
Noname manuscript No.
(will be inserted by the editor)

Building Self-Clustering RDF Databases Using
Tunable-LSH

Güneş Aluç, M. Tamer Özsu, Khuzaima Daudjee

the date of receipt and acceptance should be inserted later

Abstract The Resource Description Framework (RDF)

is a W3C standard for representing graph-structured

data, and SPARQL is the standard query language for

RDF. Recent advances in information extraction, linked

data management and the Semantic Web have led to a

rapid increase in both the volume and the variety of

RDF data that are publicly available. As businesses

start to capitalize on RDF data, RDF data manage-

ment systems are being exposed to workloads that are

far more diverse and dynamic than what they were de-

signed to handle. Consequently, there is a growing need

for developing workload-adaptive and self-tuning RDF

data management systems. To realize this objective, we

introduce a fast and efficient method for dynamically

clustering records in an RDF data management sys-

tem. Specifically, we assume nothing about the work-

load upfront, but as SPARQL queries are executed, we

keep track of records that are co-accessed by the queries

in the workload and physically cluster them. To de-

cide dynamically and in constant-time where a record

needs to be placed in the storage system, we develop

a new locality-sensitive hashing (LSH) scheme, Tuna-

ble-LSH. Using Tunable-LSH, records that are co-

accessed across similar sets of queries can be hashed

to the same or nearby physical pages in the storage

system. What sets Tunable-LSH apart from existing

LSH schemes is that it can auto-tune to achieve the

aforementioned clustering objective with high accuracy

even when the workloads change. Experimental evalu-

ation of Tunable-LSH in an RDF data management

system as well as in a standalone hashtable shows end-

to-end performance gains over existing solutions.

Address(es) of author(s) should be given

1 Introduction

Physical data organization plays an important role in

the performance tuning of database management sys-

tems. A particularly important problem is clustering

records in the storage system that are frequently co-

accessed by queries in a workload. Suboptimal cluster-

ing has negative performance implications due to ran-

dom I/O and cache stalls [7]. This problem has received

attention in the context of SQL databases and has led

to the introduction of tuning advisors that work either

in an offline [6, 78] or online fashion (i.e., self-tuning

databases) [31].

In this paper, we address the problem in the context

of RDF data management systems. Due to the diver-
sity of applications on the World Wide Web, SPARQL

workloads that RDF data management systems service

are far more dynamic than conventional SQL work-

loads [17,56]. First, on the Web, queries are influenced

by real-life events, which can be highly unpredictable [17,

56, 71]. Second, hotspots in RDF, which denote the

RDF resources that are frequently queried, can have

fluctuating phases of popularity. For example, an analy-

sis over real SPARQL query logs reveal that in one week

intervals before, during and after a conference, the pop-

ularity of the RDF resources related to that conference

can peak and then drop significantly [56]. Third, our at-

tempts at modeling these fluctuations over a collection

of real SPARQL workloads [21] using a measure called

volatility [36] have revealed that the volatility of RDF

resources follow normal-like distribution [70]. That is,

while some RDF resources are queried frequently and

this frequency does not fluctuate much over time (i.e.,

low volatility), for others this fluctuation can be very

high (i.e., high volatility).

2 Güneş Aluç, M. Tamer Özsu, Khuzaima Daudjee

StorageSystem

Cache

Index

SPARQLQueryEngine

Hash
Function

@t1

Hash
Function

@tk

fragmented? function

adapts

Fig. 1: Adaptive record placement using a combination

of adaptive hashing and caching.

For the second class of queries with high volatility,

tuning techniques for RDF data management systems

are in their infancy, and relational solutions are not di-

rectly applicable. More specifically, depending on the

workload, it might be necessary to completely change

the underlying physical representation in an RDF data

management system, such as by dynamically switching

from a row-oriented representation to a columnar rep-

resentation [13]. On the other hand, existing solutions

are either offline requiring the workload to be known

upfront [39, 48], or online for which the tuning tech-

niques work well only when the schema changes are

minor [27]. Consequently, with the increasing demand

to support highly dynamic workloads in RDF [17, 56],

there is a growing need to develop more adaptive tun-

ing solutions in which records in an RDF database can

be dynamically and continuously clustered based on the

current workload.

Whenever a SPARQL query is executed, there is an

opportunity to observe how records in an RDF database

are being utilized. This information about query access

patterns can be used to dynamically cluster records

in the storage system. The ability to do this dynam-

ically is important in RDF systems because of the high

variability and dynamism present in SPARQL work-

loads [17, 56]. While this problem has been studied as

physical clustering [60] and distribution design [29], the

highly dynamic nature of the queries over RDF data

introduces new challenges. First, traditional algorithms

are offline, and since clustering is an NP-hard prob-

lem where most approximations have quadratic com-

plexity [55], they are not suitable for online database

clustering. Instead, techniques are needed with similar

clustering objectives but that have linear running time.

Second, systems are typically expected to execute most

queries in subseconds [65], leaving only fractions of a

second to update their physical data structures (e.g.,

dynamically moving records across the storage system).

We address the aforementioned issues by making

two contributions. First, as shown in Fig. 1, instead

of clustering the whole database, we cluster only the

“warm” portions of the database by relying on the ad-

mission policy of the existing database cache. Second,

we develop a novel self-tuning locality-sensitive hash

(LSH) function, namely, Tunable-LSH to decide in

constant-time where in the storage system to place a

record. Tunable-LSH has two important properties:

First, it strives to ensure that (i) records with simi-

lar utilization patterns (i.e., those records that are co-

accessed across similar sets of queries) are mapped as

much as possible to the same pages in the storage sys-

tem, while (ii) minimizing the number of records with

dissimilar utilization patterns that are falsely mapped

to the same page. Second, unlike conventional LSH [38,

53], Tunable-LSH can auto-tune so as to achieve the

aforementioned clustering objectives with high accu-

racy even when the workload changes.

These ideas are illustrated in Fig. 1. Let us assume

that initially, the records in a database are not clus-

tered according to any particular workload. Therefore,

the performance of the system is suboptimal. However,

every time records are fetched from the storage sys-

tem, there is an opportunity to bring together into

a single page those records that are co-accessed but

are fragmented across the storage system. Tunable-

LSH achieves this goal with minimal overhead. Fur-

thermore, Tunable-LSH is continuously updated to

reflect changes in the workload characteristics. Conse-

quently, as more queries are executed, records in the

database become more clustered, thereby, improving

performance.

The paper is organized as follows: Section 2 dis-
cusses related work. Section 3 gives a conceptual de-

scription of the problem. Section 4 describes the overview

of our approach while Section 5 provides the details. In

Section 6, we experimentally evaluate our techniques.

Finally, we discuss conclusions and future work in Sec-

tion 7.

2 Related Work

Locality-sensitive hashing (LSH) [38,53] has been used

in various contexts such as nearest neighbour search [16,

18, 34, 49, 53, 73], Web document clustering [25,26] and

query plan caching [11]. In this paper, we use LSH in the

physical design of RDF databases. While multiple fami-

lies of LSH functions have been developed [26,30,32,38,

53], these functions assume that the input distribution

is either uniform or static. In contrast, Tunable-LSH

can continuously adapt to changes in the input distri-

bution to achieve higher accuracy, which translates to

Building Self-Clustering RDF Databases Using Tunable-LSH 3

adapting to changes in the workload query access pat-

terns in the context of RDF databases.

Physical design has been a topic of ongoing discus-

sion in the world of RDF and SPARQL [4, 13, 72, 75].

One option is to represent data in a single large ta-

ble [28] and build clustered indexes, where each index

implements a different sort order [46,67,74]. TripleBit [76]

takes this idea further and implements indexes using

bit-vectors. QLever [19] adds text indexes on top. It has

also been argued that grouping data can help improve

performance [4, 72]. For this reason, multiple physical

representations have been developed: in the group-by-

predicate representation, the database is vertically par-

titioned and the tables are stored in a column-store [4];

in the group-by-entity representation, implicit relation-

ships within the database are discovered (either manu-

ally [75] or automatically [24, 50]), and the RDF data

are mapped to a relational database or into native stor-

age [47]; and in the group-by-vertex representation, the

inherent graph-structure of RDF is preserved, whereby

data can be grouped by the vertices in the graph [79].

TriAD [41] is a distributed RDF engine whereby graph-

locality is preserved within each distributed node. These

workload-oblivious representations have issues for dif-

ferent types of queries due to reasons such as frag-

mented data, unnecessarily large intermediate result tu-

ples generated during query evaluation and/or subop-

timal index pruning [13].

To address some of these issues, workload-aware tech-

niques have been proposed [39, 48]. For example, view

materialization techniques have been implemented for

RDF over relational engines [39, 61]. However, these

materialized views are difficult to adapt to changing

workloads for reasons discussed in Section 1. Workload-

aware distribution techniques have also been developed

for RDF [48] and implemented in systems such as Part-

out [37] and WARP [48], but these systems are not

runtime-adaptive. With Tunable-LSH, we aim to ad-

dress the problem adaptively, by clustering fragmented

records in the database based on the workload.

Although there are self-tuning SQL databases [31,

51, 52] and techniques for automatic schema design in

SQL [6,20,60,78], these techniques are not directly ap-

plicable to RDF. In RDF, the advised changes to the

underlying physical schema can be drastic, for exam-

ple, requiring the system to switch from a row-oriented

representation to a columnar one, all at runtime, which

are hard to achieve using existing techniques. Conse-

quently, there have been efforts in designing workload-

adaptive and self-tuning RDF data management sys-

tems [8,9,13,14,44,68,69]. In H2RDF [68], the choice be-

tween centralized versus distributed execution is made

adaptively. A mechanism for adaptively caching par-



q0 q1 q2 q3 q4 q5 q6 q7

r0 0 1 1 1 : 1 1 1 1
r1 1 0 1 0 : 0 0 0 0

r2 0 0 0 1 : 0 1 0 1
r3 1 0 1 0 : 1 0 1 0

r4 1 0 1 0 : 1 0 1 0
r5 0 1 0 1 : 0 1 0 1

r6 1 1 1 1 : 1 1 1 1
r7 0 0 0 0 : 0 0 0 0



(a) Representation at t = 8.



q0 q1 q2 q3 q4 q5 q6 q7

r7 0 0 0 0 : 0 0 0 0
r1 1 0 1 0 : 0 0 0 0

r4 1 0 1 0 : 1 0 1 0
r3 1 0 1 0 : 1 0 1 0

r6 1 1 1 1 : 1 1 1 1
r0 0 1 1 1 : 1 1 1 1

r5 0 1 0 1 : 0 1 0 1
r2 0 0 0 1 : 0 1 0 1



(b) Clustered on rows



q0 q2 q6 q4 q3 q5 q7 q1

r7 0 0 0 0 : 0 0 0 0
r1 1 1 0 0 : 0 0 0 0

r4 1 1 1 1 : 0 0 0 0
r3 1 1 1 1 : 0 0 0 0

r6 1 1 1 1 : 1 1 1 1
r0 0 1 1 1 : 1 1 1 1

r5 0 0 0 0 : 1 1 1 1
r2 0 0 0 0 : 1 1 1 0



(c) Clustered on rows and
columns



G0G1

c7 0 0
c1 2 0

c4 2 2
c3 2 2

c6 4 4
c0 3 4

c5 2 2
c2 1 2



(d) Grouping
of bits



G0G1

c7 0 0
c1 2 0

c4 4 0
c3 4 0

c6 4 4
c0 3 4

c5 0 4
c2 0 3



(e) Alterna-
tive grouping

Fig. 2: Matrix representation of query access patterns.

tial results is introduced in [69]. AdPart [8, 44] is a

distributed, workload-adaptive RDF data management

system that is closely related. AdPart distributes triples

by hashing on triples’ subjects. The hash function is

static and not locality-sensitive (unlike Tunable-LSH);

therefore, AdPart relies on dynamic re-distribution and

replication of frequently accessed data to adapt to the

workload (the underlying physical layout is fixed within

each node). To this end, AdPart and our work offer

complementary solutions: AdPart would benefit from

Tunable-LSH in determining which triples should be

clustered together, and our work would benefit from

adaptive replication.

3 Preliminaries

Given a sequence of database records that represent

the records’ serialization order in the storage system,

the access patterns of a query can conceptually be rep-

resented as a bit vector, where a bit is set to 1 if the

corresponding record in the sequence is accessed by that

query. We call this bit vector a query access vector (q).

Depending on the system, a record may denote a

single RDF triple (i.e., the atomic unit of information

in RDF) or a collection of RDF triples. Our conceptual

model is applicable either way.

As more queries are executed, their query access

vectors can be accumulated column-by-column in a ma-

4 Güneş Aluç, M. Tamer Özsu, Khuzaima Daudjee

trix, as shown in Fig. 2a. We call this matrix a query ac-

cess matrix. For presentation, let us assume that queries

are numbered according to their order of execution by

the RDF data management system.

Each row of the query access matrix constitutes

what we call a record utilization vector (r), which rep-

resents the set of queries that access record r. As a con-

vention, to distinguish between a query and its access

vector (likewise, a record and its utilization vector), we

use the symbols q and q (likewise, r and r), respectively.

The complete list of symbols are given in Table 1.

To model the memory hierarchy, we use an addi-

tional notation in the matrix representation: records

that are physically stored together on the same disk or

memory page should be grouped together in the query

access matrix. For example, Fig. 2a and Fig. 2b rep-

resent two alternative ways in which the records in an

RDF database can be clustered (groups are separated

by horizontal dashed lines). Even though both figures

depict essentially the same query access patterns, the

physical organization in Fig. 2b is superior, because in

Fig. 2a, most queries require access to 4 pages each,

whereas in Fig. 2b, the number of accesses is reduced

by almost half.

Given a sequence of queries and the number of pages

in the storage system, our objective is to store records

having similar utilization vectors together so as to min-

imize the total number of page accesses. To determine

the similarity between record utilization vectors, we ex-

ploit the following property: two records are co-accessed

by a query if both of the corresponding bits in that

query’s access vector are set to 1. Extending this con-

cept to a set of queries, we say that two records are

co-accessed across multiple queries if the corresponding

bits in the record utilization vectors are set to 1 for all

the queries in the set. For example, according to Fig. 2a,

records r1 and r3 are co-accessed by queries q0 and q2,

and records r0 and r6 are co-accessed across the queries

q1–q7.

Given a sequence of queries, it is possible that a

pair of records are not co-accessed in all of the queries.

Therefore, to measure the extent to which a pair of

records are co-accessed, we rely on their Hamming dis-

tance [43]. Specifically, given two record utilization vec-

tors for the same sequence of queries, their Hamming

distance—denoted as δ(qx, qy)—is defined as the min-

imum number of substitutions necessary to make the

two bit vectors the same [43].1 Hence, the smaller the

Hamming distance between a pair of records, the greater

the extent to which they are co-accessed.

1 The Hamming distance between two record utilization
vectors is equal to their edit distance [59], as well as the Man-
hattan distance [57] between these two vectors in l1 norm.

Consider the record utilization vectors r0, r2, r5
and r6 across the query sequence q0–q7 in Fig. 2a. The

pairwise Hamming distances are as follows: δ(r0, r6) =

1, δ(r2, r5) = 1, δ(r0, r5) = 3, δ(r0, r2) = 4, δ(r5, r6) =

4 and δ(r2, r6) = 5. Consequently, to achieve better

physical clustering, r0 and r6 should be stored together,

as are r2 and r5, while r0 and r6 should be kept apart

from r2 and r5.

4 Overview of Tunable-LSH

The dynamic nature of queries over RDF data necessi-

tate a solution different from existing clustering algo-

rithms [13]. That is, while conventional clustering al-

gorithms [55] might be perfectly applicable for the of-

fline tuning of a database, in an online scenario, what

is needed is an algorithm that clusters records on-the-

fly and within microseconds. Clustering is an NP-hard

problem [55], and most approximations take at least

quadratic time [5]. In contrast, Tunable-LSH is a self-

tuning locality-sensitive hash (LSH) function that can

approximate clustering in linear time. Tunable-LSH

is used as follows.

As records are fetched from the storage system, we

keep track of records that are accessed by the same

query but are fragmented across the pages in the stor-

age system. Then, we use Tunable-LSH to decide,

in constant-time, how a fragmented record needs to

be clustered in the storage system (cf., Fig. 1). Fur-

thermore, we develop methods to continuously auto-

tune this LSH function to adapt to changing query ac-

cess patterns that are encountered while executing a

workload. This way, Tunable-LSH can achieve much
higher clustering accuracy than conventional LSH tech-

niques, which are static.

Let Zα ··· β denote the set of integers in the inter-

val [α, β], and let Znα ··· β denote the n-fold Cartesian

product:

Zα ··· β × · · · × Zα ··· β︸ ︷︷ ︸
n

.

Furthermore, let us assume that we are given a non-

injective, surjective function f : Z0 ··· (k−1) → Z0 ··· (b−1),

where b� k, and for all y ∈ Z0 ··· (b−1), it holds that∣∣∣{x : f(x) = y}
∣∣∣ ≤ ⌈k

b

⌉
.

In other words, f is a hash function with the property

that given k input values and b possible outcomes, no

more than dkb e values in the domain of the function

will be hashed to the same value (Section 5.2 discusses

Building Self-Clustering RDF Databases Using Tunable-LSH 5

Symbol Description

C
o
n

st
an

ts

ω database size (i.e., number of records)

ε number of pages in the storage system

k maximum no. of query access vectors that can be stored

b number of entries in each record utilization counter

t current time

D
a
ta

st
ru

ct
u

re
s

q query access vector (contains ω bits)

r record utilization vector (contains k bits)

c record utilization counter (contains b entries)

P depending on the context, a point in a k-dimensional

or b-dimensional (Taxicab) space

Mω×k query access matrix; contains the last k most

representative query access vectors (in columns),

or equivalently, ω record utilization vectors (in rows)

Cω×b frequency matrix; represents record utilization frequency

over b groups of query access vectors

A
cc

es
so

rs

q[i] value of the ith bit in query access vector q

r[i] value of the ith bit in record utilization vector r

c[i] value of the ith entry in record utilization counter c

P [i] value of the ith coordinate in point P

M [i][j] value of the ith row and jth column in matrix

C[i][j] value of the ith row and jth column in matrix

D
is

ta
n

ce
s δ(rx, ry) Hamming distance between two record utilization

vectors

δH(qx,qy) min-hash distance between two query access vectors

δM (Px,Py) Manhattan distance between two points

Table 1: Symbols used throughout the manuscript

in more detail how f can be constructed).2 Then, we

define Tunable-LSH as h : Zk0 ··· 1 → Z0 ··· (ε−1), where

ε represents the number of pages in the storage system.

More specifically, h is defined as a composition of two

functions h1 and h2.

Definition 1 (Tunable-LSH)

Let

r = (r[0], . . . , r[k−1]) ∈ Zk0 ··· 1, and

c = (c[0], . . . , c[b−1]) ∈ Zb
0 ··· d kb e

.

Then, an adaptive LSH function h is defined as

h = h2 ◦ h1

where

2 This uniformity condition simplifies the sensitivity anal-
ysis of Tunable-LSH, but it is not a requirement from an
algorithmic point of view. Relaxing this condition is left as
future work.

h1 : Zk0 ··· 1 → Zb
0 ··· d kb e

, where h1(r) = c iff

∀y c[y] =

k−1∑
x=0

{
r[x] : f(x) = y

0 : f(x) 6= y

h2 : Zb
0 ··· d kb e

→ Z0 ··· (ε−1), where h2(c) = v and v is the

coordinate of c (rounded to the nearest integer) on a

space-filling curve [64] of length ε that covers Zb
0 ··· d kb e

.

According to Def. 1, h is constructed as follows:

1. Using a hash function f (which can be treated as a

black box for the moment), a record utilization vec-

tor r with k bits is divided into b disjoint segments

r0, . . . , rb−1 such that r0, . . . , rb−1 contain all the

bits in r, and each ri ∈ {r0, . . . , rb−1} has at most

dkb e bits. Then, a record utilization counter c with

b entries is computed such that the ith entry of c

(i.e., c[i]) contains the number of 1-bits in ri. With-

out loss of generality, a record utilization counter c

can be represented as a b-dimensional point in the

coordinate system Zb
0 ··· d kb e

.

6 Güneş Aluç, M. Tamer Özsu, Khuzaima Daudjee

Symbol Description

begin natural number between 0 . . . (k − 1), initial value is 0

size natural number between 0 . . . (k − 1), keeps track of

the number of query access vectors that are

currently being maintained, initial value is 0

Hk×? matrix that contains min-hash values

for each query access vector

S[] array of vector(s), one for each MDS query point, that

pairs each MDS query point with a random subset of points

N [] array of max-heap(s), one for each MDS query point, that

pairs each MDS query point with a set of neighboring points

X[] array of float(s), represents the coordinate

(single dimensional) of each MDS query point

V [] array of float(s), represents the current

(directional) velocity of each MDS query point

Table 2: Data structures referenced in algorithms

Coordinates

Decimal Binary z-value Hash Value

c7 (0, 0) (000, 000) 000000 00xxxx

c1 (2, 0) (010, 000) 001000 00xxxx

c4 (2, 2) (010, 010) 001100 00xxxx

c3 (2, 2) (010, 010) 001100 00xxxx

c6 (4, 4) (100, 100) 110000 11xxxx

c0 (3, 4) (011, 100) 011010 01xxxx

c5 (2, 2) (010, 010) 001100 00xxxx

c2 (1, 2) (001, 010) 000110 00xxxx

Table 3: Illustration of h2 in Definition 1

2. The final hash value is computed by computing the

z-value [35, 64] of the points in Zb
0 ··· d kb e

, and drop-

ping off the last m bits from the produced z-values,

where m = b(dlog2dkb ee+ 1)− dlog2εe.

Consider the record utilization vectors r0 . . . r7 in

Fig. 2b. Let us assume that a hash function f divides

the bits in the record utilization vectors into two groups

such that columns q0 . . . q3 appear in one group and

q4 . . . q7 appear in another. Then, the record utilization

counters depicted in Fig. 2d can be generated accord-

ing to h1 in Definition 1. h2 takes these record utiliza-

tion counters and computes their z-values. To illustrate

that process (cf., Table 3), we represent the record uti-

lization counters as points in a two-dimensional space

(where b – the number of groups h1 has generated –

determines the dimensionality) and rely on the coordi-

nates of the points in binary notation. Computing the

z-values is as simple as interleaving the bits from each

dimension; that is, we pick out a red bit and then a

blue, and repeat this process from left to right until all

bits are consumed. To compute the final hash values,

we will mask out the least significant bits from the z-

values. Exactly how many bits we mask out depends on

the total number of distinct values the hash function is

allowed to generate, which is determined by the number

of pages in the system. In this example, we assume that

we will be distributing the records across four pages in

total, hence, we mask out the last four bits from each

z-value to end up with two-bit hash values.

In Section 5.1, we show that Tunable-LSH that

maps k-dimensional record utilization vectors to nat-

ural numbers in the interval [0, . . . , ε − 1] is locality-

sensitive, with two important implications: (i) records
with similar record utilization vectors (i.e., small Ham-

ming distances) are likely to be hashed to the same

value, while (ii) records with dissimilar record utiliza-

tion vectors are likely to be separated. Therefore, the

problem of clustering records in the storage system can

be approximated using Tunable-LSH such that clus-

tering n records takes O(n) time.

The quality of Tunable-LSH, that is, how well it

approximates the original Hamming distances, depends

on two factors: (i) the characteristics of the workload

so far, which is reflected by the bit distribution in the

record utilization vectors, and (ii) the choice of f . In

Section 5.2, we demonstrate that f can be tuned to

adapt to the changing patterns in record utilization vec-

tors to maintain the approximation quality of Tuna-

ble-LSH at a steady and high level.

Algorithms 1–3 present our approach for computing

the outcome of Tunable-LSH and for incrementally

tuning the LSH function after every query execution.

Note that we have two design considerations: (i) tuning

Building Self-Clustering RDF Databases Using Tunable-LSH 7

Algorithm 1 Initialize

Ensure:

Record utilization counters are allocated and ini-

tialized

1: procedure Initialize()

2: construct int C[ω][2b] . For simplicity, C

is allocated stati-

cally; however, in

practice, it can be

allocated dynam-

ically to reduce

memory footprint.
3: for all i ∈ (0, . . . , ω − 1) do

4: for all j ∈ (0, . . . , 2b− 1) do

5: C[i][j] ← 0

6: end for

7: end for

8: end procedure

Algorithm 2 Tune

Require:

qt: query access vector produced at time t

Ensure:

Underlying data structures are updated and f is

tuned such that the LSH function maintains a

steady approximation quality

1: procedure Tune(qt)

2: Reconfigure-F(qt)

3: for all i ∈ Positional(qt) do

4: loc ← f(t)

5: if loc < (shift % b) then

6: loc += b

7: end if

8: C[i][loc]++ . Increment record

utilization coun-

ters based on the

new query access

pattern
9: if t%dkb e = 0 then . Reset “old” coun-

ters
10: shift++

11: C[i][(shift+b)%2b] ← 0

12: end if

13: end for

14: end procedure

should take constant-time, otherwise, there is no point

in using a function, (ii) the memory footprint should be

low because it would be desirable to maximize the allo-

cation of memory to core database functionality. Conse-

quently, instead of relying on record utilization vectors,

the algorithm computes and incrementally maintains

Algorithm 3 Hash

Require:

id: id of record whose hash is being computed

Ensure:

Hash value is returned

1: procedure Hash(id)

2: return Z-Value(C[id]) . Apply h2
3: end procedure

record utilization counters (cf., Algorithm 1), which are

much easier to maintain and have a much smaller mem-

ory footprint due to b � k. Then, whenever there is a

need to compute the outcome of the LSH function for

a given record, the Hash procedure is called with the

id of the record, which in turn relies on h2 to compute

the hash value (cf., Algorithm 3).

The Tune procedure looks at the next query access

vector, and updates f (line 2), which will be discussed

in more detail in Section 5.2. Then it computes posi-

tions of records that have been accessed by that query

(line 3), and increments the corresponding entries in the

utilization counters of those records that have been ac-

cessed (line 8). To determine which entry to increment,

the algorithm relies on h1, hence, f(t) (cf., Def. 1) and

a shifting scheme. In line 11, old entries in record uti-

lization counters are reset based on an approach that

we discuss in Section 5.3. In that section we also discuss

the shifting scheme.

5 Details of Tunable-LSH and Optimizations

This section is structured as follows: Section 5.1 shows

that Tunable-LSH has the properties of a locality-

sensitive hashing scheme. Section 5.2 describes our ap-

proach for tuning f based on the most recent query ac-

cess patterns, and Section 5.3 explains how old bits are

removed from record utilization counters. Section 5.4

discusses potential future work to support insertions in

Tunable-LSH.

5.1 Properties of Tunable-LSH

This section discusses the locality-sensitive properties

of h = h2 ◦ h1 and demonstrates that h can be used

for clustering the records. First, the relationship be-

tween record utilization vectors and the record utiliza-

tion counters that are obtained by applying h1 is shown.

Theorem 1 (Distance Bounds)

Given a pair of record utilization vectors r1 and r2
with size k, let c1 and c2 denote two record utiliza-

tion counters with size b such that c1 = h1(r1) and

8 Güneş Aluç, M. Tamer Özsu, Khuzaima Daudjee

c2 = h1(r2) (cf., Definition 1). Furthermore, let c1[i]

and c2[i] denote the ith entry in c1 and c2, respectively.

Then,

δ(r1, r2) ≥
b−1∑
i=0

∣∣c1[i]− c2[i]
∣∣ (1)

where δ(r1, r2) represents the Hamming distance be-

tween r1 and r2.

Proof. It is possible to prove Theorem 1 by induction

on b.

Base case: Theorem 1 holds when b = 1. According

to Definition 1, when b = 1, c1[0] and c2[0] correspond

to the total number of 1-bits in r1 and r2, respectively.

Note that the Hamming distance between r1 and r2 will

be smallest if and only if these two record utilization

vectors are aligned on as many 1-bits as possible. In that

case, they will differ in only
∣∣c1[0] − c2[0]

∣∣ bits, which

corresponds to their Hamming distance. Consequently,

Equation 1 holds for b = 1.

Inductive step: It needs to be shown that if Equation 1

holds for b ≤ α, where α is a natural number greater

than or equal to 1, then it must also hold for b = α+ 1.

Let Πf (r, g) denote a record utilization vector r′ =

(r′[0], . . . , r′[k− 1]) such that for all i ∈ {0, . . . , k− 1},
r′[i] = r[i] holds if f(i) = g, and r′[i] = 0 otherwise.

Then,

δ(r1, r2) =

b−1∑
g=0

δ(Πf (r1, g), Πf (r2, g)). (2)

That is, the Hamming distance between any two record

utilization vectors is the summation of their individual
Hamming distances within each group of bits that share

the same hash value with respect to f . This property

holds because f is a (total) function, and Πf masks all

the irrelevant bits. As an abbreviation, let

δg = δ(Πf (r1, g), Πf (r2, g)).

Then, due to the same reasoning as in the base case,

for g = α, the following equation holds:

δα(r1, r2) ≥
∣∣c1[α]− c2[α]

∣∣ (3)

Consequently, due to the additive property in Equation 2,

Equation 1 holds also for b = α+1. Thus, by induction,

Theorem 1 holds.

Theorem 1 suggests that the Hamming distance be-

tween any two record utilization vectors r1 and r2 can

be approximated using record utilization counters c1 =

h1(r1) and c2 = h1(r2) because Equation 1 provides a

lower bound on δ(r1, r2). In fact, the right-hand side

of Equation 1 is equal to the Manhattan distance [57]

between c1 and c2 in Zb
0 ··· d kb e

, and since δ(r1, r2) is

equal to the Manhattan distance between r1 and r2
in Zk0 ··· 1, it is easy to see that h1 is a transformation

that approximates Manhattan distances. The following

corollary captures this property.

Corollary 1 (Distance Approximation) Given two

record utilization vectors r1 and r2 each with size k, let

c1 and c2 denote two points in the coordinate system

Zb
0 ··· d kb e

such that c1 = h1(r1) and c2 = h1(r2) (cf.,

Definition 1). Let δM (r1, r2) denote the Manhattan dis-

tance between r1 and r2, and let δM (c1, c2) denote the

Manhattan distance between c1 and c2. Then, the fol-

lowing holds:

δ(r1, r2) = δM (r1, r2) ≥ δM (c1, c2) (4)

Proof. Hamming distance in Zk0 ··· 1 is a special case

of Manhattan distance. Furthermore, by definition [57],

the right hand side of Equation 1 equals the Manhattan

distance δM (c1, c2); therefore, Equation 4 holds.

Next, we demonstrate that h = h2 ◦h1 is a locality-

sensitive transformation [38,53]. In particular, the defi-

nition of locality-sensitiveness by Tao et al. [73] is used,

and it is shown that the probability that two record uti-

lization vectors r1 and r2 are hashed to the same page

increases as the (Manhattan) distance between r1 and

r2 decreases.

Theorem 2 (Collision Probabilities) Given a pair

of record utilization vectors r1 and r2 with size k, let

δM (r1, r2) denote the Manhattan distance between r1
and r2. Furthermore, let m denote the number of right-

most bits that are dropped by h2. When b = 1 (i.e., the

size of the record utilization counters produced by h1),

the probability that the pair of record utilization vectors

will be hashed to the same value by h2 ◦ h1 provided

that their initial Manhattan distance is x is given by

the following formula:

Pr
(
h2 ◦ h1(r1) = h2 ◦ h1(r2)

∣∣∣ δM (r1, r2) = x
)

=

x∑
a=0

k−x∑
∆=0

(
x
a

)(
k

k−x
)(
k−x
∆

)
ρ(∆+ a, x− 2a,m)

22k

(5)

where ρ(x, y,m) : (Z0 ···∞,Z−∞···∞,Z0 ···∞) → {0, 1}
is a function such that

ρ(x, y,m) =

{
1 if 0 ≤ (x mod 2m) + y < 2m

0 else
.

Building Self-Clustering RDF Databases Using Tunable-LSH 9

Proof. If the Hamming/Manhattan distance between

r1 and r2 is x, then it means that these two vectors

will differ in exactly x bits, as shown below.

r1 : ���

a︷ ︸︸ ︷
111 . . .1 0 · · ·000���

r2 : ���000 · · ·0 1 . . .111︸ ︷︷ ︸
x−a

���

Furthermore, if r1 has ∆+a bits set to 1, then r2 must

have ∆ + (x − a) bits set to 1, where ∆ denotes the

number of matching 1-bits between r1 and r2. Note that

when b = 1, c1 = h1(r1) = (∆+ a) and c2 = h1(r2) =

(∆+ x− a).

It is easy to see that a ∈ Z0 ··· x and ∆ ∈ Z0 ··· k−x.

For each value of a, the non-matching bits in r1 and

r2 can be combined in
(
x
a

)
possible ways, and these

non-matching bits can be positioned across the k bits

in
(
k

k−x
)

possible ways. Likewise, for each value of ∆,

those matching 1-bits that are counted by ∆ can be com-

bined in
(
k−x
∆

)
possible ways, hence, the first three com-

ponents of the multiplication in the numerator of Equa-

tion 5.

Among the aforementioned combinations, h2(c1) =

h2(c2) will be true if and only if the binary representa-

tions of c1 and c2 share the same sequence of bits except

for their last m bits. This condition will be satisfied if

and only if ∆+a and ∆+x−a have the same quotient

when divided by 2m. In other words, (∆+a) mod 2m +

(∆+ x− a)− (∆+ a) must be greater than or equal to

0 or less than 2m, hence, the need to multiply by ρ in

the numerator of Equation 5.

Since r1 and r2 consist of k bits, there can be 2k ×
2k = 22k possible combinations in total, which corre-

sponds to the denominator of Equation 5.

Next, Theorem 2 is extended to cases in which b ≥
2.

Lemma 1 Let δM (ri, rj) denote the Manhattan dis-

tance between any two record utilization vectors ri and

rj, and let m denote the number of rightmost bits that

are dropped by h2, which is utilized in h (cf., Defini-

tion 1). Furthermore, let pr==

(
ri, rj , x

)
denote the pos-

terior probability that, for any two record utilization vec-

tors ri and rj, h(ri) = h(rj) provided that δM (ri, rj) =

x. Given any four record utilization vectors r1, r2, r3
and r4 with size λb such that

δM (r1, r2) = x and

δM (r3, r4) = λb− x,

the following property holds for any x ≤ λ
2 and m = Υb:

pr==

(
r1, r2, x

)
≥ pr==

(
r3, r4, λb− x

)
(6)

where h = h2◦h1 (cf., Definition 1), b ∈ Z1 ···∞ denotes

the number of entries in the record utilization counters

produced by h1, λ is an even and positive number, and

Υ ∈ Z1 ···λ−1.

The proof is lengthy, therefore, only a proof sketch is

provided in this section. The complete proof is available

in [10].

Proof. Lemma 1 is proven by induction on b.

Base case: Equation 6 holds when b = 1. The proof

sketch is below:

B1. It is shown that for any two natural numbers a and

∆ such that a ≤ x
2 , ∆ ≤ (k−x), ∆−a > k−2x

2 , and

∆+a < k
2 , if ρ(a+∆, x−2a) < ρ(a+∆, k−x−2∆),

there exists two natural numbers a′ and ∆′ such

that

0 ≤ a′ = ∆− k − 2x

2
≤ x and

0 ≤ ∆′ = a+
k − 2x

2
≤ k − x,

and the following property holds:(
x

a

)(
k − x
∆

)
ρ(a+∆, x− 2a)+(

x

a′

)(
k − x
∆′

)
ρ(a′ +∆′, x− 2a′) ≥(

k − x
∆

)(
x

a

)
ρ(a+∆, k − x− 2∆)+(

k − x
∆′

)(
x

a′

)
ρ(a′ +∆′, k − x− 2∆′). (7)

B2. It is shown that for any two natural numbers a and

∆ such that x
2 ≤ a ≤ x, ∆ ≤ (k−x), ∆−a < k−2x

2 ,

and ∆+ a > k
2 , if ρ(a+∆, x− 2a) < ρ(a+∆, k−

x − 2∆), there exists two natural numbers a′ and

∆′ such that

0 ≤ a′ = ∆− k − 2x

2
≤ x and

0 ≤ ∆′ = a+
k − 2x

2
≤ k − x,

and Inequality 7 holds.

B3. According to Equation 5, the probabilities

pr==

(
r1, r2, x

)
and

pr==

(
r3, r4, k − x

)
can be expanded as the summation of products that

are shown in Table 4. For brevity, the constant

multiplier(
k

k−x
)

22k

has been omitted from both equations.

10 Güneş Aluç, M. Tamer Özsu, Khuzaima Daudjee

pr==

(
r1, r2, x

)
pr==

(
r3, r4, k − x

)
a ∆ a′ ∆′

0 0
(
x
0

)(
k−x
0

)
ρ(0, x) 0 0

(
k−x
0

)(
x
0

)
ρ(0, k − x)

0 1
(
x
0

)(
k−x
1

)
ρ(1, x) 1 0

(
k−x
1

)(
x
0

)
ρ(1, k − x− 2)

...
...

...
...

...
...

...
...

0 k − x− 1
(
x
0

)(
k−x
k−x−1

)
ρ(k − x− 1, x) k − x− 1 0

(
k−x
k−x−1

)(
x
0

)
ρ(k − x− 1,−k + x+ 2)

0 k − x
(
x
0

)(
k−x
k−x
)

ρ(k − x, x) k − x 0
(
k−x
k−x
)(
x
0

)
ρ(k − x,−k + x)

...
...

...
...

...
...

...
...

x 0
(
x
x

)(
k−x
0

)
ρ(x,−x) 0 x

(
k−x
0

)(
x
x

)
ρ(x, k − x)

x 1
(
x
x

)(
k−x
1

)
ρ(x+ 1,−x) 1 x

(
k−x
1

)(
x
x

)
ρ(x+ 1, k − x− 2)

...
...

...
...

...
...

...
...

x k − x− 1
(
x
x

)(
k−x
k−x−1

)
ρ(k − 1,−x) k − x− 1 x

(
k−x
k−x−1

)(
x
x

)
ρ(k − 1,−k + x+ 2)

x k − x
(
x
x

)(
k−x
k−x
)

ρ(k,−x) k − x x
(
k−x
k−x
)(
x
x

)
ρ(k,−k + x)

Table 4: Pairings of products

B4. Each term on the left-hand side of Table 4 can be

paired up with a term on the right-hand side such

that the summation of products on the left-hand

side of Table 4 is always greater than or equal to

the summation of products on the right-hand side,

thus, proving the base case.

Inductive Step: Assuming that Lemma 1 holds for b ≤
α where α is a natural number greater than or equal to

1, it needs to be shown that it also holds for b = α+ 1.

The proof sketch is below:

S1. Let ri[j] denote the group of bits in a record uti-

lization vector ri that have the same hash value j

with respect to the hash function f , which is utilized

within h1 (cf., Definition 6). (Assume that within

each ri[j], the ordering of bits in ri is preserved.)

S2. Recall that the Manhattan distance between any two

record utilization vectors is the summation of their

individual Manhattan distances within each group

of bits that share the same hash value with respect

to f (cf., Equation 2). Therefore, since δM (r1, r2) =

x,

if δM (r1[α], r2[α]) = a, then

δM (r1[0] · · · r1[α− 1], r2[0] · · · r2[α− 1]) = x− a

where ri[0] · · · ri[α − 1] denotes the concatenation

of the corresponding bit vectors.

S3. Also note that h(r1) = h(r2) if and only if h(r1[j]) =

h(r2[j]) for all j ∈ Z0 ···α. The reason is that h =

h2 ◦ h1 and h(r1) (respectively, h(r2)) corresponds

to the bit vector that is produced by interleaving

the bits in the binary representations of h1(r1[0])

. . . h1(r1[α]) (respectively, h1(r2[0]) . . . h1(r2[α]))

and cutting off the rightmost Υb bits [64]. Conse-

quently, for h(r1) = h(r2) to be true, for all j ∈
Z0 ···α, h1(r1[j]) and h1(r2[j]) must have the same

sequence of bits except for the rightmost Υ , which

means that h(r1[j]) and h(r2[j]).

S4. As a consequence of statements S2 and S3, the fol-
lowing property holds:

pr==

(
r1, r2, x

)
=

x∑
a=0

pr==

(
r1[0]· · ·r1[α−1], r2[0]· · ·r2[α−1], x−a

)
×

pr==

(
r1[α], r2[α], a

)
× pra

where pra ∈ {pr0, . . . ,prx} denotes a constant

that represents the probability that δM (r1[α], r2[α]) =

a among all possible configurations with δM (r1, r2) =

x.

S5. Statement S2 holds also for r3 and r4; therefore,

since δM (r3, r4) = λb− x,

if δM (r3[α], r4[α]) = a′, then

δM (r3[0]· · ·r3[α−1], r4[0] · · · r4[α−1]) = λb−x−a′

where ri[0] · · · ri[α−1] denotes the concatenation of

the corresponding bit vectors.

S6. Since there are λb−λ bits in r3[0]· · ·r3[α−1] and

r4[0]· · ·r4[α−1], the edit distance between these two

Building Self-Clustering RDF Databases Using Tunable-LSH 11

bit vectors can be at most λb−λ, thus,

δM (r3[0]· · ·r3[α−1], r4[0] · · · r4[α−1]) ≤ λb−λ.

Therefore, (λ−x) ≤ a′ ≤ λ must hold.

S7. Consequently, similar to S4, the following state-

ment must be true:

pr==

(
r3, r4, λb−x

)
=

λ∑
a′=λ−x

pr==

(
r3[0]· · ·r3[α−1], r4[0] · · · r4[α−1], λb−x−a′

)
× pr==

(
r3[α], r4[α], a′

)
× pra′

where pra′ ∈ {prλ−x, . . . ,prλ} denotes a constant

that represents the probability that δM (r3[α], r4[α]) =

a′ among all possible configurations with δM (r3, r4) =

λb− x.

S8. The possible configurations in the summations in

S4 and S7 for pr==

(
r1, r2, x

)
and pr==

(
r3, r4, λb−

x
)

can be paired up such that the product on the

left hand side is always greater than or equal to the

product on the right hand side, which means:

pr==

(
r1, r2, x

)
≥ pr==

(
r3, r4, λb− x

)
.

Thus, Lemma 6 holds also for b = α+ 1.

Theorem 3 Let δM (ri, rj) denote the Manhattan dis-

tance between any two record utilization vectors ri and

rj with size λb, and let m denote the number of right-

most bits that are dropped by h2, which is utilized in h

(cf., Definition 1). For any δM ≤ λ
2 , h is (δM , λb −

δM , pr1, pr2)-sensitive for some pr1 ≥ pr2 where h =

h2 ◦ h1 (cf., Definition 1), λ is an even and positive

number, b ∈ Z1 ···∞ denotes the number of entries in

the record utilization counters produced by h1, m = Υb,

and Υ ∈ Z1 ···λ−1.

Proof. The proof steps are as follows:

S1. pr1 corresponds to the posterior probability that

h(ri) = h(rj) for any two record utilization vec-

tors ri and rj with size λb such that δM (ri, rj) ≤
δM [73].

S2. pr2 corresponds to the posterior probability that

h(ri) 6= h(rj) for any two record utilization vec-

tors ri and rj with size λb such that δM (ri, rj) ≥
λb− δM [73].

S3. Note that

pr1 =

δM∑
x=0

pr==

(
ri, rj , x

) (
λb

λb−x
)

2λb

pr2 =

δM∑
x=0

pr==

(
ri, rj , λb− x

) (
λb
x

)
2λb

.

S4. For all x ∈ Z0 ··· δM
(
λb

λb−x
)

=
(
λb
x

)
.

S5. Therefore, for all x ∈ Z0 ··· δM(
λb

λb−x
)

2λb
=

(
λb
x

)
2λb

.

S6. According to Lemma 1,

pr==

(
ri, rj , x

)
≥ pr==

(
ri, rj , λb− x

)
.

Consequently, pr1 ≥ pr2.

Theorem 3 suggests that h is a function with locality-

sensitive properties, and can be used to approximate

the clustering problem. However, it must be noted that

the sensitivity analysis of h is conservative. In other

words, it is believed that stronger statements can be

made about h, in particular, due to the empirical obser-

vation that pr==

(
ri, rj , x

)
is a monotonically decreas-

ing function. Proving this conjecture is left as future

work.

5.2 Achieving and Maintaining Tighter Bounds on

Tunable-LSH

Next, we demonstrate how it is possible to reduce the

approximation error of h1. We first define load factor

of a record utilization counter entry.

Definition 2 (Load Factor) Given a record utiliza-

tion counter c = (c[0], . . . , c[b−1]) with size b, the load

factor of the ith entry is c[i].

Theorem 4 (Effects of Grouping) Given two record

utilization vectors r1 and r2 with size k, let c1 and c2
denote two record utilization counters with size b = 1

such that c1 = h1(r1) and c2 = h1(r2). Then,

Pr

(
δM (c1, c2)

= δM (r1, r2)

∣∣∣∣∣ c1[0] = l1 and

c2[0] = l2

)
= γ (8)

where

γ =

(
lmax

lmin

)(
k
lmax

)(
k
lmax

)(
k
lmin

) (9)

and

lmax = max(l1, l2)

lmin = min(l1, l2).

Proof. Let rmax denote the record utilization vector

with the most number of 1-bits among r1 and r2, and let

rmin denote the vector with the least number of 1-bits.

When b = 1, δM (c1, c2) = δ(r1, r2) holds if and only if

the number of 1-bits on which r1 and r2 are aligned is

lmin because in that case, both δM (c1, c2) and δ(r1, r2)

12 Güneş Aluç, M. Tamer Özsu, Khuzaima Daudjee

 0
 3

 6
 9

 12Load Factor (c1)
 0

 3

 6

 9

 12

Load Factor (c2)

 0

 0.5

 1

Pr

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

Fig. 3: Pr(δM 6= δ) for k = 12, b = 1 and across varying

load factors

are equal to lmax− lmin (note that δM (c1, c2) is always

equal to lmax − lmin). Assuming that the positions of

1-bits in rmax are fixed, there are
(
lmax

lmin

)
possible ways

of arranging the 1-bits of rmin such that δ(r1, r2) =

lmax − lmin. Since the 1-bits of rmax can be arranged in(
k
lmax

)
different ways, there are

(
lmax

lmin

)(
k
lmax

)
combinations

such that δM (c1, c2) = δ(r1, r2). Note that in total, the

bits of r1 and r2 can be arranged in
(
k
lmax

)(
k
lmin

)
possible

ways; therefore, Eqns. 8 and 9 describe the posterior

probability that δM (c1, c2) = δ(r1, r2), given c1[0] = l1
and c2[0] = l2. �

According to Eqns. 8 and 9 in Thm. 4, the probabil-

ity that δM (c1, c2) is an approximation of δ(r1, r2), but

that it is not exactly equal to δ(r1, r2), is lower for load

factors that are close or equal to zero and likewise for

load factors that are close or equal to dkb e (cf., Fig. 3).

This property suggests that by carefully choosing f , it

is possible to achieve even tighter error bounds for h1.

For b ≥ 2, the probabilities for each group of bits need

to be multiplied, which was illustrated in the proof of

Lemma 1 earlier in Section 5.1. Therefore, the algorithm

for tuning f aims to make sure that the load factors are

either low or high for as many of the groups as possible.

Contrast the matrices in Fig 2b and Fig 2c, which

contain the same query access vectors, but the columns

are grouped in two different ways3: (i) in Fig. 2b, the

grouping is based on the original sequence of execution,

and (ii) in Fig. 2c, queries with similar access patterns

are grouped together. Fig. 2d and Fig. 2e represent the

corresponding record utilization counters for the record

utilization vectors in the matrices in Fig. 2b and Fig. 2c,

respectively. Take r3 and r5, for instance. Their actual

Hamming distance with respect to q0–q7 is 8. Now con-

sider the transformed matrices. According to Fig. 2d,

the Hamming distance lower bound is 0, whereas ac-

cording to Fig. 2e, it is 8. Clearly, the bounds in the

second representation are closer to the original. The

reason is as follows. Even though r3 and r5 differ on

all the bits for q0–q7, when the bits are grouped as in

3 Groups are separated by vertical dashed lines.

Fig. 2b, the counts alone cannot distinguish the two bit

vectors. In contrast, if the counts are computed based

on the grouping in Fig. 2c (which clearly places the 1-

bits in separate groups), the counts indicate that the

two bit vectors are indeed different.

The observations above are inline with Thm. 4. Con-

sequently, we make the following optimization. Instead

of randomly choosing a hash function, we construct f

such that it maps queries with similar access vectors

(i.e., columns in the matrix) to the same hash value.

This way, it is possible to obtain record utilization coun-

ters with entries that have either very high or very low

load factors (cf., Def. 1), thus decreasing the probability

of error (cf., Thm. 4).

We develop a technique that efficiently determines

groups of queries with similar access patterns and adap-

tively maintains these groups as the access patterns

change. Our approach consists of two parts: (i) to ap-

proximate the similarity between any two queries, we

rely on the Min-Hash scheme [25], and (ii) to adap-

tively group similar queries, we develop an incremen-

tal version of a multidimensional scaling (MDS) algo-

rithm [62].

Min-Hash offers a quick and efficient way of ap-

proximating the similarity, (more specifically, the Jac-

card similarity [54]), between two sets of integers. There-

fore, to use it, the query access vectors in our conceptu-

alization need to be translated into a set of positional

identifiers that correspond to the records for which the

bits in the vector are set to 1.4 For example, accord-

ing to Fig. 2a, q1 should be represented with the set

{0, 5, 6} because r0, r5 and r6 are the only records for

which the bits are set to 1. Note that we do not need

to store the original query access vectors at all. In fact,

after the access patterns over a query are determined,

we compute and store only its Min-Hash value. This

is important for keeping the memory overhead of our

algorithm low.

Queries with similar access patterns are grouped to-

gether using a multidimensional scaling (MDS) algo-

rithm [58] that was originally developed for data visu-

alization, and has recently been used for clustering [23].

Given a set of points and a distance function, MDS

assigns coordinates to points such that their original

distances are preserved as much as possible. In one ef-

ficient implementation [62], each point is initially as-

signed a random set of coordinates, but these coordi-

nates are adjusted iteratively based on a spring-force

analogy. That is, it is assumed that points exert a force

on each other that is proportional to the difference be-

tween their actual and observed distances, where the

4 In practice, this translation is not required because the
system maintains positional vectors instead.

Building Self-Clustering RDF Databases Using Tunable-LSH 13

Algorithm 4 Reconfigure-F

Require:

qt: query access vector produced at time t

Ensure:

Coordinates of MDS points are updated, which are

used in determining the outcome of f

1: procedure Reconfigure-F(qt)

2: pos← (begin + size) % k

3: S[pos].clear()

4: N [pos].clear()

5: X[pos]← −0.5 + rand() / rand-max

6: V [pos]← 0

7: H[pos]←Min-Hash(qt)

8: if size < k then

9: size += 1

10: else

11: begin = (begin + 1) % k

12: end if

13: for i← 0, i < size, i++ do

14: x← (begin + i) % k

15: Update-S-and-N(x)

16: Update-Velocity(x)

17: end for

18: for i← 0, i < size, i++ do

19: x← (begin + i) % k

20: Update-Coordinates(x)

21: end for

22: end procedure

latter refers to the distance that is computed from the

algorithm-assigned coordinates. These forces are used

for computing the current velocity (V in Table 2) and

the approximated coordinates of a point (X in Table 2).

The intuition is that, after successive iterations, the sys-

tem will reach equilibrium, at which point the approxi-

mated coordinates can be reported. Since computing all

pairwise distances can be prohibitively expensive, the

algorithm relies on a combination of sampling (S[] in

Table 2) and maintaining a list of each point’s nearest

neighbours (N [] in Table 2)—only these distances are

used in computing the net force acting on a point. Then,

the nearest neighbours are updated in each iteration by

removing the most distant neighbour of a point and re-

placing it with a new point from the random sample if

the distance between the point and the random sample

is smaller than the distance between the point and its

most distant neighbour.

There are multiple reasons for our choice of MDS

over other clustering approaches such as single-linkage

clustering or k-means [55] (even though Tunable-LSH

is agnostic to this choice). First of all, MDS is less

sensitive to the shape of the underlying clusters (e.g.,

as opposed to single-linkage) and the initial choice of

clusters (e.g., as opposed to k-means) largely due to

the reliance on random sampling (i.e., S[]). Second, it

allows the trade-off between computational overhead

vs. quality of clustering to be tuned more precisely by

controlling multiple parameters such as (i) the size of

vectors S[] and N [] (independently), (ii) the number of

iterations, and (iii) the number of output dimensions.

Nevertheless, this algorithm cannot be used directly for

our purposes because it is not incremental. Therefore,

we propose a revised MDS algorithm that incorporates

the following modifications:

1. In our case, each point in the algorithm represents a

query access vector. However, since we are not inter-

ested in visualizing these points, but rather cluster-

ing them, we configure the algorithm to place these

points along a single dimension. Then, by dividing

the coordinate space into consecutive regions, we are

able to determine similar query access vectors.

2. Instead of computing the coordinates of all of the

points at once, our version makes incremental ad-

justments to the coordinates every time reconfigu-

ration is needed.

The revised algorithm is given in Algorithm 4. First,

the algorithm decides which MDS point to assign to the

new query access vector qt (line 2). It clears the array

and the heap data structures containing, respectively,

(i) the randomly sampled, and (ii) the neighbouring set

of points (lines 3–4). Furthermore, it assigns a random

coordinate to the point within the interval [−0.5, 0.5]

(line 5), and resets its velocity to 0 (line 6). Next, it

computes the Min-Hash value of qt and stores it in
H[pos] (line 7). Then, it makes two passes over all the

points in the system (lines 13–21), while first updating

their sample and neighbouring lists (line 15), computing

the net forces acting on them based on the Min-Hash

distances and updating their velocities (line 16); and

then updating their coordinates (line 20).

The procedures used in the last part are imple-

mented in a similar way as the original algorithm [62];

that is, in line 15, the sampled points are updated,

in line 16, the velocities assigned to the MDS points

are updated, and in line 20, the coordinates of the

MDS points are updated based on these updated ve-

locities. However, our implementation of the Update-

Velocity procedure (line 16) is slightly different than

the original. In particular, in updating the velocities,

we use a decay function so that the algorithm forgets

“old” forces that might have originated from the ele-

ments in S[] and N [] that have been assigned to new

query access vectors in the meantime. Note that unless

one keeps track of the history of all the forces that have

14 Güneş Aluç, M. Tamer Özsu, Khuzaima Daudjee

Algorithm 5 Hash Function f

Require:

t: sequence number of a query access vector

Ensure:

f(t) is computed and returned

1: procedure f(t)

2: pos ← t% k

3: (lo,hi)← group-bounds(X[pos])

4: coid← centroid(lo,hi)

5: return hash(coid) % b

6: end procedure

acted on every point in the system, there is no other

way of “undoing” or “forgetting” these “old” forces.

Given the sequence number of a query access vec-

tor (t), the outcome of the hash function f is deter-

mined based on the coordinates of the MDS point that

had previously been assigned to the query access vec-

tor by the Reconfigure procedure. To this end, the k

points are sorted based on their coordinates, and the

coordinate space is divided into b groups containing

points with consecutive coordinates such that there are

at most dkb e points in each group. Then, one option is to

use the group identifier, which is a number in Z0 ··· b−1,

as the outcome of f , but there is a problem with this

näıve implementation. Specifically, we observed that

even though the relative coordinates of MDS points

within the “same” group may not change significantly

across successive calls to the Reconfigure procedure,

points within a group, as a whole, may shift. This is an

inherent (and in fact, a desirable) property of the incre-

mental algorithm. However, the problem is that there

may be far too many cases where the group identifier of

a point changes just because the absolute coordinates of

the group have changed, even though the point contin-

ues to be part of the “same” group. To solve this prob-

lem, we rely on a method of computing the centroid

within a group by taking the Min-Hash of the identi-

fiers of points within that group such that these cen-

troids rarely change across successive iterations. Then,

we rely on the identifier of the centroid, as opposed to

its coordinates, to compute the group number, hence,

the outcome of f . The pseudocode of this procedure is

given in Algorithm 5.

We make one last observation. Internally, Min-Hash

uses multiple hash functions to approximate the degree

to which two sets are similar [25]. It is also known that

increasing the number of internal hash functions used

(within Min-Hash) should increase the overall accu-

racy of the Min-Hash scheme. However, as unintuitive

as it may seem, in our approach, we use only a single

hash function within Min-Hash, yet, we are still able

0 1 2 3 4 5

t = 0 � � � ∅
t = dk/3e � � � ∅
t = d2k/3e � � � ∅
t = k ∅ � � �
t = d4k/3e � ∅ � �
t = d5k/3e � � ∅ �

Fig. 4: Assuming b = 3, � indicates the allowed loca-

tions at each time tick, and ∅ indicates the counter to

be reset.

to achieve sufficiently high accuracy. The reason is as

follows. Recall that Algorithm 4 relies on multiple pair-

wise distances to position every point. Consequently,

even though individual pairwise distances may be inac-

curate (because we are just using a single hash function

within Min-Hash), collectively the errors are cancelled

out, and points can be positioned accurately on the

MDS coordinate space.

5.3 Resetting Old Entries in Record Utilization

Counters

Once the group identifier is computed (cf., Algorithm 5),

it should be straightforward to update the record uti-

lization counters (cf., line 8 in Algorithm 2). However,

unless we maintain the original query access vectors, we

have no way of knowing which counters to decrement

when a query access vector becomes stale, as maintain-

ing these original query access vectors is prohibitively

expensive. Therefore, we develop a more efficient scheme

in which old values can also be removed from the record

utilization counters.

Instead of maintaining b entries in every record uti-

lization counter, we maintain twice as many entries

(2b). Then, whenever the Tune procedure is called, in-

stead of directly using the outcome of f(t) to locate the

counters to be incremented, we map f(t) to a location

within an “allowed” region of consecutive entries in the

record utilization counter (cf., line 8 in Algorithm 2).

At every dkb e
th iteration, this allowed region is shifted

by one to the right, wrapping back to the beginning

if necessary. Consider Fig. 4. Assuming that b = 3 and

that at time t = 0 the allowed region spans entries from

0 to (b−1), at time t = dkb e, the region will span entries

from 1 to b; at time t = k, the region will span entries

from b to 2b − 1; and at time t = d 4kb e, the region will

span entries 0 and those from b+ 1 to 2b− 1.

Since f(t) produces a value between 0 and b−1 (in-

clusive), whereas the entries are numbered from 0 to

2b− 1 (inclusive), the Reconfigure procedure in Al-

Building Self-Clustering RDF Databases Using Tunable-LSH 15

gorithm 2 uses f(t) as follows. If the outcome of f(t)

directly corresponds to a location in the allowed region,

then it is used. Otherwise, the output is incremented by

b (cf., line 8 in Algorithm 2). Whenever the allowed re-

gion is shifted to the right, it may land on an already

incremented entry. If that is the case, that entry is re-

set, thereby allowing “old” values to be forgotten (cf.,

line 11 in Algorithm 2). These are shown by ∅ in Fig. 4.

This scheme guarantees any query access pattern that

is less than k steps old is remembered, while any query

access pattern that is more than 2k old is forgotten.

5.4 Deletions and Insertions

Currently, Tunable-LSH does not support the sce-

nario where more triples are added to the database

(e.g., the streaming RDF case or simply insertions).

However, extending Tunable-LSH to support this use

case is possible. First, every new insertion can be treated

as a new record utilization vector with a corresponding

record utilization counter of all zeros. Such records are

initially unclustered (or they go into a designated clus-

ter). As queries are executed and query access vectors

start including the newly added records, the counters

can be updated (as is done for any other record), which

would result in the final hash values to be updated as

well. The one challenge is that Min-Hash, which is

an optimization used by Tunable-LSH to cluster the

query access vectors, will become less sensitive as query

access vectors grow in size. The loss in optimization

can be compensated by periodically adjusting the Min-

Hash function, e.g., simply by increasing the number of

hash functions that are internally used for constructing

Min-Hash. With respect to deletion of records, there

are two options: either rely on the inherent timeout

mechanism of Tunable-LSH to gradually reset old en-

tries in record utilization counters or explicitly set the

counters to zero and move the records to the designated

clusters. We treat these ideas as future work.

6 Experimental Evaluation

In this section, we evaluate Tunable-LSH in three sets

of experiments. First, we evaluate it within chameleon-

db, a prototype RDF data management system. Sec-

ond, we evaluate it within a hashtable implementation.

Third, we evaluate Tunable-LSH in isolation, to un-

derstand how it behaves under different types of sce-

narios.

6.1 Effectiveness of Tunable-LSH

In our experiments, we study the effectiveness of Tuna-

ble-LSH by implementing it in a prototype RDF data

management system called chameleon-db. We chose cha-

meleon-db as the prototype engine because it does not

have a fixed physical layout and it allows us to experi-

ment with different types of low-level physical layouts.

While the details of chameleon-db have been discussed

elsewhere [10, 14, 15], for completeness, we provide a

summary next.

chameleon-db supports the Basic Graph Pattern sub-

fragment of SPARQL [45] and currently does not sup-

port updates. In chameleon-db, RDF is conceptually

represented as a graph, and the graph is partitioned

into very small chunks called group-by-query (GbyQ)

clusters. While there is no restriction on the size of a

GbyQ cluster, chameleon-db operates with very small

clusters, each containing at most tens of edges. On disk,

each GbyQ cluster is serialized as a sequence of RDF

triples that make up that cluster. When a cluster is

brought into the buffer pool, the buffer manager auto-

matically converts the serialized representation into an

adjacency list representation in memory. Unlike conven-

tional systems, chameleon-db relies on partially-built,

workload-adaptive indexes similar to database crack-

ing [51, 52]. This adaptive indexing allows the under-

lying GbyQ clustering to be updated efficiently. Thus,

the storage advisor of chameleon-db triggers periodi-

cally to compute a new clustering based on the most

recently executed queries in the workload and updates

the underlying physical representation. In our exper-

iments, we manually trigger the tuning advisor. The

storage advisor of chameleon-db computes the RDF

triples (or equivalently, the vertices and edges) to be

clustered together [into GbyQ clusters] using either the

conventional clustering algorithm discussed in [15] or

Tunable-LSH. The query access vectors, which con-

stitute the input to these algorithms, are constructed

from the query results alone.

The following experiments are performed on a com-

modity machine with Intel R© CoreTM i5-8400 2.80 GHz

CPU (x86 64), 4×16 GB Corsair Vengeance 2400 MHz

RAM, and a Seagate ST2000DM006-2DM1 2 TB HDD

with more than 500 GB of free space. The operating

system is Ubuntu 16.04.5 LTS.

In these first set of experiments, we evaluate Tuna-

ble-LSH within chameleon-db. We use the Waterloo

SPARQL Diversity Test Suite (WatDiv) [12] because

WatDiv can generate datasets with skew and queries

that are more diverse than existing benchmarks (it has

already been demonstrated that there could be up to

three orders of magnitude difference between the fastest

16 Güneş Aluç, M. Tamer Özsu, Khuzaima Daudjee

and slowest system executing WatDiv’s stress testing

workloads – even for simple queries) [12]. This includes

queries that are very selective as well as those that are

not selective at all (i.e., those returning a large chunk

of triples in the database), queries where the triple pat-

terns that make up the query are not selective but the

query itself is very selective, queries that are composed

of only a few triple patterns as well as those that are

composed of many triple patterns and so on.

We use the WatDiv data generator to create a dataset

with 1 billion RDF triples (abbreviated as WatDiv 1B).

Then, using the WatDiv query template generator, 70

query templates are generated where the largest query

consists of 10 triple patterns. Of these 70 templates,

51 are simple (i.e., with less than or equal to 4 triple

patterns), 13 are star-shaped (i.e., with greater than 4

triple patterns that are incident on the same vertex),

and 6 are either linear-shaped or complex.

In the first experiment, we instantiate each query

template with 500 queries and execute the first 100

queries in chameleon-db using its baseline, triple-based

partitioning (abbreviated Triple), and then tune the

system with the conventional clustering algorithm de-

scribed earlier (abbreviated Clustered). We repeat this

same experiment where chameleon-db is tuned instead

with Tunable-LSH (abbreviated TLSH).

MEAN (ms) Triple TLSH Clustered

Simple 1,283.49 57.70 24.68

Star 648.37 484.86 1.60

Linear/Complex 3,525.66 660.19 790.96

ALL 1,349.52 187.88 85.33

Table 5: Comparison of Tunable-LSH to conventional

clustering in chameleon-db on WatDiv 1B

Table 5 reports the average query execution times

for each of the three approaches mentioned above, ag-

gregated across the different query types in the work-

load (i.e., Simple, Star, Linear/Complex). For the Clus-

tered and TLSH approaches, the time to compute the

new clustering of triples as well as physically updating

the layout are included in the reported averages.

There are reasons why query execution in chameleon-

db is slower with Tunable-LSH than the conventional

approach: Tunable-LSH is an approximate algorithm

by design; therefore, the clusters generated by Tuna-

ble-LSH are not as accurate as the ones that are gen-

erated by the conventional approach, which is the ex-

pected behavior. Second, we note that Tunable-LSH

and the conventional clustering algorithm generate large

clusters for star-shaped queries because the query re-

sults share lots of common vertices and edges, but Tu-

nable-LSH breaks down the clusters into page-sized

chunks (4KB in this case) whereas the conventional al-

gorithm favors larger clusters that are not broken down.

The former layout leads to more frequent query decom-

position, which chameleon-db is not designed to han-

dle efficiently [15], and explains the larger gap for star-

shaped queries. Improving chameleon-db’s query opti-

mizer is beyond the scope of this paper.

While the query execution times with Tunable-

LSH are slightly slower, in this experiment, we have

observed that the computational overhead of conven-

tional clustering was an order of magnitude larger than

Tunable-LSH (1070 vs 26 milliseconds). This gap in-

creases even more in subsequent experiments, where

it is evident that the conventional approach does not

scale well to query mixes and/or changing workloads

(i.e., with respect to memory consumption and compu-

tational overhead).

We repeat the first experiment also on a crawl of

the DBpedia dataset containing 50 million triples [63].

Since chameleon-db supports only basic graph patterns

(BGPs), the query logs provided by the benchmark

were utilized to extract 14 BGP templates5. Note that

most queries in the DBpedia query logs are repetitive

and a large portion of the queries consist of only a

single or few triple patterns [12]. To avoid bias, for

queries having 3–10 triple patterns, the most frequent

templates were selected and then each template was in-

stantiated with 25 queries, making sure that there is

at least one instantiation (per template) that returns a

non-empty result.

Our evaluations on the DBpedia dataset are consis-

tent with those on WatDiv (Table 6). For Q6, analysis of

the query logs points to problems with chameleon-db’s

query optimizer as opposed to Tunable-LSH (as is

the case for the expensive WatDiv queries). In contrast

to the WatDiv experiment, Tunable-LSH in the DB-

pedia experiment is able to achieve a clustering quality

that is almost as good as the conventional algorithm,

which is reflected in the query execution times. Lastly,

as before, Tunable-LSH is able to complete cluster-

ing in milliseconds on average, whereas the conventional

clustering algorithm takes more than 10 minutes.

In the second experiment, we compare chameleon-

db tuned with Tunable-LSH against the latest ver-

sions of four modern, open-source RDF data manage-

ment systems: QLever (June 6, 2018) [19], gStore v0.6.0

(April 25, 2018) [77,79], gh-rdf3x (August 16, 2013) [66],

and TripleBit (September 19, 2014) [76]. QLever is an

RDF engine that supports SPARQL and text search;

5 https://cs.uwaterloo.ca/~galuc/files/dbpedia-test-

queries.tar.gz

https://cs.uwaterloo.ca/~galuc/files/dbpedia-test-queries.tar.gz
https://cs.uwaterloo.ca/~galuc/files/dbpedia-test-queries.tar.gz

Building Self-Clustering RDF Databases Using Tunable-LSH 17

MEAN (ms) Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14

CDB [Clustered] 24.61 6.09 2.96 3.37 5.93 NA 438.39 7.29 NA 5.63 6.84 6.81 16.08 7.46
CDB [TLSH] 27.63 2.64 2.89 3.15 6.41 95957.38 761.38 6.89 41.84 5.63 6.87 6.76 22.34 7.46

Table 6: Comparison of Tunable-LSH to conventional clustering in chameleon-db on DBpedia 50M

Fig. 5: Performance evaluation of chameleon-db using

Tunable-LSH

gStore is a graph-based RDF engine; gh-rdf3x is a more

recent and optimized version of the original RDF-3x

engine; and TripleBit is an RDF engine that relies on

bitmaps for efficient pruning and processing of triples.

In this experiment, we use the same workload used in

the first experiment and tune chameleon-db indepen-

dently for each query template. Since chameleon-db is

a non-distributed system, for a fair comparison, we also

setup the other systems to work on a single-node. Fur-

thermore, we configure these systems so that they make

as much use of the available RAM as possible.

Fig. 5 illustrates that using Tunable-LSH, chame-

leon-db can be tuned to perform well in comparison to

other RDF data management systems across a wide

range of queries. In particular, for about one third of

the query templates, TLSH is two orders of magnitude

faster than the average of other systems for the same

queries (i.e., the left-hand side of Fig. 5); for about one

third of the query templates, TLSH is an order of mag-

nitude faster (i.e., the middle part of Fig. 5); and in the

worst case, TLSH achieves performance comparable to

other systems (i.e., the right-hand side of Fig. 5).

Table 7 reports the average query execution times

of all systems across the 70 query templates (70 × 500

queries). When executing these workloads, QLever un-

expectedly aborted during almost half of the queries.

Consequently, while we report QLever’s average over

the remaining queries, we caution the reader to not read

too much into values for QLever. Excluding QLever,

chameleon-db tuned with Tunable-LSH is the second

fastest system.

In the third experiment, we demonstrate that Tu-

nable-LSH can be used to efficiently tune for work-

loads that consist of instantiations of multiple query

templates, which is more realistic. For this experiment,

we use the WatDiv stress testing tools to randomly

generate workloads consisting of 5, 10 and 15 query

templates, respectively, where each workload consists

of approximately 10,000 queries in total. In these work-

loads, approximately 2-in-5 queries are simple, 2-in-5

are star-shaped and 1-in-5 are linear or complex. The

underlying dataset is the same as the one used in the

previous experiments (i.e., WatDiv 1B). For each work-

load, we let chameleon-db execute the first 25–35 per-

cent of the workload using its baseline partitioning and

then trigger the tuning advisor at a random point in

time to dynamically adapt to the workload using Tu-

nable-LSH. The same workloads are also executed on

the two fastest systems reported in the previous exper-

iment, namely, gh-rdf3x and TripleBit.

Fig. 6a shows the total elapsed time (in seconds)

for all three systems as each system executes the work-

load that consists of the 10 query template mix. In this

workload, after executing the 2912th query, chameleon-

db’s tuning advisor kicks in, and it starts computing

the new partitioning using Tunable-LSH (which takes

only 84.4 milliseconds), and the subsequent queries pay

the price for physical re-partitioning. As more and more

queries are executed and the partitioning gets better,

the system speeds up to the extent that it becomes

much faster than the two other systems. In fact, just

before the execution of the 6000th query, chameleon-

db breaks even, and from that point on, it becomes the

fastest system (with respect to the end-to-end workload

execution time).

Fig. 6b breaks down the total elapsed time for chame-

leon-db (for the same workload in Fig. 6a) into quantiles

of 100 queries and shows the geometric mean time to ex-

ecute a query within each quantile (note the log-scale).

We make multiple observations:

– For quantiles 1–30 during which chameleon-db uses

the baseline partitioning, queries gradually become

faster. This is due to the adaptive indexing prop-

erty of chameleon-db: every time chameleon-db en-

counters a query with a different structure, it cracks

down its indexes in an adaptive fashion similar to

database cracking [51,52]. In other words, chameleon-

18 Güneş Aluç, M. Tamer Özsu, Khuzaima Daudjee

MEAN (ms) QLever(*) gStore gh-rdf3x TripleBit CDB [TLSH]

ALL 34.08 844.50 280.09 129.11 187.88

Table 7: Comparison of chameleon-db using Tunable-LSH against modern RDF engines

(a) (b)

Fig. 6: Adaptivity of chameleon-db on workloads at 10-template query mix [Triples to TLSH]

(a) (b)

Fig. 7: Adaptivity of chameleon-db on changing workloads at 10-template query mix [TLSH to TLSH]

db pays the price of indexing as queries are exe-

cuted.

– Between the 30th and 60th quantiles, query execu-

tion becomes slower to begin with but then gradu-

ally improves again. There are two reasons for this

behavior: First, physical re-partitioning incurs I/O,

whose price is paid by the queries. Second, as new

partitions are created and old partitions are removed,

chameleon-db needs to adaptively update its indexes,

which also adds overhead.

– After the 60th quantile, the partitioning is opti-

mized and the indexes have fully adapted to the

query structures in the workload. From this point

on, queries are fast with occasional fluctuations due

to the inherent randomness in the workload.

Apart from slightly different break-even points, we

verified a very similar pattern with 5 and 15 template

query mixes so we did not include these charts in the

paper.

In the fourth experiment, we show that Tunable-

LSH can be used to efficiently tune chameleon-db for

changing workloads. In this experiment, the WatDiv

stress testing tools have been utilized to randomly gen-

erate six sets of seeds consisting of 5, 5, 10, 10, 15 and 15

query templates, respectively. Using each set of seeds,

6 different workloads have been instantiated in total,

where each workload contains approximately 6 thou-

sand queries (sometimes slightly less and sometimes

slightly more). In these workloads, approximately 2-in-5

queries are simple, 2-in-5 are star-shaped and 1-in-5 are

Building Self-Clustering RDF Databases Using Tunable-LSH 19

linear or complex. These workloads have been classified

into three groups based on the number of query tem-

plates from which each workload was generated (e.g.,

5 template workloads, 10 template workloads, etc.). In

the experiment, for each workload group, we let chame-

leon-db execute the first workload using a partitioning

that was already computed for the workload using Tu-

nable-LSH (stage-I), switch to the second workload

and let the system execute part of the second workload

using a sub-optimal partitioning (stage-II), and finally

tune the system again for the most recent workload

using Tunable-LSH and continue executing the re-

mainder of the second workload (stage-III). The same

workloads are also executed on the two fastest systems

reported in the previous experiments, namely, gh-rdf3x

and TripleBit.

Fig 7a shows the total elapsed time (in seconds)

for all three systems for the 10 query template work-

loads. Fig 7b breaks down the total elapsed time for

chameleon-db into quantiles of 100 queries. For the work-

load portrayed in these figures, stage-I corresponds to

queries 1–8064, stage-II to queries 8065–9211 and stage-

III to the remaining 9212–12679.

Based on these results, the following observations

can be made: First, for the same reasons discussed in

the third experiment, query execution times gradually

improve during stage-I. Second, during stage-II, we get

sub-optimal query performance, which is expected. Third,

at the beginning of stage-III, we get even worse perfor-

mance (due to physical re-clustering and re-learning of

the indexes). Last, for the last two thirds of stage-III

(once the system has fully adapted), the queries are

executed very efficiently.

We tried repeating the third and fourth experiments

using the conventional clustering algorithm; however,

either we ran out of memory or the algorithm took more

than 10 minutes to execute (in comparison to an aver-

age of 276ms for Tunable-LSH) and thus, we had to

abort the process. Recall that for the first and second

experiments, we were able to successfully go through

the tuning process but in that case the workloads con-

sisted of single query templates each. This is due to the

fact that compared against a conventional clustering al-

gorithm, which can be quadratic in computational com-

plexity, Tunable-LSH, by design, trades off accuracy

for execution time. This finding strengthens the moti-

vation to use Tunable-LSH albeit the slightly worse

query execution times reported in the first two experi-

ments.

In summary, Tunable-LSH

– can be used to tune the physical design of an RDF

data management system to yield query execution

times that are comparable to a conventional clus-

tering algorithm;

– has a significantly lower computational overhead than

conventional clustering, and thus, is a better choice

for online tuning;

– can be utilized to tune across a diverse selection

of workloads so that it performs comparably with

modern open-source RDF data management sys-

tems; and

– can be used effectively for tuning for workloads with

mixed query types as well as changing workloads.

6.2 Self-Clustering Hashtable

The second experiment evaluates an in-memory hash-

table that we developed that uses Tunable-LSH to

dynamically cluster records in the hashtable. Hashta-

bles are commonly used in RDF data management sys-

tems. For example, the dictionary in an RDF data man-

agement system, which maps integer identifiers to URIs

or literals (and vice versa), is often implemented as a

hashtable [4,33,75]. Secondary indexes can also be im-

plemented as hashtables, whereby the hashtable acts

as a key-value store and maps tuple identifiers to the

content of the tuples. In fact, in chameleon-db, all the

indexes are secondary (dense) indexes because instead

of relying on any sort order inherent in the data, RDF

triples are ordered purely based on the workload.

The hashtable interface is very similar to that of a

standard one except that users can optionally mark the

beginning and end of queries (i.e., in case they want

the records obtained through a sequence of lookups to

be clustered together). This information is used to dy-

namically cluster records such that those that are co-

accessed across similar sets of queries also become phys-

ically co-located. All of the clustering and re-clustering

is transparent to the user, hence, the name, self-clus-

tering hashtable.

The self-clustering hashtable has the following ad-

vantages and disadvantages: compared to a standard

hashtable that tries to avoid hash-collisions, it strives

to co-locate records that are accessed together. If the

workloads favour a scenario in which many records are

frequently accessed together, then we can expect the

self-clustering hashtable to have improved fetch times

due to better CPU cache utilization, prefetching, etc. [7].

On the other hand, these optimizations come with three

types of overhead. First, every time a query is executed,

Tunable-LSH needs to be updated (cf., Algorithms 2

and 4). Second, compared to a standard hashtable in

which the physical address of a record is determined

solely using the underlying hash function (which is de-

terministic throughout the entire workload), in our case

20 Güneş Aluç, M. Tamer Özsu, Khuzaima Daudjee

 0

 1000

 2000

 3000

125 250 500 1000 2000

M
ea

n
Q

ue
ry

 E
xe

cu
tio

n
T

im
e

(m
ic

ro
se

co
nd

s)

Records per Query

hashtable (self-clustering)
std::unordered-map

stx::btree
hashtable (static)

std::map

(a) Random Access (All Data Struc-
tures) – Control load per query

 0

 200

 400

 600

 800

125 250 500 1000 2000

M
ea

n
Q

ue
ry

 E
xe

cu
tio

n
T

im
e

(m
ic

ro
se

co
nd

s)

Records per Query

hashtable (self-clustering) tune
hashtable (self-clustering) fetch

std::unordered-map

(b) Random Access – Control load per
query

 0

 200

 400

 600

 800

312.5K 625K 1.25M 2.5M 5M

M
ea

n
Q

ue
ry

 E
xe

cu
tio

n
T

im
e

(m
ic

ro
se

co
nd

s)

Record Count

hashtable (self-clustering) tune
hashtable (self-clustering) fetch

std::unordered-map

(c) Random Access – Control record
count, keep record size constant at 128
bytes

 0

 500

 1000

 1500

2 4 8 16

M
ea

n
Q

ue
ry

 E
xe

cu
tio

n
T

im
e

(m
ic

ro
se

co
nd

s)

100-Uniqueness

hashtable (self-clustering) tune
hashtable (self-clustering) fetch

std::unordered-map

(d) Random Access – Control workload
dynamism

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000

P
r(
δ

*
≤

 0
.3

 |
δ

 ≤
 0

.3
)

Records per Query

Bit Sampling
AdaptiveLSH (Unoptimized)

AdaptiveLSH

(e) Sensitivity analysis of Tunable-

LSH– Control load per query

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80

P
r(
δ

*
≤

 0
.3

 |
δ

 ≤
 0

.3
)

100-Uniqueness

Bit Sampling
Adaptive-LSH (Unoptimized)

Adaptive-LSH

(f) Sensitivity analysis of Tunable-

LSH– Control workload dynamism

Fig. 8: Experimental evaluation of Tunable-LSH in a self-clustering hashtable and the sensitivity analysis of

Tunable-LSH

the physical address of a record needs to be maintained

dynamically because the underlying hash function is

not deterministic (i.e., it is also changing dynamically

throughout the workload). Consequently, there is the

overhead of going to a lookup table and retrieving the

physical address of a record. Third, physically mov-

ing records around in the storage system takes time—

in fact, this is often an expensive operation. There-

fore, the objective of this set of experiments is twofold:

(i) to evaluate the circumstances under which the self-

clustering hashtable outperforms other popular data

structures, and (ii) to understand when the tuning over-

head may become a bottleneck. Consequently, we re-

port the end-to-end query execution times, and if neces-

sary, break it down into the time to (i) fetch the records,

and (ii) tune the data structures (which includes all

types of overhead listed above).

In our experiments, we compare the self-clustering

hashtable to popular implementations of three data struc-

tures. Specifically, we use: (i) std::unordered map [3],

which is the C++ standard library implementation of

a hashtable, (ii) std::map [2], which is the C++ stan-

dard library implementation of a red-black tree, and

(iii) stx::btree [22], which is an open source in-memory

B+ tree implementation. As a baseline, we also include

a static version of our hashtable, i.e., one that does not

rely on Tunable-LSH.

We consider two types of workloads: one in which

records are accessed sequentially (i.e., based on their

physical ordering in the storage system) and the other

in which records are accessed randomly. Each workload

consists of 3000 synthetically generated queries (where

each query consists of a collection of individual lookups

on the hashtable). For each data structure, we measure

the end-to-end workload execution time and compute

the mean time by dividing the total workload execution

time by the number of queries in the workload.

Queries in these workloads consist of changing query
access patterns, and in different experiments, we control

different parameters such as the number of records that

are accessed by queries on average, the rate at which the

query access patterns change in the workload, etc. We

repeat each experiment 20 times over workloads that

are randomly generated with the same characteristics

(e.g., average number of records accessed by each query,

how fast the workload changes, etc.) and report aver-

ages across these 20 runs. We do not report standard

errors as they are negligibly small.

For the sequential case, stx::btree and std::map

outperform the hashtables, which is expected because

once the first few records are fetched from main-memory,

the remaining ones can already be prefetched into the

CPU cache (due to the predictability of the sequential

access pattern). Therefore, for the remaining part, we

focus on the random access scenario, which can be a

bottleneck even in systems like RDF-3x [66] that have

clustered indexes over all permutations of attributes.

For a detailed explanation, we refer the reader to [13].

Building Self-Clustering RDF Databases Using Tunable-LSH 21

In this experiment, we control the number of records

that a query needs to access (on average), where each

record is 128 bytes. Fig. 8a compares all the data struc-

tures with respect to their end-to-end (mean) query ex-

ecution times. Three observations stand out: first, in the

random access case, the self-clustering hashtable as well

as the standard hashtable perform much better than the

other data structures, which is what would be expected.

This observation holds also for the subsequent experi-

ments, therefore, for presentation purposes, we do not

include these data structures in Fig. 8b–8d. Second, the

baseline static version of our hashtable (i.e., without

Tunable-LSH) performs much worse than the stan-

dard hashtable, even worse than a B+ tree. This sug-

gests that our implementation can be optimized fur-

ther, which might improve the performance of the self-

clustering hashtable as well (this is left as future work).

Third, as the number of records that a query needs to

access increases, the self-clustering hashtable outper-

forms all the other data structures, which verifies our

initial hypothesis.

For the same experiment above, Fig. 8b focuses on

the self-clustering hashtable versus the standard hash-

table, and illustrates why the performance improve-

ment is higher (for the self-clustering hashtable) for

workloads in which queries access more records. Note

that while the fetch time of the self-clustering hashtable

scales proportionally with respect to std::unordered-

map, the tune overhead is proportionally much lower

for workloads in which queries access more records.

This is because with increasing records per query count,

records can be re-located in batches across the pages in

main-memory as opposed to moving individual records

around.

Next, we keep the average number of records that

a query needs to access constant at 2000, but control

the number of records in the database. As in the pre-

vious experiment, each record is 128 bytes. As illus-

trated in Fig. 8c, increasing the number of records in

the database (i.e., scaling-up) favours the self-clustering

hashtable. The reason is that when there are only a few

records in the database, the records are likely clustered

to begin with. We repeat the same experiment, but this

time, by controlling the record size and keeping the

database size constant at 640 megabytes. Surprisingly,

the relative improvement with respect to the standard

hashtable remains more or less constant, which indi-

cates that the improvement is largely dominated by the

size of the database, and increasing it is to the advan-

tage of the self-clustering hashtable.

Finally, we evaluate how sensitive the self-clustering

hashtable is to the dynamism in the workloads. Note

that for the self-clustering hashtable to be useful at

all, the workloads need to be somewhat predictable.

That is, if records are physically clustered but are never

accessed in the future, then the clustering efforts are

wasted. To verify this hypothesis, we control the ex-

pected number of query clusters (i.e., queries with sim-

ilar but not exactly the same access vectors) in any

100 consecutive queries in the workloads that we gen-

erate. Let us call this property of the workload its 100-

Uniqueness. Fig. 8d illustrates how the tuning overhead

can start to become a bottleneck as the workloads be-

come more and more dynamic, to the extent of being

completely unique, i.e., each query in the workload ac-

cesses a distinct set of records.

6.3 Sensitivity Analysis of Tunable-LSH

In the final set of experiments, we evaluate the sensitiv-

ity of Tunable-LSH in isolation, that is, without wor-

rying about how it affects physical clustering, and com-

pare it to three other hash functions: (i) a standard non-

locality sensitive hash function [1], (ii) bit-sampling,

which is known to be locality-sensitive for Hamming

distances [53], and (iii) Tunable-LSH without the op-

timizations discussed in Section 5. These comparisons

are made across workloads with different characteristics

(i.e., dense vs. sparse, dynamic vs. stable, etc.) where

parameters such as the average number of records ac-

cessed per query and the expected number of query

clusters within any 100-consecutive sequence of queries

in the workload are controlled.

Our evaluations indicate that Tunable-LSH gen-

erally outperforms its alternatives. Due to space con-

siderations, we summarize our most important obser-

vations.

Fig. 8e shows how the probability that the evaluated

hash functions place records with similar utilization vec-

tors to nearby hash values changes as the average num-

ber of records that each query accesses is increased.

In computing these probabilities, both the original dis-

tances (i.e., δ) and the distances over the hashed values

(i.e., δ∗) are normalized with respect to the maximum

distance in each geometry. It can be observed that both

versions of Tunable-LSH are better than bit-sampling

especially when the number of records in a query in-

creases.

Fig. 8f shows how the quality of clustering changes

as the workloads become more and more dynamic. As

illustrated in Fig. 8f, Tunable-LSH achieves higher

probability even when the workloads are dynamic. Note

that the unoptimized version of Tunable-LSH be-

haves no worse than a static locality-sensitive hash func-

tion, such as bit sampling, which conforms to the the-

orems in Section 5.1. We have not included the results

22 Güneş Aluç, M. Tamer Özsu, Khuzaima Daudjee

on the standard non-locality sensitive hash function,

because, as one might guess, it has a probability distri-

bution that is completely unaligned with our clustering

objectives.

7 Conclusions and Future Work

In this paper, we introduce Tunable-LSH, which is a

locality-sensitive hashing scheme, and demonstrate its

use in clustering records in an RDF data management

system. In particular, we keep track of records that are

accessed by the same query but are fragmented across

the pages in the database and use Tunable-LSH to

decide, in constant-time, where a record needs to be

placed in the storage system. Tunable-LSH takes into

account the most recent query access patterns over the

database, and uses this information to auto-tune such

that records that are accessed across similar sets of

queries are hashed as much as possible to the same or

nearby pages in the storage system. This property dis-

tinguishes Tunable-LSH from existing locality-sensi-

tive hash functions, which are static. Our experiments

with (i) an RDF data management system that uses

Tunable-LSH, (ii) a hashtable that relies on Tuna-

ble-LSH to dynamically cluster its records, and (iii)

workloads that rigorously test the sensitivity of Tuna-

ble-LSH verify the significant benefits of Tunable-

LSH.

While the techniques presented in this paper facil-

itate the development of workload-adaptive RDF data

management systems, some challenges are beyond the

scope of this paper, hence, are left as future work.

First, this paper focuses on the question of “how”

to tune but omits the question of “when”. The ques-

tion of “when” to tune the physical design of an RDF

data management system is relevant because not all

SPARQL workloads may exhibit the same degree of dy-

namism. Automatically detecting when changes occur

in a workload can be an important step to eliminate or

reduce redundant tuning steps (hence, the overhead of

tuning).

Second, ideally, techniques are needed that can be

used for tuning the RDF database after the execution

of every query in the workload (i.e., to support extreme

dynamism in workloads). While the techniques devel-

oped in this paper are more scalable than existing so-

lutions, they support periodic runtime updates such as

after the execution of every 10 or 100 queries. Extend-

ing these techniques to support more frequent runtime

updates is also left as future work.

Third, the techniques proposed in this paper assume

at least some predictability in workloads; more sophis-

ticated predictive models (e.g., those that incorporate

oscillations [40,42]) can be developed in the future.

Lastly, it is worth exploring if Tunable-LSH can

be used in a more general setting than just RDF sys-

tems. In fact, it should be possible to extend the idea

of the self-clustering in-memory hashtable that we have

implemented to a more general, distributed key-value

store.

References

1. std::hash, 2015. http://www.cplusplus.com/reference/

functional/hash/.

2. std::map, 2015. http://www.cplusplus.com/reference/

map/map/.

3. std::unordered map, 2015. http://www.cplusplus.com/

reference/unordered_map/unordered_map/.

4. D. J. Abadi, A. Marcus, S. R. Madden, and K. Hollen-
bach. SW-Store: a vertically partitioned DBMS for se-
mantic web data management. VLDB J., 18:385–406,
2009.

5. C. C. Aggarwal. A survey of stream clustering algo-
rithms. In Data Clustering: Algorithms and Applications,
pages 231–258. 2013.

6. S. Agrawal, S. Chaudhuri, and V. R. Narasayya. Au-
tomated selection of materialized views and indexes in
SQL databases. In Proc. 26th Int. Conf. on Very Large

Data Bases, pages 496–505, 2000.

7. A. Ailamaki, D. J. DeWitt, M. D. Hill, and D. A. Wood.
DBMSs on a modern processor: Where does time go?
In Proc. 25th Int. Conf. on Very Large Data Bases, pages
266–277, 1999.

8. R. Al-Harbi, I. Abdelaziz, P. Kalnis, N. Mamoulis,
Y. Ebrahim, and M. Sahli. Accelerating SPARQL queries
by exploiting hash-based locality and adaptive partition-
ing. VLDB J., 25(3):355–380, 2016.

9. R. Al-Harbi, Y. Ebrahim, and P. Kalnis. Phd-store:
An adaptive SPARQL engine with dynamic partitioning
for distributed RDF repositories. CoRR, abs/1405.4979,
2014.

10. G. Aluç. Workload Matters: A Robust Approach to Physical

RDF Database Design. PhD thesis, University of Water-
loo, 2015. Available at: https://uwspace.uwaterloo.ca/

handle/10012/9774.

11. G. Aluç, D. DeHaan, and I. T. Bowman. Parametric plan
caching using density-based clustering. In Proc. 28th Int.

Conf. on Data Engineering, pages 402–413, 2012.

12. G. Aluç, O. Hartig, M. T. Özsu, and K. Daudjee. Diver-
sified stress testing of rdf data management systems. In
Proc. 13th Int. Semantic Web Conference, pages 197–212,
2014.

13. G. Aluç, M. T. Özsu, and K. Daudjee. Workload matters:
Why RDF databases need a new design. Proc. VLDB

Endowment, 7(10):837–840, 2014.

14. G. Aluç, M. T. Özsu, K. Daudjee, and O. Hartig.
chameleon-db: a workload-aware robust RDF data man-
agement system. Technical Report CS-2013-10, Univer-
sity of Waterloo, 2013.

15. G. Aluç, M. T. Özsu, K. Daudjee, and O. Hartig. Exe-
cuting queries over schemaless RDF databases. In Proc.
31st Int. Conf. on Data Engineering, pages 807–818, 2015.

http://www.cplusplus.com/reference/functional/hash/
http://www.cplusplus.com/reference/functional/hash/
http://www.cplusplus.com/reference/map/map/
http://www.cplusplus.com/reference/map/map/
http://www.cplusplus.com/reference/unordered_map/unordered_map/
http://www.cplusplus.com/reference/unordered_map/unordered_map/
https://uwspace.uwaterloo.ca/handle/10012/9774
https://uwspace.uwaterloo.ca/handle/10012/9774

Building Self-Clustering RDF Databases Using Tunable-LSH 23

16. A. Andoni and P. Indyk. Near-optimal hashing algo-
rithms for approximate nearest neighbor in high dimen-
sions. In Proc. 47th Annual Symp. on Foundations of Com-

puter Science, pages 459–468, 2006.
17. M. Arias, J. D. Fernández, M. A. Mart́ınez-Prieto, and

P. de la Fuente. An empirical study of real-world
SPARQL queries. CoRR, abs/1103.5043, 2011.

18. V. Athitsos, M. Potamias, P. Papapetrou, and G. Kollios.
Nearest neighbor retrieval using distance-based hashing.
In Proc. 24th Int. Conf. on Data Engineering, pages 327–
336, 2008.

19. H. Bast and B. Buchhold. Qlever: A query engine for
efficient sparql+text search. In Proc. 27th ACM Int. Conf.

on Information and Knowledge Management, pages 647–
656, 2017.

20. R. G. Bello, K. Dias, A. Downing, J. J. Feenan, Jr.,
J. L. Finnerty, W. D. Norcott, H. Sun, A. Witkowski,
and M. Ziauddin. Materialized views in oracle. In Proc.
24th Int. Conf. on Very Large Data Bases, pages 659–664,
1998.

21. B. Berendt, L. Dragan, L. Hollink, M. Luczak-Rösch,
E. Demidova, S. Dietze, J. Szymanski, and J. G. Breslin,
editors. Joint Proc. of the 5th International Workshop on

Using the Web in the Age of Data and the 2nd International

Workshop on Dataset PROFIling and fEderated Search for
Linked Data, volume 1362 of CEUR Workshop Proceedings.
CEUR-WS.org, 2015.

22. T. Bingmann. STX B+ tree C++ template classes, 2007.
https://panthema.net/2007/stx-btree/.

23. B. Bislimovska, G. Aluç, M. T. Özsu, and P. Fraternali.
Graph search of software models using multidimensional
scaling. In Proc. of the Workshops of the EDBT/ICDT

2015 Joint Conference, pages 163–170, 2015.
24. M. A. Bornea, J. Dolby, A. Kementsietsidis, K. Srinivas,

P. Dantressangle, O. Udrea, and B. Bhattacharjee. Build-
ing an efficient RDF store over a relational database. In
Proc. ACM SIGMOD Int. Conf. on Management of Data,
pages 121–132, 2013.

25. A. Z. Broder. On the resemblance and containment of
documents. In Proc. Compression and Complexity of Se-
quences, pages 21–29, 1997.

26. A. Z. Broder, M. Charikar, A. M. Frieze, and M. Mitzen-
macher. Min-wise independent permutations. J. Comput.

Syst. Sci., 60(3):630–659, 2000.
27. N. Bruno and S. Chaudhuri. To tune or not to tune?

a lightweight physical design alerter. In Proc. 32nd Int.

Conf. on Very Large Data Bases, pages 499–510, 2006.
28. J. J. Carroll, I. Dickinson, C. Dollin, D. Reynolds,

A. Seaborne, and K. Wilkinson. Jena: implementing the
semantic web recommendations. In Proc. 13th Int. World
Wide Web Conf. - Alternate Track Papers & Posters, pages
74–83, 2004.

29. S. Ceri, S. B. Navathe, and G. Wiederhold. Distribution
design of logical database schemas. IEEE Trans. Softw.
Eng., 9(4):487–504, 1983.

30. M. Charikar. Similarity estimation techniques from
rounding algorithms. In Proc. 34th Annual ACM Symp.
on Theory of Computing, pages 380–388, 2002.

31. S. Chaudhuri and V. Narasayya. Self-tuning database
systems: a decade of progress. In Proc. 33rd Int. Conf. on
Very Large Data Bases, pages 3–14, 2007.

32. M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni.
Locality-sensitive hashing scheme based on p-stable dis-
tributions. In Proc. 20th Annual Symp. on Computational
Geometry, pages 253–262, 2004.

33. O. Erling. Virtuoso, a hybrid RDBMS/graph column
store. IEEE Data Eng. Bull., 35(1):3–8, 2012.

34. H. Ferhatosmanoglu, E. Tuncel, D. Agrawal, and A. El
Abbadi. Approximate nearest neighbor searching in mul-
timedia databases. In Proc. 17th Int. Conf. on Data Engi-

neering, pages 503–511, 2001.

35. J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes.
Computer Graphics: Principles and Practice (2nd edition).
Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1990.

36. K. R. French, G. W. Schwert, and R. F. Stambaugh. Ex-
pected stock returns and volatility. Journal of Financial
Economics, pages 3–30, 1987.

37. L. Galarraga, K. Hose, and R. Schenkel. Partout: a dis-
tributed engine for efficient RDF processing. In Proc. 23rd

Int. World Wide Web Conf., Companion Volume, pages
267–268, 2014.

38. A. Gionis, P. Indyk, and R. Motwani. Similarity search
in high dimensions via hashing. In Proc. 25th Int. Conf.
on Very Large Data Bases, pages 518–529, 1999.

39. F. Goasdoué, K. Karanasos, J. Leblay, and I. Manolescu.
View selection in semantic web databases. Proc. VLDB

Endowment, 5(2):97–108, 2011.

40. G. Graefe, S. Idreos, H. A. Kuno, and S. Manegold.
Benchmarking adaptive indexing. In Proc. Performance
Evaluation, Measurement and Characterization of Complex

Systems - 2nd TPC Technology Conf., TPCTC, pages 169–
184, 2010.

41. S. Gurajada, S. Seufert, I. Miliaraki, and M. Theobald.
Triad: a distributed shared-nothing RDF engine based on
asynchronous message passing. In Proc. ACM SIGMOD

Int. Conf. on Management of Data, pages 289–300, 2014.

42. F. Halim, S. Idreos, P. Karras, and R. H. C. Yap. Stochas-
tic database cracking: Towards robust adaptive indexing
in main-memory column-stores. Proc. VLDB Endowment,
5(6):502–513, 2012.

43. R. W. Hamming, editor. Coding and Information Theory.
Prentice-Hall, Englewood Cliffs, 1986.

44. R. Harbi, I. Abdelaziz, P. Kalnis, and N. Mamoulis. Eval-
uating SPARQL queries on massive RDF datasets. Proc.
VLDB Endowment, 8(12):1848–1851, 2015.

45. S. Harris, A. Seaborne, and E. Prud’hommeaux.
SPARQL 1.1 query language. W3C Recommendation,
Mar. 2013.

46. A. Harth, J. Umbrich, A. Hogan, and S. Decker. Yars2: A
federated repository for querying graph structured data
from the web. In Proc. 6th Int. Semantic Web Conference,
pages 211–224, 2007.

47. L. He, B. Shao, Y. Li, H. Xia, Y. Xiao, E. Chen, and
L. Chen. Stylus: A strongly-typed store for serving mas-
sive RDF data. Proc. VLDB Endowment, 11(2):203–216,
2017.

48. K. Hose and R. Schenkel. WARP: workload-aware repli-
cation and partitioning for RDF. In Proc. Workshops of

the 29th IEEE Int. Conf. on Data Engineering, pages 1–6,
2013.

49. M. E. Houle and J. Sakuma. Fast approximate similarity
search in extremely high-dimensional data sets. In Proc.

21st Int. Conf. on Data Engineering, pages 619–630, 2005.

50. M. F. Husain, J. P. McGlothlin, M. M. Masud, L. R.
Khan, and B. M. Thuraisingham. Heuristics-based query
processing for large RDF graphs using cloud comput-
ing. IEEE Trans. Knowl. and Data Eng., 23(9):1312–1327,
2011.

51. S. Idreos, M. L. Kersten, and S. Manegold. Database
cracking. In Proc. 3rd Biennial Conf. on Innovative Data
Systems Research, pages 68–78, 2007.

https://panthema.net/2007/stx-btree/

24 Güneş Aluç, M. Tamer Özsu, Khuzaima Daudjee

52. S. Idreos, S. Manegold, H. A. Kuno, and G. Graefe.
Merging what’s cracked, cracking what’s merged: Adap-
tive indexing in main-memory column-stores. PVLDB,
4(9):585–597, 2011.

53. P. Indyk and R. Motwani. Approximate nearest neigh-
bors: Towards removing the curse of dimensionality. In
Proc. 30th Annual ACM Symp. on Theory of Computing,
pages 604–613, 1998.

54. P. Jaccard. The distribution of flora in the alpine zone.
New phytologist, 11(2):37–50, 1912.

55. A. K. Jain, M. N. Murty, and P. J. Flynn. Data cluster-
ing: a review. 31:264–323, 1999.

56. M. Kirchberg, R. K. L. Ko, and B.-S. Lee. From linked
data to relevant data – time is the essence. CoRR,
abs/1103.5046, 2011.

57. E. F. Krause, editor. Taxicab Geometry: An Adventure in

Non-Euclidean Geometry. Dover, New York, 1986.
58. J. B. Kruskal. Multidimensional scaling by optimizing

goodness of fit to a nonmetric hypothesis. Psychometrika,
29:1–27, 1964.

59. V. I. Levenshtein. Soviet Physics Doklady, 10(8):707–710,
1966.

60. S. Lightstone, T. J. Teorey, and T. P. Nadeau. Phys-
ical Database Design: the database professional’s guide to

exploiting indexes, views, storage, and more. Morgan Kauf-
mann, 2007.

61. J. P. McGlothlin and L. R. Khan. Materializing and
persisting inferred and uncertain knowledge in RDF
datasets. In Proc. 24th Conf. on Artificial Intelligence,
2010.

62. A. Morrison, G. Ross, and M. Chalmers. Fast multidi-
mensional scaling through sampling, springs and interpo-
lation. Information Visualization, 2(1):68–77, 2003.

63. M. Morsey, J. Lehmann, S. Auer, and A.-C. N. Ngomo.
DBpedia SPARQL benchmark - performance assessment
with real queries on real data. In Proc. 10th Int. Semantic

Web Conference, pages 454–469, 2011.
64. G. M. Morton. A computer oriented geodetic data base;

and a new technique in file sequencing. Technical report,
IBM Ltd., Ottawa, Canada, 1966.

65. F. F.-H. Nah. A study on tolerable waiting time: how long
are Web users willing to wait? Behaviour & IT, 23(3):153–
163, 2004.

66. T. Neumann and G. Weikum. The RDF-3X engine for
scalable management of RDF data. VLDB J., 19(1):91–
113, 2010.

67. T. Neumann and G. Weikum. x-RDF-3X: fast querying,
high update rates, and consistency for RDF databases.
Proc. VLDB Endowment, 3(1):256–263, 2010.

68. N. Papailiou, I. Konstantinou, D. Tsoumakos, and
N. Koziris. H2RDF: adaptive query processing on RDF
data in the cloud. In Proc. 21st Int. World Wide Web

Conf., Companion Volume, pages 397–400, 2012.
69. N. Papailiou, D. Tsoumakos, P. Karras, and N. Koziris.

Graph-aware, workload-adaptive SPARQL query
caching. In Proc. ACM SIGMOD Int. Conf. on Manage-

ment of Data, pages 1777–1792, 2015.
70. W. Reed. The normal-Laplace distribution and its rel-

atives. In Proc. Advances in Distribution Theory, Order
Statistics, and Inference, pages 61–74, 2006.

71. T. Sakaki, M. Okazaki, and Y. Matsuo. Earthquake
shakes twitter users: real-time event detection by social
sensors. In Proc. 19th Int. World Wide Web Conf., pages
851–860, 2010.

72. L. Sidirourgos, R. Goncalves, M. Kersten, N. Nes, and
S. Manegold. Column-store support for RDF data man-
agement: not all swans are white. Proc. VLDB Endow-

ment, 1(2):1553–1563, 2008.

73. Y. Tao, K. Yi, C. Sheng, and P. Kalnis. Efficient and
accurate nearest neighbor and closest pair search in high-
dimensional space. ACM Trans. Database Syst., 35(3),
2010.

74. C. Weiss, P. Karras, and A. Bernstein. Hexastore: sextu-
ple indexing for semantic web data management. Proc.

VLDB Endowment, 1(1):1008–1019, 2008.
75. K. Wilkinson. Jena property table implementation. Tech-

nical Report HPL-2006-140, HP-Labs, 2006.
76. P. Yuan, P. Liu, B. Wu, H. Jin, W. Zhang, and L. Liu.

TripleBit: a fast and compact system for large scale RDF
data. Proc. VLDB Endowment, 6(7):517–528, 2013.

77. L. Zeng and L. Zou. Redesign of the gStore system. Fron-

tiers Comput. Sci., 12(4):623–641, 2018.
78. D. C. Zilio, J. Rao, S. Lightstone, G. M. Lohman, A. J.

Storm, C. Garcia-Arellano, and S. Fadden. DB2 design
advisor: Integrated automatic physical database design.
In Proc. 30th Int. Conf. on Very Large Data Bases, pages
1087–1097, 2004.

79. L. Zou, J. Mo, D. Zhao, L. Chen, and M. T. Özsu.
gStore: Answering SPARQL queries via subgraph match-
ing. Proc. VLDB Endowment, 4(1):482–493, 2011.

	Introduction
	Related Work
	Preliminaries
	Overview of Tunable-LSH
	Details of Tunable-LSH and Optimizations
	Experimental Evaluation
	Conclusions and Future Work

