m^{\prime} \mid f_{1}^{\prime}, k_{f_{1}^{\prime}}, x, F, K\right) \\
&= \Sigma p\left(f_{1}^{\prime}, k_{f_{1}^{\prime}} \mid x, F, K\right) * \Sigma p\left(k_{1}^{\prime}, k_{2}^{\prime}, \ldots, k_{u}^{\prime} \mid f_{1}^{\prime}, k_{f_{1}^{\prime}}, x, F, K\right) \\
& * E\left(m / m^{\prime} \mid k_{1}^{\prime}, k_{2}^{\prime}, \ldots, k_{u}^{\prime}, f_{1}^{\prime}, k_{f_{1}^{\prime}}, x, F, K\right) \tag{14}
\end{align*}
$$

Replacing m^{\prime} with the inequality in Lemma 11.1, we have

$$
\begin{align*}
& E\left(m / m^{\prime} \mid k_{1}^{\prime}, k_{2}^{\prime}, \ldots, k_{u}^{\prime}, f_{1}^{\prime}, k_{f_{1}^{\prime}}, x, F, K\right) \geq \\
& \quad E\left(m \mid k_{1}^{\prime}, k_{2}^{\prime}, \ldots, k_{u}^{\prime}, f_{1}^{\prime}, k_{f_{1}^{\prime}}, x, F, K\right) /\left(2 * k_{\max } / f_{1}^{\prime}\right) \tag{15}
\end{align*}
$$

As each query in Q is independent, inequality (15) can be reduced to

$$
\begin{align*}
& E\left(m / m^{\prime} \mid k_{1}^{\prime}, k_{2}^{\prime}, \ldots, k_{u}^{\prime}, f_{1}^{\prime}, k_{f_{1}^{\prime}}, x, F, K\right) \geq x * \\
& \quad E\left(m_{0} \mid k_{1}^{\prime}, k_{2}^{\prime}, \ldots, k_{u}^{\prime}, f_{1}^{\prime}, k_{f_{1}^{\prime}}, x, F, K\right) /\left(2 * k_{\max } / f_{1}^{\prime}\right) \tag{16}
\end{align*}
$$

where m_{0} is the cost-per-unit time of one query executed with no sharing according to its frequency upper bound.

Let $A_{i}=\left\{(f, k) \mid 2^{i-1} * f_{1}^{\prime} \leq f<2^{i} * f_{1}^{\prime}, 1 \leq k \leq k_{i}^{\prime}\right\}$ where (f, k) is a point in the area $A_{i}, A_{i} \cap A_{j}=\varnothing$ and $1 \leq i \leq u-1$. Suppose $A_{u}=\left\{(f, k) \mid 2^{u-1} * f_{1}^{\prime} \leq f<f_{\text {max }}, 1 \leq k \leq k_{u}^{\prime}\right\}$. (f, k) can be considered as one query. A_{i} is shown in Figure 18. Suppose $A=\cup_{i=1}^{u} A_{i}$ and $|A|$ is the area of A which is the dashed area in Figure 18.
Given a query (f, k) in the area A, the cost-per-unit time is k / f. Suppose the probability of (f, k) existing in A is $p(f, k)$, we know that

$$
\begin{align*}
& E\left(m_{0} \mid k_{1}^{\prime}, k_{2}^{\prime}, \ldots, k_{u}^{\prime}, f_{1}^{\prime}, k_{f_{1}^{\prime}}, x, F, K\right) \\
& \quad \geq \Sigma_{(f, k) \in A} p(f, k) * k / f \tag{17}
\end{align*}
$$

Obviously, $p(f, k)=1 /|A|$. Thus, inequality (17) can be reduced to

$$
\begin{equation*}
=1 /|A| * \Sigma_{(f, k) \in A} k / f \tag{18}
\end{equation*}
$$

Since $A>\cup_{i=1}^{u-1} A_{i}$, we can reduce inequality (18) with inequality (19)

$$
\begin{equation*}
\geq 1 /|A| * \Sigma_{i=1}^{u-1} \Sigma_{(f, k) \in A_{i}} k / f \tag{19}
\end{equation*}
$$

As $2^{i-1} * f_{1}^{\prime} \leq f<2^{i} * f_{1}^{\prime}$ and $1 \leq k \leq k_{i}^{\prime}$, inequality (19) can be reduced to

$$
\begin{align*}
& \geq \quad(1 /|A|) * \Sigma_{i=1}^{u-1} \Sigma_{f=2^{i-1} * f_{1}^{\prime}}^{2^{i} * f_{1}^{\prime}-1} \Sigma_{k=1}^{k_{i}^{\prime}} k / f \\
& \geq \quad(1 /|A|) * \Sigma_{i=1}^{u-1}\left(\left(k_{i}^{\prime}\right)^{2} / 2\right) * \Sigma_{f=2^{i-1} * f_{1}^{\prime}}^{2^{i} * f_{1}^{\prime}-1} 1 / f \tag{20}
\end{align*}
$$

According to the calculus theory, we have $\Sigma_{f=2^{i-1} * f_{1}^{\prime}}^{2^{i} * f_{1}^{\prime}-1} 1 / f \geq$ $\ln \left(2^{i} * f_{1}^{\prime} /\left(2^{i-1} * f_{1}^{\prime}\right)\right.$. Thus, inequality (20) can be reduced to inequality (21)

$$
\begin{align*}
& \geq(1 /|A|) * \Sigma_{i=1}^{u-1}\left(\left(k_{i}^{\prime}\right)^{2} / 2\right) * \ln \left(2^{i} * f_{1}^{\prime} /\left(2^{i-1} * f_{1}^{\prime}\right)\right) \\
& =\sum_{i=1}^{u-1}\left(k_{i}^{\prime}\right)^{2} /\left(2 * \log _{2} e *|A|\right) \tag{21}
\end{align*}
$$

According to the assumption, $k_{i}^{\prime} \geq k_{1}^{\prime}$ and $|A| \leq k_{u}^{\prime} * f_{\text {max }}$. Thus, equality (21) can be reduced to

$$
\begin{equation*}
\geq(u-1) *\left(k_{1}^{\prime}\right)^{2} /\left(2 * \log _{2} e * k_{u}^{\prime} * f_{\max }\right) \tag{22}
\end{equation*}
$$

Suppose the query with the frequency upper bound f_{1}^{\prime} has a $k_{f_{1}^{\prime}}$ value. To satisfy this frequency upper bound, we know that $k_{1}^{\prime} \geq k_{f_{1}^{\prime}}$. Thus, we can reduce inequality (22) to inequality (23).

$$
\begin{align*}
& E\left(m_{0} \mid k_{1}^{\prime}, k_{2}^{\prime}, \ldots, k_{u}^{\prime}, f_{1}^{\prime}, k_{f_{1}^{\prime}}, x, F, K\right) \\
& \quad \geq(u-1) *\left(k_{f_{1}^{\prime}}\right)^{2} /\left(2 * \log _{2} e * k_{u}^{\prime} * f_{\max }\right) \tag{23}
\end{align*}
$$

As $f_{u}^{\prime}=2^{u-1} * f_{1}^{\prime}$ and $2^{u-1} * f_{1}^{\prime} \leq f_{\max }<2^{u} * f_{1}^{\prime}$,

$$
\begin{equation*}
u \geq \log _{2} f_{\max } / f_{1}^{\prime} \tag{24}
\end{equation*}
$$

Fig. 18. The area of A_{i} and A where $1 \leq i \leq u$

Based on inequalities (23) and (24), and $k_{u}^{\prime}=k_{\max }$,

$$
\begin{align*}
& E\left(m_{0} \mid k_{1}^{\prime}, k_{2}^{\prime}, \ldots, k_{u}^{\prime}, f_{1}^{\prime}, k_{f_{1}^{\prime}}, x, F, K\right) \\
& \quad \geq\left(\log _{2} f_{\max } / f_{1}^{\prime}-1\right) *\left(\left(k_{f_{1}^{\prime}}\right)^{2}\right) /\left(2 * \log _{2} e * k_{u}^{\prime} * f_{\max }\right) \\
& \quad=\left(\log _{2} f_{\max } / f_{1}^{\prime}-1\right) *\left(\left(k_{f_{1}^{\prime}}\right)^{2}\right) \\
& /\left(2 * \log _{2} e * k_{\max } * f_{\max }\right) \tag{25}
\end{align*}
$$

According to inequalities (13), (14), (16), and (25), we get

$$
\begin{align*}
& E\left(m / m_{g}^{*} \mid x, F, K\right) \\
& \quad \geq \quad \Sigma p\left(f_{1}^{\prime}, k_{f_{1}^{\prime}} \mid x, F, K\right) * \Sigma p\left(k_{1}^{\prime}, k_{2}^{\prime}, \ldots, k_{u}^{\prime} \mid f_{1}^{\prime}, k_{f_{1}^{\prime}}, x, F, K\right) * \\
& \quad x *\left(\log _{2} f_{\max } / f_{1}^{\prime}-1\right) *\left(k_{f_{1}^{\prime}}\right)^{2} \\
& \tag{26}\\
& \quad /\left(2 * \log _{2} e * k_{\max } * f_{\max }\right) *\left(2 * k_{\max } / f_{1}^{\prime}\right)
\end{align*}
$$

For the above formula has nothing to do with $k_{1}^{\prime}, k_{2}^{\prime}, \ldots, k_{u}^{\prime}$, we have

$$
\Sigma p\left(k_{1}^{\prime}, k_{2}^{\prime}, \ldots, k_{u}^{\prime} \mid f_{1}^{\prime}, k_{f_{1}^{\prime}}, x, F, K\right)=1
$$

Thus, inequality (26) can be reduced to

$$
\begin{align*}
= & \Sigma p\left(f_{1}^{\prime}, k_{f_{1}^{\prime}} \mid x, F, K\right) * x *\left(\log _{2} f_{\max } / f_{1}^{\prime}-1\right) *\left(k_{f_{1}^{\prime}}\right)^{2} \\
& /\left(4 * \log _{2} e * k_{\max }^{2} * f_{\max } / f_{1}^{\prime}\right) \tag{27}
\end{align*}
$$

As f_{1}^{\prime} and $k_{f_{1}^{\prime}}$ are independent, we can reduce inequality (27) to equality (28).

$$
\begin{align*}
= & \Sigma_{f_{1}^{\prime}=1}^{f_{\max }} p\left(f_{1}^{\prime} \mid x, F, K\right) * \sum_{k_{f_{1}^{\prime}=1}^{k_{\max }} p\left(k_{f_{1}^{\prime}} \mid x, F, K\right) *} \\
& x *\left(\log _{2} f_{\max } / f_{1}^{\prime}-1\right) *\left(k_{f_{1}^{\prime}}\right)^{2} \\
& /\left(4 * \log _{2} e * k_{\max }^{2} * f_{\max } / f_{1}^{\prime}\right) \tag{28}
\end{align*}
$$

Since $p\left(k_{f_{1}^{\prime}} \mid x, F, K\right)=1 / k_{\max }$, equality (28) can be reduced to

$$
\begin{align*}
= & \Sigma_{f_{1}^{\prime}=1}^{f_{\max }} p\left(f_{1}^{\prime} \mid x, F, K\right) * x *\left(\log _{2} f_{\max } / f_{1}^{\prime}-1\right) * \\
& \sum_{k_{f_{1}^{\prime}=1}}^{k_{\max }}\left(k_{f_{1}^{\prime}}\right)^{2} /\left(4 * \log _{2} e * * k_{\max }^{3} * f_{\max } / f_{1}^{\prime}\right) \\
\geq \quad & \sum_{f_{1}^{\prime=1}}^{f_{\max }} p\left(f_{1}^{\prime} \mid x, F, K\right) * x *\left(\log _{2} f_{\max } / f_{1}^{\prime}-1\right) \\
& /\left(12 * \log _{2} e * f_{\max } / f_{1}^{\prime}\right) \tag{29}
\end{align*}
$$

We shrink the range of f_{1}^{\prime}. We handle it in two cases.
When $f_{\max } / 2 x \geq 1$, we reduce inequality (29) to

$$
\begin{aligned}
\geq & \Sigma_{f_{1}^{\prime}=f_{\max } / 2 x}^{f_{\max }} p\left(f_{1}^{\prime} \mid x, F, K\right) * x *\left(\log _{2} f_{\max } /\left(f_{\max } / x\right)-1\right) \\
& /\left(12 * \log _{2} e * f_{\max } /\left(f_{\max } / 2 x\right)\right) \\
= & \left(p\left(f_{1}^{\prime} \geq f_{\max } / 2 x\right)-p\left(f_{1}^{\prime} \geq f_{\max } / x\right)\right) *\left(\log _{2} x-1\right) \\
& /\left(24 * \log _{2} e\right) \\
= & \left((1-1 / 2 x)^{x}-(1-1 / x)^{x}\right) *\left(\log _{2} x-1\right) /\left(24 * \log _{2} e\right) \\
= & \left((1 / e)^{1 / 2}-1 / e\right) *\left(\log _{2} x-1\right) /\left(24 * \log _{2} e\right) \\
= & \Omega\left(\log _{2} x\right)
\end{aligned}
$$

When $f_{\max } / 2 x<1$, as $f_{1}^{\prime} \geq 1$, we have $f_{\max } / f_{1}^{\prime}<2 x$. Thus,

$$
\begin{aligned}
& \left(\log _{2} f_{\max } / f_{1}^{\prime}-1\right) /\left(12 * \log _{2} e * f_{\max } / f_{1}^{\prime}\right) \\
& \quad>\quad\left(\log _{2} 2 x-1\right) /\left(12 * \log _{2} e * 2 x\right)
\end{aligned}
$$

Then, inequality (29) can be reduced to

$$
\begin{aligned}
\geq & \sum_{f_{1}^{\prime}=1}^{f_{\max } / x} p\left(f_{1}^{\prime} \mid x, F, K\right) * x *\left(\log _{2} 2 x-1\right) \\
& /\left(12 * \log _{2} e * 2 x\right) \\
= & \left(p\left(f_{1}^{\prime} \geq f_{\max } / 2 x\right)-p\left(f_{1}^{\prime} \geq f_{\max } / x\right)\right) *\left(\log _{2} 2 x-1\right) \\
& /\left(24 * \log _{2} e\right) \\
= & \left((1-1 / 2 x)^{x}-(1-1 / x)^{x}\right) *\left(\log _{2} 2 x-1\right) \\
& /\left(24 * \log _{2} e\right) \\
= & \left((1 / e)^{1 / 2}-1 / e\right) *\left(\log _{2} 2 x-1\right) /\left(24 * \log _{2} e\right) \\
= & \Omega\left(\log _{2} x\right)
\end{aligned}
$$

The analysis shows that the cost-per-unit time of no sharing is $\Omega\left(\log _{2} x\right)$ times of that of DP in average, where x is the original number of queries in the system.

Proof of Lemma 5.1

Proof: Let t_{i-1}^{1} be the first time to execute G_{i-1} in the execution with m_{i-1} where $t_{i-1}^{1} \leq f_{i-1}$. As $f_{i-1}<f_{i}$ and $t_{i-1}^{1} \leq f_{i-1}$, we have $t_{i-1}^{1}<f_{i}$. Then, $f_{i} / t_{i-1}^{1} \geq 1$ (Note that "/" in the formula is integer division operator). For $t_{i}^{1}=$ $\left(f_{i} / t_{i-1}^{1}\right) * t_{i-1}^{1}$, thus, $t_{i}^{1} \geq t_{i-1}^{1}$. We know that $f_{i}-\left(f_{i} / t_{i-1}^{1}\right) *$ $t_{i-1}^{1} \leq t_{i-1}^{1}$, that is $f_{i}-t_{i}^{1} \leq t_{i-1}^{1}$. We have $t_{i}^{1} \geq f_{i}-t_{i-1}^{1}$

As $t_{i}^{1} \geq t_{i-1}^{1}$ and $t_{i}^{1} \geq f_{i}-t_{i-1}^{1}$, we have $2 t_{i}^{1} \geq t_{i-1}^{1}+$ $f_{i}-t_{i-1}^{1}=f_{i}$. Thus, $t_{i}^{1} \geq f_{i} / 2$

Proof of Theorem 5.1

Proof: According to Equation (11), we know that $G A \operatorname{cost}\left(t_{i}^{1}\right)=G A \operatorname{cost}\left(t_{i}^{1}-1\right)+k_{i}^{\max }$. Thus, we have

$$
\begin{equation*}
m_{i}=\left(G A \operatorname{cost}\left(t_{i}^{1}-1\right)+k_{i}^{\max }\right) / t_{i}^{1} \tag{30}
\end{equation*}
$$

The total cost in [0, t_{i-1}^{1}] is $G A \operatorname{cost}\left(t_{i-1}^{1}\right)=m_{i-1} * t_{i-1}^{1}$. The total cost in [$0, t_{i}^{1}-1$] is:

$$
\begin{aligned}
G A \operatorname{cost}\left(t_{i}^{1}-1\right) & =t_{i}^{1} / t_{i-1}^{1} * G A \operatorname{cost}\left(t_{i-1}^{1}\right)-k_{i-1}^{\max } \\
& =t_{i}^{1} / t_{i-1}^{1} * m_{i-1} * t_{i-1}^{1}-k_{i-1}^{\max } \\
& =t_{i}^{1} * m_{i-1}-k_{i-1}^{\max }
\end{aligned}
$$

Replacing $G A \operatorname{cost}\left(t_{i}^{1}-1\right)$ with $t_{i}^{1} * m_{i-1}-k_{i-1}^{\max }$ in Equation (30),
$m_{i}=\left(t_{i}^{1} * m_{i-1}+k_{i}^{\max }-k_{i-1}^{\max }\right) / t_{i}^{1}=m_{i-1}+\left(k_{i}^{\max }-k_{i-1}^{\max }\right) / t_{i}^{1}$

From Lemma 8.1, we have $t_{i}^{1} \geq f_{i} / 2$. Thus, we get

$$
m_{i} \leq m_{i-1}+2\left(k_{i}^{\max }-k_{i-1}^{\max }\right) / f_{i}
$$

Proof of Theorem 5.2

Proof: If we prove that $\forall t, 1 \leq t \leq f_{i}$,

$$
\begin{equation*}
m_{i} \leq 2 *\left(D P \operatorname{cost}(i, t-1)+k_{i}^{\max }\right) / t \tag{31}
\end{equation*}
$$

then the theorem is proven. We use induction on i where $1 \leq$ $i \leq g$. The basis for the induction, when $i=1$, is to verify that inequality (31) holds. As discussed in Section 8, $m_{1}=$ $k_{1}^{\text {max }} / f_{1}$. We also know that $\forall t, 1 \leq t \leq f_{1}, \operatorname{DPcost}(1, t-$ 1) $=0$. Thus,

$$
\left(D P \cos t(1, t-1)+k_{1}^{\max }\right) / t=k_{1}^{\max } / t \geq k_{1}^{\max } / f_{1}=m_{1}
$$

That is, $\forall t, 1 \leq t \leq f_{1}$, we know
$m_{1} \leq\left(D P \operatorname{cost}(1, t-1)+k_{1}^{\max }\right) / t \leq 2 *\left(D P \operatorname{cost}(1, t-1)+k_{1}^{\max }\right) / t$

For the induction step, suppose $\forall t, 1 \leq t \leq f_{i-1}$, we have $m_{i-1} \leq 2 *\left(D P \operatorname{cost}(i-1, t-1)+k_{i-1}^{\max }\right) / t$. That is, $\forall t, 1 \leq$ $t \leq f_{i-1}$,

$$
\begin{equation*}
D P \operatorname{cost}(i-1, t-1)+k_{i-1}^{\max } \geq m_{i-1} * t / 2 \tag{32}
\end{equation*}
$$

As discussed earlier in Section 8, when $1 \leq t \leq f_{i}$, we have

$$
\begin{equation*}
D P \operatorname{cost}(i, t-1)=D P \operatorname{cost}(i-1, t-1) \tag{33}
\end{equation*}
$$

If we want to prove $\forall t, 1 \leq t \leq f_{i}$,

$$
\begin{equation*}
m_{i} \leq 2 *\left(D P \operatorname{cost}(i, t-1)+k_{i}^{\max }\right) / t \tag{34}
\end{equation*}
$$

we should prove

$$
\begin{equation*}
m_{i} \leq 2 *\left(D P \operatorname{cost}(i-1, t-1)+k_{i}^{\max }\right) / t \tag{35}
\end{equation*}
$$

according to equation (33) and inequality (34). From the definition of $D P \operatorname{cost}(i-1, t-1)$, we know
$\operatorname{DPcost}(i-1, t-1)+k_{i-1}^{\max }=\min \left(\sum D P \operatorname{cost}\left(i-1, t_{j}-1\right)+k_{i-1}^{\max }\right)$
where $\forall t, 1 \leq t \leq f_{i}, \forall t_{j}, 1 \leq t_{j} \leq f_{i-1}$ and $\sum t_{j}=t$.
Replacing $D P \operatorname{cost}(i-1, t-1)$ in inequality (35) with the formula in equation (36), our goal is to prove
$m_{i} \leq 2 *\left(\min \left(\sum D P \operatorname{cost}\left(i-1, t_{j}-1\right)+k_{i-1}^{\max }\right)-k_{i-1}^{\max }+k_{i}^{\max }\right) / t$.

According to inequality (32), we have

$$
\begin{equation*}
m_{i-1} * t_{j} / 2 \leq D P \operatorname{cost}\left(i-1, t_{j}-1\right)+k_{i-1}^{\max } \tag{38}
\end{equation*}
$$

for each $1 \leq t_{j} \leq f_{i-1}$. Thus, if we want to prove inequality (37), we should prove

$$
\begin{align*}
m_{i} & \leq 2 *\left(\min \left(\sum m_{i-1} * t_{j} / 2\right)-k_{i-1}^{\max }+k_{i}^{\max }\right) / t \\
& =2 *\left(m_{i-1} * t / 2-k_{i-1}^{\max }+k_{i}^{\max }\right) / t \\
& =m_{i-1}+2 *\left(k_{i}^{\max }-k_{i-1}^{\max }\right) / t \tag{39}
\end{align*}
$$

As $1 \leq t \leq f_{i}$, we should prove

$$
\begin{equation*}
m_{i} \leq m_{i-1}+2 *\left(k_{i}^{\max }-k_{i-1}^{\max }\right) / f_{i} \tag{40}
\end{equation*}
$$

to achieve our original goal (34). From Theorem 8.1, Inequality (40) is proven. Then, our original goal (34) is achieved. That is, $\forall t, 1 \leq t \leq f_{i}$,

$$
m_{i} \leq 2 *\left(D P \operatorname{cost}(i, t-1)+k_{i}^{\max }\right) / t
$$

The results on real data sets for multiple streams are shown in Figure 19, Figure 20, Figure 21 and Figure 22. The trends are the same with those of synthetic data set for multiple streams.

Fig. 19. The performance of DP, GA, INCO, IN and NS with different ranges of N

(a) The cost-per-second

(b) The throughput

(c) The latency

Fig. 20. The performance of DP, GA, INCO, IN and NS with different ranges of w

Fig. 21. The performance of DP, GA, INCO, IN and NS with different ranges of x

Fig. 22. The performance of DP, GA, INCO, IN and NS with different ranges of k

