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Abstract

Time series data have been used in many applications, such as financial data analysis and

weather forecasting. Similarly, trajectories of moving objects are often used to perform

movement pattern analysis in surveillance video and sensor monitoring systems. All these

applications are closely related to similarity-based time series or trajectory data retrieval.

In this dissertation, various similarity models are proposed to capture the similarities

among time series and trajectory data under various circumstances and requirements, such

as the appearance of noise and local time shifting. A novel representation, called multi-

scale time series histograms, is proposed to answer pattern existence queries and shape

match queries. Earlier proposals generally address one or the other; multi-scale time series

histograms can answer both types, which offers users more flexibility. A metric distance

function, called Edit distance with Real Penalty (ERP), is proposed that can support local

time shifting in time series and trajectory data. A second distance function, Edit Distance

on Real sequence (EDR) is proposed to measure the similarity between time series or

trajectories with local time shifting and noise.

Since the proposed similarity models are computationally expensive, several indexing

and pruning methods are proposed to improve the retrieval efficiency. For multi-scale

time series histograms, A multi-step filtering process is introduced to improve the retrieval

efficiency without introducing false dismissals. For ERP, a framework is developed to index

time series or trajectory data under a metric distance function, which exploits the pruning

power of lower bounding and triangle inequality. For EDR, three pruning techniques –

mean value Q-grams, near triangle inequality, and trajectory histograms – are developed

to improve the retrieval efficiency.
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Chapter 1

Introduction

1.1 Background

Similarity-based retrieval of time series and trajectory data has attracted increasing inter-

est in database and knowledge discovery communities because of its wide use in various

applications. For example, using a remote sensing system, and by mining the trajectories

of animals in a large farming area, it is possible to determine migration patterns of certain

groups of animals. In sports videos, it is quite useful for coaches or sports researchers

to know the movement patterns of top players. In a store surveillance video monitoring

system, finding the movement patterns of customers may help in the arrangement of mer-

chandise. In a financial data analysis application, finding the sales volume data which

have some specific patterns may help marketing people predict sale cycle patterns. All

these applications are closely related to finding similar time series or trajectory data from

a database. For example, the following query is quite common in a stock analysis system:

“Give me all stock data from last month that is similar to IBM’s stock data from the

same period”. As shown in Figure 1.1, the query is looking for the stock data within the

boundaries that are described by two dashed curves.

Definition 1.1 A time series or trajectory R is defined as a sequence of pairs:

R = [(t1, r1) . . . , (tN , rN)] (1.1)

1
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Figure 1.1: A query example on stock time series data

where N , the number of sample timestamps in R, is defined as the length of R and ri is a

vector of arity d that was sampled at timestamp ti.

The difference between time series and trajectory data is that vectors of most time

series are one dimensional (d = 1), while vectors of trajectory data are often two or

more dimensional (d ≥ 2). A second difference is that in some applications, the time

dimension (ti) of trajectories is important. For example, in spatio-temporal databases,

time components of trajectories are important to answer time slice or time interval queries

[115, 73, 103, 81, 101]. The following are examples of time slice queries and time interval

queries, respectively [115]:

• Search the objects within a rectangle R at time ti (time slice);

• Search the objects within a rectangle R from ti to tj (time interval).

However, in the case of similarity-based retrieval, the focus is on shapes of time series

or trajectories. Sequences of sampled vectors are important in measuring the similarity

between two time series or trajectories. Thus, in this thesis, time components of time
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series and trajectory data can be ignored in measuring the similarity of time series or

trajectory data. In the rest of the thesis, the terms time sequence and time series are used

interchangeably.

As demonstrated by the above example query, a major problem of similarity-based

retrieval is the definition of “similarity” of two data items. This is based on a distance

function.

Definition 1.2 Given a data space D defined on time series or trajectory data and any

two data x, y ∈ D, a distance function, dist, on D is defined as:

dist : D ×D → R (1.2)

where R is the real data set and dist has the following properties:

• dist(x, y) ≥ 0 (nonnegativity);

• dist(x, y) = 0 ⇔ x = y (reflexivity);

• d(x, y) = d(y, x) (symmetry).

Definition 1.3 Given a data space D, and x, y, z ∈ D, along with a distance function dist

on D, x is similar to y if dist(x, y) ≤ ε, where ε is a predefined threshold.

A distance function directly affects the matching quality of the retrieved results, such

as the accuracy of classification and clustering. The distance function is application and

data dependent, and needs to be carefully designed to meet application requirements.

A second problem related to similarity-based retrieval is how to improve retrieval effi-

ciency. The total execution time of a query can be expressed as:

T = number of distance computations× computation cost of dist() + I/O time (1.3)

The I/O time cost in the above equation is the sequential (linear scan) or random

(searching indexes) disk access time. With the growth in database size, sequential scan is

not practical, and it is necessary to design efficient indexing algorithms to reduce both the

number of distance evaluations and the I/O cost.
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1.2 Problem Statement

Based on the search criteria, similarity-based queries over time series and trajectory data

are classified into two types:

1. Pattern existence queries: Given a time series or trajectory database D and a query

pattern QP , find all the time series or trajectories in D that contain the specified

pattern QP .

2. Shape match queries: Given a time series or trajectory database D and a query

time series or trajectory Q, find all the time series or trajectories in D that have a

movement shape similar to that of Q.

In pattern existence queries, as long as the time series or trajectory data have the

specified pattern, they will be retrieved, no matter when the pattern appears and how it

appears. For example,

• “Give me all the stock data of last month that have a head and shoulder pattern”; or

• “Give me all the temperature data of patients in the last 24 hours that have two

peaks”.

The second query, for example, is used to detect “goalpost fever”, one of the symptoms

of Hodgkin’s disease, in the temperature time series data that contain peaks exactly twice

within 24 hours [95]. Figure 1.2(a) shows an example time series with two peaks. Using

this as query pattern, a two peaks existence query should retrieve various time series that

contain two peaks as shown in Figure 1.2(b). Therefore, for pattern existence queries, the

important thing is the existence of the specified pattern in time series data.

Different from pattern existence queries, shape match queries look for the time series

data that have similar movement shapes. For example,

• “Give me all stock data of last month that is similar to the IBM’s stock data of last

month”.
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Figure 1.2: A pattern existence query on two peaks

As shown in Figure 1.1, the stock data within the boundaries (described by two dashed

curves) of IBM stock data are searched. Most of the previous work focus on solving shape

match queries [3, 31, 37, 88, 118, 57, 52, 14, 119].
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In this dissertation, both types of queries are studied with respect to the two key issues,

namely the design of a distance function and the development of techniques to improve

the retrieval efficiency.

Several assumptions are made about time series or trajectory data that are considered.

First, time series and trajectory data are not required to be sampled at the same rate.

For each time series or trajectory, the width between a pair of time points ti and ti+1 is

not necessarily the same as the width between any other pair [19]. Interpolation is not

necessary for the proposed distance functions or retrieval techniques, unless applications

require it.

Second, there is a strong requirement that pruning or indexing methods should reduce

(if possible, eliminate) false candidates, but should not lead to false dismissals. The false

dismissals are defined as data that are missed by the search method, but should be in the

result of a query. False candidates are defined as data that should not be retrieved as

answers to a query, but are retrieved by the search method.

Third, the techniques should be able to deal with various types of disturbances, such

as time shifting and noise. Time shifting may be caused by different sampling rate, and

noise may be introduced by sensor failures, errors in detection techniques, and disturbance

signals. Data cleaning is not always possible, since this would generally require domain

knowledge that may not be readily available.

1.3 Background and Motivation

Significant research has been carried out on similarity-based search over time series and

trajectory data, both in distance functions and their efficient evaluation. These works are

discussed in Chapter 2 in detail. Nevertheless, there is a need for further investigation of

this topic.

To answer pattern existence queries, several approximation approaches have been pro-

posed to transform time series data to character strings over a discrete alphabet and apply

string matching techniques to find the patterns [4, 95, 85]. In these approaches, best line

fitting algorithms have been used to convert a time series to a sequence of linear approxi-

mations (as shown in Figure 1.3, the query time series Q is approximated by a sequences
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of line segments). Then, the slope of each line segment is mapped into a symbol according

to a predefined mapping table (e.g. Table 1.1) and consecutive symbols are connected

together to form a word1. Finally, these words are checked to see whether they match

query pattern QP , which is specified by a regular expression. According to the example

of converted line segments and the mapping table, the regular expression of the query

example for retrieving time series that contain two peaks can be F ∗U+D+F ∗U+D+F ∗.

0 20 40 60 80 100 120 140
−8

−6

−4

−2

0

2

4
Q
best fitting lines

Figure 1.3: An example of converting Q into line segments

Slope symbol Slope partiton

U(Up) (tan(π/6),∞)

F(flat) [tan(−π/6), tan(π/6)]

D(Down) (−∞, tan(−π/6))

Table 1.1: An example of mapping quantized slope subspaces into symbols

However, the above transformation process is sensitive to noise. Furthermore, because

of the quantization of the value space for transforming time series data into strings, data

1There are many other approaches to convert time series to their symbolic representation; they will be
discussed in Section 2.2.2.
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points located near the boundaries of two quantized subspaces may be assigned to different

symbols (e.g. given an arbitrary small value ε, tan(π/6) − ε and tan(π/6) + ε are in two

different value ranges according to Table 1.1). As a consequence, they are considered to

be different by string comparison techniques.

Most of the previous research on similarity search over time series and trajectory data

focus on answering shape match queries. The pioneering work by Agrawal et al. [3] used

Euclidean distance to measure similarity. Discrete Fourier Transform (DFT) was used as

a dimensionality reduction technique for time series data, and an R-tree [38] was used as

the index structure. Faloutsos et al. [31] extended this work to allow subsequence match-

ing and proposed the GEMINI framework for indexing time series. GEMINI reduces the

dimensionality of the original space and uses a lower bound on the true distance of the

original space to guarantee no false dismissals when an index is used as a filter. Subsequent

work have focused on two main aspects: new dimensionality reduction techniques (assum-

ing that Euclidean distance is the similarity measure); and new approaches for measuring

the similarity between two time series.

Examples of dimensionality reduction techniques include Single Value Decomposition

(SVD) [53, 58], Discrete Wavelet Transform (DWT) [59, 82], Piecewise Aggregate Approx-

imation (PAA) [53, 117], Adaptive Piecewise Constant Approximation (APAC) [52], and

Chebyshev Coefficients [19]. However, these techniques can admit a high percentage of

false positives due to their loose lower bounds [23]. If the distance measure is a metric

distance function, then existing indexing structures proposed for metric distance functions

may be applicable. Examples include the MVP-tree [15], the M-tree [26], the SA-tree [75],

and the OMNI-family of access methods [32]. Therefore, developing a tighter lower bound

for an existing or new distance function and combining the virtues of pruning by lower

bounding and triangle inequality are still challenging topics.

As mentioned before, the design of a distance function is application and data de-

pendent. Several distance functions have been proposed for different application, such as

Euclidean distance [3, 31, 87, 53], Dynamic Time Warping [12, 118, 57, 52], and Longest

Common Subsequences [13, 108]. Euclidean distance requires the time series to have the

same length, which restricts its applications. Dynamic Time Warping (DTW) can handle

sequences with different lengths and local time shifting, but it does not follow triangle



Introduction 9

inequality, which is one of important properties of a metric distance function (discussed in

detail in Chapter 2). Since most of the indexing structures assume that the underlying dis-

tance functions follow triangle inequality, DTW is non-indexable with current techniques.

Furthermore, Euclidean distance and DTW are sensitive to noise, thus, they are not suit-

able for data that contain noise. Longest Common Subsequence (LCSS) is proposed to

handle possible noise that may appear in data; however, it ignores the various gaps in be-

tween similar subsequences, which leads to inaccuracies. Therefore, a robust and accurate

metric distance function is needed.

Finally, there are no approaches that have been proposed to answer both pattern exis-

tence and shape match queries. To satisfy applications that need answers from both types

of queries, different representations, distance functions and retrieval methods have to be

combined, which may cause storing redundant data and reducing the retrieval accuracy

and efficiency.

In this thesis, the above problems are studied and the following solutions are proposed:

1. A novel representation of time series data called multi-scale time series histograms

to answer both types of queries over time series data;

2. A metric distance function that can handle local time shifting;

3. A distance function that can handle data that contain local time shifting and noise;

and

4. Indexing and pruning methods for efficient retrieval of time series and trajectory

data.

1.4 Contributions

The major contributions of this dissertation are four-fold:

1. A novel representation of time series data, called multi-scale time series histograms

(MSTSH), is proposed to answer two types of queries over time series data: pattern

existence queries and shape match queries. As indicated in the previous subsection,
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most of the earlier works have addressed either one of these query types, but not

both. The presence of multiple scales (levels) enables querying at multiple precision.

Most importantly, the distances of time series histograms at lower scales are lower

bounds of the distances at higher scales, which guarantees that no false dismissals

will be introduced when a multi-step filtering process is used to answer shape match

queries. The evaluation algorithm uses averages of time series histograms to reduce

the dimensionality and avoid computing the distances of full time series histograms.

2. A metric distance function, called Edit distance with Real Penalty (ERP), is designed

that can support local time shifting. In many applications, such as speech recognition

[3, 31] and music retrieval [119], sequences are required to do a flexible shifting of

the time axis to accommodate sequences that are similar but out of phase. In these

applications, Euclidean distance cannot be applied. Even though DTW can be used

in these cases, it does not follow triangle inequality, which makes it non-indexable by

traditional access methods. ERP is proposed to handle local time shifting issues and

it is proved to be a metric distance function, which makes it indexable. Benchmark

results show that ERP is natural for time series data.

3. A framework is proposed to index time series or trajectory data under a metric

distance function. Given a metric distance function, besides following the GEM-

INI framework that applies dimensionality reduction techniques and defines lower

bounding distances, triangle inequality can also be used to prune the search space.

The indexing framework applies both lower bounding and triangle inequality, and

performs better than applying only lower bounding or triangle inequality.

4. A second distance function, called Edit Distance on Real sequence (EDR), is defined

to measure the similarity between two time series or trajectory data that contain

local time shifting and noise. EDR is based on edit distance on strings. Through a

set of objective tests on benchmark data, it is shown that EDR is more robust than

Euclidean distance, DTW, and ERP, and is more accurate than LCSS when it is

used to measure the similarity between time series or trajectories that contain noise

and local time shifting. Three pruning techniques are developed – mean value Q-

grams, near triangle inequality, and histograms – to improve the retrieval efficiency of
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EDR. Unlike the pruning methods proposed for LCSS [108] or DTW [52], these three

pruning methods do not require setting constraints on warping length (or matching

region) between two trajectories and, therefore, offer users more flexibility.

1.5 Organization of Thesis

The rest of the thesis is arranged as follows. A survey of related work with particular

focus on distance functions and efficient retrieval mechanism is provided in Chapter two.

Applying multi-resolution time series histograms to answer both pattern existence queries

and shape match queries is discussed in Chapter three. In Chapter four, the Edit distance

with Real Penalty (ERP) is introduced to handle data with local time shifting and perfor-

mance results are provided that demonstrate superiority of combined indexing structures.

In Chapter five, the other distance function, Edit Distance on Real sequence (EDR), is de-

fined that handles the cases where data contain both local time shifting and noise. Finally,

Chapter six presents conclusions and proposes future research topics.



Chapter 2

Related Work

As indicated in Chapter 1, two key issues have to be addressed for similarity search over

time series and trajectory data: selection or design of a distance function and efficient

retrieval techniques. This chapter focuses on related work on these two topics. Before

discussing the work on these two topics, a brief overview of different classification schemes

on similarity-based search over time series and trajectory data is given in Section 2.1.

Section 2.2 presents distance functions that have been proposed to measure the similarity

between time series or trajectory data. Dimension reduction techniques and metric space

indexing techniques which have been used to improve the retrieval efficiency are reviewed

in Section 2.3. An excellent survey of metric space indexing techniques has recently been

published [22]; therefore, detailed comparison of metric space indexing structures are not

discussed in this chapter.

2.1 Classification of Similarity-based Search

Figure 2.1 summarizes the main symbols used in the following discussions and in the rest

of this thesis.

In general, similarity-based search can be classified into two types: range queries and

k-nearest neighbour queries. This classification is not limited to time series and trajectory

data, it is applicable to other data types, such as image, video, audio, and text.

12
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Symbols Meaning

D a set of time series of trajectory data

S,R, Q, T time series or trajectories, e.g. S = [(t1, s1), . . . , (tN , sN )]

|R| the length of time series data R

M, N the length of a time series data

(ti, si) the ith element of S

dist a distance function on D
si ith element vector of S

si,x the x coordinate of ith element vector of S

r a constant real number for query range

x, y, z data belong to a defined data space D
τ number of histogram bins

δ scale level of histograms

ε a real value for matching threshold

wr the warping rang in dynamic time warping

v staring shifting position

g a gap introduced in Edit Distance definition

Rest(S) the subsequence of S without the first element: [(t2, s2), . . . , (tN , sN )]

first(S) the first element of sequence of S

last(S) the last element of sequence S

S̃ S after alignment with another series

DLB a lower bound of the distance

HR,HS , HT histograms of time series or trajectories, e.g. HS histograms for sequence S

L the D size or the database size

W a vector of weights for different elements of a sequence

Figure 2.1: Meanings of symbols used
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1. Range query: Given a data space D, a distance function dist defined on D, a query

data Q, and a range r ≥ 0, retrieve all data in D that are within distance r to the

query data Q.

Range(Q, r)dist = {R ∈ D|dist(Q,R) ≤ r} (2.1)

2. k-nearest neighbor query (k −NN): Given a data space D, a distance function dist

defined on D, a query data Q and k ≥ 1, retrieve the k closest data to Q in D.

k −NN(Q)dist = {A ⊆ D|∀R ∈ A, S ∈ D − A, dist(R, Q) ≤ dist(S,Q) ∧ |A| = k}
(2.2)

In chapter 1, similarity-based search over time series and trajectory data is classified

into pattern existence queries and shape match queries. This classification is orthogonal to

the k-NN and range query classification given above. Pattern existence and shape match

queries can be range queries or k-NN queries.

There is another classification of similarity-based queries based on search length. In

this classification, the queries are classified into two types: whole matching and subsequence

matching [31].

• Whole matching queries: Given a data set D of time series or trajectories of

length N , a distance function dist, a query time series or trajectory Q of the same

length, and a real value r ≥ 0, find all the time series or trajectories in D that are

within distance r to Q. In whole matching queries, query sequence and sequences in

D must have the same length N .

Wholematch(Q, r)dist = {R ∈ D|dist(R, Q) ≤ r and |R| = |Q|} (2.3)

where |R| returns the length of sequence R.

• Subsequence matching queries: Given a data set D of time series or trajectories

of arbitrary lengths, a query time or trajectory Q whose length is less than the

minimum sequence length in D, a distance function dist, and a real value r ≥ 0,
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find all the time series or trajectories, one or more subsequences of which are within

distance r to Q.

Subsequencematch(Q, r)dist = {R ∈ D|dist(R[v : (v + |Q| − 1)], Q) ≤ r} (2.4)

where |Q| ≤ |R|, v is a starting position of the subsequence, and R[v : (v + |Q| − 1)]

is the subsequence of R that starts from v and ends at v + |Q| − 1.

By putting a sliding window of length |Q| at every possible offset of each data se-

quence R and using this subsequence to compare with Q, subsequence matching can

be converted into whole matching. However, this conversion will generate nearly |R|
subsequences for each R, which will increase the storage requirement and the height

of the R∗-tree that is used to index the subsequences. Several attempts have been

made to solve this problem, such as using minimum bounding rectangles (MBRs) to

store the subsequences that are adjacent to each other [31], dural match [70], which

divides each data sequence R into disjoint windows and query sequence Q into slid-

ing windows, and general match [69], which divides each data sequence R into J

sliding windows (the sliding step is J) and dividing query sequence Q into J disjoint

windows (number of disjoint window sequences is J).

Compared to the classification of whole matching and subsequence matching, classifying

queries into pattern existence and shape match queries is more general. This is because

whole matching and subsequence matching assume that the underlying distance function

is Lp-norm (as will be defined in next section) and require sequences (or subsequences)

having the same length with that of query data, which limits their usability. In many

applications, such as music retrieval [119], video and image sequence analysis [78, 14]

and speech recognition [12], time series or trajectory data usually have similar shapes

but different lengths due to different sampling rates. Therefore, in this thesis, pattern

existence and shape match queries are studied. Regardless of the types of queries, the two

key issues, namely distance function selection and efficient retrieval techniques, remain the

same. Existing work on these two issues will be reviewed in next two sections.
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2.2 Data Representation and Distance Functions

Data representation formats and distance functions are closely related to each other, there-

fore, current techniques on these two issues are reviewed together. Generally, these tech-

niques can be classified into two main categories: distance functions on raw representations

and distance functions on other representations.

2.2.1 Distance Functions on Raw Representation

As defined in Chapter 1, a time series or trajectory data can be represented as a sequence

of pairs, R = [(r1, t1), (r2, t2) . . . , (rN , tN)]. R is called raw representation of the time

series data. Many distance functions have been proposed based on raw representation.

The definitions of distance functions presented in this section use one dimensional time

series data (d = 1) as an example, but they can be easily extended to multi-dimensional

trajectory data.

Definition 2.1 Lp-norm: Given two time series R and S of the same length N , the Lp-

norm distance between R and S is:

Lp − norm(R, S) = p

√√√√
N∑

i=1

(ri − si)p (2.5)

L1-Norm (p = 1) is named the Manhattan distance or city block distance, L2-Norm

(p = 2) is known as the famous Euclidean distance, while in the extreme case when p = ∞,

it is called the maximum norm and can be redefined as follows:

L∞ − norm(R,S) = maxN
i=1(|ri − si|) (2.6)

A variant of Lp-norm, called weighted Lp-norm is defined as:

Lp − norm(R,S, W ) = p

√√√√
N∑

i=1

wi(ri − si)p (2.7)
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Point Correspondence, Distance 
eu

 = 8.6871

(a) Using Euclidean distance

(b) Using DTW

Figure 2.2: Point correspondence when two similar time series contain local time shifting

where W is a vector (a matrix for multi-dimensional trajectory data) of weights for different

elements of time series.
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Euclidean distance is the first distance function that was introduced for similarity search

of time series data in database literature [3, 31]. It has the advantage of being easy

to compute and the computation cost is linear in terms of sequence length. However,

Euclidean distance requires that the two time series be of the same length and it does not

support local time shifting. Local time shifting occurs when one element of one sequence is

shifted along the time axis to match an element of another time sequence (even when the

two matched elements appear in different positions in the sequences). This is useful when

the sequences have similar shape but are out of phase. It is called “local”, because not all

of the elements of the query sequence need to be shifted and the shifted elements do not

have the same shifting factor. By contrast, in “global” time shifting, all the elements are

shifted along the time axis by a fixed shifting factor. Generally, local time shifting cannot

be handled by Lp-norm, because Lp-norm requires the ith element of query sequence be

aligned with the ith element of the data sequence. Figure 2.2(a) shows an example on how

elements from two time series could be matched when Euclidean distance is computed in

the presence of local time shifting.

Dynamic Time Warping (DTW), which is widely used in speech recognition [45, 60, 72,

86, 92, 102], is introduced to handle local time shifting [12, 118, 57, 52] and time sequences

with different lengths.

Definition 2.2 The DTW distance between two time series R and S of lengths M and N ,

respectively, is defined as:

DTW (R,S) =





∞ if M =0 or N= 0

dist(r1, s1) + min{DTW (Rest(R), Rest(S)),

DTW (Rest(R), S), DTW (R, Rest(S))} otherwise

(2.8)

where dist(r1, s1) = |(r1 − s1)| and Rest(R) means the subsequence R without the first

element, [(t2, r2), . . . , (tM , rM)].

The distance function dist that measures the distance between two elements can be

one of Lp-norms. L1-norm is used here as an example.

DTW does not require that the two time series data have the same length, and it

can handle local time shifting by duplicating the previous element of the time sequence.
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Matching examples are shown in Figure 2.2(b) for DTW. In Figure 2.2(b), two time series

data are similar to each other in terms of overall shape; DTW allows some elements to

be be replicated (e.g. the data points marked out by small circles) to accommodate the

cases where elements are similar but out of phrase (time-wise). Comparing Figures 2.2(a)

and 2.2(b) reveals how DTW can handle local time shifting whereas Euclidean distance

cannot.

However, in the best case, the computation cost of DTW is quadratic, O(M ∗ N) (M

and N are the lengths of two compared time series, respectively), with dynamic program-

ming; therefore, when the database size increases, enormous time requires to be spent on

computing DTW to answer a query unless some indexing methods can be used to save the

number of computations. Unfortunately, DTW does not follow triangle inequality, which

makes many indexing structures based on triangle inequality, such as VP-trees [105], M-

trees [26], Sa-tree [75], and OMNI-family of access methods [32], not applicable to DTW.

Before giving the proof that DTW does not follow triangle inequality, the idea of using

triangle inequality to remove false candidates is illustrated. A distance function dist defined

on a data space D satisfies triangle inequality, if and only if

∀Q,R, S ∈ D, dist(Q,S) + dist(R,S) ≥ dist(Q,R) (2.9)

By rewriting inequality 2.9, dist(Q,S) ≥ dist(Q,R) − dist(R,S) can be derived. If

dist(Q,R) and dist(R, S) are known, dist(Q, R) − dist(R, S) can be treated as a lower

bound distance of dist(Q,S). If the current query range is r and dist(Q,R)−dist(S, R) > r,

the computation of dist(Q,S) can be saved since S does not belong to the answer set. This

is the basic principle that most of distance-based indexing structures follow.

Theorem 2.1 DTW does not follow triangle inequality.

Proof. By a counter example. Given three time series data, Q = [0], R = [1, 2] and S =

[2, 3, 3], then DTW (Q,R) = 3, DTW (R, S) = 3, and DTW (Q,S) = 8 > DTW (Q,R) +

DTW (R,S) = 3 + 3 = 6. ¤
Longest Common SubSequences (LCSS) is proposed to handle time series data that

may contain possible noise [13, 108]. The noise could be introduced by hardware failures,

disturbance signals, and transmission errors. The intuition of LCSS is to remove the noise

effects by only counting the number of matched elements between two time sequences.
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Definition 2.3 The LCSS score of two time series R and S of lengths M and N , respec-

tively, is defined as:

LCSS(R, S) =





0 if M = 0 or N = 0

LCSS(Rest(R), Rest(S)) + 1 if dist(r1, s1) ≤ ε

max{LCSS(Rest(R), S),

LCSS(R, Rest(S))} otherwise

(2.10)

where dist(r1, s1) = |(r1 − s1)| .

In the definition of LCSS, instead of using distance, “score” is used. Thus, the higher

the score, the more similar are two time series. The LCSS score can be converted into

distance using the following formula:

LCSSdist(R, S) = 1− LCSS(R, S)

min(|R|, |S|) (2.11)

In LCSS, a matching threshold ε has to be set up to determine whether or not two

elements match. LCSS can handle noise, because the matching threshold quantizes the

distance between two elements to two values, 0 and 1, which removes the larger distance

effects caused by noise. The effect is shown by the following example.

Consider a query time series Q = [1, 2, 3, 4] that will be matched with three other time

sequences:

• R = [10, 9, 8, 7],

• S = [1, 100, 2, 3, 4],

• T = [1, 100, 101, 2, 3, 4].

The second element of S as well as the second and third elements of T are noise (their

values are “abnormal” compared to the values near them). The correct ranking in terms

of similarity to Q is: S, T, R, since, except noise, the rest of the elements of S and T match

the elements of Q perfectly. The ranking results with Euclidean distance and DTW are

the same, which is: R,S, T . However, even from general movement trends (subsequent

values increase or decrease) of the two trajectories, Q and R are quite different time series

compared to Q and S. Euclidean distance and DTW are sensitive to noise because:
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• Euclidean distance and DTW require each element of the query sequence have a

corresponding element in the matched sequence, even for noise.

• Lp-norm is used to measure the distance between two individual elements and noise

may have large effect on Lp-norm of two time sequences.

The above example shows that noise can cause similar time sequences to be treated as

dissimilar when noise-sensitive distance functions are used. Assuming ε = 1, LCSS ranks

three time sequences in terms of their similarities to Q as S = T,R (“=” means that S and

T have the same distance to Q). LCSS works better than Euclidean distance and DTW

on this example because the large distance difference introduced by “noise”, such as 100

to 2 for Euclidean distance, is quantized to 0 by the threshold ε.

Matching examples are shown in Figure 2.3 for DTW and LCSS. Comparing Figures

2.3(a) and 2.3(b) shows that DTW requires all the elements match each other while LCSS

only counts the “common” elements, making it robust to noise.

However, LCSS does not differentiate time series with similar subsequences but various

gap differences between similar subsequences, which leads to inaccuracies. Here the gap

differences refer to subsequences in between two identified similar components of two time

series. As shown in Figure 2.4, two time series data may have exactly the same LCSS

distance to the query sequences, but, they may have quite different sizes of gap in between

the similar subsequences. Therefore, even though LCSS can handle noise, it sacrifices too

much accuracy for that and it is definitely not a good solution for handling noise [25].

Similar to DTW, in the best case, the computation cost of LCSS is quadratic as well.

Furthermore, LCSS does not follow triangle inequality, which also causes it to be non-

indexable by most of the distance-based indexing methods.

Theorem 2.2 LCSS does not follow triangle inequality.

Proof. By a counter example. Given three time series data, Q = [0], R = [1, 2] and

S = [2, 3, 3], and ε = 1, then LCSS(Q, R) = 1, LCSS(R, S) = 2 and LCSS(Q,S) = 0.

Therefore, LCSS(Q,R) + LCSS(Q,S) = 1 + 0 = 1 < LCSS(R,S) = 2. ¤
Table 2.1 is a comparison of the three distance functions based on six criteria: ability

to handle sequences with different lengths, ability to handle sequences with local time
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dtw

 = 4.0561

(a) Using DTW
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Point Correspondence, Distance 
lcss[ε =0.5]

 = 0.25

(b) Using LCSS

Figure 2.3: Point correspondence when two similar time series contain noise

shifting, ability to handle sequences that contain noise, whether a matching threshold is

needed, computation cost, and whether the distance function is a metric.

From Table 2.1, the following observations can be made:
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(a) Using LCSS
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gap gap 

(b) Using LCSS

Figure 2.4: Point correspondence for LCSS on sequences with different sizes of gap in

between

• The computation cost of Lp-norm is linear and it is a metric, but it cannot handle

time series data with different lengths, local time shifting, or noise.
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Distance

Function

Different

Lengths

Local

Time

Shifting

Noise Setting

Matching

Thresh-

old

Computation

Cost

Metric

Lp-norm No No No No O(N) Yes

DTW Yes Yes No No O(N2) No

LCSS Yes Yes Yes Yes O(N2) No

Table 2.1: Comparison among three distance functions on raw representations of time

series data

• The computation cost of DTW and LCSS are quadratic, and they are not metric

distance functions; it is not possible to improve the retrieval efficiency with distance-

based access methods.

• DTW can handle time sequences with different lengths and local time shifting, but

it is sensitive to noise.

• LCSS needs a predefined matching threshold to handle noise; it can also handle time

sequences with different lengths and local time shifting.

2.2.2 Distance Functions on Other Representations

Besides raw format representation, there are several other representations, together with

distance functions, to measure the similarity between time series. These representations

are proposed either for particular applications, such as financial data analysis [110], or for

the purpose of dimensionality reduction [54].

Piecewise Liner Approximation and Distance Functions

Piecewise linear approximation (PLA) has been proposed as a useful form of data com-

pression and noise filtering [79]. It approximates the time series data as a sequence of

linear functions (lines) as shown in Figure 2.5. One of the key issues with PLA is how to
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optimally segment the time series into subsequences which can be approximated by linear

functions. Many algorithms have been proposed [95, 85, 56], but, since the solution in-

volves a tradeoff between accuracy and data compression ratio, it still remains as an open

problem. As shown in Figure 2.5, with different allowance errors, the same time series

data can be approximated by different number of line segments. There are several distance

functions that have been proposed for PLA.

1. Probabilistic Distance.

Keogh and Smyth [56] propose a probabilistic model which is based on PLA represen-

tation of time series data. First, the time series data (including query time series) are

segmented and PLA is used to represent the data. Then, a set of local features (such

as peaks, troughs, and plateaus) are extracted from the time series data to describe

the characteristics of the data. Finally, the overall distance is computed based on the

local features and relative positions of individual features. The computation cost of

proposed distance function is O((N
s
)Qf ), where N is the number of data points in the

data sequence, s is the scaling factor, which records number of data points in each

sub-segment, and Qf is the number of local features in each query sub-segment. The

computation cost of the distance function is exponential. Even with some heuristic

search methods [56], the computation cost is still quadratic.

2. Modified Lp-Norm distance

Morinaka et al. [71] propose a modified Lp-norm distance on PLA representation in

order to quickly find the approximate answers without false dismissals. In this con-

text, PLA works not only as a representation, but also as a dimensionality reduction

technique (this will be discussed in detail in Section 2.3.1). In order to avoid false

dismissals, the modified Lp-norm distance is compensated by the value of potential

approximation error deviation of a line segment. The computation cost of the dis-

tance function is linear. However, no indexing structures have been designed for this

distance function.
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(b) best fitting lines with allowance error δ = 0.9
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Figure 2.5: Piecewise linear approximation lines for Cylinder data with different allowance

error

Frequency Transformation Representation and Distance Functions

Most of the frequency transformation representations, such as Discrete Fourier Trans-

formation (DFT), and Discrete Wavelet Transformation (DWT), are mainly treated as
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dimensionality reduction techniques, and Lp-norm is applied to the transformed represen-

tations to measure their similarity. The details of these transformations will be discussed

in Section 2.3.1 under dimensionality reduction techniques. In this section, the distance

functions on these transformed representations are reviewed. According to Parseval’s The-

orem [77], which states that DFT preserves the energy of a signal, Euclidean distance on

the first few DFT coefficients is a lower bound of the distance in the original time sequence

space [31]. Therefore, no false dismissals are introduced when answering queries with an

index structure (e.g. R-tree [38]) that is created on the first few DFT coefficients.

Compared to DFT, DWT coefficients describe properties of time sequence both at var-

ious locations and at various time granularity. Each time granularity here refers to the

level of detail that can be captured by DWT (the whole sequence or the subsequences).

Therefore, DWT is more often used as a representation scheme rather than as as a pure di-

mensionality reduction technique. Besides computing Euclidean distances on transformed

DWT coefficients to measure the similarity [82, 59], several other distance functions are

proposed on DWT coefficients.

Huhtala et al [41] propose a probability-based measure derived from the cosine sim-

ilarity. The inverse angle probability of two Haar wavelet coefficient vectors [42] x =

〈x1, . . . , xn〉 and y = 〈y1, . . . , yn〉 is defined as:

iap(x, y) = −ln(Pr(sim(x, x̂) ≤ sim(x, y))) (2.12)

where sim(x, y) = |x1y1 + . . .+xnyn| and x̂ is a random vector generated by choosing each

value independently from the same normal distribution with zero mean. The inverse angle

probability overcomes the problem that cosine similarity cannot reflect the significance of

a particular value when the significance depends on dimensionality of the vectors.

Struzik and Siebes [98] propose a weighted correlation distance function on transformed

Haar wavelet coefficients of time series data which has been experimentally demonstrated

to be closely related to the subjective “feeling” of the similarity of time series. Given two

Haar wavelet coefficient vectors x = 〈x1, . . . , xn〉 and y = 〈y1, . . . , yn〉 of two time series

data, the weighted correlation between x and y is defined as:

C(x, y) =
n∑

i,j=0

wixiwjyjδi,j (2.13)
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where δi,j = 1 iff i = j, and wi and wj are weights which depend on the respective scales i

and j.

The distance function between x and y is defined as:

dist(x, y) = −ln(| C(x, y)√
C(x, x)C(y, y)

|) (2.14)

Landmark and Important Points Representation and Distance Function

Researchers in psychology and cognitive science have observed that humans, to some extent,

consider two charts similar if their landmarks (turning points) are similar. Perng et. al

[80] define a landmark model for time series data, where points (times, events) of greatest

importance are captured and stored. Depending on the application, important points of

time series can range from simple predicates (e.g. local maxima or local minima) to more

sophisticated formats (e.g. a point is nth order landmark of a curve if the nth derivative is

0 on that point). These important points are used to measure similarity between two time

series.

Given two sequences of landmarks LR = [LR
1 , . . . , LR

n ] and LS = [LS
1 , . . . , LS

n] of time

series R and S, respectively, where LR
i = (tRi , xR

i ) and LS
i = (tSi , xS

i ), the distance between

the kth landmarks is

distk(L
R, LS) = (δtime

k (LR, LS), δamp
k (LR, LS)) (2.15)

where

δtime
k (LR, LS) =

{ ‖(tRk −tRk−1)−(tSk−tSk−1)‖
(‖tRk −tRk−1‖+‖tSk−tSk−1‖)

if 1 < k ≤ n

0 otherwise
(2.16)

δamp
k (LR, LS) =

{
0 if xR

k = xS
k

‖xR
k −xS

k ‖
(‖xR

k ‖+‖xS
k ‖)

otherwise
(2.17)

The distance between the two landmark sequences is

dist(LR, LS) = (‖δtime(LR, LS)‖, ‖δamp(LR, LS)‖) (2.18)
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where ‖¦‖ is a vector norm, δtime(LR, LS) = 〈δtime
1 (LR, LS), . . . , δtime

n (LR, LS)〉, and δtime(LR,

LS) = 〈δtime
1 (LR, LS), . . . , δtime

n (LR, LS)〉. However, the important point and feature (for-

mat of value representation, e.g. consecutive value difference, consecutive time difference,

and consecutive value difference ratio) selection is subjective, which directly affects the

effectiveness of matching quality.

ARIMA Model and LPC Cepstral Coefficient Representation and Distance

Function

In statistical analysis of time series data, a time series is considered to be a sequence of

observations of a particular variable. It consists of four components: a trend, a cycle,

a stochastic persistence component, and a random element [90]. The four components

can be captured by an Auto-Regressive Integrated Moving Average (ARIMA) model [113].

Therefore, the similarity between time series data can be modelled by the similarity between

two corresponding ARIMA models. The advantage of using this model is that it requires

a few fixed number of parameters compare regardless of the lengths of time series.

Autocorrelation functions (ACFs) and partial autocorrelation functions (PACFs) are

usually used to determine models to which time series data belong. Thus, time series with

similar ACFs or PACFs are likely to belong to the same statistical model. Wang et al.

[110] propose to use ACFs and PACFs to represent time series data and measure similarity

between two ACFs or PACFs using Euclidean distance. If the distance is smaller than

a predefined threshold, two ACFs or PACFs will have the similar shapes or movement

patterns, and the two time series represented by ACFs or PACFs are similar.

Kalpakis et al. [50] propose using Euclidean distance between Linear Predictive Coding

(LPC) centrums of two ARIMA models to measure the similarity between two time series

data. They prove experimentally that using LPC centrum is more effective and efficient

than applying DFT, DWT, and PCA (Principle Component Analysis) on ARIMA models

in tasks that involve clustering of time series data.

Symbolic Representation and Distance Function

Since many distance functions, algorithms, and data structures have been developed for

strings, it is intuitive to consider the possibility of converting real valued time series data
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into symbolic representation and applying string matching techniques to time series re-

trieval. Agrawal et al. [4] propose SDL, which is a language for describing and retrieving

the “shape” of one dimensional time series. The “shape” is defined based on the differ-

ence of every pair of consecutive values, which is quantized and represented by a distinct

symbol of a predefined alphabet, such as the one in Table 1.1. Thus, a similarity-based

search over time series data is converted to a matching problem between the regular ex-

pression derived from a query time series and words transformed from time series data in

the database. Huang and Yu [43] propose an Interactive Matching of Patterns with Ad-

vanced Constraints in Time-series (IMPACT) method to transform time series data into

symbolic representation using change ratios between consecutive values. A general suffix

tree is used to index the strings. IMPACTS can handle dynamic query constraints with

different degrees of accuracy and dynamically specified combinational patterns. Lin et al.

[64] propose a symbolic representation of one dimensional time series data by first trans-

forming it into piecewise aggregate approximation (PAA) (PAA will be discussed in detail

in dimensionality reduction techniques). Then, the values of PAA are quantized and each

quantized region is mapped to a symbol. Finally, by connecting the mapped symbols of a

PAA sequentially, a time series is converted into a string.

Instead of mapping values, average values, and differences between values of time series

data to symbols, two other approaches are proposed to convert movement slopes of time

series data into symbols. Time series data are first segmented using the best line fitting

algorithms [95, 85], and then the movement slope of each line segment is quantized into a

symbol from a predefined alphabet. By connecting each symbol together according to its

appearance order, a string is derived from the time series data.

The distance measures for the above symbolic representation are either exact symbol

equality matching [4, 95, 85, 43] or modified Euclidean distance [64].

Signature Representation and Distance Function

The approaches that convert time series data into strings offer opportunities to apply text

indexing methods for similarity search over time series data. Andŕe-Jönsson and Badal

[7] propose using signature files to represent time series data. Time series data are first

converted into strings by quantizing amplitude differences into discrete symbols from a
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predefined alphabet [4]. Then, signature files are generated by sliding a window along each

string and mapping the text in the window into a number of signature bits. Similarly,

the query signature is generated from the query time series data. Finally, a linear scan is

carried out to search signature files in the database. The advantage of the approach is that

a signature file is very compact and searching of signature files can be done in linear time.

However, since signature files cannot avoid false candidates, the obtained results need to

be verified by conducting a similarity search on the original time series data, and because

of the loss in accuracy during the conversion from real value to a symbol, a lot of false

candidates will be introduced.

To summarize, besides raw representation, many other representations have been pro-

posed for time series data. These representations, together with distance functions pro-

posed on them, are developed for specific applications. It is hard (or unfair) to compare

them using a uniform benchmark data set in terms of their efficacy in capturing the char-

acteristics of time series or trajectory data, and efficiency in answering range queries or

k-NN queries. Nevertheless, these representation and distance functions provide hints for

possible solutions to generic applications.

2.3 Indexing Techniques

Most of the existing work on indexing time series data follows the GEMINI framework

[31]. The key point of GEMINI is the use of a lower bound in a lower dimensional space

of the true distance in the original space to guarantee no false dismissals when the index

is used as a filter. Several dimensionality reduction techniques have been proposed for

this purpose, such as DFT [3, 87], DWT [59, 82, 114], Single Value Decomposition (SVD)

[58], Piece-Wise Aggregate Approximation (PAA) [117, 53], Adaptive Piece-wise Constant

Approximation (APCA) [54] and Chebyshev Polynomials [19]. If the distance measure is

a metric, the metric space indexing structures that are proposed in the literature, such as

MVP-tree [15], M-tree [26], and Sa-tree [75], can be used to improve the search efficiency.

In the next two subsections, the dimensionality reduction techniques and the metric space

indexing structures for time series data are reviewed. A complete review of metric space

indexing is given in [22].
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2.3.1 Dimensionality Reduction Techniques

Since time components are not involved in the computation of distance functions defined

on raw representation of time series data, such as Lp-norm, DTW and LCSS, a one dimen-

sional time series data of length N can be simply treated as a sequence of N real values.

As a consequence, these N values can be considered as a data point in a N -dimensional

space. After this conversion, range queries and k-NN queries over time series data can be

executed efficiently by using spatial access methods (SAM), such as R-tree [38] and K-d

tree [10]. However, for time series data, N is usually in the hundreds or thousands, which

leads to the dimensionality curse problem [112], so that applying SAM to answer k-NN

or range queries will cost more than answering queries using linear scan. The common

solution to this problem is to apply dimensionality reduction techniques to reduce the di-

mensionality to a range (less than 20) which can be handled by SAM. The dimensionality

reduction techniques can be divided into two categories: exact and approximate dimen-

sionality reduction techniques. The exact dimensionality reduction techniques guarantee

that no false dismissals occur when queries are executed on the reduced dimensional space.

In order to achieve this, the distance function defined in the reduced dimensional space

must be the lower bound of the distance in the original space. The approximate dimen-

sionality reduction techniques do not guarantee no false dismissals, therefore, no lower

bounding distance function needs to be defined. Obviously, all the exact dimensionality

reduction techniques can be considered as approximate methods by removing the lower

bounding constraint. Within the context of this thesis only exact dimensionality reduction

techniques are relevant, since there is a strong requirement that no false dismissals occur.

All exact dimensionality reduction techniques should follow the following theorem in

order not to introduce false dismissals.

Theorem 2.3 (Lower Bounding Lemma [31]) To guarantee no false dismissals, a dimen-

sionality reduction technique F must satisfy:

distreduced−dimensional−space(F (O1), F (O2)) ≤ distoriginal−space(O1, O2) (2.19)

where O1, and O2 are the data points in the original space and dist is a distance function

that measures the distance between O1 and O2.



Related Work 33

Theorem 2.3 also indicates an efficiency measure for dimensionality reduction tech-

niques: the tightness of the lower bound distance. The tighter the lower bound distance to

the original distance, the fewer false alarms are introduced by the dimensionality reduction

techniques. Thus, the tightness of the lower bounding distance is an implementation-free

measure of dimensionality reduction techniques, since it is does not relate to any imple-

mentation details (such as whether or not the code is optimized). Since dimensionality

reduction techniques only deal with sampled vector values, time series data are simply

represented as sequences of values in the rest of this chapter.

Discrete Fourier Transform (DFT)

The Discrete Fourier Transform (DFT) is the first dimensionality reduction technique that

was introduced for indexing time series data [3]. DFT describes a time series by a set of

sine/cosine waves. A complex number, called a Fourier Coefficient, is used to represent

each wave. A time series data of length N can be decomposed into N sine/cosine waves

that can be combined into the original time series data. Since many of the waves have very

low amplitudes, DFT coefficients can be used to approximate the original time series by

discarding coefficients that have very low amplitudes.

Given a time series R = 〈r0, . . . , rN−1〉, its DFT is a sequence R = 〈r0, . . . , rN−1〉, where

rF =
1√
N

N−1∑
i=0

rie
−j 2πFi

N (2.20)

F = 0, . . . , N − 1, and j =
√−1.

The time sequence R can be recovered from R by Inverse Discrete Fourier Transform

(IDFT)

xi =
1√
N

N−1∑
F=0

rF ej 2πFi
N (2.21)

where i = 0, . . . , N − 1.

One of the properties of DFT is that it follows Parseval’s Theorem [79], which states

that DFT preserves the energy of the original sequence. The energy of a sequence is defined

as follows.
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Definition 2.4 Given a time sequence R, its energy E(R) is defined as the sum of energies

(square of the amplitude ri) at each point of the R:

E(R) =
N−1∑

0

‖ri‖2 (2.22)

Theorem 2.4 (Parseval’s Theorem)

N−1∑
i=0

|ri|2 =
N−1∑
F=0

|rF |2 (2.23)

Since DFT is a linear transformation [77], given two time sequences R and S, Parseval’s

Theorem also holds on Euclidean distance between two sequences.

L2 − norm(R,S) = L2 − norm(R, S) (2.24)

Thus, for dimensionality reduction purposes, only the first few n (n ¿ N) DFT co-

efficients are used to computed Euclidean distance, which is lower bound to Euclidean

distance on R and S. In other words, DFT satisfies the Lower Bounding Lemma, and no

false dismissals will be introduced.

Discrete Wavelet Transform

Discrete Wavelet Transform (DWT) has also been used as a dimensionality reduction

technique [59, 82, 114]. Compared to DFT, DWT is a multi-resolution representation

of time series data, and it can approximate time series from global sequences to local

subsequences. Furthermore, unlike DFT that only offers the frequency information, DWT

offers time-frequency location information.

In DWT, the basis of wavelets is a set of functions defined on real numbers R.

ψj,k(t) = 2j/2ψ(2jt− k) (2.25)

where 2j is the scaling (stretching) of t, and k is the translation (shift) on t.

Any signal (time series) f(t) ∈ L2 − norm space can be uniquely represented by the

following series, which is called wavelet transform of function f(t).
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f(t) =
∑

j,k∈Z

aj,kψj,k(t) (2.26)

where aj,k is called the DWT coefficient of f(t) and it can be calculated by the inner

products 〈ψj,k(t), f(t)〉.
The Haar wavelets are the most widely used wavelets in image [96], speech [1], and

signal [5] processing because they can be computed quickly (linear time cost) and they can

be easily used to illustrate the main features of wavelets. Haar wavelet transform is used

here as an example to show how the time series can be transformed to wavelets.

Haar wavelet transform can be considered a series of averaging and differentiating

operations on a discrete time function (a time series data). In these operations, the average

and difference between every two adjacent values of a time series is computed. For example,

given a time series R = [8, 6, 2, 4], the Haar wavelet transform is listed as follows:

Resolution Averages Coefficients

4 ( 8, 6︸︷︷︸, 2, 4︸︷︷︸)
2 ( 7, 3︸︷︷︸) (1, -1)

1 (5) 2

Haar wavelet transform of R is Harr(R) = [c, d0
0, d

1
0, d

1
1] = [5, 2, 1,−1], which is com-

posed of the last average value 5 and the coefficients. The rest of the coefficients (including

the original time series data) can be reconstructed by adding difference values to or sub-

tracting difference values from averages, recursively.

A lower bound distance has been defined on Haar wavelet transformed space, so Harr

wavelet transform follows the lowering bounding Lemma [59].

Theorem 2.5 Let R and S be two time series with the same length N (N is a power

of 2) and Harr(R) and Harr(S) be the Haar Transforms of R and S, respectively. Let

Harr(R) − Harr(S) = [C,D1, . . . , DN−1]. The Euclidean distance L2 − norm(R, S) =

Wlog2N can be recursively computed from [C, D1, . . . , DN−1] as follows:

W0 = C (2.27)
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Wi+1 =
√

2(W 2
i + D2

2i + D2
2i+1

+ . . . + D2
2i+1−1

) (2.28)

for 0 ≤ i ≤ log2N − 1

Corollary 2.1 If the first n (1 ≤ n ≤ N) dimensions of Haar transform are used, no false

dismissals will occur.

The above theorem and corollary only prove that Haar wavelet transform will not intro-

duce false dismissals. Popivanov and Miller [82] have proven that other wavelet transforms,

such as Daubechies wavelet transform [29], will not introduce false dismissals, either. How-

ever, there exist a discrepancy regarding the performance study of DWT. Chan and Wu

[59] claim that Haar wavelets outperform other wavelets such as Daubechies and Coiflet

wavelets, while Popivanov and Miller [82] find that Daubechies wavelets work better than

Haar wavelets. Thus, more work is required to test the performance of different types of

wavelets.

Single Value Decomposition

As a dimensionality reduction technique, Single Value Decomposition (SVD) has been

widely used in content-based retrieval of text documents [40], time series data [58] , and

image databases [76, 51]. The intuition behind SVD is that given a set of N dimensional

points, these points will only “concentrate” on a few dimensions, on which they can be

discriminated from each other very well. SVD is used to find these dimensions and map

the points to these dimensions. Figure 2.6 shows that by rotating the x− y axis to x′ − y′

axis and only projecting the 2D points to x′ axis, all the points can be well discriminated

on the new axis.

A set of N dimensional time series data can be represented as L×N matrix A, where

L is the number of time series data in the set. A can be transformed using SVD as follows.

A = UΣV T (2.29)

where U is a column-orthogonal L × N matrix, Σ is a diagonal N × N matrix of the

eigenvalues of the matrix A, and V is a column-orthogonal N ×N matrix, which is called
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Figure 2.6: Illustration of SVD projection of data on the axis x’

basis matrix of SVD. Since U and V are orthogonal:

UUT = IL (2.30)

UT U = IN (2.31)

V V T = V T V = IN (2.32)

where I is the identity matrix.

The SVD transformed data is given by U × Σ that can be computed by A × V . In

fact, U × Σ is a rotation of the original matrix A, the dimensionality of transformed

data sequences does not change. By only taking the first n largest eigenvalues of Σ and

corresponding entries in A, U , and V , the dimensionality can be reduced from N to n in

the transformed space.

SVD is better than other transforms such as DFT or DWT in terms of minimizing the

reconstruction error. However, SVD needs the whole data set to do the transform. Thus,

the data set should not be updated frequently. Furthermore, the computation and space

costs of SVD is high: O(LN2) and O(LN), respectively. Finally, SVD transformation is

based on all the data in the database, and it assumes the query data follows the same data
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distribution as the data in the database. However, for a similarity-based search, the query

data is usually not in the database. Therefore, SVD may introduce a loose lower bound

of the distance between query data and data in the database, which may leads many false

candidates.

Piecewise Aggregate Approximation

Piecewise Aggregate Approximation (PAA) was introduced by Yi and Faloutsos [117] and

Keogh et al. [53] independently. The idea of PAA is quite straightforward. Given a time

series data of length N , PAA divides it into n segments of equal length and represents

each segment using the average of the segment. Thus, a N -dimensional point is mapped

to a n-dimensional point where n < N . Consider a time series R = 〈r1, . . . , rN〉, the PAA

representation of R is R = 〈r1, . . . rn〉 where:

ri =
n

N

N
n

i∑

j=N
n

(i−1)+1

rj (2.33)

The distance in the reduced dimension is defined as:

distPAA(Q, R) =

√
N

n

√√√√
n∑

i=1

(qi − ri)2 (2.34)

Yi and Faloutsos [117] and Keogh et al. [53] also prove that PAA follows lower bounding

lemma for Euclidean distance. Compared to other transforms (such as DFT or SVD), PAA

is easy to understand and requires less time on transformation. Furthermore, PAA can

handle general Lp-norm and weighted Lp-norm without introducing false dismissals.

Adaptive Piece Constant Approximation

Adaptive Piece Constant Approximation (APCA) relaxes the constraints of PAA that re-

quires each segment be the same length and allows segments with different lengths [54].

The intuition of APCA is that regions with great fluctuations (high activity) can be repre-

sented with several short length segments, and flat regions (low activity) can be represented
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with fewer long segments. Given a time series R = [r1, . . . , rN ], its APCA representation

is

C = [〈cv1, cr1〉, . . . , 〈cvn, crn〉] (2.35)

where cvi is the mean value of the data points in ith segment, cri is the right endpoint of

ith segment, and n is the number of segments.

In order to define a distance function on APCA to lower bound Euclidean distance on

time sequences, Keogh et al. [54] propose a special version of the APCA for query time

sequences. Given a query time series Q and a time series S with its APCA representation

C, the APCA representation Q′ of Q is obtained by projecting the endpoints of C onto Q

and computing the mean value of the sections of Q that fall within the projected interval.

Q′ = [〈qv1, qr1〉, . . . , 〈qvn, qrn〉] (2.36)

where qri = cri and qvi = mean(Qcri−1+1, . . . , Qcri
).

The lower bounding distance is defined as:

DLB(Q′, C) =

√√√√
n∑

i=1

(cri − cri−1)(qvi − cvi)2 (2.37)

Keogh et al. [54] also point out that APCA is indexable by mapping each APCA

representation to a 2n-dimensional point, and define a lower bound distance between Q′

to the indexing node (a bounding rectangle). The experimental results shows that APCA

outperforms other indexable representations such as DFT, DWT, and PAA in terms of

efficiency.

Piecewise Linear Approximation

Piecewise Linear Approximation (PLA) has been widely used in time series analysis [79] and

answering approximate queries [95]. As introduced before, PLA is a method to approximate

a time series by a sequence of line segments. It has been widely used as a representation

format for time series data. After converting time series data to PLA, it is easy to compute

the approximate distance between converted line segments. However, so far there is only

one proposal to use PLA to answer queries without introducing false dismissals. Morinaka
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et al. [71] propose a complex distance function on the converted PLA space and prove that

the distance on PLA is a lower bound of the real distance between two time sequences.

They first apply least square approximation (LSA) method to segment a time series data to

lines. Each line is the longest possible segment whose accumulated error does not exceed

a predefined deviation threshold ∆. Then, an approximate distance is defined on the two

segmented line sequences based on linear functions that describe each line segment. Two

different distances are defined, one to account for the case when line segments intersect each

other and the other when they do not. However, because the line segment may over- or

under-estimate the time sequence, the approximate distance of two line segment sequences

may be larger than the real distance between the two time sequences. Therefore, a bound

wed (worst error deviation), is proposed to bound the approximate error deviation of a

line segment. For each line segment, wed is computed based on difference between values

of original subsequence that are above and below the line segment. By adding the wed to

the approximate distance, it is possible to guarantee that modified approximate distance

is the lower bound of the real distance in the original time series space.

Even though PLA offers very promising pruning ability, no indexing schemes for it have

so far been proposed.

Chebyshev Polynomials Approximation

Recently, Cai and Raymond proposed an effective dimensionality reduction and indexing

technique for time series data, called Chevyshev Polynomials Approximation [19]. They

model approximate time series data as a min-max polynomial problem that minimizes

the maximum deviation from the true value through lower order continuous polynomials.

Chebyshev Polynomials is selected because Chebyshev approximation is almost identical

to the optimal min-max polynomial. A function f(t) can be approximated by a set of

Chebyshev polynomials as follows:

f(t) ' c0P0 + . . . + cmPm (2.38)

where Pi is Chebyshev polynomial with degree i and ci is the coefficient.

Thus, for a collection of time series of length N , Chebyshev polynomials of degree m

(m ¿ N) can be used to approximate them and reduce the dimensionality to n = m + 1.
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Since Chebyshev polynomial coefficients can only be computed for interval functions, a

time series which is a discrete function has to be converted to an interval function by the

following steps:

1. Convert a time series R = [r1, . . . , rN ] to R = [(r1, s1), . . . , (rN , sN)], where si is the

derived timestamp according to the appearance position of ri and si is normalized to

[−1, 1].

2. Divide the interval [−1, 1] to N disjoint subintervals, I1, . . ., IN :

Ii =





[−1, s1+s2

2
) if i = 1

[ si−1+si

2
), si+si+1

2
) if 2 ≤ i ≤ N − 1

[ sN−1+sN

2
, 1]) if i = N

(2.39)

3. Create an interval function f(r) of R:

f(r) =
ri√

w(r)|Ii|
if r ∈ Ii(for1 ≤ i ≤ N) (2.40)

where |Ii| is the length of subinterval Ii and w(r) is a weight function:

w(r) =
1√

(1− r2)
(2.41)

After converting a time series data to an interval function f(r), the n(= m+1) Cheby-

shev coefficients can be computed as follows:

c0 =
1

N

N∑
j=1

f(rj)P0(rj) =
1

N

N∑
j=1

f(rj) (2.42)

ci =
2

N

N∑
j=1

f(rj)Pi(rj) (2.43)

where Pi(rj) is Chebyshev polynomial of degree i.

The distance between two sequences of Chebyshev coefficients Q = [a0, . . . , am] and

R = [b0, . . . , bm] that are computed from two time series S and T is defined as:
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distcby(Q, R) =

√√√√π

2

i=m∑
i=0

(ai − bi)2 (2.44)

Cai and Ng prove that distcby(Q, R) is a lower bound of L2-Norm (Q, R). Thus, using

Chebyshev Polynomials as a dimensionality reduction technique will not introduce false

dismissals.

Comparison of Dimensionality Reduction Techniques

Table 2.2 is a comparison of dimensionality reduction techniques discussed in this sec-

tion according to whether they have a limitation on lengths, the computation cost, their

computation space cost, whether they are indexable, and whether they support weighted

Lp-norm.

Dim Re-

duction

Tech.

Length Lim-

itation

Computation

Cost

Space

cost

Indexable Support

Weighted

Lp-norm

PLA No O(N) O(N) No Yes

DFT No O(Nlog(N)) O(N) Yes No

DWT Yes (2n) O(N) O(N) Yes No

SVD No O(LN2) O(LN) Yes No

PCA No O(N) O(N) Yes Yes

APCA No O(N) O(N) Yes Yes

Chebyshev No O(N) O(N) Yes Yes

Table 2.2: Comparison of dimensionality reduction techniques of time series data

From Table 2.2, the following are observed:

• In terms of the computation and space cost, SVD is the worst method among the

dimensionality reduction techniques.
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• PLA, PCA, APCA, and Chebyshev are all promising techniques in terms of support-

ing distance functions other than Euclidean distance.

• Only DWT has limitation on lengths of time series.

• All except PLA are indexable.

In terms of efficiency of these dimensionality reduction techniques (i.e., the tightness of

lower bound distances), experimental results show that APCA is better than DFT, DWT,

SVD, and PAA [54] and Chebyshev is tighter than APCA [19]. Therefore, Chebyshev is

the most effective dimensionality reduction technique.

2.3.2 Metric Space Indexing

As discussed above, one way to deal with the retrieval of high-dimensional data is to

reduce data dimensionality and then plug in a spatial access method. Another alternative

is to use metric space indexing methods to improve the retrieval efficiency as long as the

defined distance function is a metric. An extensive survey of these techniques recently

been published [22], so only a short overview is provided here.

Given a data space D of objects and a nonnegative distance function dist : D×D → R+

defined over D, dist is a metric distance function, and D is referred to a metric space, if

dist has the following properties:

• dist(x, y) = 0 ⇔ x = y

• dist(x, y) = d(y, x)

• dist(x, z) ≤ d(x, y) + d(y, z)

The last condition is called triangle inequality property, and it is used extensively by

most metric indexing structures for similarity search to reduce the query time.

The metric space indexing structures can be divided into two categories:

• pivot-based indexing structures;

• clustering-based indexing structures.
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In pivot-based indexing, a set of pivots (reference points) p1, . . . , pk are selected from the

database. For each data x in the database, its distance to k pivots (dist(x, p1), . . . , dist(x, pk))

are computed and stored. Given a query data Q and query range r, the distance from Q to

each pivot pi, dist(Q, pi), is computed first. If it is known that |dist(Q, pi)−dist(x, pi)| > r

holds for some i, then it is not necessary to compute the distance between x and Q be-

cause, by triangle inequality, dist(Q, x) > r. Many indexing structures and their variants

follow this idea, such as AESA [94], LAESA [68], spaghetti [20], fa-tress [9], fq-array [21]

and OMNI-family of access methods [32]. There are a number of tree-like indexing struc-

tures, such as bk-trees [17, 93], metric tress [105], tlasea [67] and vp-tree with its variants

[105, 14], which use selected pivots as the roots of a tree or subtree. The distance range

between each root to all its children are computed and stored. The similar pruning steps

as the above example can be used to traverse the tree.

OMNI-family access methods are not included in the review of [22], which are briefly

reviewed here.

Given a metric data space D, OMNI-family selects a set of representative points, called

foci (pivots), which is defined as foci-base.

foci− base = {f1, f2, . . . , fc|fk ∈ D, fk 6= fj, k 6= j} (2.45)

where c is the number of foci selected from D.

For each data x ∈ D and x 6= fi, the OMNI-coordinate OCx is the set of distances from

x to each foci in foci-base:

OCx = {dist(x, f1), dist(x, f2), . . . , dist(x, fc)} (2.46)

Given a query Q, its OMNI-coordinate is computed and used to search in the OMNI-

coordinates of the data set to prune false candidates. Several access methods are proposed

for this pruning step, such as OMNI-sequential, OMNIB-tree, and OMNIR-tree, which

make up the OMNI-family.

Since the selected foci greatly affect the pruning ability of OMNI-family, Filho et al.

propose a Hull Foci (HF) algorithm to choose them. HF first randomly selects a data

point x from D, the data point with the farthest distance to x is selected as the first foci

f1. Then, the data point that has the farthest distance to f1 is selected as the second foci
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f2. After that, HF recursively selects the rest of the foci by choosing a data point that

has the most similar distance to the previously selected foci. In order to measure different

foci selection algorithms, Bustos et al. [18] propose an efficiency measure to compare two

selected foci bases.

Clustering-based indexing structures recursively divide the data space into separate sub-

spaces and select a representative point (usually “centroid” of the subspace) together with

several data points for each subspace. There are many methods to eliminate a subspace

during search. For example, M-trees [26] store the covering radius cr(ci) for each centroid

point ci of the subspace, which is the maximum distance between any data point in the

subspace to ci. Given a range query Range(Q, r), if d(Q, ci)−r > cr(ci), the subspace with

ci as centroid can be eliminated. Voronoi trees [30] assign each data point to the subspace

which has the smallest distance to its centroid. Given a range query Range(Q, r), the

distance between Q to each centroid point ci is computed; and the ci that has the smallest

distance to Q is selected and denoted as c. The subspace will be eliminated if its centroid

ci satisfies d(Q, ci) > d(Q, c) + 2r, which means that the subspace will not intersect with

the query ball Range(Q, r). GNAT tree combines the elimination methods of M-tress and

Voronoi-trees [16].



Chapter 3

Multi-Scale Time Series Histograms

3.1 Introduction

As discussed in earlier chapters, similarity-based time series retrieval can be divided into

pattern existence queries [4, 84, 95] and shape match queries [3, 14, 31, 54, 88]. For

pattern existence queries, users are interested in the existence of the specified pattern, and

do not care when and how the pattern appears. Therefore, retrieval techniques for pattern

existence queries should be invariant to the following:

• Noise. In Figure 3.1(a), two similar time series R and S are shown. Point 3, which

is likely a noise data point, will introduce a large difference value when Euclidean

distance is computed between two time series, possibly causing them to be treated

as dissimilar.

• Amplitude scaling and shifting. In Figure 3.1(b), the two time series R and

S are similar in terms of the pattern that they contain (they both have the “two

bottom” pattern), but their amplitudes are different (in fact, R = aS + b where a

and b are scaling factor and shifting factor, respectively).

• Time shifting. In Figure 3.1(c), time series R and S record the same event (e.g.

temperature data) but from different starting times; shifting R to the left on the time

axis can align the shape with S. R and S are considered dissimilar if they are simply

46
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compared by the respective positions of the data points. However, it can be argued

that R and S are similar because they contain the same pattern (“two peaks”).

• Time scaling. In Figure 3.1(d) time series R and S have different sampling rate.

However, both R and S contain “two peaks”, therefore, they should be treated as

similar.
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Figure 3.1: The different factors that may affect the similarity between two time series



Multi-Scale Time Series Histograms 48

Several approximation approaches have been proposed to transform time series to char-

acter strings over a discrete alphabet and apply string matching techniques to find the pat-

terns [4, 84, 95]. However, the transformation process is sensitive to noise. Furthermore,

because of the quantization of the value space for transforming time series into strings,

data points located near the boundaries of two quantized subspaces may be assigned to

different alphabets. As a consequence, they are falsely considered to be different by string

comparison techniques.

For shape match queries, users are interested in retrieving the time series that have

similar shapes to the query data. Most of the previous work focused on solving these type

of queries, such as applying Euclidean distance [3, 31, 54, 88], DTW [12, 118, 57, 52] and

LCSS [14, 108] to compute the distance between two data sequences.

There exist applications that require answers from both types of queries. An example

is an interactive analysis of time series. Users may be initially interested in retrieving all

the time series that have some specific pattern that can be quickly answered by pattern

existence queries. They can then apply shape match queries to these results to retrieve

those that are similar to a time series that is of interest. However, there are no techniques

that have been developed to answer both pattern existence queries and shape match queries.

Of course, two different techniques used to answer pattern existence queries and shape

match queries can be applied to these applications together; however, different types of

representation (e.g. symbolic representation and raw representation), distance functions

(e.g. string matching and Euclidean distance), and indexing structures (e.g. suffix tree

and R*-tree) will lead to storing redundant information and raise difficulties on improving

the retrieval efficiency.

In this chapter, based on the observation that data distributions can capture patterns of

time series, a multi-scale histogram-based representation is proposed to approximate time

series that is invariant to noise, amplitude shifting and scaling, and time shifting and scal-

ing. The multi-scale representation can answer both pattern existence queries and shape

match queries and offers users flexibility to search time series at different precision levels

(scales). The cumulative histogram distance [97], which is closer to perceptual similarity

than L1-norm, L2-norm, or weighted Euclidean distance, is used to measure the similar-

ity between two time series histograms. Furthermore, distances of lower scale time series
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histograms are proven to be lower bounds of higher scale distances, which guarantees that

using the multi-step filtering process in answering shape match queries will not introduce

false dismissals. In order to reduce the computation cost in computing the distances of time

series histograms, distances between averages of time series histograms are used as the first

step of the filtering process, since the distances between averages are also lower bounds of

distances of time series histograms. Two different approaches in constructing histograms,

equal size bin and equal area bin, are also investigated. The experimental results show that

the histogram-based representation, together with the cumulative histogram distance mea-

sure, can effectively capture the patterns of time series as well as the shape of time series.

Multi-scale time series histograms are compared with another multi-scale representation,

wavelet, and the results show that wavelet representation is not suitable to answer pattern

existence queries and it is not robust to time shifting when it used to answer shape match

queries.

The rest of the chapter is organized as follows: Section 3.2 presents concepts of time

series histograms and two variations of them. Multi-scale time series histograms are dis-

cussed in Section 3.3. In Section 3.4, experimental results using multi-scale time series

histograms on finding patterns and answering shape match queries are presented. Section

3.5 presents the comparison results between multi-scale histograms and wavelet represen-

tation in answering pattern existence and shape matching queries.

3.2 Time Series Histograms

Given a set of time series D = {R1, R2, . . . , RL}, each time series Ri is normalized into its

normal form using its mean (µ) and variance (σ) [37]:

Norm(R) = [(t1,
r1 − µ

σ
), . . . , (tN ,

rN − µ

σ
)] (3.1)

The similarity measures computed from time series normal form are invariant to amplitude

scaling and shifting.

Time series histograms are developed in the following way. Given the maximum (maxD)

and minimum (minD) values of normalized time series, the range [minD,maxD] is divided

into τ disjoint equal size sub-regions, called histogram bins. Given a time series R, its
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histogram HR can be computed by counting the number of data points hi (1 ≤ i ≤ τ) that

are located in each histogram bin i: HR = [h1, . . . , hτ ]. Algorithm 3.1 describes how to

construct time series histograms for data set D.

Algorithm 3.1 An algorithm for constructing histograms for data set D
Input: a time series set D and the number of histogram bins τ

Output: a histogram data set HD
1: find maxD and minD of the data set D
2: divide [minD,maxD] into τ disjoint equal size histogram bins hi

3: for all each time series Ri of D do

4: for each data point ri of Ri do

5: for each histogram bin hi do

6: if hi,lowerbound ≤ ri < hi,upperbound then

7: hi = hi + 1 ;

8: break;

9: end if

10: end for

11: end for

12: insert generated HSi
to the result data set HD

13: end for

14: return the result data set HD

The time series histogram is normalized by dividing the value of each histogram bin by

the total number of data points in the time series. Since a time series histogram is computed

from the normal form of a time series, the distance that is computed from two time series

histograms are invariant to amplitude scaling and shifting. Furthermore, because time

series histograms ignore the temporal information, they are also robust to time shifting

and scaling. For example, in Figures 3.1(c) and 3.1(d), the histogram of normalized R is

similar to that of S. Moreover, since time series histograms show the whole distribution of

the data, and noise only makes up a very small portion, comparisons based on histograms

can remove the disturbance caused by noise. Therefore, time series histograms are ideal

representations for answering pattern existence queries.
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L1-norm or L2-norm [100] can be used to measure the similarity between two histograms.

However, these do not take the similarity between time series histogram bins into consid-

eration, which may lead to poor comparison results. Consider three histograms HR, HS

and HT representing three time series of equal length. Assume that HR and HS have the

same value on consecutive bins and HT has the same value in a bin which is quite far away

from the bins of HR and HS. L1-norm and L2-norm distances between any two of these

three histograms are equal. However, for answering shape match queries, HR is closer to

HS than it is to HT . Even for pattern existence queries, data points which are located

near the boundary of two histogram bins should be treated differently compared to those

points that are far apart, which is not considered by L1-norm and L2-norm.

A weighted Euclidean distance can be used to compute the distance between two his-

tograms [39].

Definition 3.1 Given two time series R and S, the weighted Euclidean distance (WED)

between their time series histograms HR and HS is:

WED(HR, HS) = ZT AZ (3.2)

where Z = (HR−HS), ZT is the transpose of Z, and A = [aij] is a similarity matrix whose

element aij = 1− |j − i|/τ (where τ is the number of bins) denotes similarity between two

time series histogram bins i and j. As aij gets larger, bins i and j become more similar.

Compared to L1-norm and L2-norm, WED underestimates distances because it tends

to estimate the similarity of data distribution without a pronounced mode [97].

Cumulative histogram distances [97] overcome the shortcomings of L1-norm, L2-norm

and WED, the similarity that is measured by cumulative histogram distance is closer to the

perceptual similarity of histograms. Therefore, this distance function is used to measure

the similarity between two time series histograms.

Definition 3.2 Given a time series R and its time series histogram HR = [h1, h2, . . . , hτ ],

where τ is the number of bins, the cumulative histogram of R is:

ĤR = [ĥ1, ĥ2, . . . , ĥτ ] (3.3)

where ĥi =
∑

j≤i hj.
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Definition 3.3 Given two cumulative histograms ĤR and ĤS of two time series R and S,

respectively, the cumulative histogram distance (CHD) is defined as:

CHD(ĤR, ĤS) =
√

ẐT Ẑ (3.4)

where Ẑ = (ĤR − ĤS).

Algorithm 3.2 An algorithm for answering pattern existence queries

Input: An query time series Q (Q contains the specified patterns), its cumulative his-

togram ĤQ, a matching threshold ε

Output: A list of time series that contain the specified patterns

1: for all time series histograms Ĥi of Ri in the database do

2: if CHD(Ĥi, ĤQ) ≤ ε then

3: insert the time series ID IDi into the result list

4: end if

5: end for

6: return the result list

The algorithm for answering pattern existence queries using CHD is given in Algorithm

3.2. For each Ĥi of Ri, if CHD(Ĥi, ĤQ) ≤ ε, then Ri is in the result set (ε is a matching

threshold). Later, in the experiments, the effectiveness of WED and CHD are compared in

answering pattern existence queries. In Algorithm 3.2, a matching threshold (ε) has to be

set to determine whether the examined time series contains a pattern similar to that of the

query time series. In the experiments, a suitable threshold is found based on the histogram

of the query time series. Algorithm 3.2 applies sequential scan of all the time series in the

database, however, it does not mean that sequential scan is the only method to answer

pattern existence queries. Spatial access methods, such as R-tree [38], Kd-tree [10], and

X-tree [11] can be applied to improve the retrieval efficiency. Furthermore, to avoid the

dimensionality curse problem [112], a method is proposed later to reduce the dimensionality

of time series histograms to one, then a simple B+-tree will work. The reason that the

sequential scan is included is for a fair efficacy comparison on CHD with other methods,

such as WED and regular expression matching, in answering pattern existence queries,

which is reported in Section 3.4.
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So far, time series histograms are defined with equal size bins. However, values of time

series normally are not uniformly distributed, leaving a lot of bins empty. In such cases,

computing the distances between two time series histograms that contain many zeros is

not helpful in differentiating the corresponding time series.

It has been claimed [64] that distributions of most time series follow the normal dis-

tribution, which has also been verified on the data sets that are used in the experiments

reported in this chapter. Consequently, instead of segmenting the value space into τ equal

size sub-regions, the value space is segmented into sub-regions (called sub-spaces) such that

each sub-region has the same area under the normal distribution curve of that data. The

boundary of each subspace can be computed as follows, assuming that hi,l is the lower

bound of subspace i and hi,u is the upper bound:

∫ maxD

minD
p(x)dx =

τ∑
i=1

∫ hi,u

hi,l

p(x)dx (3.5)

where p(x) is the normal distribution function, 1 ≤ i ≤ τ , h1,l = minD, and hτ,u = maxD.

Even though the normal distribution function is used to create equal area bin histogram,

the idea can be easily extended to other data distributions.

With equal area bin segmentation, each histogram bin is assigned the same probability

that data points of time series may fall in. For example, for the “cameramouse” data

used in the experiments, the average filling ratio of 16 equal area bin histograms is about

98%. However, it is only 40% for the 16 equal size bin histograms. Figure 3.2 shows the

values of equal area bin and equal size bin histograms of a randomly selected data from

“cameramouse” data set. It can be observed that the values in the equal area bin histogram

are well distributed and values in the equal size bin histogram concentrate in a few bins.

The relative effectiveness of equal size bin histograms and equal area bin histograms

are compared experimentally in terms of classification accuracy.

3.3 Multi-scale Histograms

The time series histograms, as defined in the previous section, give a global view of the

data distribution of time series. However, they do not consider the order of values in
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(a) Values of a 16 equal size bin histogram

(b) Values of a 16 qual area bin histogram

Figure 3.2: A comparison of data distributions of an equal size bin histogram and an equal area
bin histogram

the sequence. For example, in Figure 3.3, two time series, R and S, are quite different

in terms of their trend. However, they have the same histograms as shown in Figures

3.4(a) and 3.4(c). A multi-scale representation of a time series histogram is designed for

better discrimination of time series based on their order details to facilitate shape match

queries. Given a time series R of length N , it can be equally divided into two segments,

and each segment can be recursively divided into two, and so on. For each segment, its

time series histogram can be computed and all these histograms form the multi-scale time

series histograms of R. The number of levels (scales) is controlled by a single parameter, δ,
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Figure 3.3: Two different time series with the same time series histogram

that is the precision level (i.e. scale) of the histogram. For δ = 1, the histogram covers the

entire time series, as defined in the previous section. If further precision is required, one can

set δ > 1, which would segment the time series data into 2(δ−1) equal length subsequences

and histograms are computed for each segment. Figure 3.4 shows 2-scale histograms for

time series R and S of Figure 3.3. In Figure 3.4, R and S can be easily distinguished at

δ = 2, although they cannot be differentiated at δ = 1.

With multi-scale time series histograms, the shape match queries can be answered at

several precision levels. It has to be guaranteed that similar time series at a higher scale

will also be identified as similar at a lower scale. In order to guarantee this property, the

cumulative histogram distance must be formulated in such a way that the distance at the

lower scale is the lower bound of the distance at the higher scale. In other words, the

cumulative histograms must follow Lower Bounding Lemma introduced in Chapter 2. The

average of the cumulative histogram distances is used as the result of comparison at scale

δ, which, as proven below, satisfies this property.

Definition 3.4 Given two time series R and S, let their δ ≥ 1 scale histograms be H i
R,δ
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(a) a histogram of R at scale 1

(b) two histograms of R at scale 2

(c) a histogram of S at scale 1

(d) two histograms of S at scale 2

Figure 3.4: Two scale histograms of R and S
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and H i
S,δ, respectively. where 1 ≤ i ≤ 2δ−1. The CHD at scale δ is:

CHDδ =

∑2δ−1

i=1 CHD(Ĥ i
R,δ, Ĥ

i
S,δ)

2δ−1
(3.6)

where Ĥ i
R,δ (Ĥ i

S,δ) denotes the cumulative histograms of ith segment of R (S) at scale δ.

Theorem 3.1 In a δ-level multi-scale time series histogram, if CHDl denotes the cumu-

lative histogram distance between two time series histograms at scale l, then

CHDl−1 ≤ CHDl (3.7)

where 2 ≤ l ≤ δ.

This is an extension of a result on weighted Euclidean distance of color histograms [65].

Proof. By induction.

Base case: The claim holds for l = 1, CHD1 < CHD2.

Given two time series R and S, their cumulative histograms at scale i (i ≥ 1) are

denoted as: ĤR,i and ĤS,i, respectively. Then:

CHD1 =

√
(ĤR,1 − ĤS,1)T (ĤR,1 − ĤS,1) (3.8)

CHD2 =
1

2

2∑
i=1

√
(Ĥ i

R,2 − Ĥ i
S,2)

T (Ĥ i
R,2 − Ĥ i

S,2) (3.9)

Define ‖X‖ =
√

XT X and ‖X − Y ‖ =
√

(X − Y )T (X − Y ), where X and Y are τ

dimensional vectors. Then,

CHD1 = ‖ĤR,1 − ĤS,1‖ (3.10)

and

CHD2 =
1

2

2∑
i=1

‖Ĥ i
S,2 − Ĥ i

R,2‖ (3.11)

‖X + Y ‖ =

√√√√
n∑

i=1

(xi + yi)2 (3.12)

=

√√√√‖X‖2 + ‖Y ‖2 + 2
n∑

i=1

(xiyi) (3.13)
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Using Cauchy’s inequality, which is

(
n∑

i=1

(xiyi))
2 ≤

n∑
i=1

(xi)
2

n∑
i=1

(yi)
2 (3.14)

= ‖X‖2‖Y ‖2 (3.15)

we get

‖X + Y ‖ ≤ ‖X‖+ ‖Y ‖ (3.16)

It is known that

ĤR,1 =
1

2
(Ĥ1

R,2 + Ĥ2
R,2) (3.17)

and

ĤS,1 =
1

2
(Ĥ1

S,2 + Ĥ2
S,2) (3.18)

Thus:

‖ĤR,1 − ĤS,1‖ = ‖1

2

2∑
i=1

(Ĥ i
R,2)−

1

2

2∑
i=1

(Ĥ i
S,2)‖ (3.19)

≤ 1

2

2∑
i=1

‖Ĥ i
R,2 − Ĥ i

S,2‖(from 3.16) (3.20)

Therefore, CHD1 ≤ CHD2.

Assume that the claim holds for l ≤ k (k > 1). Histograms at scale k and k + 1 have

the similar relationship as the ones shown in 3.17 and 3.18.

Ĥ i
R,k =

1

2
(Ĥ2i−1

R,k+1 + Ĥ2i
R,k+1) (3.21)

and

Ĥ i
S,k =

1

2
(Ĥ2i−1

S,k+1 + Ĥ2i
S,k+1) (3.22)

where i ≥ 1.

Thus, for each element of CHDk, ‖Ĥ i
R,k − Ĥ i

S,k‖,

‖Ĥ i
S,k − Ĥ i

R,k‖ ≤ 1

2
(‖Ĥ2i−1

S,k+1 − Ĥ2i−1
R,k+1‖+ ‖Ĥ2i

S,k+1 − Ĥ2i
R,k+1‖) (3.23)
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Therefore, CHDk < CHDk+1. ¤
As stated earlier, time series histograms at scales have better discrimination power;

however, the computation of CHD at higher scales is more expensive than those at lower

scales. Fortunately, with the lower bound property of CHD at each scale (Theorem 3.1),

when a shape match query needs answers at scale l, instead of directly computing the CHD

at scale l, the CHD for each candidate time series can be computed starting from scale 1,

and then scale 2 and so on [62]. This multi-step filtering strategy will not introduce false

dismissals.

For both pattern existence queries and shape match queries, directly comparing τ -

dimensional time series histograms is computationally expensive, even with the help of

spatial access methods such as the R-tree [38], Kd-tree [10], and X-tree [11]. Since τ

is higher than 12-16 dimensions, the performance of using an indexing structure will be

worse than that of sequential scan [112]. Therefore, the averages of time series cumulative

histograms is used to avoid comparisons on full cumulative histograms.

Definition 3.5 Given a time series R and its cumulative histogram at scale level 1, ĤR,1 =

[ĥR,1, ĥR,2, . . . , ĥR,τ ], where τ is the number of histogram bins, the average of cumulative

histogram is:

Ĥavg
R,1 =

∑τ
i=1 ĥR,i

τ
(3.24)

Definition 3.6 Given two time series R and S, let ĤR,1 and ĤS,1 be their cumulative

histograms at scale level 1. The distance between averages of cumulative histograms is:

ACHD =
√

τ(Ĥavg
R,1 − Ĥavg

S,1 )2 (3.25)

The averages of time series cumulative histograms are one dimensional data, which

means that a simple B+-tree can be used to improve the retrieval efficiency. Moreover,

based on the definition of ACHD, the time series retrieved by comparing ACHD are guar-

anteed to include all the time series that should be retrieved by comparing cumulative

histograms of time series at scale 1. This is stated in the following theorem.

Theorem 3.2 For any two τ -dimensional time series cumulative histograms ĤR,1 and

ĤS,1 at scale 1, ACHD ≤ CHD1.
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Proof. Given two histograms of scale 1 ĤR,1 and ĤS,1,

CHD2
1 =

τ∑
i=1

(ĥR,i − ĥS,i)
2 (3.26)

and

ACHD2 =
(
∑τ

i=1 ĥR,i −
∑τ

i=1 ĥS,i)
2

τ
(3.27)

Define X = ĤR,1 − ĤS,1, where xi = ĥR,i − ĥS,i and 1 ≤ i ≤ τ . Therefore, the only

thing that needs to be proven is:
τ∑

i=1

x2
i ≥

(
∑τ

i=1 xi)
2

τ
(3.28)

According to Arithmetic-Geometric Mean inequality:

(
∑τ

i=1 xi)
2

τ
≤ (

∑τ
i=1(xi)

2 +
∑τ−1

i=1

∑τ
i=1(xi)

2)

τ
(3.29)

=
τ∑

i=1

(xi)
2 (3.30)

¤
Therefore, instead of directly computing the cumulative histogram distances, the dis-

tance between the averages of two time series cumulative histograms can be computed first

to prune false candidates from the database. Averages can be considered as the first filter

when multi-step filtering is used to answer a shape match query at a higher scale l. The

algorithm for multi-step filtering is given in Algorithm 3.3, which shows one possible scan

strategy to answer shape match queries that uses histograms of all scales up to l to perform

filtering. Another possible scan strategy is only using time series histograms at scale 1 and

scale l. These two different scan strategies are compared in the next section.

3.4 Experimental Evaluation

In this section, the results of experiments are reported. These experiments are designed

to evaluate the efficacy and robustness of the histogram-based similarity measure and the

matching algorithm. All programs are written in C and experiments are run on a Sun-

Blade-1000 workstation under Solaris 2.8 with 1GB of memory.
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Algorithm 3.3 An algorithm for answering pattern queries with multi-scale filtering

Input: An example time series Q, precision level δ, δ levels and average cumulative his-

tograms of Q, a matching threshold ε

Output: A list of time series which match Q

1: initialize result list result0, . . ., resultδ

2: for all averages of time series cumulative histograms Ĥavg
Ri

of Ri in the database do

3: compute ACHD between Ĥavg
Q and Ĥavg

Ri

4: if ACHD ≤ ε then

5: insert the time series ID IDi into the result list result0

6: end if

7: end for

8: j = 1 {/* starting from scale 1 */}
9: repeat

10: for each IDi in resultj−1 do

11: if CHDj(ĤRi
, ĤQ) ≤ ε then

12: insert the time series ID IDi into the result list resultj

13: end if

14: end for

15: j = j + 1 {/*increase scale level by 1*/}
16: until (j == δ + 1) or (resultj−1 is empty)

17: if resultj−1 is empty then

18: return NULL

19: else

20: return resultδ

21: end if
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Figure 3.5: Cylinder-Bell-Funnel data set

3.4.1 Efficacy and Robustness of Similarity Measures

Experiment 1. This experiment is designed to test how well the cumulative histogram

distances perform in finding patterns in time series. First the proposed approach is com-

pared with Shatkay’s algorithm [95] on a labelled time series sets: Cylinder-Bell-Funnel

(CBF). In Shatkay’s algorithm, first, a best fitting line algorithm is used to detect the

movement slope of segments of time series. Then, the slope of each line segment is mapped

to a symbol according to the predefined mapping tables (such as Table 1.1) and consecutive

symbols are connected together to form a string. Finally, a string matching algorithm is

used to find the matches between query regular expression and the converted strings1. The

reason for using CBF data set is that it contains very simple distinct patterns, allowing a

direct comparison of the techniques. The CBF data set has three distinct classes of time

series: cylinder, bell and funnel (Figure 3.5). 1000 CBF data sets are generated with 100

examples for each class. Since the general shape of bell and funnel are treated as similar

(because both of them contain a peak), only cylinder and bell data sets are used to test for

existence queries.

In order to test robustness of the similarity measures, random Gaussian noise and local

time shifting are added to both data sets using a modified version of the program in [109].

The modification includes the addition of non-interpolated noise and large time shifting

1Another related work [84] requires users to specify, in addition to the pattern, the “unit length” (the
length of time series) in which the specified pattern may appear. It is quite difficult for users to know
the “unit length” beforehand if they only want to check for the existence of a pattern. Therefore, this
approach is not considered in this study.
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(20− 30% of the series length) since pattern existence queries only involve the existence of

a given pattern.

For the query data set, another “pure” (without noise) CBF data set of size 150 is

generated, where each class contains 50 examples. The time series histograms are also

computed for the query data set. Precision and recall are used to measure the effectiveness

of the retrieval results. Precision measures the proportion of correctly found time series,

while recall measures the proportion of correct time series that are detected. In this

experiment, Algorithm 3.1 is used to search the patterns in the time series. In order to set

up a matching threshold for Algorithm 3.1, several values are tested. It is found that half

the cumulative histogram distance between the query histogram and an empty histogram

gives the best results. Besides using cumulative histogram distance, weighted Euclidean

distance is also applied to compare their relative effectiveness.

The average of 50 executions of the query is depicted in Table 3.1 where histogram

experiments are parameterized by the number of bins. In these experiments, results are

reported as WED/CHD values. Even though Shatkay’s approach achieves relatively high

precision, its recall is very low; this is the effect of noise. The histogram-based approach

(both WED and CHD) can achieve relatively high precision and recall, which confirms

the proposed approach is suitable for answering pattern existence queries. Table 3.1 sug-

gests that dividing the value space into too many sub-regions (histogram bins) does not

improve the results significantly; reasonably good results are obtained around 16 bins. As

expected, the results also show that CHD performs better than WED, this is because WED

overestimates neighborhood similarity.

Cylinder Bell

precision(%) recall(%) precision(%) recall(%)

Shatkay 81 44 75 31

his(8) 72/80 88/91 63/ 70 71/ 74

his(16) 72/81 90/92 78/ 84 80/ 85

his(32) 75/81 88/90 79/ 85 85/ 87

his(64) 72/80 88/90 79/ 83 85/ 88

Table 3.1: Comparison on pattern existences queries



Multi-Scale Time Series Histograms 64

Experiment 2. This experiment is designed to check the effectiveness and robustness

of multi-scale histograms in answering shape match queries. According to a recent survey

[55], the efficacy of a similarity measure for shape match queries can be evaluated by

classification and clustering results on labelled data sets. The classification error rate is

defined as a ratio of the number of misclassified time series to the total number of the time

series. The classification error rates in results produced by CHD are compared to those of

DTW and LCSS by evaluating them on the Control-Chart (CC) data set. DTW and LCSS

are selected for comparison, because DTW can also handle local time shifting and LCSS

can handle local time shifting and noise disturbances. There are six different classes of

control charts: “normal”, “cyclic”, “increasing trend”, “decreasing trend”, “upward shift”,

and “downward shift”. Each class contains 100 examples. Non-interpolated noise and

time shifting (10−20% of the series length) are added to test the robustness of cumulative

histogram distance in answering shape match queries. For simplicity, a simple classification

using 1-Nearest Neighbor with three similarity measures is used. The classification results

are checked using the “leave one out” verification mechanism2.

The average error rates using DTW and LCSS are 0.12 and 0.16, respectively. It has

been claimed that LCSS is more accurate than DTW [108]. However, the experiments

could not replicate this result. The possible reason for this discrepancy is the difference

in the choice of the matching threshold value. Comparable results are reported using

the cumulative histogram distances in Table 3.2. The experiment was run with different

number of bins (τ) and scales (δ) using CHD on time series histograms with equal size bin.

The comparison of the error rates of DTW (0.12), LCSS (0.16) and those of Table 3.2

reveals that CHD performs better in answering shape match queries than DTW or LCSS.

It is interesting that very high scales (i.e., high values of δ) may lead to worse classification

results. This is because the higher the scale, the more temporal details will be involved in

computing CHD, and this causes time series histograms at that scale to be more sensitive

to local time shifting and scaling. Another fact demonstrated in Table 3.2 is that higher

number of bins may not lead to more accurate classification results. This is because, as

2The “leave one out” verification mechanism takes one sample data from a class and finds a nearest
neighbor of the data in the entire data set by applying a predefined distance metric. If the found nearest
neighbor belongs to the same class as the sample data, it is a hit, otherwise, it is a miss.
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the number of bins increases, the more detailed information will be captured in time series

histogram, including noise. These characteristics of multi-scale time series histograms

suggest that it is sufficient to check only the first few scale histograms with small number

of histogram bins. However, the improvements over DTW or LCSS as reported in Table

3.2 are modest, especially for the first few scale histograms.

number of bins τ

scale δ 8 16 32 64

1 0.62 0.59 0.56 0.53

2 0.22 0.16 0.12 0.13

3 0.14 0.10 0.11 0.11

4 0.20 0.13 0.14 0.15

5 0.24 0.19 0.20 0.20

Table 3.2: Error rates using CHD on time series histograms with equal size bin

To better understand these results, the filling ratio of equal size bin histograms were

checked. The filling ratio is defined as the number of non-empty bins to the total number

of bins. It was shown that nearly 50% of the bins are empty. Consequently, CHD between

two time series histograms is not able to distinguish them properly, since most of the bins

are identical. Therefore, the same experiment was repeated using time series histograms

with equal area bins. Table 3.3 reports the results.

number of bins τ

scale δ 8 16 32 64

1 0.15 0.11 0.12 0.13

2 0.10 0.08 0.07 0.06

3 0.07 0.05 0.06 0.06

4 0.10 0.08 0.08 0.09

5 0.18 0.15 0.17 0.17

Table 3.3: Error rates using CHD on time series histograms with equal area bin
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The results of Tables 3.2 and 3.3 demonstrate that the error rates of histograms with

equal area bins are nearly half of histograms with equal size bins. The filling ratio of time

series histogram with equal area bins is around 80%. Table 3.3 also shows that using only

the first few scales (e.g. δ = 3), provides reasonably high accuracy.

With the derived optimal parameter (δ = 3) for computing CHD in Table 3.3, the

“complete linkage” hierarchy clustering algorithm [47] is run using CHD on equal area

time series histograms with different number of bins. This algorithm produces the best

clustering results [108]. For each class in CC data set, 20 pieces of time series are picked as

the representative data of that class. The set of all possible pairs of classes are partitioned

into two clusters. The dendrogram of each clustered result is drawn to verify whether

it correctly partitions the classes. The same clustering program is also run using DTW

and LCSS. The clustering results using DTW, LCSS, and CHDs with 4 different sizes of

bins are reported in Table 3.4. DTW and LCSS correctly clustered 10 and 9 clusters (out

of a total 15 correct ones), respectively. CHD, on the other hand, matched these results

(for τ = 8) and performed better with 13 corrections for τ = 16. This is because CHD

compares the data distributions of two time series, which can reduce the effect of noise.

Correct
clus-
tering
results

DTW LCSS CHD
(8)

CHD
(16)

CHD
(32)

CHD
(64)

CC
(total
15 cor-
rect)

10 9 10 13 12 12

Table 3.4: Clustering results of three similarity measures

Experiment 3. In this experiment, the matching accuracy of multi-scale time his-

tograms are tested versus DTW and LCSS on classifying time series with more complicated

shapes. Classifying these types of time series requires matching on temporal details of the

data. CHD, DTW and LCSS are evaluated by two labelled trajectory data sets that are

generated from the Australian Sign Language (ASL)3 data and the “cameramouse” [34]

3http://kdd.ics.uci.edu
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data. Only x positions are used for both data sets. A “seed” time series is first selected

from each of the two data sets and then two additional data sets are created by adding

interpolated Gaussian noise and small time shifting (5-10% of the time series length) to

these seeds [109]. The ASL data set from UCI data consists of samples of Australian Sign

Language signs. Various parameters were recorded as a signer was signing one of 95 words

in ASL. One recording from each of following 10 words is extracted as “seed” time series

of ASL data: “Norway”, “cold”, “crazy”, “eat”, “forget”, “happy”, “innocent”, “later”,

“lose” and ‘spend”. The “cameramouse” data set contains 15 trajectories of 5 words (3 for

each word) obtained by tracking the finger tip movement as people write various words.

All the trajectories of each word are used as the seeds. The data set that is generated

from seeds of “cameramouse” contains 5 classes and 30 examples of each class, while the

one from ASL seeds contains 10 classes and each class has 10 examples. The classification

and verification algorithms used in the second experiment are applied in this experiment.

Based on the observation of the second experiment, time series histograms with equal area

bins are used. Tables 3.5 and 3.6 report the results. The results of Tables 3.5 and 3.6

ASL data Cameramouse data

DTW 0.11 0.08

LCSS 0.29 0.25

Table 3.5: Error rates of LCSS and DTW

show that CHD again achieves better classification result. For both data sets, CHD can

get 0 error rate. A surprising observation is that even at very low scales (e.g. δ = 2), using

CHD can already achieve better results than DTW and LCSS. Through the investigation

of the filling ratios of both histograms, it was shown that the number of empty bins only

accounts for less than 5% of the total number of bins. The standard deviations of both data

sets are also very high with respect to their mean values, which indicates that data points

are widely spread in their value space. Together with the results of the second experiment,

these results indicate that CHD on time series whose data points are widely distributed in

their value space (higher histogram filling ratio) can achieve better classification accuracy

even at lower scales.
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ASL DATA Cameramouse DATA
number of bins τ number of bins τ

scale 8 16 32 64 8 16 32 64

1 0.12 0.11 0.12 0.12 0.13 0.13 0.07 0.07

2 0.06 0.05 0.04 0.04 0.04 0.03 0.02 0.02

3 0.06 0.06 0.04 0.04 0.03 0.02 0.02 0.02

4 0.03 0.04 0.04 0 0.04 0.01 0 0.01

5 0.06 0.06 0.04 0.02 0.04 0.04 0.02 0.04

Table 3.6: Error rates using CHD on time series histograms with equal area bin

The hierarchy clustering test was also performed using different similarity measures for

each data set. All possible pairs of words are selected and the same clustering program as

in experiment 2 is used to partition them into two clusters. When CHD is used to cluster

data, the scale is set to 4, and four different number of bins (8, 16, 32, 64) are used. The

best results of each measure are reported in Table 3.7, which reveals that CHD achieves

better clustering compared to DTW and LCSS. Regardless of the similarity measure, the

number of correctly found clusters in ASL data set is less than half of the total clusterings

(45). This is because the data length of ASL data is relatively small (average 65) and some

trajectories from different words are quite similar to each other.

Correct clus-
tering results

DTW LCSS CHD
(8)

CHD
(16)

CHD
(32)

CHD
(64)

Cameramouse
(total 10 cor-
rect)

8 8 10 10 10 10

ASL (total 45
correct)

6 9 19 20 22 22

Table 3.7: Clustering results of three similarity measures

Experiment 4. This experiment tests the matching quality of CHD on multi-scale

time histograms in answering k-nearest neighbor (k-NN) shape match search and compared
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(a) 3-NN results on stock data using CHD
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(b) 3-NN results on stock data using DTW
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(c) 3-NN results on stock data using LCSS

Figure 3.6: A comparison of 3-NN queries using DTW, LCSS and CHD

it to DTW and LCSS. Given a time series S, k-NN shape match search will return the

top k time series in the database that are most similar to S. A real stock data set is used,

and it contains 193 company stocks’ daily closing price from late 1993 to early 1996, each

consisting of 513 values [110]. Each time series is selected as a “seed” and a new data
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set is created by adding interpolated Gaussian noise and small time shifting (2-5% of the

time series length) to each seed. The new data set contains 1930 time series (each seed is

used to create 10 new time series). Query data consist of randomly selected 10% of the

sequences. The results are that CHD always performs better DTW and LCSS. Figure 3.6

shows one of the results of 3-NN search using CHD (δ = 4, τ = 32, which are set based on

the previous experimental results), DTW, and LCSS on stock data.

3.4.2 Efficiency of Multi-Step Filtering

Experiment 5. Theorem 3.1 in Section 3.3 established that multi-step filtering using

multi-scale time series histograms will not introduce false candidates. However, the ques-

tion remains as to how many histogram comparisons are saved using multi-step filtering?

This experiment tests that on the real stock data set that is used in the fourth experiment.

A time series is randomly picked up and used to conduct a range query at precision level

4. The number of comparisons that are needed for three types of searching are computed:

using only level 4, using level 1 and then jumping to 4, and using all 4 levels on different

range thresholds. The experiments are run 100 times and the average results are reported

in Table 3.8.

Step-by-step filtering is clearly the best strategy to reduce the total number of compar-

isons for small thresholds. For large thresholds, directly computing the distance at a higher

level is a better choice in terms of the number of comparisons. However, large thresholds

are not very useful for finding desirable results, since a larger portion of the data in the

database will be returned.

level 4 only level 1 and level 4 all 4 levels

r = 0.5 11580 13498 17190

r = 0.2 11580 12760 7590

r = 0.1 11580 6838 3668

r = 0.05 11580 2356 2072

Table 3.8: Number of comparisons of different filtering approaches
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Experiment 6. The number of comparisons needed for computing the histogram

distance only relates to the CPU computation cost. However, the I/O cost for sequentially

reading in the data files becomes a bottleneck as the database size grows. If false candidates

can be filtered out without reading in the data files, a significant speed-up will be achieved.

For time series histograms, their averages are stored separately from the histograms. The

distances between the average cumulative histogram of query data and those of stored data

are first computed to remove possible false candidates. Therefore, the pruning power of

average cumulative histograms is quite important. The pruning power is defined as the

proportion of the time series in a database for which the true distance (e.g. CHD) does

not need to be computed without introducing false dismissals.

Figure 3.7: The punning power of averages of histograms

Figure 3.7 shows the pruning power of CHD with 16 bins on answering 1-NN queries

(based on the previous experimental results, CHD can already achieve reasonable good

results when the histogram bin size is 16). Because “cameramouse” and ASL data sets are

small, they are not included in this experiment. Figure 3.7 demonstrates that using the

distance of average time series histograms, it is possible to remove nearly 40% of the false

candidates, which is helpful when the database size becomes large.



Multi-Scale Time Series Histograms 72

3.5 Comparison to Wavelets

In this section, time series histogram is compared with another multi-scale representation,

wavelets. Wavelets have been widely used as a multi-resolution representation for image

retrieval [74]; they have also been used as a dimensionality reduction technique in shape

match queries in which Euclidean distance is used as the distance function [59]. Different

from Fourier transform, wavelets can transform time series data into a multi-scale represen-

tation, where lower frequency bands are represented in lower scales and higher frequency

bands are represented in higher scales. In this experiment, Euclidean distance is used to

measure the similarity between two Haar wavelet coefficients (Haar wavelets are used be-

cause they are the most popular wavelet transformation). The same CBF data set used

in the first experiment is used to measure the efficacy using different number of wavelet

coefficients to answer pattern existence queries. Table 3.9 reports the results.

Cylinder Bell

precision recall precision recall

8 49 97 48 96

16 45 61 46 67

32 40 44 37 40

64 31 35 29 33

Table 3.9: Using wavelet for pattern existences queries

Compared to results that obtained by time series histograms (81/90 and 85/87), wavelets

perform significantly worse in terms of accuracy. In fact, the wavelet transform transfers

time series data into time-frequency domain, therefore, it is difficult, using wavelets, to an-

swer pattern existence queries, since frequency appearance order is encoded in the wavelet

coefficients. Even using only the first few coefficients (8), which have very lower time res-

olution (scale), high recall but low precision are obtained as shown in Table 3.9. The high

recall is achieved by returning nearly all the data in the database (return all 200 time series

of the CBF data set) as results and the lower precision is due to most of the important

frequency bands are not used to answer queries. However, if more (32) coefficients are

used, both precision and recall drop, because the high frequency bands have higher time
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resolution, making them sensitive to time shifting.

For shape match queries, the efficacy of wavelets and multi-scale histograms are com-

pared on CC data set. The ASL and Cameramouse data sets are not used because Euclid-

ean distance requires the two compared wavelet coefficients to have the same length, thus

the original time series must have the same length as well. Furthermore, since the wavelet

transform requires the length of the sequences be a power of 2, the sequences are padded

with 0 to make the length 64. The same classification test is carried out using different

number of wavelet coefficients and the results are shown in Table 3.10.

8 16 32 64

error rate 0.43 0.39 0.32 0.21

Table 3.10: Error rates using wavelet coefficients

Again the results are worse than the results achieved by using multi-scale histograms

(0.06). The lower scale wavelets cannot capture the information about higher frequency

band, thus, the error rate with lower scale is higher than that of higher scale. The higher

scale wavelets contain too much detail about the appearance time of frequency bands,

which causes the wavelets to be sensitive to time shifting. In fact, with Euclidean distance,

using all wavelet coefficients is the same as using raw representation of time series [59].

Thus, wavelet representation is not robust to time shifting, making it unsuitable to answer

pattern existence queries and introducing difficulties in answering shape match queries

when data contain time shifting.

3.6 Conclusions

In this chapter, a novel representation of time series using multi-scale time series histograms

is proposed to answer both pattern existence and shape match queries. This representation

is based on the intuition that the distribution of time series can be an important cue for

comparing similarity between time series. Multi-scale time series histograms are invariant

to time shifting and scaling, and amplitude shifting and scaling. A robust similarity mea-

sure, cumulative histogram distance, is used to measure the similarity between two time
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series histograms. Two different types of histograms: equal size bin and equal area bin are

compared in terms of their efficacy for time series histograms.

The experimental results indicate that multi-scale time series histograms outperform

string representations in finding patterns and outperform DTW and LCSS in answering

shape match queries when the time series contain noise or time shifting and scaling. The

experiments also show that equal area bin histograms are more suitable for time series com-

parison, and that distances of averages of histograms (one dimensional data) can effectively

prune the false candidates from the database before computing the distance between two

full histograms. The comparison study between time series histograms and wavelets con-

firms that, compared to wavelets, multi-scale histograms are more suitable for answering

both type of queries when data contain time shifting and noise.

The multi-scale time histogram-based similarity retrieval has the following advantages:

• Multi-scale time series histograms can be used to answer shape match and pattern

existence queries.

• The cumulative histogram distance reduces the boundary effects introduced by value

space quantization and overcomes the shortcomings of overestimating (such as L1-

norm and L2-norm) or underestimating (such as weighted Euclidean distance) the

distance.

• Multi-scale time histograms are invariant to time shifting and scaling, amplitude

shifting and scaling. Moreover, they can remove the disturbance introduced by noise.

• Multi-scale time histograms offer users flexibility to query the time series on different

accuracy level. Furthermore, lower scale histograms can be used to prune the false

candidates from the database before querying at higher scale histograms.



Chapter 4

Similarity-based Search Using Edit

Distance with Real Penalty

4.1 Introduction

In the previous chapter, multi-scale time series histograms are developed for applications

that require answers to pattern existence queries and shape match queries. The approach

is more suitable for interactive applications, where users can refine their queries step-by-

step by specifying different scales. Furthermore, it is also a good choice for answering

pattern existence queries. For pattern existence queries, only the existence of a pattern is

of interest. Time series histograms show the whole picture of data distribution, which fits

the requirements of pattern existence queries. However, if users need fast answers to shape

match queries, it may be hard for them to set up a proper scale value (δ), unless they have

some knowledge of the data set. Moreover, usually in this case, step-by-step refinement

may not satisfy the requirement of fast response. Thus, in this and next chapters, solutions

are developed for answering shape match queries.

As discussed in Chapter 2, the first issue in similarity search is the definition of a

distance function. Among the distance functions that have been considered, Lp-norms [3,

31] are easy to compute, but they cannot handle local time shifting, which, as argued earlier,

is essential for time series and trajectory data similarity matching. DTW [118, 57, 52] can

deal with local time shifting, but it is a non-metric distance function, as is LCSS [13, 108],

75
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which can handle local time shifting as well.

The efficiency of similarity search using distance functions, such as DTW and LCSS, is

a particular problem since these non-metric distance functions violate triangle inequality

that renders most indexing structures inapplicable. To this end, studies on this topic

propose various lower bounds on the actual distance to guarantee no false dismissals [118,

57, 52, 119]. However, those lower bounds can admit a high percentage of false positives.

In this chapter, with the consideration of above two issues, the following questions are

explored:

• Is there a way to combine Lp-norms and the other distance functions so that one can

get the best of both worlds – namely being able to support local time shifting and

being a metric distance function?

• With such a metric distance function, the triangle inequality can be applied for

pruning, but is it possible to develop a lower bound for the distance function? If so, is

lower bounding more efficient than applying the triangle inequality? Or, is it possible

to do both?

In this chapter, a new distance function, called Edit distance with Real Penalty (ERP) is

introduced. ERP borrows from both L1-norm and DTW, and can handle local time shifting

as well as being a metric distance function. The results of efficacy tests on benchmark data

show that this distance function is natural for time series data. Furthermore, a new lower

bound for ERP is proposed, which can be efficiently indexed with a standard B+-tree; and

a k-nearest neighbor (k-NN) algorithm that applies both lowering bounding and triangle

inequality is developed as well. For simplicity, all the definitions, theorems and techniques

are defined on one dimensional time series data; they can be easily extended to handle

trajectory data where the dimensionality is more than two.

The rest of the chapter is arranged as follows. In Section 4.2, ERP is introduced

along with benchmark tests on the efficacy of the proposed distance function. Section

4.3 introduces adapted lower bounds which were originally proposed for DTW and a new

lower bound for ERP. A k-NN algorithm is also developed that applies both lowering

bounding and triangle inequality. In Section 4.4, benchmark results are reported that
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show the relative efficiency of lower bounding, triangle inequality, and the combination of

both lowering bounding and triangle inequality.

4.2 A New Distance Function to Handle Local Time

Shifting

4.2.1 Edit Distance with Real Penalty

To cope with local time shifting, one can borrow ideas from the domain of strings. A string

is a sequence of elements, each of which is a symbol in an alphabet. Two strings, possibly

of different lengths, are aligned so that they become identical with the smallest number of

added, deleted or changed symbols. Among these three operations, deletion can be treated

as adding a symbol in the other string. Hereafter, an added symbol is referred to as a

gap element. This distance is called the string edit distance (ED) [63] which is defined as

follows.

Definition 4.1 Given two strings R and S of lengths M and N , respectively, the Edit

Distance (ED) between R and S is the number of insert, delete, or replace operations that

are needed to change R into S. ED(R, S) is defined as follows:

ED(R, S) =





M if N = 0

N if M = 0

ED(Rest(R), Rest(S)) if first(R) = first(S)

min{ED(Rest(R), Rest(S)) + 1,

ED(Rest(R), S) + 1, otherwise

ED(R,Rest(S)) + 1}

(4.1)

where the cost/distance of introducing a gap element is set to 1, which can be generalized

to the following formula.
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dist(ri, si) =





0 if ri = si

1 if ri or si is a gap

1 otherwise

(4.2)

In the above formula, the second case is separated from the third and highlighted to indicate

that if a gap is introduced in the alignment, the cost is 1. String edit distance has been

proven to be a metric distance function [111], therefore, it satisfies triangle inequality.

However, LCSS and DTW, which are closely related to ED [60], on time series do not

follow triangle inequality. While the proof was given in Chapter 2, a detailed analysis of

the reasons why LCSS and DTW break triangle inequality are given below, which provides

hints for defining a metric distance function to handle local time shifting.

When LCSS applies to time series, the complication is that the elements ri and si are

not symbols, but real values. To take the real values into account, it relaxes equality to be

within a certain tolerance (matching threshold) ε. By borrowing the gap concept of ED

on strings, the LCSS definition in Formula 2.10 can be rewritten as follows.

LCSS(R,S) =





0 if M = 0 or N = 0

max{LCSS(Rest(R), Rest(S)) + scorelcss(r1, s1),

LCSS(Rest(R), S) + scorelcss(r1, gap),

LCSS(R,Rest(S)) + scorelcss(gap, s1)} otherwise

(4.3)

where

scorelcss(ri, si) =





1 if |ri − si| ≤ ε

0 if ri or si is a gap

0 otherwise

(4.4)

LCSS no longer satisfies triangle inequality. The problem arises precisely from relaxing

equality, i.e., |ri − si| ≤ ε. More specifically, for three elements qi, ri, si, there exist the

case that |qi − ri| ≤ ε and |ri − si| ≤ ε , but |qi − si| > ε. The third case of Formula 4.4

is separated from the others and highlighted to show where the relaxation may cause the

violation of triangle inequality.
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By borrowing the gap concept, DTW that was defined in Formula 2.8 can also be

rewritten as follows:

DTW (R,S) =





0 if M = N = 0

∞ if M = 0 or N = 0

distdtw(r1, s1) + min{DTW (Rest(R), Rest(S)), otherwise

DTW (Rest(R), S), DTW (R, Rest(S))}

(4.5)

where

distdtw(ri, si) =





|ri − si| if ri, si not gaps

|ri − si−1| if si is a gap

|si − ri−1| if ri is a gap

(4.6)

DTW differs from LCSS in two key ways. First, unlike LCSS, DTW does not use a

ε threshold to relax equality, the actual L1-norm is used. Second, unlike LCSS, there is

no explicit gap concept in its original definition in Formula 2.8. The replicated elements

during the process of aligning two sequences are treated as gaps of DTW as highlighted

in Formula 4.6. Therefore, the cost of a gap is not set to 1 as in LCSS; it amounts to

replicating the previous element, based on which the L1-norm is computed. The last two

cases in Formula 4.6 deal with the possibility of replicating either si−1 or ri−1.

To summarize, the key reason why DTW does not satisfy triangle inequality is that,

when a gap needs to be added, it replicates the previous element. Thus, as shown in the

second and third cases of Formula 4.6, the difference between an element and a gap varies

according to ri−1 or si−1. Contrast this situation with LCSS, which sets every difference to

a constant 0 (second case in Formula 4.4). On the other hand, the problem for LCSS lies

in its use of a ε tolerance. DTW does not have this problem, because it uses the L1-norm

between two non-gap elements.

Thus, in the definition of new distance function, Edit distance with Real Penalty (ERP),

a real penalty (L1-norm) is applied between two non-gap elements, but a constant value for

computing the distance for gaps as shown by the last two cases of Formula 4.8.

Definition 4.2 Given two time series R and S of lengths M and N , respectively, the Edit
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Distance with Real Penalty (ERP) between R and S, ERP (R,S), is defined as follows:

ERP (R, S) =





∑M
1 |ri − g| if N = 0∑N
1 |si − g| if M = 0

min{ERP (Rest(R), Rest(S)) + disterp(r1, s1), otherwise

ERP (Rest(R), S) + disterp(r1, g),

ERP (R, Rest(S)) + disterp(s1, g)}

(4.7)

where

disterp(ri, si) =





|ri − si| if ri, si not gaps

|ri − g| if si is a gap

|si − g| if ri is a gap

(4.8)

and g denotes the gap which is assigned a constant value.

A careful comparison of L1-norm and Edit Distance reveals that ERP can be seen as

a combination of L1-norm and Edit Distance. ERP differs from LCSS in avoiding the

ε tolerance. On the other hand, ERP differs from DTW in not replicating the previous

elements. The following lemma shows that for any fixed constant g, triangle inequality is

satisfied.

Lemma 4.1 For any three elements qi, ri, si, any of which can be a gap element, it is

necessary that dist(qi, si) ≤ dist(qi, ri) + dist(ri, si) based on Formula 4.8.

Proof. The proof of this lemma is rather straightforward. When none of qi, ri, si is a gap

element, the above inequality is satisfied because L1-norm satisfies triangle inequality. If

any of qi, ri, si is a gap element, then that element is treated as having the value g. The

above inequality is satisfied because L1-norm satisfies triangle inequality. ¤

Theorem 4.1 Let Q,R, S be three time series of arbitrary length. Then it is necessary

that ERP (Q,S) ≤ ERP (Q,R) + ERP (R, S).

The proof of this theorem is a consequence of Lemma 4.1 and the proof of the result

by Waterman et al. [111] on string edit distance. The Waterman proof essentially shows

that defining the distance between two strings based on their best alignment in a dynamic
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programming style preserves triangle inequality, as long as the underlying distance function

also satisfies triangle inequality. The latter requirement is guaranteed by Lemma 4.1.

Lemma 4.1 states that for any value of g, as long as it is fixed, disterp(ri, si) satisfies

triangle inequality. In this study, g = 0 is picked for two reasons. First, g = 0 admits

an intuitive geometric interpretation. Consider plotting the time series with the x-axis

representing (equally-spaced) time points and the y-axis representing the values of the

elements. In this case, the x-axis corresponds to g = 0. Thus, the distance between two

time series R, S corresponds to the difference between the area under R and the area under

S.

Second, to best match R, S is aligned to form S̃ with the addition of gap elements.

However, since the gap elements have value g = 0, it is easy to see that
∑

s̃i =
∑

sj,

making the area under S and that under S̃ the same. The following lemma states this

property. In the next section, the computational significance of this lemma is shown.

Lemma 4.2 Let R, S be two time series. By setting g = 0 in Formula 4.8,
∑

s̃i =
∑

sj,

where S is aligned to form S̃ to match R.

Proof. Since the inserted gap value g = 0,
∑

s̃i =
∑

sj +
∑

g =
∑

sj. ¤
Consider the example time series that were used in Chapter 2 to show LCSS and DTW

do not follow triangle inequality are used here for testing ERP (repeated here for ease

of reading): Q = [0], R = [1, 2] and S = [2, 3, 3]. To best match R, Q is aligned to be

Q̃ = [0, 0]. Thus, ERP (Q,R) = 1 + 2 = 3. Similarly, to best match S, R is aligned to

be R̃ = [1, 2, 0], giving rise to ERP (R, S) = 5. Finally, to best match S, Q is aligned to

be Q̃ = [0, 0, 0], leading to ERP (Q,S) = 8 ≤ ERP (Q,R) + ERP (R, S) = 3 + 5 = 8,

satisfying triangle inequality.

To see how local time shifting works for ERP, change Q = [3]. Then ERP (Q,R) =

1 + 1 = 2, as Q̃ = [0, 3]. Similarly, ERP (Q,S) = 2 + 3 = 5, as Q̃ = [0, 3, 0]. The triangle

inequality is satisfied as expected.

Notice that none of the results in this section are restricted to L1-norm. That is, if

another Lp-norm is used to replace L1-norm in Formula 4.8, the lemma and the theorem

remain valid. For the rest of the chapter, L1-norm is used for simplicity.

Even though ERP is a metric distance function, it is a valid question to ask whether

ERP is “natural” for time series. In general, whether a distance function is natural mainly
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Figure 4.1: Subjective Evaluation of Distance Functions

depends on the application semantics. Nonetheless, the two experiments below suggest

that ERP appears to be at least as natural as the existing distance functions.

The first experiment is a simple sanity check. A simple time series Q was generated

along with other five time series (T1-T5), by adding time shifting or noise data on one or

two positions of Q (Figure 4.1). For example, T1 was generated by shifting the sequence

values of Q to the left starting from position 4, and T2 was derived from Q by introducing

noise in position 4. Finally, L1-norm, DTW, LCSS, and ERP were used to rank the five

time series relative to Q. The rankings are as follows (where the leftmost is the most

similar to Q):

L1-norm: T1, T4, T5, T3, T2

DTW: T1, T4, T3, T5, T2

LCSS: T1, {T2, T3, T4}, T5

ERP: T1, T2, T4, T5, T3
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As shown in these results, L1-norm is sensitive to noise, as T2 is considered the worst

match. LCSS focuses only on the matched parts and ignores all the unmatched portions.

As such, it gives T2, T3, T4 the same rank, and considers T5 the worst match. DTW gives

T3 a higher rank than T5. Finally, ERP gives a ranked list different from all the others.

Notice that the point here is not that ERP is the most natural. Rather, the point is that

ERP appears to be no worse, if not better, than the existing distance functions.

Avg. Error Rate L1 DTW LCSS ERP

CBFtr 0.03 0.01 0.01 0.01

ASL 0.16 0.10 0.11 0.09

CM 0.4 0.00 0.06 0.00

Table 4.1: Comparison of classification error rates of four distance functions

In the second experiment, a more objective evaluation is performed. The method used

in Chapter 3 to evaluate the efficacy of CHD is applied in this experiment, specifically, the

efficacy of distance functions are measured with classification error rate as in Table 4.1.

The average classification error rate are reported using three benchmarks: the Cylinder-

Bell-Funnel (CBFtr) data [33, 52], the ASL data [108] and the “cameramouse” data [108].

Compared to the standard CBF data [55] used in experiments of Chapter 3, temporal

shifting is introduced in the CBFtr data set. The CBFtr data set is a 3-class problem.

The other two data sets: the ASL and the “cameramouse” are same as the ones used

in experimental study of Chapter 3. As shown in the Table 4.1, for three data sets,

ERP performs (one of) the best, showing that it is not dominated by other well known

alternatives.

4.3 Indexing for ERP

ERP can be considered a variant of LCSS and DTW. In particular, they share the same

computational behavior. Thus, like LCSS and DTW, it takes O(M ∗N) time to compute

ERP (Q,S) for time series Q,S of length M, N respectively. For large time series databases,

for a given query Q, it is important to minimize the computation of the true distance
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between Q and S for all series S in the database. The topic explored here is indexing for

k-NN queries.

Given that ERP is a metric distance function, one obvious way to prune is to apply

triangle inequality, which is explained in Chapter 2. An algorithm is presented to perform

triangle inequality pruning in Section 4.3.1. Another common way to prune is to apply

the GEMINI framework [31] – that is, using lower bounds to guarantee no false negatives.

In addition to adapting three lower bounds that were originally proposed for DTW [118,

57, 52] to ERP, Section 4.3.2 proposes a new lower bound for ERP, which has the nice

property that it can be indexed by a simple B+-tree.

4.3.1 Pruning by the Triangle Inequality

The procedure TrianglePruning shown in Algorithm 4.1 shows how the Triangle inequality

is applied. The array procArray stores the true ERP distances computed so far. That

is, if {R1, . . . , Ru} is the set of time series for which ERP (Q,Ri) has been computed, the

distance ERP (Q,Ri) is recorded in procArray. For time series S currently being evaluated,

triangle inequality ensures that ERP (Q,S) ≥ ERP (Q,Ri)−ERP (Ri, S), for all 1 ≤ i ≤ u.

Thus, it is necessary that ERP (Q,S) ≥ (max1≤i≤u{ERP (Q,Ri)−ERP (Ri, S)}). This is

implemented in lines 2 to 4. If the computed distance maxPruneDist is already worse than

the current k-NN distance stored in result, then S can be skipped entirely. Otherwise, the

true distance ERP (Q,S) is computed, and procArray is updated to include S. Finally, the

result array is updated, if necessary, to reflect the current k-NN neighbours and distances

in sorted order.

Algorithm 4.2 shows how the result and procArray should be initialized when the

procedure TrianglePruning is called repeatedly in line 4. Line 3 of the algorithm represents

a simple sequential scan of all the time series in the database. This does not mean that a

sequential scan should be used; it is included in the algorithm for two reasons. The first

reason is to show how the procedure TrianglePruning can be invoked. The second reason

is that a sequential scan algorithm can be used to illustrate the pure pruning power of

triangle inequality, independent of the indexing structure. This issue will be discussed

later when the inequality is used in conjunction with index structures. Moreover, triangle

inequality needs not be applied only in the manner shown in Algorithm 4.1. It can be
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Algorithm 4.1 Procedure TrianglePruning(S, procArray, pmatrix, result, Q, k)

Input: S ≡ the current time series; procArray ≡ the array of time series with computed

true distance to Q; pmatrix ≡ precomputed pairwise distance matrix;

Output: result ≡ the k-NN

1: maxPruneDist = 0

2: for each time series R in procArray do

3: if (procArray[R].dist− pmatrix[R,S]) > maxPruneDist then

4: maxPruneDist = procArray[R].dist− pmatrix[R, S]

5: end if

6: end for

7: bestSoFar = result[k].dist {/* the k-NN distance so far */}
8: if maxPruneDist ≤ bestSoFar then {/* cannot be pruned */}
9: realDist = ERP (Q,S) {/* compute true distance */}

10: insert S and realDist into procArray

11: if realDist < bestSoFar then {/* update result */}
12: insert S and realDist into result

13: sorted in ascending order of ERP distance

14: end if{/* end-if, line 11 */}
15: end if

applied directly with existing metric space index structures such as VP-trees [105], M-

trees [26], and OMNI-family of access methods [32]. Again the issue of comparison will be

addressed in Section 4.4.

Finally, for large databases, the procedure TrianglePruning makes two assumptions. The

first assumption is that the matrix pmatrix is small enough to be contained in main mem-

ory. For every pair of time series R,S in the database, pmatrix[R, S] records the distance

ERP (R, S). For large databases, pmatrix may be too large. The second assumption is

that the size of procArray is small enough. The size is left unspecified because procedure

TrianglePruning works regardless of the actual size of the array. The larger the size of

procArray, the more time series can be used for pruning. These two assumptions will be

addressed in Section 4.3.3.
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Algorithm 4.2 Procedure SequentialScan(Q, k, pmatrix)

Input: Q ≡ the query time series; pmatrix ≡ precomputed pairwise distance matrix

Output: result ≡the k-NN

1: initialize result so that result[k].dist = ∞
2: initialize procArray to empty

3: for each time series S in the database do

4: TrianglePruning(S, procArray, pmatrix, result, Q, k)

5: end for

6: return result

(a) Yi’s Lower Bound of DTW (b) Kim’s Lower Bound of DTW

Figure 4.2: Lower Bounds of Yi and Kim to DTW (figures from [52])

4.3.2 Pruning by Lower Bounding

For non-metric distance functions, like DTW, the main pruning strategy is lower bounding.

However, lower bounding is not restricted to non-metric distance functions. In this section,

a number of lower bounds are developed for ERP, which is a metric distance function.

Adapting Existing Lower Bounds

Given the similarities between ERP and DTW, existing lower bounds for DTW are adapted

to become lower bounds for ERP. Specifically, the lower bounds proposed by Yi et al. [118],

Kim et al. [57], and Keogh et al. [52] are considered.

The lower bound proposed by Yi et al., denoted as DLBY i
DTW (Q,S), is based on the

area covered by Q that is greater than max(S) and the area of Q that is less than min(S),
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which is shown as the area connected by gray lines in Figure 4.2(a). max(S) and min(S)

denote the maximum and minimum elements of S. Rs is used to denote the value range

〈min(S),max(S)〉 of time series S. The formal definition of DLBY i
DTW for DTW (Q,S) is

[118]:

DLBY i
DTW (Q,S) =





∑
qi>max(S) |qi −max(S)|+ ∑

si<min(Q) |si −min(Q)|
if RQ overlaps RS∑

qi>max(S) |qi −max(S)|+ ∑
qi<min(S) |qi −min(S)|

if RQ encloses RS

max(
∑m

i=1 |qi > max(S)|,∑n
j=1 |sj −min(Q)|

if RQ disjoins RS

(4.9)

Adapting to ERP is rather straightforward. Because ERP uses a constant gap ele-

ment g, comparing the original minimum and maximum elements with g is needed, i.e.,

min∗(S) = min{min(S), g} and max∗(S) = max{max(S), g}1. R∗
S is used to denote the

range = 〈min∗(S),max∗(S)〉. The lower bound for ERP (Q,S) is defined as follows:

DLBY i
ERP (Q,S) =





∑
qi>max∗(S) |qi −max∗(S)|+ ∑

si<min∗(Q) |si −min∗(Q)|
if R∗

Q overlaps R∗
S∑

qi>max∗(S) |qi −max∗(S)|+ ∑
qi<min∗(S) |qi −min∗(S)|

if R∗
Q encloses R∗

S

max(
∑m

i=1 |qi > max(S)|, ∑n
j=1 |sj −min(Q)|

if R∗
Q disjoins R∗

S

(4.10)

Theorem 4.2 Let Q, S be two time series data, then it is necessary that

DLBY i
ERP (Q,S) ≤ ERP (Q,S) (4.11)

Proof. By changing the max and min accordingly, the proof is a simple extension of the

original proof for DLBY i
DTW (Q,S) ≤ DTW (Q,S) [118]. ¤

Kim et. al [57] extract a 4-tuple feature vector 〈first(S), last(S),max(S),min(S)〉 for

each time sequence S, where functions first, last, max, and min are used to get the first,

last, maximum, and minimum elements of S, respectively. The lower bound to DTW (Q, S)

1Recall that in this study g = 0
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is the maximum of: |first(Q) − first(S)|, |min(Q) −min(S)|, |max(Q) −max(S)|, and

|last(Q)− last(S)|, which are shown as A, B, C, and D in Figure 4.2(b). DLBKim
DTW (Q, S)

is defined as follows:

DLBKim
DTW (Q,S) = max





|first(Q)− first(S)|
|last(Q)− last(S)|
|max(Q)−max(S)|
|min(Q)−min(S)|

(4.12)

To adapt this lower bound for ERP, min(S) and max(S) need to be changed to consider

g, it is also necessary to consider the first or the last element may be a gap during the

process of aligning two time series. Thus, first∗(S) = g or first(S) and last∗(S) = g or

last(S). With this simple change, the lower bound for ERP (Q,S) is defined as follows:

DLBKim
ERP (Q, S) = max





|first∗(Q)− first∗(S)|
|last∗(Q)− last∗(S)|
|max∗(Q)−max∗(S)|
|min∗(Q)−min∗(S)|

(4.13)

Theorem 4.3 Let Q, S be two time series data, then it is necessary that

DLBKim
ERP (Q,S) ≤ ERP (Q,S) (4.14)

Proof. By changing the first, last, max, and min according to g, the proof is a simple

extension of the original proof for DLBKim
DTW (Q,S) ≤ DTW (Q,S) [57]. ¤

Finally, Keogh et al. introduced the concept of a bounding envelop for a time series

Q, which is of the form: Env(Q) = [(Min1, Max1), . . . , (Minn,Maxn)]. Mini and Maxi

represent the minimum and maximum values of the elements in the warping range (wr) of

an element, as shown in Figure 4.3(a). The warping range of an element is the maximum

number of times the element can be duplicated in local time shifting. Two constraints

were made before deriving the lower bound distance: (1) all the sequences are of the same

length, (2) the warping range for each element of a sequence is constrained. The lower

bound distance is computed by summing the distances between values that are located

outside of the envelop to the nearest boundary of the envelop, which is shown as the
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(a) Keo’s Envelop of Query Sequence Q (b) Keo’s Lower Bound of DTW

Figure 4.3: Envelope and Lower Bounds of Keo to DTW (figures are from [52])

area connected by the gray lines in Figure 4.3(b). Given two time series data Q and S,

DLBKeogh
DTW (Q,S) is defined as follows:

DLBKeogh
DTW (Q,S) =

N∑
i=1





|qi −Maxi| if qi > Maxi

|qi −Mini| if qi < Mini

0 otherwise

(4.15)

To adapt the envelope to ERP, Mini and Maxi are adjusted with the gap g, exactly

as in DLBY i
ERP (Q, S): Max∗i = max(Maxi, g) and Min∗i = min(Mini, g). Given two time

series Q and S, the adapted lower bound for ERP DLBKeogh
ERP (Q,S) is defined as follows:

DLBKeogh
ERP (Q,S) =

N∑
i=1





|qi −Max∗i | if qi > Max∗i
|qi −Min∗i | if qi < Min∗i
0 otherwise

(4.16)

Theorem 4.4 Let Q,S be two time series, then it is necessary that

DLBKeogh
ERP (Q,S) ≤ ERP (Q,S) (4.17)

Proof. After adjusting Maxi and Mini to Max∗i and Min∗i , respectively, the original

proof for DLBKeogh
DTW (Q,S) ≤ DTW (Q,S) [52] can be applied directly. ¤

It was shown that DLBKeogh is tighter than DLBKim and DLBY i. However, compared

to the other two lower bounds, DLBKeogh has two constraints and needs more information.
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For a time sequence S of length N , an envelope of DLBKeogh needs to store 2N values, while

DLBKim and DLBY i only need 4 and 2 values, respectively. The effectiveness of the three

adapted lower bounds will be empirically evaluated in the next section. The focus will be

on the pruning power of these lower bounds. Notice that the lower bound DLBKeogh is not

suitable for applying spatial access methods because of high dimensionality of bounding

envelopes. Thus, Keogh [52] and Shasha et al. [119] proposed two different techniques

based on PAA to reduce the dimensionality of query time series and bounding envelope,

and defined new lower bounds for DLBKeogh 2.

Finally, as the base case for comparisons in the next section, a sequential scan strategy

is considered for exploiting these lower bounds. Algorithm 4.3 shows how to use lower

bounds to prune false candidates.

Algorithm 4.3 Procedure LowerboundsPruning(S, result, Q, k)

Input: S ≡ the current time series; Q ≡ the query time sequence

Output: result ≡ the k-NN

1: maxPruneDist = DLB(Q,S)

2: bestSoFar = result[k].dist {/* the k-NN distance so far */}
3: if maxPruneDist ≤ bestSoFar then {/* cannot be pruned */}
4: realDist = ERP (Q,S) {/* compute true distance */}
5: if realDist < bestSoFar then {/* update result */}
6: insert S and realDist into result

7: sorted in ascending order of ERP distance

8: end if

9: end if

2These two technique are not included in the experimentation because comparison with DLBKeogh
ERP will

be made directly. As a preview, the experimental results will show that the proposed new lower bound
dominates DLBKeogh

ERP , which translates to a superiority over the Keogh’s and Shasha’s lower bounds of
DLBKeogh

ERP .
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A New Lower Bound for ERP

In this section, a new lower bound specific to ERP is defined. Given a time series S of

length N , sum(S) =
∑N

i=1 si. The distance DLBChen
ERP (Q,S) between Q of length M and

S of length N is defined as:

DLBChen
ERP (Q,S) = |sum(Q)− sum(S)| (4.18)

A key result here is the following theorem stating that this is indeed a lower bound for

ERP.

Theorem 4.5 Let Q, S be two time series data, then it is necessary that DLBChen
ERP (Q,S) ≤

ERP (Q,S).

Before giving a proof of the theorem, the following results from the literature on a

convex function are needed.

Definition 4.3 A function f(x) is convex on an interval [a, b] if for any two points x1

and x2 in [a, b], f [1
2
(x1 + x2)] ≤ 1

2
[f(x1) + f(x2)].

Lemma 4.3 [83] Let λ1, . . . , λK be non-negative real values such that
∑K

i=1 λi = 1. If f is

a convex function on reals, then f(λ1x1 + . . . + λKxK) ≤ λ1f(x1) + . . . + λKf(xK), where

x1, . . . , xK are real values.

The following corollary can be established for Lp-norms which are convex functions on

reals.

Corollary 4.1 For any sequence S = [s1, . . . , sK ], and 1 ≤ p < ∞, K|mean(S)|p ≤∑K
i=1 |si|p holds.

Proof: Take f(x) = |x|p, and λi = 1/K. Then f(
∑K

i=1 λisi) = f((
∑K

i=1 si)/K) =

|mean(S)|p. Thus, the inequality follows. ¤
With Corollary 4.1 and Lemma 4.3, Theorem 4.5 can be proven as follows.
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Proof: Given Q of length M and S of length N , let the aligned sequences that give the

best local time shifting outcome be Q̃ and S̃ respectively. Both Q̃ and S̃ are of the same

length, say K.

ERP (Q,S) =
K∑

i=1

|s̃i − q̃i| (Formula 4.8)

≥ K|mean(S̃ − Q̃)| (Corollary 4.1, p = 1)

= K|
∑K

i=1 s̃i −
∑K

i=1 q̃i

K
|

= |
K∑

i=1

s̃i −
K∑

i=1

q̃i|

= |
N∑

i=1

si −
M∑

j=1

qj| (Lemma 4.2)

= DLBChen
ERP (Q,S)

¤
There are two points worth mentioning about Theorem 4.5. The first point concerns

the application of Lemma 4.2, i.e.,
∑K

i=1 s̃i =
∑n

i=1 si. This is due to the fact that the gap

element is g = 0. The beauty of this equality is that regardless of S̃, which depends on Q,

the quantity sum(S) is unchanged and can be inserted into an index for lower bounding

purposes for any future query Q. This leads to the second point – sum(S) is a single value,

thus, only a 1-dimensional B+-tree is sufficient to index it.

Algorithm 4.4 shows the steps to answer a k-NN query using a B+-tree on lower

bounding, sum(S). Procedure DLBerpk-NN first conducts a standard search for the value

sum(Q). This results in a leaf node I. The first k time series pointed to by I are used to

initialize the result array. Then the leaf nodes of the tree are traversed using the pointer

connecting a leaf node to its siblings. All the data values bigger than sum(Q) are visited

in ascending order. Similarly, all the data values smaller than sum(Q) are visited in de-

scending order. In both cases, if the lower bound distance DLBChen
ERP (Q,S) is smaller than

the best k-NN distance so far, the true distance ERP (Q,S) is computed and updates are

made if necessary. Otherwise, the remaining data values can be skipped entirely.



Edit Distance with Real Penalty 93

Algorithm 4.4 Procedure DLBerpk-NN(Q, k, Tree, result)

Input: Tree ≡ a B+-tree storing sum(S) for all S in database

Output: result ≡ the k-NN

1: sumQ = sum(Q)

2: conduct a standard B+-tree search on Tree using sumQ and let I be the leaf node the

search ends up with

3: pick the first k time series pointed to by I and initialize result with the k true sorted

ERP distances

4: let v1, . . . , vh be the data values in all the leaf nodes larger than the data values visited

in line 3, v1, . . . , vh are sorted in ascending order

5: for each vi do

6: bestSoFar = result[k].dist {/* the k-NN distance so far */}
7: if ((vi − sumQ) ≤ bestSoFar) then {/*need to check */}
8: for each S pointed to by the pointer with vi do

9: realDist = ERP (Q,S) {/* compute true distance*/}
10: if realDist < bestSoFar then {/* update result */}
11: insert S and realDist into result, sorted in ascending order of ERP distance

12: bestSoFar = result[k].dist

13: end if

14: end for

15: else {/* else line 7 skip the rest */}
16: break

17: end if

18: end for

19: repeat line 4 to 18 this time to the values w1, . . . , wj in all the leaf nodes which are

smaller than the data values visited in line 3. w1, . . . , wj are sorted in descending order.

Line 7 is modified to: if ((sumQ− wi) ≤ bestSoFar)

20: return result
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Algorithm 4.5 Procedure ERPCombinek-NN(Q, k, Tree, result)

Input: Tree ≡ a B+-tree storing sum(S) for all S in database

Output: result ≡ the k-NN

1: sumQ = sum(Q)

2: conduct a standard B+-tree search on Tree using sumQ and let I be the leaf node the

search ends up with

3: pick the first k time series pointed to by I and initialize result with the k true sorted

ERP distances

4: let v1, . . . , vh be the data values in all the leaf nodes larger than the data values visited

in line 3, v1, . . . , vh are sorted in ascending order

5: for each vi do

6: bestSoFar = result[k].dist {/* the k-NN distance so far */}
7: if ((vi − sumQ) ≤ bestSoFar) then {/*need to check */}
8: for each S pointed to by the pointer with vi do

9: invoke Procedure TrianglePruning() in Algorithm 4.1

10: end for

11: else {/* else line 7 skip the rest */}
12: break

13: end if

14: end for

15: repeat line 4 to 14 this time to the values w1, . . . , wj in all the leaf nodes which are

smaller than the data values visited in line 3. w1, . . . , wj are sorted in descending order.

Line 7 is modified to: if ((sumQ− wi) ≤ bestSoFar)

16: return result
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4.3.3 Combining the Two Pruning Methods

For a non-metric distance function like DTW, lower bounding can be used, but pruning

by triangle inequality cannot. ERP is, of course, different. It is possible to combine both

methods – use triangle inequality to save the computation of the true distance ERP (Q, S)

after lower bounding. Algorithm 4.5 shows the steps of applying first DLBChen
ERP followed

by triangle inequality.

Recall from Algorithm 4.1 that in applying the TrianglePruning procedure, there are

two unresolved issues: (i) the size of the pairwise distance matrix pmatrix; and (ii) the

size of procArray, i.e., the maximum number of time series whose true ERP distances are

kept for triangle inequality pruning. These issues are resolved below to make procedure

ERPCombineK-NN in Algorithm 4.5 practical for large databases and for limited buffer

space situations.

Let maxTriangle denote the maximum number of time series whose true ERP distances

are kept for triangle inequality pruning. This value should be determined at query time

by the query engine. Hereafter these time series are called the reference series. There are

two ways to pick these reference series:

• static, where reference series are randomly picked a priori. For that matter, they

may not even be series contained in the database.

• dynamic, where reference series are picked as procedure ERPCombineK-NN runs. The

choices are thus query dependent. In the implementation, the first maxTriangle time

series are simply picked to fill up the fixed-size procArray.

For the static reference series strategies, the entire pmatrix is not needed. Only the

pairwise ERP distance matrix for each pair of reference series and data series is needed.

Thus, if L is the number of time series in the database, then the size of this matrix is

L ∗ maxTriangle. For the dynamic reference series strategy, again the entire pmatrix

is not needed. As the reference series are picked and kept, the appropriate column of

the matrix is read into the buffer space. The buffer space requirement is maxTriangle

columns, each of size L. Thus, the total buffer space required is again L ∗maxTriangle.

While the buffer space requirement is the same, there are tradeoffs between the two

strategies. For the dynamic strategy, the advantage is that the reference series are chosen
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based on previously compared time series. Thus, there is no extra cost involved. The dis-

advantage is that at the beginning of running ERPCombineK-NN, there may not be enough

reference series for triangle inequality to be effective. It takes at least maxTriangle itera-

tions to fill up procArray. In contrast, for the static strategy, all maxTriangle reference

time series are available right at the beginning of running ERPCombineK-NN. The disad-

vantage is that the ERP distance must be computed between the query and each reference

time series, which represents additional overhead. These two strategies are experimentally

compared in the next section.

Finally, note that ERPCombineK-NN can be generalized to apply to any metric distance

function – representing an extension to the GEMINI framework. That is, within the GEM-

INI framework, once lower bounding has been applied, an additional step can be added

to apply triangle inequality to eliminate more false positives, as long as the underlying

distance function is a metric distance function.

4.4 Experimental Evaluation

4.4.1 Experimental Setup

In this section, experimental results are presented based on the 24 benchmark data sets

used in [119, 52]3, the stock data set used in [110], and the random walk data set tested

in [54, 52, 119]. All experiments were run on a Sun-Blade-1000 workstation with 1G

memory under Solaris 2.8. All the algorithms listed in previous sections were implemented

in C. The various lower bound strategies for DTW [118, 57, 52], OMNI-sequential and the

HF algorithm for selecting reference series [32], were also implemented. The M-tree code

is obtained from http://www-db.deis.unibo.it/Mtree/.

The experiments measure either total time or pruning power. Total time includes both

CPU and I/O, and is measured in seconds. The pruning power P , defined in Chapter 3,

is the fraction of the time series S in the data set for which ERP (Q,S) does not need

to be computed (without introducing false negatives). Following [52, 119], pruning power

31.Sunspot; 2.Power; 3.Spot Exrates; 4.Shuttle; 5.Water; 6. Chaotic; 7.Streamgen; 8.Ocean; 9.Tide;
10.CSTR; 11.Winding; 12.Dryer2; 13.Ph Data; 14.Power Plant; 15.Balleam; 16.Standard &Poor; 17.Soil
Temp; 18.Wool; 19.Infrasound; 20.EEG; 21.Koski ECG; 22.Buoy Sensor; 23.Burst; 24.Randow walk.
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DLBKim
ERP DLBY i

ERP DLBKeogh
ERP DLBChen

ERP TR

0.0 0.28 0.44 0.54 0.63

Table 4.2: Pruning power comparison of different lower bounds on the third data set

P is measured because this is an indicator free of implementation bias (e.g., page size,

thresholds).

4.4.2 Lower Bounding vs Triangle Inequality

The first experiment addresses the issue of lower bounding versus triangle inequality. To

make the comparisons fair, sequential scans were used. Figure 4.4 shows the pruning power

of DLBY i
ERP , DLBKim

ERP , DLBKeogh
ERP , DLBChen

ERP and triangle inequality (denoted as TR) on

the 24 benchmark data sets for k = 1, 5, 20. The pruning power shown is the average over

50 random queries. Each data set contains 200 time series, each with length 256. As a

concrete example, an arbitrary data set is selected from the 24 and the detailed pruning

power figures below for k = 20 are shown in Table 4.2. The third data set is picked and it

contains the spot prices (foreign currency in dollars) over 10 years (10/9/86 to 8/9/96).

From the results shown in Table 4.2 and Figure 4.4, it is obvious that among the three

previously proposed lower bounds, DLBKeogh
ERP performs uniformly the best. However, it is

dominated by DLBChen
ERP proposed in this chapter. Furthermore, triangle inequality (TR)

consistently outperforms all the lower bounds. The larger the value of k, the larger is the

difference. This shows the value of having a metric distance function.

4.4.3 Combining DLBChen
ERP with Triangle Inequality

From Figure 4.4, triangle inequality (TR) performs the best in pruning power. In Fig-

ure 4.5, TR is compared further with:

• M-tree (page size 16K). Compared to other metric space indexing structures, such

as MVP-tree and Sa-tree, M-tree is designed to minimize both I/O cost and distance

computations.
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Figure 4.4: Lower Bounding vs the Triangle Inequality: Pruning Power
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• OMNI-sequential (OMNI-seq). OMNI-seq is tested with different number of reference

points that ranges from 5 to 100.

• B+-tree (page size 1K). This implements DLBChen
ERP with an index structure (i.e.,

Algorithm 4.4).

• B+-tree incorporating both the triangle inequality and DLBChen
ERP (i.e., Algorithm 4.5).

Both the static and dynamic versions are included.

The experiment reveals that the pruning power of OMNI-seq with 100 reference points

behaves very similar to that of TR. This is because they use the same strategies to remove

false alarms; the only difference is the number of reference points that they use. Therefore,

the results of OMNI-seq are not included in Figure 4.5.

The first observation is that all the methods do well when k = 1. But with k = 20,

the separation is clear. M-tree is by far the worst, even dominated by triangle inequality

based on sequential scan. This is because, with M-tree, the algorithm uses the distance

information below each scanned node, rather than on all the true distances previously

computed. This restricts the effectiveness of pruning.

The second observation is that while TR (based on sequential scan) outperforms DLBChen
ERP

with sequential scan, the reverse is true when DLBChen
ERP is used with a B+-tree. This shows

the effectiveness of the B+-tree index in facilitating lower bound pruning.

The third observation is that the combination approaches B+TR (static) and B+TR

(dynamic) are the best – better than B+-tree alone or triangle inequality alone. This shows

the power of combining both lower bounding and pruning by triangle inequality. For both

the static and dynamic combination approaches, the number of reference series varies from

5 to 100. The graph only shows the result with 100 reference series. Table 4.3 is included

to show the pruning power in greater details on the third data set with k = 20.

For both the static and dynamic combination approaches, increasing the number of

reference series improves the pruning power as expected. The static approach appears to

perform better than the dynamic approach. However, as will be shown in later experiments,

this perspective on pruning power is not yet the complete picture.

Table 4.3 also includes the pruning power results using the HF algorithm to select

the reference series and the OMNI-sequential with 100 reference points [32]. Both are
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Figure 4.5: Lower Bounding Together with the Triangle Inequality: Pruning Power
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M-tree TR B+tree B+TR(static)

20 50 100

0.59 0.63 0.72 0.76 0.80 0.82

B+TR(dynamic) B+HF OMNI-seq

20 50 100 (100) (100)

0.74 0.76 0.77 0.76 0.63

Table 4.3: Pruning power comparison of different indexing methods on the third data set

M-tree B+tree B+TR B+TR OMNI-seq

(static) (dynamic)

3.89 1.84 6.36 1.58 5.68

Table 4.4: Total time comparison of different indexing methods on the third data set

dominated by the static and dynamic approaches proposed in Section 4.3.3.

4.4.4 Total Time Comparisons

The pruning power results presented so far do not represent the complete picture because

higher pruning power may require additional time spent on pre-processing. Figure 4.6

shows the total time spent on answering the k-NN queries. This time includes the pre-

processing time and the query processing time (both CPU and I/O included). The time

taken by TR (triangle inequality alone) is not shown in the figure because it takes much

longer than the others. It was found that the time cost of OMNI-seq is very similar to that

of B+TR(static)), because both of them spend the same amount of time on computing

the distance between query time series and the reference time series. Thus, the results

of OMNI-seq are not included in Figure 4.6. Again, the graphs only show the results of

combined methods with 100 reference sequences. The detailed run time (in seconds) on

the third data set with k = 20 and 100 reference series is shown in Table 4.4. Among
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Figure 4.6: Total Time comparisons: 24 Benchmark Data Sets
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the approaches shown in the Figure 4.6 and Table 4.4, the static combination approach

(i.e., B+TR(static)) takes the most time, followed by OMNI-seq, M-tree and the B+-tree

alone. The dynamic combination approach appears to be the best, in delivering very good

pruning power but not at the expense of sacrificing pre-processing time.

However, it would be a mistake to conclude at this point that the dynamic combination

approach is the clear winner. The main reason is that the 24 benchmarks are all small data

sets, none of which contains more than 200 time series. They are used because they have

been widely used as benchmarks, and represent a wide spectrum of applications and data

characteristics. However, to address the size issue, the following set of results is based on

much larger data sets.

4.4.5 Scalability Tests

Three random walk data sets [54, 52, 119] are used in this experiment. The size of three

data sets are 18432, 65,536 and 100,000, respectively, each of length 256.

Figure 4.7 shows the total time taken to answer k-NN queries. The time taken for five

methods are included: M-tree, B+-tree alone, B+TR(static,400), B+TR(dynamic,400) and

OMNI-sequential(400), where 400 refers to the number of reference time series. It is clear

that the static and dynamic approaches perform the best. In fact, the static approach

manages to catch up with the dynamic approach, and in some cases, it even outperforms.

The reason is that when the data set is large and selectivity is high (k > 1), the pre-

processing represents a small overhead relative to the search. The improvement in pruning

power can then compensate for the overhead.

4.5 Conclusions

In this chapter, a new distance function, ERP, is proposed. ERP can be viewed as a perfect

marriage between L1-norm and Edit Distance. It resembles L1-norm since it is a metric

distance function, and it resembles Edit Distance since it can handle local time shifting.

The results of efficacy test on benchmark data test show that ERP is as natural for time

series as existing distance functions such as DTW and LCSS.
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Figure 4.7: Total Time Comparisons: Large Data Sets

Because ERP is a metric distance function, triangle inequality can be used for pruning

in answering k-NN queries. Besides that, developing a lower bound to ERP and applying

GEMINI frame work is another solution to improve the retrieval efficiency. Therefore,

besides adapting the lower bounds proposed for DTW and using them for ERP, a new

lower bound is also developed. Unlike adapted lower bounds which require accessing with

a multi-dimensional indexing structure, the proposed lower bound is 1-dimensional and

can simply be implemented in a B+-tree, which reduces the storage requirement and save
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the possible I/O cost as a consequence. Because pruning by triangle inequality and by

lower bounds are orthogonal, the two strategies are combined in the k-NN algorithm. This

combination can be considered as an extension of GEMINI framework for indexing time

series data with a metric distance function.

Extensive experiments were conducted using 24 benchmarks and other large data sets.

Consistently, the new lower bound of ERP dominates existing strategies. More impor-

tantly, the combination approaches which incorporate both lower bounding and pruning

by triangle inequality deliver superb pruning power as well as wall clock time performance.

Among the two combination approaches, both the static and the dynamic approach are

viable alternatives depending on k and the size of the database.



Chapter 5

Similarity-based Search Using Edit

Distance on Real Sequences

5.1 Introduction

In the previous chapter, similarity-based search over time series or trajectory data that

contain local time shifting is studied. This chapter focuses on similarity-based retrieval

on data containing both local time shifting and noise. In this chapter, all the definitions,

theorems, and techniques are defined over trajectory data. This is because compared

to time series data, trajectories may have more outliers [108]. Unlike stock, weather,

or commodity price data, trajectories of moving objects are captured by recording the

positions of the objects from time to time (or tracing the moving object from frame-to-

frame in video data). Therefore, due to sensor failures, disturbance signals or errors in

detection techniques, many outliers may appear. In fact, all the techniques used here can

be applied to time series as well when they contain local time shifting and noise.

As pointed out in chapter 2, Lp-norm and DTW are sensitive to noise. LCSS can handle

noise but it does not consider various gap differences between similar subsequences, which

leads to inaccuracies. Here the gap differences refer to sub-trajectories in between two iden-

tified similar components of two trajectories. Even ERP, developed in Chapter 4, is sensi-

tive to noise although it is robust against local time shifting. This is because ERP takes the

differences of real values as distance. Revisiting the example trajectory data that contain

106
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noise (Chapter 2), Q = [(t1, 1), (t2, 2), (t3, 3), (t4, 4)],R = [(t1, 10), (t2, 9), (t3, 8), (t4, 7)], S =

[(t1, 1), (t2, 100),(t3, 2), (t4, 3), (t5, 4)], P = [(t1, 1), (t2, 100), (t3, 101), (t4, 2), (t5, 4)], ERP pro-

duces the same rank as Euclidean distance and DTW, which confirms that it is sensitive

to noise.

Therefore, in this chapter, a new distance function is introduced to addresses the case

that data contain local time shifting and noise. The retrieval efficiency issues using this

distance function are also discussed.

The rest of the chapter is arranged as follows. Section 5.2 presents a new distance

function, EDR, as well as comparative efficacy test results on benchmark data sets. In Sec-

tion 5.3, three pruning techniques are introduced that can be used to improve the retrieval

efficiency. An optimization is also proposed by combining the three pruning methods. Ex-

perimental studies on retrieval efficiency in terms of pruning power and speedup ratio for

each pruning technique and the combination method are presented in Section 5.4.

5.2 Edit Distance on Real Sequences

In this section, a new distance function, called Edit Distance on Real sequence (EDR),

is proposed to handle data contain local time shifting and noise. EDR is more robust

and accurate than the existing distance functions in measuring the similarity between two

trajectories. For simplicity and without loss of generality, objects are treated as points that

move in a two-dimensional space (x−y plane) and time is considered to be discrete. Thus,

given a trajectory R = [(t1, r1) . . . , (tN , rN)], ri is a pair, (ri,x, ri,y) and (ti, ri) is defined as

an element of trajectory R. Given R, its x and y position values are normalized using the

corresponding mean (µx), (µy) and standard deviation (σx), (σy), respectively [37]:

Norm(R) = [(t1, (
r1,x − µx

σx

,
r1,y − µy

σy

)), . . . , (tN , (
rN,x − µx

σx

,
rN,y − µy

σy

))] (5.1)

Normalization is recommended so that the distance between two trajectories are invari-

ant to spatial scaling and shifting. Throughout this chapter, R is used to denote Norm(R).

Similar to ERP, EDR is based on Edit Distance (ED) [63]. As defined in Chapter 4,

given two strings R and S, ED(R, S) is the number of insert, delete, or replace operations

that are needed to convert R into S. Since trajectories are not strings but numerical value
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pair sequences, for EDR, it is crucial to properly define what is meant by matching between

element pairs of different trajectories.

Definition 5.1 A pair of trajectory element vectors ri and sj from two trajectories R and

S, respectively, are said to match (match(ri, sj) = true) if and only if |ri,x − sj,x| ≤ ε and

|ri,y − sj,y| ≤ ε, , where ε is the matching threshold.

Definition 5.2 Given two trajectories R and S of lengths M and N , respectively, the

Edit Distance on Real sequence (EDR) between R and S is the number of insert, delete, or

replace operations that are needed to change R into S. EDR(R,S) is defined as follows:

EDR(R,S) =





M if N = 0

N if M = 0

min{EDR(Rest(R), Rest(S)) + subcost,

EDR(Rest(R), S) + 1, EDR(R,Rest(S)) + 1} otherwise

(5.2)

where subcost = 0 if match(r1, s1) = true and subcost = 1 otherwise.

In Definition 5.2, the cost of a replace, insert, or delete operation is only 1, which

corresponds to the original definition of edit distance [63].

Compared to Euclidean distance, DTW, and LCSS, EDR has the following virtues:

• In EDR, the matching threshold reduces effects of noise by quantizing the distance

between a pair of elements to two values, 0 and 1. Therefore, the effect of outliers on

the measured distance is much less in EDR than that in Euclidean distance, DTW,

and ERP.

• Like ERP, seeking the minimum number of edit operations required to change one

trajectory to another offers EDR the ability to handle local time shifting.

• Contrary to LCSS, EDR assigns penalties to the gaps between two matched sub-

trajectories according to the lengths of gaps, which makes it more accurate than

LCSS.
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Revisiting the previous example of trajectory data that contain noise, the similarity ranking

relative to Q with EDR (ε = 1) is S, P, R, which is the expected result.

In order to compare the efficacy of different distance functions, the following objective

evaluation is applied. The first test is to check the clustering performance with different

distance functions. The hierarchy clustering methods, which had been used in Chapter

3 to test CHD, is again used here to compare the efficacy of four distance functions on

two labelled data sets, the “cameramouse” [34] and the Australian Sign Language (ASL)

data sets. Different values of ε are used to run the experiments and a quarter of the

maximum standard deviation of trajectories is set as the matching threshold ε, which

leads to the best clustering results. In order to make a fair comparison, DTW is also

tested with different warping lengths and the best results are reported. Since Euclidean

distance requires sequences with the same length, the strategy that was used in [108] can

be applied, where the shorter of the two trajectories slides along the longer one and the

minimum distance is recorded. The best result of each distance function is reported in

Table 5.1.

Correct results Euclidean distance DTW ERP LCSS EDR

CM (total 10 correct) 2 10 10 10 10

ASL (total 45 correct) 4 20 21 21 21

Table 5.1: Clustering results of five distance functions

As shown in Table 5.1, EDR performs as well as DTW, ERP and LCSS. The poor clus-

tering results of Euclidean distance confirm that it is very sensitive to local time shifting.

In this test, DTW and ERP perform similar to LCSS and EDR, because the two trajec-

tory data sets contain local time shifting, but very little or no noise, which confirms earlier

results [108]. Thus, this test shows that EDR is as effective as DTW, ERP, and LCSS in

measuring similarities of trajectories when the trajectories contain little or no noise.

The second test uses classification of labelled data to evaluate the efficacy of a distance

function, using the same method as in Chapters 3 and 4. The same two data sets of the

first test and the Gun data set [89] are used. The gun data set is a 2 class data set with

100 trajectories per class.
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In order to test the ability of distance functions to handle local time shifting and noise,

Interpolated Gaussian noise (about 10-20% of the length of trajectories) and local time

shifting are added to each data set using the program in [109]. To get average values over

a number of data sets, each raw data set is used as a seed to generate 50 distinct data sets

that include noise and time shifting. The results are shown in Table 5.2. For three data

sets, EDR performs the best, showing that it is superior to the other distance functions in

handing noise and local time shifting.

Avg. Error Rate Euclidean distance DTW ERP LCSS EDR

CM 0.25 0.11 0.10 0.10 0.03

ASL 0.28 0.16 0.14 0.14 0.09

Gun 0.15 0.11 0.11 0.11 0.08

Table 5.2: Classification results of five distance functions

To conclude, the results of these two tests prove that EDR performs as well as DTW,

ERP, and LCSS when trajectories contain little or no noise, and it is more robust than

DTW and ERP, and more accurate than LCSS in noisy conditions.

5.3 Efficient Trajectory Retrieval Using EDR

The matching threshold ε in EDR is introduced to remove the effect of noise. However,

the introduction of the threshold causes EDR to violate triangle inequality, making it non-

metric and, thus, non-indexable by traditional distance-based indexing methods. However,

this does not mean that EDR is not a “good” distance function. As pointed out by

Jacobs et. al [46], it is not the poor selection of features or careless design that cause

a distance function not to follow triangle inequality. Inherently, distance functions that

are robust to noisy data will usually violate triangle inequality. Many robust distance

functions have been proposed in the domain of image retrieval, such as Hausdorff distance

[44] and Dynamic Partial Function (DPF) [35], that do not follow triangle inequality.

Furthermore, much work in psychology also suggest that human similarity judgements do



Edit Distance on Real Sequences 111

not follow triangle inequality either [104]. Therefore, given a “good”, robust but non-

metric distance function, the issue is how to improve the retrieval efficiency for similarity

search. The computation cost of EDR is O(M ∗ N), where M and N are the lengths of

the two trajectories (the cost of DTW, ERP, LCSS are quadratic as well), which removes

the possibility of using sequential scan when the database size is large. Therefore, three

pruning methods are proposed to reduce the number of computations between the query

trajectory and trajectories in the database.

5.3.1 Pruning by Mean Value Q-gram

Given a string S, Q-grams of S can be obtained by “sliding” a window of length q over the

characters of S. Thus, each Q-gram is a substring of size q. For example, in Figure 5.1,

a sliding window of size 3 slides from the beginning of “AGOODBOY”, and six Q-grams

are obtained {“AGO”, “GOO”, “OOD”, “ODB” “DBO”, “BOY”}.

Figure 5.1: A Q-gram example
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Q-grams have been well studied as a solution to the approximate string matching prob-

lem [48, 99], which is defined as follows: given a long text of length N and a pattern

of length M (M ≤ N), retrieve all the segments of the text whose edit distance to the

pattern is at most k. If a pattern and a string are similar to each other, the number of

substrings that are common to each other is high. This is the intuition of using Q-grams

as a filter. As shown in Figure 5.1, only one edit operation is needed to transfer R to S

and this single editing operation can affect at most 3 Q-grams from R to be dissimilar

to the corresponding Q-grams in S. The following theorem exactly reflects this intuition

and is used to remove the segments that do not satisfy the requirement (at most k editing

operations) before using dynamic programming to compute the real edit distance between

the pattern and the segment.

Theorem 5.1 Let R and S be strings of length M and N . R and S within edit distance

k have at least p = max(M, N)− q + 1− kq common Q-grams [48].

The value of p consists of two parts: the first part, max(M, N)−q+1, is the maximum

number of Q-grams of size q in R or S, and the second part, kq, is the maximum number

of Q-grams that can be affected between R and S by k edit operations.

Theorem 5.1 can be used in the context of EDR to remove false candidates, but changes

are required since the exact value match in counting common Q-grams between trajectories

is not required. Thus, what it means to “match” has to be redefined as follows:

Definition 5.3 Given two Q-grams r = [(r1,x, r1,y), . . . , (rq,x, rq,y)] and s = [(s1,x, s1,y), . . . ,

(sq,x, sq,y)] of trajectories R and S, respectively, r matches s if and only if each element of

r matches its corresponding element in s.

However, the space requirement to store Q-grams is very high, since each Q-gram of a

trajectory has to be stored. Furthermore, Theorem 5.1 only applies to one-dimensional

strings, and naive implementation of Q-grams on multi-dimensional trajectories will not

only increase the space cost but may also suffer the dimensionality curse problem [112].

Finally, Theorem 5.1 applies only to range queries (searching strings whose distances to

the query string is at most k edit operations). In most cases, users may not know the range

a priori. In these situations, k-NN search is more meaningful.
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Compared to strings, elements of trajectories are real values; thus, the properties of real

values can be used to reduce the storage requirement of Q-grams. Based on Definitions 5.1

and 5.3, the following theorem holds:

Theorem 5.2 Given a matching threshold ε, if two Q-grams r = [(r1,x, r1,y), . . . , (rq,x, rq,y)]

and s = [(s1,x, s1,y), . . . , (sq,x, sq,y)] match, their mean value pairs rmean = (
P

ri,x

q
,
P

ri,y

q
) and

smean = (
P

si,x

q
,
P

si,y

q
) also match.

Proof. Straightforward induction from inequalities of Definition 5.3. ¤
Based on Theorem 5.2, no more space is needed to store Q-grams than that is required

to store a trajectory, regardless of the size of Q-gram. Most importantly, there is the

possibility to index the Q-grams of trajectories with less dimensions. For example, given a

trajectory R = [(t1, (1, 2)), (t2, (3, 4)), (t3, (5, 6)), (t4, (7, 8)), (t5, (9, 10))], Q-grams of size

3 for R are: [(1,2), (3, 4), (5, 6)], [(3,4), (5,6), (7, 8)], [(5,6), (7,8), (9,10)]. A six-

dimensional R-tree [38] is needed to index these Q-grams, and with increasing Q-gram

sizes, the dimensionality will grow (e.g. for three dimensional trajectories, Q-grams of size

5 need a 15 dimensional R-tree) and may cause R-tree to perform worse than sequential

scan [112]. However, the mean value Q-gram pairs of R are: (3,4), (5,6), (7,8). Only a two

dimensional R-tree is needed to index these pairs, even for Q-grams with larger size.

Q-grams were originally proposed as a filtering technique in answering range queries;

in this section, two algorithms are proposed to extend this technique to answer k-NN

queries. The first algorithm utilizes indexes on Q-grams to speed up the process of finding

common Q-grams between two trajectories. Procedure Qgramk-NN-index (Algorithm 5.1)

lists steps of the first algorithm, which conducts a standard search for each mean value

pair qmean of the Q-grams in Q and updates the corresponding Q-gram counter for each

trajectory in the database. The Q-gram counters are then sorted in descending order and

the first k trajectories pointed by the first k elements of the Q-gram counters are used to

initialize the result array. Finally values in the rest of the Q-gram counters are visited in

descending order. If the value satisfies the inequality stated in Theorem 1, the true distance

EDR(Q,S) is computed and updates to the result list are made if necessary. Otherwise,

the remaining data values can be skipped entirely.
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Algorithm 5.1 Procedure Qgramk-NN-index(Q, k, Tree, result)

/*algorithm for applying Q-grams to answer k-NN query with indexes*/

Input: Tree ≡ a R*-tree storing mean value pairs for all Q-grams in database

Output: result ≡ the k-NN

1: for each Q-gram q of trajectory Q do

2: qmean = mean(q)

3: conduct a standard R*-tree search on Tree using qmean

4: increase the Q-gram counter for the trajectory that have a match mean value pair

to qmean

5: end for

6: sort the Q-gram counters of trajectories in descending order.

7: pick the first k trajectories pointed by Q-gram counters and initialize result with the

k true (sorted) EDR distances

8: let vi, . . . , vn be the data values of Q-gram counters starts from k + 1 and |Q| be the

length of query trajectory

9: for each vi do

10: bestSoFar = result[k].dist {/* the k-NN distance so far */}
11: if (vi) ≥ (max(|Q|, |S|) − (bestSoFar + 1) ∗ size(Q − gram)) then {/*need to

check*/}
12: for each trajectory S pointed by vi do

13: realDist = EDR(Q,S) {/* compute true distance */}
14: if (realDist < bestSoFar) then {/* update result */}
15: insert S and realDist into result sorted in ascending order of EDR distance

16: bestSoFar = result[k].dist

17: end if{/* end-if, line 14 */}
18: end for{/* end-for, line 12 */}
19: else {/* else, line 11, skip the rest */}
20: break

21: end if

22: end for{/* end-for, line 9 */}
23: return result
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Theorem 5.3 Using procedure Qgramk-NN-index to answer a k-NN query does not intro-

duce false dismissals.

Proof. Prove by contradiction. Assume that procedure Qgramk-NN-index introduces false

dismissals; then the following two statements are valid: (1) vi is the Q-gram counter value

of trajectory R (length N) and vi < max(M, N) + 1 − (bestSoFar + 1) ∗ size(Qgram);

(2) EDR(Q,R) < bestSoFar. According to Theorem 5.1, vi ≥ max(M,N) + 1 −
(EDR(Q,R) + 1) ∗ size(Qgram). Based on statement (2), vi ≥ max(M,N) + 1 −
(bestSoFar + 1) ∗ size(Qgram), which contradicts statement (1).¤

Furthermore, in line 8 of the algorithm, the Q-gram counters are visited in descending

order, which also guarantees that skipping the rest of the elements in line 19 will not

introduce false dismissals. This is because, if vi ≥ vi+1, and vi < max(M,N) + 1 −
(bestSoFar+1)∗size(Qgram), then vi+1 < max(M,N)+1−(bestSoFar+1)∗size(Qgram).

Procedure Qgramk-NN-index utilizes an index on mean values of Q-grams to find com-

mon Q-grams between the query trajectory and each data trajectory in the database. The

computation cost of this pruning step (not including sorting) is O(|Q| ∗ log(L∗max(|R|))),
where L is the size of the database, max(|R|) is the maximum length of trajectories in

the database. However, when the database size L increases, the index on Q-grams grows

and the search operation on the index becomes expensive, which may increase the total

execution time of each query as a consequence.

The second algorithm performs linear scan over sorted Q-grams. Procedure Qgramk-

NN-seq (Algorithm 5.2) first conducts a merge join algorithm to find the common Q-grams

between two trajectories without any indexes before computing the real EDR between

them. The computation cost of this pruning step is only O(|Q|+max(|R|)) (not including

sorting cost).

The above two approaches apply mean value Q-gram filters directly on trajectories to

reduce the number of EDR calculations. Another possibility is to take the projection of

the trajectory on each dimension, which produces a single dimensional data sequence, and

apply Q-gram filters to them. Of course, it is necessary to ensure that no false dismissals

will occur.

Theorem 5.4 Let R and S be trajectories of length M and N . If EDR(R, S) ≤ k, the

number of common Q-grams between two single dimensional data sequences Rx, Sx (or Ry,
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Algorithm 5.2 Procedure Qgramk-NN-seq(Q, k, result)

/*algorithm for applying Q-grams to answer k-NN query with linear scan*/

Input: Mean value pairs of each trajectory are sorted in an ascending order of mean values

of on x axis

Output: result ≡ the k-NN

1: sort mean value pairs of Q in ascending order on x values

2: pick the first k trajectories and initialize result with the k true (sorted) EDR distances

3: starts from i = k + 1 and |Q| be the length of query trajectory

4: for each trajectory Si in the database do

5: bestSoFar = result[k].dist {/* the k-NN distance so far */}
6: vi =merge-join(mean-value-pairs(Q), mean-value-pairs(Si))

{/* applying merge join to compute common mean value pairs */}
7: if (vi) ≥ (max(|Q|, |Si|) − (bestSoFar + 1) ∗ size(Q − gram)) then {/*need to

check*/}
8: realDist = EDR(Q,S) {/* compute true distance */}
9: if (realDist < bestSoFar) then {/* update result */}

10: insert S and realDist into result

11: sorted in ascending order of EDR distance

12: bestSoFar = result[k].dist

13: end if{/* end-if, line 9 */}
14: end if

15: end for

16: return result
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Sy) obtained by projecting R and S over dimension x (or y) is at least max(M, N)− q +

1− kq.

Proof. Proving the theorem to hold on one of the projected dimensions is sufficient and x

dimension is selected. From Definition 5.1, if two Q-grams r = [(r1,x, r1,y), . . . , (rq,x, rq,y)]

and s = [(s1,x, s1,y), . . . , (sq,x, sq,y)] of trajectories R and S match, then each element of ri

matches its corresponding element in si. As a consequence, each ri,x matches si,x. There-

fore, px ≥ p, where px and p are the number of common Q-grams between x dimensional

data sequence and trajectories. From Theorem 5.1, p ≥ max(M,N) − q + 1 − kq, thus

px ≥ max(M,N)− q + 1− kq. ¤
Similar to applying Theorem 5.1 to remove false candidates, Theorem 5.4 can be used

by only applying mean value Q-gram filters on projected single dimensional data sequences

and removing the false candidates without introducing false dismissals.

Based on Theorems 5.2 and 5.4, only the mean value of each Q-gram in a one-dimensional

data sequence needs to be stored. As a consequence, a simple B+-tree can be used to index

mean values of Q-grams or the second merge join algorithm can be applied on projected

single dimensional data sequences of trajectories. Compared to indexing Q-grams of tra-

jectories using R-tree or merge join on two dimensional sequences, both the space and

disk access times are reduced. However, because only information from one-dimensional

data sequence is used, the pruning power is also reduced compared to that of using all the

dimensions.

5.3.2 Pruning by Near Triangle Inequality

Even though EDR does not follow triangle inequality, the following property holds.

Theorem 5.5 (Near Triangle Inequality) Given three trajectories Q, S, and R, we have

EDR(Q,S) + EDR(S, R) + |S| ≥ EDR(Q,R), where |S| is the length of S.

Proof. The first part of left hand side of the inequality, EDR(Q,S)+EDR(S, R), can be

viewed as the number of edit operations needed to convert trajectory Q to S and then to

convert S to R. EDR(Q,S)+EDR(S, R) may be less than EDR(Q,R), since an element si



Edit Distance on Real Sequences 118

of S may match elements qi and ri of Q and R, respectively, but qi and ri may not match. In

this case, EDR(Q,R) has one more edit operation than that of EDR(Q,S)+EDR(S, R).

The extreme case is that all the elements of S match the elements of Q and R, however

those matched elements of Q and R do not match each other, thus EDR(Q,R) is larger

than EDR(Q,S) + EDR(S, R) by at most |S|, which is the second part of the left hand

side of the inequality. ¤
By rewriting the near triangle inequality (Theorem 5.5), EDR(Q,S) ≥ EDR(Q,R)−

EDR(S, R)−|S| can be derived. If EDR(Q,R) and EDR(S, R) are known, EDR(Q,R)−
EDR(S, R) − |S| can be treated as a lower bound distance of EDR(Q,S). Therefore,

near triangle inequality can be used to prune out false candidates. Procedure NearTri-

anglePruning (Algorithm 5.3) gives the algorithm for the application of near triangle in-

equality to answer a k-NN query. The matrix pmatrix holds the precomputed pairwise

EDR distances of the trajectory database. The array procArray stores the true EDR

distances computed so far. That is, if {R1, . . . , Ru} is the set of trajectories for which

EDR(Q,Ri) has been computed, the distance EDR(Q,Ri) is recorded in procArray.

Thus, for trajectory S currently being evaluated, the near triangle inequality ensures that

EDR(Q,S) ≥ EDR(Q,Ri) − EDR(Ri, S) − |S|, for all 1 ≤ i ≤ u. Thus, it is necessary

that EDR(Q,S) ≥ (max1≤i≤u{EDR(Q,Ri) − EDR(Ri, S) − |S|}) (lines 2 to 4). If dis-

tance maxPruneDist is larger than the current k-NN distance stored in result, then S

can be skipped. Otherwise, the true distance EDR(Q,S) is computed, and procArray

is updated to include S. Finally, the result array is updated to reflect the current k-NN

neighbours and distances in sorted order. The computation cost of the pruning step in

NearTrianglePruning is constant, which is the size of procArray.

Application of the NearTrianglePruning procedure encounters two issues: (i) the size of

the pairwise distance matrix pmatrix; and (ii) the size of procArray, i.e., the maximum

number of trajectories whose true EDR distances are kept for near triangle inequality prun-

ing. The dynamic strategies proposed in Chapter 4 are used to resolve these issues, which

make the procedure practical for large databases and for limited buffer space situations.

The computation cost of pruning step in NearTrianglePruning is constant, which is the size

of procArray.
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Algorithm 5.3 Procedure NearTrianglePruning(S, procArray, pmatrix, result, Q, k)

/*algorithm for near triangle inequality pruning*/

Input: S ≡ the current trajectory; procArray ≡ the array of trajectories with computed

EDR to Q; pmatrix ≡ precomputed pairwise distance matrix;

Output: result ≡ the k-NN

1: maxPruneDist = 0

2: for each trajectory R in procArray do

3: if procArray[R].dist− pmatrix[R, S]− |S|) > maxPruneDist then

4: maxPruneDist = procArray[R].dist− pmatrix[R, S]− |S|
5: end if

6: end for

7: bestSoFar = result[k].dist {/* the k-NN distance so far */}
8: if maxPruneDist ≤ bestSoFar then {/* cannot be pruned */ }
9: realDist = EDR(Q,S) {/* compute true distance */}

10: insert S and realDist into procArray

11: if realDist < bestSoFar then {/* update result */}
12: insert S and realDist into result

13: sorted in ascending order of EDR distance

14: end if

15: end if
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Let maxTriangle denote the maximum number of trajectories whose EDR distances to

the rest of trajectories in the database are kept for near triangle inequality pruning. This

value should be determined at query time by the query engine. Hereafter these trajectories

are called the reference trajectories. Dynamic strategies pick these reference trajectories

as procedure NearTrianglePruning runs, therefore, the entire pmatrix is not needed. As the

reference trajectories are picked and kept, the appropriate column of the distance matrix

is read into the buffer space. The buffer space requirement is maxTriangle columns, each

of size L (L is the trajectory database size). Thus, the total buffer space required is

L ∗maxTriangle. The choices are thus query dependent. In the implementation, the first

maxTriangle trajectories that fill up the procArray are picked.

However, the near triangle inequality is a “weak” version of triangle inequality, as it

filters only when trajectories have different lengths (both query and data trajectories). If

all the trajectories have the same length, applying near triangle inequality will not remove

any false candidates.

A general approach, called Constant Shift Embedding (CSE) [91], is also investigated

to see whether it can be used to improve the retrieval efficiency. CSE is proposed to convert

a distance function that does not follow triangle inequality to another one that follows it.

The idea is briefly described as follows:

Consider a distance function dist that is defined on data space D and dist does not

follow triangle inequality, then there exist three data elements x, y, z ∈ D, dist(x, y) +

dist(y, z) < dist(x, z). dist can be converted to another distance function, dist′, by adding

a positive value c to each distance value calculated by dist. For example, dist′(x, y) =

dist(x, y) + c. If c is large enough, dist′(x, y) + dist′(y, z) ≥ dist′(x, z) may hold (which

equals dist(x, y) + dist(y, z) + c ≥ dist(x, z)). Thus, triangle inequity holds on dist′.

However, CSE approach is not applied to EDR due to the following reasons:

1. All the pairwise distances in the data set have to be investigated to find c. In

[91], the minimum eigenvalue of pairwise distance matrix is selected. This minimum

eigenvalue is tested with some trajectory data sets, such as ASL, Kungfu, and Slip

(the details of these data sets are explained in the experiment section). The embedded

results of CSE show that very few distance computation can be saved. An analysis

of the converted pairwise distance matrix showed that this minimum eigenvalue is
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quite large and makes the pruning by triangle inequality meaningless, since the lower

bounding of dist(x, y), (dist(x, z) − dist(y, z) − c) is too small to prune anything.

Reducing the minimum eigenvalue may increase pruning ability, but it may cause

some distances not to follow triangle inequality and introduce false dismissals.

2. Usually, for similarity search, query data are not inside the database. The constant

value c derived by only investigating the data in the database may not be large enough

to make the distances between query data to any data in the database follow triangle

inequality. Using the CSE approach to compute the distances between query data and

all the data in the database does not make sense, since these distance computations

are exactly what the pruning techniques try to save in answering a query.

5.3.3 Pruning by Histograms

Embedding methods have been used to improve the efficiency of k-NN queries on strings

under edit distance. The basic idea is to embed strings into a vector space and define a

distance function in the embedded vector space. To avoid false dismissals, the distance

in the embedded space is required to be the lower bound of the edit distance on strings.

A number of embedding methods have been proposed for strings [2, 6, 27, 49]; however,

only two of these [49, 2] avoid introducing false dismissals. Both of these take a similar

approach in that they transform strings into a multidimensional integer space by mapping

strings to their frequency vectors (FV). A frequency vector of a string over an an alphabet

records the frequency of occurrence of each character of the alphabet in that string. It is

proven that the frequency distance (FD) between the FVs of two strings is the lower bound

of the actual edit distance. FD of two points u and v in s-dimensional space, FD(u, v), is

defined as the minimum number of steps (insertion, deletion, replacement operations) that

is required to go from u to v (or equivalently from v to u).

In fact, frequency vectors are one-dimensional histograms over strings, where each bin

is a character in the alphabet. Therefore, an embedding technique is proposed to transform

trajectories into trajectory histograms. Then, these histograms are used to remove false

candidates. Two dimensional histograms of trajectories are developed in the following way.

Given the maximum (maxx) and minimum (minx) x dimension values of trajectories, the
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range [minx,maxx] is divided into τx disjoint equal size subranges and the size of each

subrange is ε. The same procedure is carried on the y dimension to get τy disjoint equal

size subranges. Any distinct combination of these two subranges is called a histogram

bin. Given a trajectory S, its histogram HS can be computed by counting the number of

elements hi (1 ≤ i ≤ τx ∗ τy) that are located in each histogram bin i: H = [h1, . . . , hτx∗τy ].

Based on this embedding, a histogram distance DH on histograms of trajectories is

defined as follows:

Definition 5.4 Let HR and HS be histograms of two trajectories R and S, respectively.

The histogram distance, HD(HR, HS), is defined as the minimum number of steps required

to go from HR to HS (or equivalently from HS to HR) by moving to a neighbour point at

each step. HR and HS are neighbours if R can be obtained from S (or vice versa) using a

single edit operation of EDR.

Since EDR is defined based on a matching threshold ε, neighbour points of histograms

are different from those of FVs. For example, two FVs v1 = 〈1, 0〉 and v2 = 〈0, 1〉 are

neighbours according to the definition of edit distance, and frequency distance between

them is 1. Given two one-dimensional trajectories R = [(t1, 0.9)] and S = [(t1, 1.2)] and

ε = 1, the histograms of R and S are exactly the same vectors as v1 and v2. However, they

are not neighbours according to Definition 5.4. This is because the transformation from R

to S does not need any edit operations; 0.9 and 1.2 are treated as matched elements under

EDR. As a consequence, the corresponding histogram distance is also 0. Therefore, to

overcome the problem that elements located near the boundary of two different histogram

bins may match each other under EDR, the elements from two different histogram bins

are treated as if they were from the same bin if these two histogram bins approximately

match.

Definition 5.5 Given two histograms HR and HS, histogram bin hR,i of HR approximately

matches histogram bin hS,j of HS, if hR,i and hS,j are the same bin or they are adjacent

bins.

For example, given two histograms of HR = [hR,1, hR,2, hR,3] and HS = [hS,1, hS,2, hS,3]

of two one-dimensional trajectory data, hR,1 approximately matches hS,1 as well as hS,2,
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and hR,2 approximately matches hS,1, hS,2, and hS,3. Procedure CompHisDist shown in

Algorithm 5.4 presents the steps for computing HD between two histograms HR and HS.

In procedure CompHisDist, the first for loop is used to compute the difference between two

histograms, the second loop (line 6-10) is used to find the elements in the histogram bins

that approximately match each other, and the third loop is used to count the minimum

number of steps that is required to transfer HR to HS.

Theorem 5.6 Let R and S be two trajectories, ε be a matching threshold and HR and HS

be the histograms of R and S, respectively. Then, HD(HR, HS) ≤ EDR(R, S).

Proof. Any single edit operation on R to convert it to S corresponds to a change in its

histogram HR: deletion of one element from R corresponds to subtracting one from the

value of some histogram bin; insertion of one element to R corresponds to adding one to

the value of some histogram bin; replacement of an element in R corresponds to adding

one in some bin and subtracting one in the other bin. Furthermore, each movement step

that is used to transform HR to HS moves HR to its neighbour point, and the change of

HR made by each movement step is same as that caused by a single edit operation. Thus,

the number of steps used in the transformation of the histograms is the lower bound of the

number of edit operations in EDR. ¤
With Theorem 5.6, to answer k-NN queries, HDs can be computed to prune out false

candidates from the trajectory database. Most importantly, the computation cost of HD

is almost linear. The nested for loops in CompHisDis may suggest that the computation

time of HD is non-linear. However, as the number of bins that approximately match

each other in the histogram space is limited to a small constant, the computation time of

CompHisDist is still linear. The algorithm that uses HD as lower bound distance to prune

false candidates can be achieved by modifying procedure NearTrianglePruning (Algorithm

5.3) as follows:

• Delete lines 2 to 6 and line 10, as it is no longer necessary to keep the array procArray.

• Change line 1 to: maxPruneDist = HD(HQ, HS).
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Algorithm 5.4 Procedure CompHisDist(HR, HS)

/*algorithm for Computing Histogram Distances*/

Input: HR and HS ≡ histograms of trajectories

Output: result ≡ histogram distance

1: posDist = 0, negDist = 0

2: for each histogram bin of HR do

3: HR,i = HR,i −HS,i

4: end for

5: for each histogram bin of HR do

6: for each approximately match bin HR,j of HR,i do

7: if HR,j ∗HR,i < 0 then {two values have opposite signs}
8: reduce the values of HR,j or HR,i

{/* elements in the approximately match bins should treated as from the same

bin */}
9: end if

10: end for

11: end for

12: for each histogram bin of HR do

13: if HS,i > 0 then

14: posDist+ = HR,i

15: else

16: negDist+ = 0−HR,i

17: end if

18: end for

19: return result = max(posDist, negDist)
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This modified algorithm searches trajectory histograms one after another and it does

not utilize previously computed histogram distances. This algorithms is named Histogram

SEquential scan (HSE). Another algorithm, Histogram SoRted scan (HSR), is also proposed

to answer k-NN queries using trajectory histograms. HSR first computes all the histogram

distances between query and data trajectories. Then it sorts the histogram distances in

ascending order. Finally, the trajectories are accessed according to the histogram distance

order and EDR is computed if necessary. It is obvious that the pruning power of HSR is

better than that of HSE since the trajectories are accessed in an ascending order of lower

bound distances (histogram distances) of EDR. However, to achieve this improvement, HSR

requires an additional sorting step. Their relative efficiency is compared in the following

section.

When histograms are constructed, ε is used as the histogram bin size. If the match-

ing threshold ε is small, trajectory histograms will have a lot of bins. The storage and

computation cost will increase as a consequence. To address this issue, two solutions are

proposed to reduce the number of bins:

1. Create histograms with a larger histogram bin size, which is δ (δ ≥ 2) times the

matching threshold ε.

2. Create individual histograms for each one-dimensional data sequence of trajectories

using ε as the histogram bin size.

Assume that the number of bins for trajectory histograms with bin size ε is τx ∗ τy,

where τx, τy are the number of histogram bins in each dimension. The two methods above

reduce the number of bins by a factor of δ ∗ δ and τx∗τy

τx+τy
, respectively. Most importantly,

they do not introduce false dismissals based on the following.

Theorem 5.7 Given two trajectories R, S, and a matching threshold ε, EDRδ∗ε(R, S) ≤
EDRε(R, S) holds where δ ≥ 2 and EDRδ∗ε stands for EDR computed with δ ∗ ε as a

matching threshold.

Proof. It is clear that if an element of S matches an element of R within ε, they must

match each other within δ ∗ ε. Thus, the number of matching elements will not be reduced

if the matching threshold is increased from ε to δ ∗ ε. As a consequence, the number of
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edit operations needed to convert R to S within δ ∗ ε is not higher than that of conversion

within ε. ¤.

Theorem 5.8 Given two trajectories R and S, and a matching threshold ε, EDR
x(y)
ε (R, S) ≤

EDRε(R, S) holds where EDR
x(y)
ε (R,S) is EDR on projected one-dimensional data se-

quence (x or y) of trajectories.

Proof. Similar to the proof of Theorem 5.7. If an element of S matches an element of R

within ε, the individual values of each dimension between two elements must match each

other within threshold ε. Thus, the number of matching elements is not reduced for each

single dimensional data sequence compared to that of whole trajectories. ¤.

Corollary 5.1 Let R and S be two trajectories, H(R,δ∗ε) and H(S,δ∗ε) be the histograms

created with bin size δ ∗ ε, and Hx
(R,ε) and Hx

(S,ε) be the histograms on x dimensional data

sequence. HD(H(R,δ∗ε), H(S,δ∗ε)) ≤ EDRε(R, S) and HD(Hx
(R,ε), H

x
(S,ε)) ≤ EDRε(R,S)

hold.

Using Corollary 5.1, either histograms with larger bin size or histograms on projected

one-dimensional data sequence of trajectories can be used to prune false candidates.

5.3.4 Combination of three pruning methods

Because the three pruning techniques introduced earlier are orthogonal, it is possible to

combine three methods – use one pruning method to save the computation of the true dis-

tance EDR(Q,S) after another. An example of combination is shown in Algorithm 5.5. In

the example procedure EDRCombineK-NN, histogram pruning is applied first, then, mean

value Qgram filters are applied. Finally, the procedure NearTrianglePruning is invoked to

remove more false candidates based on computed real EDR distances. In the experiments,

other combinations are also tested, such as applying mean value Q-gram filtering before

trajectory histograms and near triangle inequality pruning or applying near triangle in-

equality pruning before the other two. The results are discussed in the next section.
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Algorithm 5.5 Procedure EDRCombineK-NN(Q, procArray, pmatrix, result, Q, k)

/*combination algorithm for applying histogram pruning followed by mean value Qgram

and near triangle inequality pruning*/

Input: S ≡ the current trajectory; procArray ≡ the array of trajectories with computed

EDR to Q; pmatrix ≡ precomputed pairwise distance matrix;

Output: result ≡ the k-NN

1: pick the first k trajectories and initialize result with the k true (sorted) EDR distances

2: bestSoFar = result[k].dist and i = k + 1

3: for each trajectory Si in the database do

4: maxPruneDist = HD(HQ, HSi
) {/* trajectory histogram distance*/}

5: if maxPruneDist ≤ bestSoFar then {/* cannot be pruned by trajectory his-

togram*/}
6: vi =merge-join(mean-value-pairs(Q), mean-value-pairs(Si))

{/* applying merge join to compute common mean value pairs */}
7: if ((vi) ≥ (max(|Q|, |Si|)− (bestSoFar + 1) ∗ size(Q− gram))) then {/* cannot

be pruned by mean value Qgrams*/}
8: invoke procedure NearTrianglePruning() in Algorithm 5.3

9: end if

10: end if

11: end for
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5.4 Experimental Evaluation

Experimental results on the efficiency of each pruning technique as well as the combina-

tion of methods are presented here, both speedup ratio and pruning power are measured.

Speedup ratio is defined as follows:

speedup =
the total time required for a sequential scan to answer a query

the total time needed with a pruning technique
(5.3)

where “total time” includes both CPU and I/O cost, which is used to answer a k-NN query.

Similar to the tests in Chapter 4, various values of k (1, 3, 5, 10, and 20) are tested. The

results of k = 20 are reported because the performance differences of the pruning methods

can be clearly observed. For all the k-NN queries, the matching threshold of a data set

is set to stdmax/4, where stdmax is the maximum standard deviation of trajectories in the

data set. The matching threshold is set according to the previous efficacy test on EDR. All

experiments were run on a Sun-Blade-1000 workstation with 1GB memory under Solaris

2.8.

5.4.1 Efficiency of Pruning by Q-gram Mean Values

In this experiment, ASL data set from UCI KDD archive1, Kungfu and Slip data sets from

[19] are used. The ASL data set contains 710 trajectories with lengths varying from 60 to

140. The Kungfu data set contains 495 trajectories that record positions of body joints of

a person playing Kungfu and the length of each trajectory is 640. The Slip data set also

has 495 trajectories which record positions of body joints of a person slipping down and

trying to stand up and the length of each trajectory is 400. This experiment is designed

to compare the pruning efficiency of (1) Q-grams with different sizes, (2) indexed Q-grams

versus merge join, and (3) two dimensional Q-grams versus one-dimensional Q-grams.

Figure 5.2 shows the pruning power comparison of 4 different implementations of prun-

ing by mean values of Q-grams with various sizes (from 1 to 4): pruning with a R-tree

on two dimensional Q-grams (PR), pruning with B+-tree on one-dimensional Q-grams

(PB), pruning with merge join on sorted two dimensional Q-grams (PS2), and pruning

with merge join on sorted one-dimensional Q-grams (PS1).

1This data set combines all the trajectories of ten word classes into one data set.
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(a) ASL data

(b) Slip data (c) Kungfu data

Figure 5.2: Pruning power comparisons of mean value Q-grams on three data sets

The results of three data sets show that, in terms of pruning power, PR is better than

PB and PS2 is better than PS1, which confirms the previous claim that two dimensional

Q-grams perform better than one-dimensional Q-grams. The results also show that with

increasing Q-grams size, the pruning power drops; in particular for Slip data, the pruning

power drops to 0 when the Q-gram size is greater than 1. Thus, Q-grams of size 1 are the

most effective ones in removing false candidates. Furthermore, PR is always better than
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PS2 which indicates pruning with indexed Q-grams is better than pruning with merge join.

However, the conclusion cannot be drawn that PR on Q-grams of size 1 is the best pruning

method based on the pruning power test, since the higher pruning power may be the results

of higher space and computation cost. Thus, the speedup ratios of four methods on three

data sets are also compared. The results are shown in Figure 5.3. The results in Figure 5.3

(a) ASL data

(b) Slip data (c) Kungfu data

Figure 5.3: Speedup ratio comparisons of mean value Q-grams on three data sets

seem to contradict the pruning power results in Figure 5.2, since the speedup ratios of PR
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and PB are less than those of PS2 and PS1. This is due to the additional index search time

and the time for counting the number of matching Q-grams. Even though PR and PB can

remove more false candidates, this does not compensate the cost of index traversal. This

also explains why PR or PB performs worse than a sequential scan (speedup ratio is less

than 1) in some cases shown in Figure 5.3. The speedup ratio results also show that PR

and PB perform worse on data sets with shorter length, such as ASL data (Figure 5.3(a)),

than they do on trajectories with longer length, such as Kungfu data (Figure 5.3(c)). The

reason is that the time required to compute EDR of short trajectories is less than that of

longer trajectories; as a consequence, the total time saved from computing EDR of short

trajectories is less than that of longer trajectories. The results also show that PS2 needs

less time than PS1 with Q-grams of size 1, which reflects the fact that the total time spent

on finding common Q-grams of two trajectories can be compensated by the time saved

from removing more false candidates. However, as shown in Figure 5.3, when PS2 prunes

little, such as Q-grams of size greater than 1, it performs worse than PS1 because the saved

time cannot cover the cost of finding common Q-grams on trajectories. Two test results

show that PS2 on Q-gram of size 1 is the best method to remove false candidates with

mean value Q-grams.

5.4.2 Efficiency of Pruning by Near Triangle Inequality

If trajectories in a database have the same size, the near triangle inequality cannot remove

false candidates. Kungfu and Slip data sets contain trajectories of the same length and

are not used in this experiment. Instead, two random walk data sets are generated with

different lengths (from 30 to 256), the lengths of one random walk data set follow uninform

distribution (RandU) and the other one has normal distribution (RandN). There are 1,000

trajectories in each random walk data set. The pruning power and speedup ratio results for

these and ASL data sets are shown in Table 5.3. The results show that both the pruning

power and the speedup ratio of near triangle inequality is pretty low compared to the

results of mean value Q-grams. This is because the factor |S| introduced in near triangle

inequality is too big, which reduces its pruning power. Finding a smaller suitable value is

left as future work. The results also show that near triangle inequality works better on the

data set whose lengths follow a uniform distribution (trajectory lengths of ASL data follow
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ASL RandN RandU

Pruning Power 0.09 0.07 0.26

Speedup Ratio 1.10 1.07 1.31

Table 5.3: Test results of near triangle inequality

a near normal distribution), confirming the claim that it is more effective for trajectories

of variable lengths.

5.4.3 Efficiency of Pruning by Histograms

In this experiment, the efficiencies of different types of histograms, trajectory histograms

of four different bin sizes (ε, 2ε, 3ε, 4ε) and one-dimensional data sequence histograms of

bin size ε, together with two scan methods, histogram sorted scan (HSR) and histogram

sequential scan (HSE) are tested. The same three data sets used in Section 5.4.1 are tested

here. The test results of pruning power and speedup ratio are shown in Figures 5.4 and 5.5,

respectively. In both figures, 1HE stands for one-dimensional data sequence histograms

with bin sizes ε. 2HE, 2H2E, 2H3E, and 2H4E mean trajectory histograms with bin size

ε, 2ε, 3ε, and 4ε, respectively.

The pruning power results show that trajectory histograms with bin size ε have the

highest pruning power on three data sets. A closer examination of three sub-figures of

Figure 5.4 shows that pruning power of one-dimensional data sequence histograms is better

than that of trajectory histograms with larger bin sizes. Thus, in terms of efficiency of two

methods used to reduce the number of histogram bins, creating one-dimensional sequence

histograms with the same bin size ε is better than enlarging the bin size ε of trajectory

histograms.

Even though HSR requires an additional sorting step, the results show that HSR beats

HSE both in pruning power and speedup ratio tests, which indicates that it is worth

sorting. Since the computation cost of histogram distance is linear, nearly all the speedup

ratio results match the pruning power test results: that is, the method that has higher

pruning power needs less time to answer k-NN queries. However, the speedup ratio of one-

dimensional data sequence histograms is very close to or even more than that of trajectory



Edit Distance on Real Sequences 133

(a) ASL data

(b) Slip data (c) Kungfu data

Figure 5.4: Pruning power comparisons of histograms on three data sets

histograms with the same bin size (Figure 5.5(a)). This is because the pruning powers

of two types of histograms are very similar and the time saved from computing distances

using one-dimensional data sequence histograms is more than the time that is spent on

computing the extra number of EDR. Comparing the pruning power and speedup ratio

results of mean value Q-grams and histograms (Figures 5.2 vs. 5.4 and Figures 5.3 vs. 5.5)

shows that histograms generally perform better than mean value Q-grams on removing
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(a) ASL data

(b) Slip data (c) Kungfu data

Figure 5.5: Speedup ratio comparisons of histograms on three data sets

false candidates.

5.4.4 Efficiency of Combined Methods

The combination of methods proposed in Section 5.3.4 are tested on NHL data [19], a mixed

data set [107] and a randomwalk trajectory data set [23, 52]. The NHL data consists of
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(a) NHL data

(b) Mixed data (c) Randomwalk data

Figure 5.6: Speedup ratio comparison of different applying orders of three pruning methods

5000 two dimensional trajectories of National Hockey League players and their trajectory

lengths vary from 30 to 256. The mixed data set contains 32768 trajectories whose lengths

vary from 60 to 2000. The randomwalk data set contains 100,000 two dimensional trajec-

tories and their lengths vary from 30 to 1024. Based on the results of above experiments,

for trajectory histograms, HRE is selected rather than HSE, even though it requires an

additional sorting step, since HRE outperforms HSE both in pruning power and speedup

ratio. The PS2 method on mean value Q-grams is selected as the Q-grams filter. PR is

not selected because it can only archive higher pruning power with very expensive search
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(a) NHL data

(b) Mixed data (c) Randomwalk data

Figure 5.7: Pruning power comparisons of combined methods on three large data sets

cost. In the experiment, all six possible ordering combinations are tested. The pruning

power results show that the six combinations achieve the same pruning power on three

data sets, which confirms the claim that the three pruning methods are independent of

each other. With respect to speedup ratio, because of the differences in pruning power

and computation cost of each pruning method, the application order affects the speedup

ratio as shown in Figure 5.6. 2HPN means applying trajectory histograms with bin size

ε pruning first, then Q-grams filtering, and at last, near triangle inequality pruning; the

other symbols represent the rest of application orders. As shown in Figure 5.6, the example

combination method listed in Algorithm 5.5 (applying histogram pruning first, then mean
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(a) NHL data

(b) Mixed data (c) Randomwalk data

Figure 5.8: Speedup ratio comparisons of combined methods on three large data sets

value Q-gram filtering, finally, near triangle inequality pruning) achieves the best perfor-

mance in all three data sets. The reason is that applying a pruning method with more

pruning power and less expensive computation cost first will cause fewer false candidates

left for subsequent pruning, resulting in a decrease in the time cost of subsequent pruning.

Finally, the performance of different types of histograms in the combination method

is tested. Two types of histograms are used: trajectory histograms and one-dimensional

data sequence histograms with the same bin size ε. Based on the performance results of

above experiment, the combination method shown in Algorithm 5.5 is selected for com-

parison. The comparison results are shown in Figures 5.7 and 5.8. In both figures, NTR
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stands for pruning by near triangle inequality, 1HPN stands for the combination with

one-dimensional data sequence histograms with bin size ε, merge join on two dimensional

Q-grams, and near triangle inequality.

The results show that combined methods using one-dimensional data sequence his-

tograms achieve the best performance. Both the pruning power and the speedup ratio are

increased. The speedup ratio is nearly twice of using histogram pruning only, five times

that of mean value Q-grams only, and twenty times that of near triangle inequality. The

combined method with trajectory histograms also beats the method using trajectory his-

tograms only. However, because of the large number of bins of trajectory histograms, its

performance improvement is diminished by the time spent on computing the histogram

distances, especially for large databases.

5.5 Conclusions

For similarity-based retrieval of time series and trajectory data contain local time shifting

and noise, the existing distance functions are either sensitive to possible noise of trajec-

tories, such as Euclidean distance, DTW, and ERP, or they can handle noise with less

accuracy, such as LCSS. Therefore, in this chapter, a new distance function, Edit distance

on Real sequence (EDR), is proposed to measure the similarity between data. The experi-

mental results over benchmark data show that EDR performs as well as DTW, ERP, and

LCSS when data contain little or no noise, and it is more robust than DTW and ERP, and

more accurate than LCSS in noisy conditions.

In order to improve the retrieval efficiency of EDR, three pruning techniques are pro-

posed: mean value Q-grams, near triangle inequality, and histograms. All three techniques

are proven not to introduce false dismissals. Variant of mean value Q-grams and trajec-

tory histograms are also developed, such as projected one-dimensional Q-grams and one

dimensional sequence histograms. The efficiency of three pruning techniques and their

variations are tested by extensive experimental studies. The results show that all three

pruning techniques can greatly improve the retrieval performance compared to linear scan.

Most importantly, the combination of three pruning methods can deliver superior retrieval

efficiency.



Chapter 6

Conclusions and Future Work

6.1 Summary and Contributions

In this dissertation, techniques for similarity-based retrieval over time series and trajectory

data are studied. Based on different applications and user requirements, various solutions

are proposed.

The first issue that is studied is similarity-based retrieval for applications that need

answers to both pattern existence and shape match queries. In these types of applications,

users may be initially interested in retrieving all the time series data that have some specific

patterns (pattern existence queries), followed by the retrieval of all the time series that

are similar to an interesting time series that is found among the previous retrieval results

(shape match queries). Previous approaches focus either on answering pattern existence

queries or shape match queries, but not both. In order to address this issue, a novel

representation of time series data, called multi-scale time series histograms, is proposed

for iterative search over time series data for both types of queries. In addition to handling

both query types, the novelties of multi-scale time series histograms are the following [24]:

• The cumulative histogram distance is used to measure the similarity between two

time series data, which reduces the boundary effects introduced by value space quan-

tization and overcomes the shortcomings of overestimating (such as L1-norm and

L2-norm) or underestimating (such as weighted Euclidean) the distance.

139
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• To answer pattern existence queries, multi-scale time histograms are invariant to time

shifting and scaling, amplitude shifting and scaling. Moreover, they can reduce the

effect introduced by noise.

• To answer shape match queries, multi-scale time histograms offer users flexibility to

query the time series data at different accuracy levels. Averages and lower scale his-

tograms can be used to prune the false candidates from the database before querying

over higher scale histograms.

The thesis further studies effective and efficient handling of shape match queries focus-

ing on distance function and retrieval techniques. This is a topic that has been extensively

studied with many proposed approaches. However only two distance functions, Dynamic

Time Warping (DTW) and Longest Common Subsequences (LCSS), can be used to handle

local time shifting which is essential for time series or trajectory data similarity matching.

DTW and LCSS do not follow triangle inequality, however, making it hard to improve the

retrieval efficiency by traditional distance-based indexing structures.

The second contribution of this thesis is the introducing a new metric distance function,

called Edit Distance with Real Penalty (ERP), which can be used to to handle local time

shifting. ERP can be viewed as a variant of L1-norm, except that it can support local time

shifting. It can also be viewed as a variant of Edit Distance, except that it is a metric

distance function. The benchmark results show that ERP is as natural as DTW and LCSS

for time series data. A number of techniques are proposed to improve the retrieval efficiency

of ERP [23].

• The previously proposed lower bound distances for DTW are modified and proved

to be lower bound of ERP as well.

• A new lower bound distance for ERP is also proposed. Compared to the modified

DTW lower bounds, the new one is more effective in removing false candidates, and

most important of all, it can be indexed by a simple B+-tree.

In terms of indexing time series or trajectory data, GEMINI framework is often used

regardless of whether or not the underlying distance function is a metric distance function.

The key is the use of a lower bound on the true distance to guarantee no false dismissals
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when the index is used as a filter. However, when a distance function is a metric distance

function, not only can the lower bound distance be used to remove false candidates, but

also the triangle inequality property of a metric distance function can be used to reduce

the search space. Thus, the third contribution of this thesis is a k-nearest neighbor (k-

NN) algorithm that applies both lower bounding and the triangle inequality [23]. It is an

extension of GEMINI framework on indexing metric distances of time series data. Using

ERP as an example, the extensive experimental results show that this algorithm indeed

gets the best of both pruning paradigms and delivers superb retrieval efficiency.

The third part of this dissertation addresses similarity-based retrieval over time series

or trajectory data contain local time shifting and noise. Current distance functions, such

as Euclidean distance, DTW, and ERP, are not able to handle noise, or they handle noise

by losing much accuracy (e.g. LCSS). Thus, a new distance function, called Edit Distance

on Real Sequence (EDR), is proposed to measure the similarity of data that contain local

time shifting and noise, which is the fourth contribution of this thesis. EDR removes the

noise effects by quantizing the distance between a pair of elements to two values, 0 and

1. Seeking the minimum number of edit operations required to change one trajectory

to another offers EDR the ability to handle local time shifting. Furthermore, assigning

penalties to the unmatched parts solves the inaccuracy problem of LCSS. A set of objective

tests on benchmark data show that EDR is more robust than Euclidean distance, DTW,

and ERP, and more accurate than LCSS when it is used to measure the similarity between

data that contain noise and local time shifting.

EDR does not follow triangle equality and the computation time is quadratic; thus,

improving the retrieval efficiency becomes an important challenge. The following pruning

techniques are proposed to address this challenge:

• two-dimensional and projected one-dimensional mean value Q-grams;

• near triangle inequality;

• two-dimensional and projected one-dimensional histograms.

All the above three techniques are proven not to introduce false dismissals. Further-

more, a combination mechanism is developed to combine the three pruning techniques and

deliver superior pruning power.
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6.2 Comparison with Related Work

A few approaches [4, 95, 84] have been proposed for pattern existence queries over time

series data. The moving direction (the slope between two values) of an user specified

interval [84], consecutive values [4], or a segment (obtained by a segmentation algorithm)

[95] was represented as a distinct alphabet. Thus, these approaches converted time series

data into strings and applied string-matching techniques to find the patterns. However, this

conversion has two problems: (1) it is sensitive to noise, and (2) data points located near

each other may be assigned to different symbols because of value quantization. Compared

to these approaches, multi-scale time series histograms discussed in Chapter 3 are robust

to noise and reduce the boundary effects introduced by value space quantization.

Many studies on shape match queries over time series were conducted in the past

decade. These work focused on two main aspects: new dimensionality reduction techniques

(assuming that the Euclidean distance is the similarity measure), and new approaches for

measuring the similarity between two time series, which were reviewed in Chapter 2.

Compared to previous proposed distance functions, such as Euclidean distance [3, 31,

87], DTW [12, 118, 57, 52], and LCSS [14, 28, 108], ERP can handle time series data

with different lengths and contain local time shifting. Most importantly, unlike DTW or

LCSS, ERP is a metric distance function, which is indexable by distance-based indexing

structures.

Most of the previous approaches on indexing time series follow the GEMINI framework.

However, if the distance measure is a metric distance function, then existing indexing

structures proposed for metric distance functions that use triangle inequality pruning may

be applicable. Examples include the MVP-tree [15], the M-tree [26], the Sa-tree [75],

and the OMNI-family of access methods [32]. The proposed indexing framework in this

thesis combines the pruning power of lower bounding and triangle inequality, which delivers

superb retrieval efficiency and dominates all existing strategies.

There are some work have been done on similarity-based search over trajectory data.

Lee et al. [61] use the distance between minimum bounding rectangle to compute the

distance between two multidimensional trajectories. Even though they can achieve very

high recall, the distance function cannot avoid false dismissals. The methods presented

in this thesis guarantees that there are no false dismissals. Cai and Ng [19] propose an
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effective lower bounding technique for indexing trajectories. However, Euclidean distances

are used as the similarity measure [61, 116, 19], and, as argued in Chapter 2, this measure

is not robust to noise or time shifting which often appear in trajectory data. Little and

Gu [66] use path and speed curves to represent the motion trajectories and measure the

distance between two trajectories using DTW. Vlachos et al. [106] also use DTW on

rotation invariant representation of trajectories, sequences of angle and arc-length pairs.

However, DTW requires continuity along the warping path, which makes it also sensitive

to noise. EDR distance function proposed in this thesis for trajectory retreival is robust

to noise. Vlachos et al. [108] use LCSS to compare two trajectories with the consideration

of spatial space shifting. Compared to LCSS, EDR is not only robust to noise, it also

assigns penalties according to the sizes of the gaps in between similar shapes, which makes

it more accurate. A cluster-based indexing tree is proposed in [108] to improve the retrieval

efficiency using LCSS. The performance of this indexing method depends on the clustering

results. However, since LCSS does not follow triangle inequity, it is hard to find good

clusters and representing points in the data set [46]. The three pruning techniques proposed

for trajectory retrieval do not have this limitation.

6.3 Future Work

There are a number of issues that require further investigation. The important ones are

the following:

• For multi-scale time series histograms, the scale level needs to be set up by users

when they issue a query. Ways to automatically set up the scale value for users is an

interesting issue to study.

• The efficacy of ERP on data in other domains, such as speech recognition and musical

retrieval, will be studied. Furthermore, the effectiveness of the combination method,

which combines the pruning power of lower bounding and triangle inequality, will be

studied on other metric distance functions.

• The property of the new lower bound of ERP will be investigated to check the

possibility of proposing a new general lower bound for most of the distance functions,
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such as Euclidean distance, DTW, ERP, LCSS, and EDR.

• Besides reducing the dimensionality of time series and trajectory data (proposing new

lower bounds), designing an effective distance-based indexing structure will definitely

help to improve the retrieval efficiency.

• For non-metric distance functions, such as EDR, the possibility of embedding them

into a metric space without introducing false dismissals will be studied. Furthermore,

directly designing an indexing method for non-metric distances is a very interesting

long-term research direction.

The emergence and increasing deployment of sensor network technology has generated

interesting problems and has attracted significant attention from both academic and indus-

trial communities. Sensors are small battery-powered, wireless devices which are equipped

with limited processing power and memory. The management of data generated by sen-

sors is studied in the database community under the name of “stream data management”

[8, 36]. The data collected by a sensor can be treated as a stream of time series data,

which raises the possibility that some of the techniques proposed in this thesis may be

applicable. However, compared to archived time series data, an important characteristics

of stream time series data is that the data are frequently updated. Thus, previous meth-

ods that rely on indexing structures to improve the retrieval efficiency do not work in this

scenario since the cost of updating indexes will diminish the saving of the query cost. A

common approach to address this issue is batch updates, which is not a good solution in

this context, since it leads to the loss of accuracy and this loss cannot be bounded. The

following possible solutions will be investigated:

• Using previously proposed dimensionality reduction techniques (e.g. Discrete Fourier

Transform) to extract a few features from stream time series data and developing an

incremental approach to compute new features from previous features.

• Creating an index on extracted features and designing a novel mechanism to reduce

the number of updates to the index with a bounded loss of accuracy.



Conclusions and Future Work 145

• Offering two types of answers to similarity-based queries over stream time series data,

approximate results that are derived from the index and exact results that are derived

from the index as well as the stream data stored on disk.



Chapter 7

Summary of Notation

d variable over the set of natural numbers

i variable over the set of natural numbers

j variable over the set of natural numbers

g a gap element introduced for computing Edit Distance

v staring shifting position

m number of segments of a sequence

n number of segments of a sequence

r a constant real number for query range

x a data item belongs to a defined data space D

y a data item belongs to a defined data space D

z a data item belongs to a defined data space D

τ number of histogram bins

δ scale level of histograms

146



Summary of Notation 147

ε a real value for matching threshold

ti the ith timestamp of a sequence

(ti, qi) the ith element of sequence Q

(ti, ri) the ith element of sequence S

(ti, si) the ith element of sequence R

qi the vector of ith element of sequence Q

ri the vector of ith element of sequence R

si the vector of ith element of sequence S

qi,x the x coordinate of ith element vector of sequence Q

qi,y the y coordinate of ith element vector of sequence Q

ri,x the x coordinate of ith element vector of sequence R

ri,y the y coordinate of ith element vector of sequence R

si,x the x coordinate of ith element vector of sequence S

si,y the y coordinate of ith element vector of sequence S

wi the ith weight of weight vector W , where wi ≥ 0

L a constant natural number,the size of a database

M a constant natural number,the length of a sequence

N a constant natural number, the length of a sequence

W a vector of weights for different elements of a sequence

R a time series or trajectory R = [(t1, r1), . . . , (tN , rN)]
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S a time series or trajectory S = [(t1, s1), . . . , (tN , sN)]

T a time series or trajectory T = [(t1, t1), . . . , (tN , tN)]

D a set of time series of trajectory data

|R| the length of R

first(R) the first element vector of sequence R

last(R) the last element vector of sequence R

Rest(R) the subsequence of R without the first element: [(t2, r2), . . . , (tn, rn)]

R̃ sequence R after aligned with another data sequence

DLB a lower bound of the distance

HR histograms of R

p(x) the probability distribution function of x

max a function to get the maximum value of the operand.

min a function to get the minimum value of the operand.

sum a function to get the sum of the operand.

dist a distance function

wr the warping range in dynamic time warping

iap inverse angle probability

ACHD The distance between two average cumulative histograms

ED Edit Distance on strings

WED Weight Euclidean Distance
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CHD Cumulative Histogram Distance

DTW Dynamic Time Warping

LCSS Longest Common Subsequence

ERP Edit Distance with Real Penalty

EDR Edit Distance on Real Sequence
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