Executing Queries over Schemaless RDF Databases

Giines Alug, M. Tamer Ozsu, Khuzaima Daudjee, Olaf Hartig

Cheriton School of Computer Science, University of Waterloo
{galuc, tamer.ozsu, kdaudjee, ohartig}@uwaterloo.ca

Abstract—Recent advances in Linked Data Management and
the Semantic Web have led to a rapid increase in both the
quantity as well as the variety of Web applications that rely
on the SPARQL interface to query RDF data. Thus, RDF data
management systems are increasingly exposed to workloads that
are far more diverse and dynamic than what these systems were
designed to handle. The problem is that existing systems rely
on a workload-oblivious physical representation that has a fixed
schema, which is not suitable for diverse and dynamic workloads.
To address these issues, we propose a physical representation
that is schemaless. The resulting flexibility enables an RDF
dataset to be clustered based purely on the workload, which is
key to achieving good performance through optimized I/O and
cache utilization. Consequently, given a workload, we develop
techniques to compute a good clustering of the database. We
also design a new query evaluation model, namely, schemaless-
evaluation that leverages this workload-aware clustering of the
database whereby, with high probability, each tuple in the result
set of a query is expected to be contained in at most one cluster.
Our query evaluation model exploits this property to achieve
better performance while ensuring fast generation of query plans
without being hindered by the lack of a fixed physical schema.

I. INTRODUCTION

With the proliferation of very large, web-scale distributed
RDF datasets such as those in the Linked Open Data (LOD)
cloud [1], the demand for high-performance RDF data manage-
ment systems is increasing. While multiple RDF data manage-
ment approaches have been proposed [2]-[10], systems are still
unable to achieve consistently good performance [11]. A major
problem is that workloads that these systems service are be-
coming far more diverse [12]-[14] and far more dynamic [15]
than what the systems have been designed to support [16].
To make matters worse, this deficiency has not been revealed
in performance studies because benchmark workloads do not
truly capture this diversity and dynamism [11].

To demonstrate the issue, we conducted an experiment
using the Waterloo SPARQL Diversity Test Suite (WatDiv)—a
new benchmark that is specifically developed for identifying
physical design issues in RDF data management systems [11].
We generated 100 million RDF triples using the WatDiv
data generator and measured the performance of five pop-
ular RDF data management systems, namely, RDF-3x [7],
MonetDB [17], 4Store [18] and Virtuoso Open Source (VOS)
versions 6.1 [19] and 7.1 [8]. In our evaluations, we used
the WatDiv stress testing tool to generate a diverse workload
of 12500 unique SPARQL queries. Our observations can be
summarized as follows (detailed results are available in [11]):
(i) no single solution performs uniformly well, that is, systems
that are fastest are only so for a small percentage of queries
in the workload (cf., Table I); and (ii) there can be multiple
orders of magnitude difference between the execution times of
the fastest and the relatively slower systems (cf., Fig. 1).
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TABLE I: Summary of results over WatDiv 100M RDF triples.

When the workloads are diverse, choosing the most suitable
system is a difficult task. One can deploy the system that effi-
ciently executes the most frequent queries in a given workload.
However, since the same system can be very inefficient in
executing the remaining queries, the overall performance of the
system can be far less than optimal. In fact, Table I illustrates
that none of the systems that we benchmarked have amortized
(i.e., per query) execution times of less than six seconds, which
is unacceptable for interactive web applications [20].

In earlier work, we identified 2 reasons why existing
systems run into the aforementioned problems [16]: First,
these systems rely on a fixed, workload-oblivious physical
representation. Second, none of these systems can dynamically
update their physical layout or switch to a better representation
as the workload changes. For example, it may be necessary
to switch from a row-oriented representation to a columnar
representation, but this is not possible with existing systems.
Consequently, we proposed a vision for a workload-aware and
adaptive RDF data management system. Our vision consists
of two parts: (i) a schemaless physical representation of RDF
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Fig. 1: Comparison of system performance. CAT-I, CAT-II and
CAT-III consist of queries for which, respectively, MonetDB,
VOS [7.1] and RDF-3x are the fastest systems (cf., Table I).
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Fig. 2: Implementation of the group-by-query representa-
tion [16]

data that is purely workload driven, and (ii) partially and
automatically tuning the physical representation [16].

In this paper, we focus on the first part of our vision and
propose a schemaless group-by-query representation of RDF
data. In this representation, based on the results of queries in
the workload, RDF triples are physically clustered into what
we call group-by-query clusters [16]. For example, in Fig. 2a,
clusters Pj—Ps are clustered based on a linear query, and Py—
Ps5 are clustered based on a star-shaped query. These clusters
are physically stored in the storage system as shown in the
lower part of Fig. 2b. We create two types of indexes across
these clusters: (i) cluster index and (ii) spill index. Given a
query, the cluster index maintains information about which
clusters are relevant to the execution of that query, and the
spill index facilitates query plan generation.

In contrast to conventional (relational) records, clusters
in the group-by-query representation do not have fixed sizes
nor contain triples that have the same set of predicates. This
schemaless representation enables easy customization of the
physical data structures and indexes in the database based on
the current workload, resulting in (i) more efficient I/O and
cache utilization, (ii) better indexing and data localization, and
(iii) fewer intermediate tuples during query evaluation.

On the other hand, there is a price for this flexibility—
generating and executing valid query plans becomes more
challenging than it is for fixed, non-adaptable representations.
First, we do not have any a priori knowledge about how
data will be clustered and physically organized in the storage
system and within the indexes. All of these decisions depend
on the current workload, and as the workload changes, the
underlying group-by-query representation will change as well.
This flexibility automatically rules out the possibility of de-
signing and implementing query evaluation code in the DBMS
based on a fixed representation. Systems such as RDF-3x [7],
MonetDB [17] and gStore [10] are all implemented in this
fashion. Second, there is no physical schema to describe the
group-by-query representation that can be used to efficiently
generate valid query plans, which relational systems rely on
heavily for query plan generation and optimization [21]. With-
out addressing these two challenges, query plan generation and
optimization can easily become a bottleneck.

Consequently, in addition to introducing the group-by-

query representation, we make the following contributions:

1) We develop methods to quantify the “goodness” of a
clustering. Using these measures of “goodness”, we intro-
duce a practical clustering algorithm to compute a suit-
able group-by-query representation for a given workload
(Section IV).

2) We introduce a new query evaluation model, namely,
schemaless-evaluation (SE), and along with it, a set of
new query operators that can accommodate the following
two requirements (Section V):

o Genericity: For any possible group-by-query repre-
sentation, SE guarantees correct evaluation of queries.
This way, the underlying group-by-query representation
can be adjusted safely for any type of workload.

e Isolation: Without violating correctness guarantees,
group-by-query representation can be updated on one
part of the database, while schemaless-evaluation con-
currently takes place on other parts. This allows adap-
tivity to workload changes, which is not addressed in
this paper but is part of our vision [16] (Section V-6).

3) We propose new query optimization techniques based on
the observation that in the group-by-query representa-
tion, since triples are already physically clustered, the
probability that tuples in the result set of a query are
contained in at most one cluster is high. This creates
new opportunities for generating more efficient query
plans that are exploited by SE. These optimizations are
designed such that they can work efficiently without the
full knowledge of the physical schema of the underlying
database (Section V-2).

4) We experimentally quantify the benefits of the group-by-
query representation and our query evaluation algorithm
over workload-oblivious techniques employed by other
RDF data management systems (Section VI).

II. RELATED WORK

RDF is composed of subject-predicate-object (s, p, o) state-
ments called riples [22]. Each triple describes an aspect of a
web resource. The subject of the triple denotes the resource
that is described, the predicate denotes a feature of that
resource, and the object stores the value for that feature.

One of the major challenges in RDF data management is
physical design, which has led to the development of multiple
“optimal” physical representations. One option here is to
represent data in a single large table with only three attributes:
s, p and o [2]. As a slight variation of this representation,
another option is to maintain multiple copies of the table,
where each table has an index that implements a different
sort-order [4], [7], [23]. It has also been argued that for
different workloads, grouping data can provide performance
benefits [3], [9], [24]. Therefore, two other representations
were developed: (i) grouping by predicates, where the RDF
database is partitioned into 2-column tables (one table per
predicate) with the tables being stored in a column-store [5];
and (ii) grouping by entities, where implicit relationships
within the data are determined (either as a manual or automated
process) to compute a relational schema, and data are mapped
to an instantiation of this schema [3], [9]. Another alternative
is to rely on the native graph structure of the RDF data [6],



[10], [25], [26]. In this case, grouping by graph vertices,
whereby edges in the RDF graph are grouped based on their
incidence on a vertex, is a feasible representation.

RDF data management systems, whether single node [2]—
[10] or distributed [27], rely on one of the above physi-
cal representations. Our studies have demonstrated that with
increasing diversity and dynamism in SPARQL workloads,
all of these existing physical representations run into serious
issues [11]. This increases the need for the workload-driven
group-by-query representation [16] (Fig. 2a).

III. BACKGROUND AND PRELIMINARIES

In this paper, we use graphs to represent both RDF data
and the conjunctive fragment of SPARQL queries [28], which
is called basic graph patterns (BGPs); and we model query
evaluation as a subgraph isomorphism problem [29]. There-
fore, for the most part, we rely on the standard formalization
of SPARQL [30], and introduce only the concepts necessary to
capture subgraph isomorphism as it is used in evaluating BGPs
over RDF graphs. In an extended version of our paper [31],
we prove the equivalence between the standard formalization
of SPARQL [30], [32], and our framework.

Assume two disjoint, countably infinite sets ¢/ (URIs) and
L (literals) (we ignore blank nodes in our discussions). URIs
uniquely denote Web resources or features of Web resources.
Literals denote values such as strings, natural numbers and
booleans. Then, an RDF triple is a 3-tuple from the set 7 =
UxUx UUL).

Definition 1: An RDF graph is a directed, labeled multi-
graph G = (V, E) where: (i) the vertices (V) are URIs or
literals such that V' C (U U £); (ii) the directed, labeled edges
(E) are RDF triples such that E C (V x U x V) NT; and
(iii) each vertex v € V appears in at least one edge, where for
each edge (s,p,0) € E, s is the source of the edge, p is the
label, and o is the target of the edge. Hereafter, we use V(G)
and E(G) to denote the set of vertices and the set of edges of
an RDF graph, respectively.

To define queries, we assume a countably infinite set of
variables V' that is disjoint from both ¢/ and L. Similar to
RDF graphs, we use a graph-based representation for BGPs.

Definition 2: A basic graph pattern (BGP) is a directed,
labeled multi-graph @ = (V, E) where: (i) the vertices (V')
are variables, URIs, or literals such that Vcvulu U L;
(ii) the directed, labeled edges (E) are 3-tuples such that 2 C
V x (VUU) x V, where for each edge (8,p,0) € F, § is the
source of the edge, p is th(; label, and ¢ is the target of the
edge; (iii) each vertex 0 € V appears in at least one edge.

Note that each edge in a BGP represents a triple pattern.
Therefore, depending on the context, we will use these two
terms interchangeably.

The only deviation from the standard formalism [30] is in
the way solution mappings are defined for BGPs because we
rely on a graph-based formalism. That is, for BGPs, solution
mappings are computed from subgraphs of a queried RDF
graph that match the BGP. This is very similar to the notion of
a “match” in the context of subgraph isomorphism [29] except
for the presence of variables in SPARQL. To accommodate this

difference, we first introduce compatibility between an edge
in an RDF graph and an edge in a BGP (Def. 3). Informally,
two edges are compatible if they have the potential to match.
Formally:

Definition 3: Let e = (s,p,0) € E be an edge in an RDF
graph G = (V, E), and let é = (3,p,0) € E be an edge in
a BGP @ = (V, E). Edges e and é are compatible if either
) p=p, or(i)pe.

Using the notion of edge compatibility, we define a match
between a BGP and an RDF graph as surjection from the edges
(and vertices) of a BGP onto the edges (and vertices) of an
RDF graph (possibly a subgraph of the queried RDF graph)
such that corresponding edges are compatible and the source
(and the target) vertices of a pair of corresponding edges are
also mapped onto.

Definition 4: Let G = (V, E) be an RDF graph, and let
Q = (V,E) be a BGP. Given a solution mapping p, G -
matches @Q if (i) dom(pu) is the set of variables mentioned in
@, and (ii) there exist two surjective functions My : VsV
and Mg : EF — FE such that:

o for each (01,v5) € V x V with My (1) = vy: if ¥y € V,
then (1) = v2, else 11 = va;

e for each (é1,e0) € E x E with Mg(é1) = es: é1 =
(§1,ﬁ1751) and €y = (SQ,]?Q,OQ), (a) él and €9 are
compatible and if p; € V, then ps = u(p;), and (b) if
My, (§1) = $9, then My, ((31) = 09.

G matches @) if there exists a solution mapping p such that G
p-matches Q.

Putting it all together, we define the expected result of
evaluating a BGP over an RDF graph as follows.

Definition 5: The result of a BGP @) over an RDF graph
G = (V, E), denoted by [Q]c. is defined as [Q]¢ = {u| G’
is a subgraph of G and G’ p-matches Q}.

BGPs can be combined using operators AND, UNION, and
OPT [30]. Thus, any BGP is a SPARQL query, and if S;
and S5 are SPARQL queries, and F' is a filter expression,
then expressions (57 AND S3), (S7 UNIONS3), (S7 OPT Ss),
and (S; FILTER F') are also SPARQL queries. The semantics of
these queries can be defined using the standard formalism [30],
where solution mappings are combined or manipulated using
union (U), join (), difference (\) and selection (©).

Our prototype implementation can handle full SPARQL 1.0
specification (except for complex filter expressions involving
built-in functions), and additionally push filter expressions
down into BGPs [32]. However, we deliberately left these
definitions out to avoid complicated formalism. Furthermore,
for the implementation of joins (b<), unions (U) and set
difference (\), we use existing techniques [7]. Therefore, in
the remainder of this paper, we will focus on Def. 5, which
defines the query result over all subgraphs of an RDF graph
that match a BGP.

IV. COMPUTING GROUP-BY-QUERY CLUSTERS

In this section, we introduce our workload-driven algorithm
for computing the group-by-query clusters. First, we formulate
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Fig. 3: Sample dataset, their graph representation and sample group-by-query clusterings.

an objective function (Section IV-1) followed by a description
of the algorithm (Section IV-2). Finally, we discuss how the
underlying physical representation is updated following the
computation of a group-by-query clustering (Section IV-3).

1) Clustering Objectives: ldeally, we would like to com-
pute a group-by-query clustering in which RDF triples (or
equivalently, edges in the graph representation) that are irrel-
evant to the evaluation of a query are clearly separated from
the relevant ones, and this property should hold for as many
queries in the workload as possible.

For consider evaluating
Q="w A9y E>?y ER against the graph in Fig. 3b. Any
triple that lies outside the shaded region is irrelevant for the
query result. Therefore, for this query, Clustering A in Fig. 3¢
is a better choice than Clustering B in Fig. 3d for three key
reasons. First, triples from which the query result is computed
are already physically clustered in the storage system. This will
have significant performance benefits due to more efficient I/O
and cache utilization. Second, indexes that are built over this
representation will be much more efficient in localizing query
evaluation to only the relevant parts of the database. In this
case, P} does not contain any relevant triples, hence, it can be
easily pruned out. Third, as a consequence of the last point,
query evaluation will not produce any irrelevant intermediate
results, reducing the overall cost of query evaluation.

instance, the linear query

Next, consider Clustering B (Fig. 3d), where irrelevant
triples are mixed with triples relevant for query . In this
case, the query needs to be decomposed into three sub-queries:
Q= "w i>?:E, Q2= "z E>‘?y and Q3= 7y N (we will
postpone the discussion of identifying this decomposition to
Section V, which describes our query evaluation model). Then,
each subquery is evaluated over clusters P;—Fg, producing
three tuple sets 77, 75 and T3, respectively. Finally, these tuples
are joined as shown in Fig. 3e-3i. In contrast to Clustering
A, there are problems with Clustering B. First, triples from
which the query result is computed are defragmented across
the storage system, increasing I/O cost and reducing cache
utilization. Second, during query evaluation, it is more difficult
to distinguish between relevant and irrelevant triples, which
generates unnecessary intermediate result tuples (cf., Fig. 3e—
3i). In this case, reordering the join operations or applying
sideways information passing [33] to early-prune some of the
tuples in 7175 would not eliminate the problem. For example,

while tuples (v1,vs) and (vg4,v11) can be eliminated from T
as soon as vs is identified as the only join value in T} > 15,
tuple (v2,vs) remains in the pipeline until the end of joins.

Consequently, given a query, to quantify how well a
group-by-query clustering separates irrelevant triples from the
relevant ones, we use a combination of two measures: segmen-
tation and minimality. Informally, segmentation is a measure
of how distributed the subgraphs that match a BGP are across
the group-by-query clusters. Minimality indicates how minimal
clusters are with respect to those subgraphs that match a BGP.
These measures are introduced formally in Def. 7, after we
define our notion of a group-by-query clustering.

Definition 6: Given an RDF graph G = (V, E), a group-
by-query clustering of G is a set of RDF graphs P =
{Py,..., Py} such that (i) each P; is a subgraph of G,
(i) P;’s are edge disjoint, (iii) E(G) = Up,cp E(5%), and
(i) V(G) = Up,ep V(F5).

Definition 7: Given a clustering P of an RDF graph G, let
Fg denote the set of all distinct subgraphs of G that match
a BGP ), and let E* = UG,GFQ E(G"). Then, segmentation

and minimality of P with respect to () are defined as follows:
segmgl = [{(G'P)€TExP | E(G)NE(P) ;A@}]—‘r@‘
/|[{Er
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Segmentation can take any positive real value, while min-
imality is always between [0, 1]. An ideal clustering for
a workload is one whose segmentation is minimal (0) and
minimality takes the highest possible value (1). We say that
a clustering is completely segmented with respect to a query
workload if its segmentation is maximal.

2) Clustering Algorithm: To facilitate the computation of
a suitable group-by-query clustering, upon the execution of
a BGP, we annotate each distinct subgraph that matches the
BGP with a unique label and a timestamp of query submission.



Each annotation is of the form (gid, sid,t), where gid is the
unique identifier generated by the system for every BGP that
is executed, sid is the unique identifier for the corresponding
subgraph, and ¢ is the timestamp. Since matching subgraphs
can be overlapping, for each annotated edge of the RDF graph
we maintain the annotations in a (FIFO) queue. This way, when
clustering takes place, we can ignore annotations that are too
old to be relevant for the current workload.

To compute the group-by-query clustering, we use a hier-
archical algorithm, which starts from a completely segmented
clustering, and successively merges clusters until the clustering
objective is achieved. The algorithm operates as follows:

1) Initially, each edge of the RDF graph resides in its own
cluster, which corresponds to a completely segmented
group-by-query clustering for any possible workload;

2) The pair of clusters, whose merging improves segmen-
tation the most, while causing the least trade-off in
minimality, is identified (race conditions will be discussed
shortly);

3) Clusters found in Step 2 are merged, which results in a
potential decrease in segmentation and/or minimality;

4) Steps 2-3 are repeated as long as the aggregate minimality
of the clustering is greater than a threshold.

It is important to note that segmentation and minimality
measures are monotonically decreasing within this algorithm.
That is, whenever two clusters are merged, segmentation will
potentially decrease because edges with the same gid and sid
labels may be brought together. However, at the same time,
edges with different ¢id labels may also be placed in the
same cluster, which does not affect segmentation, but reduces
minimality. While we would like to reduce segmentation, we
would also like to increase minimality. When clusters contain
too many edges that are individually irrelevant to the execution
of the majority of the queries, the overhead of subgraph
matching within each cluster can undermine the benefits of
reduced segmentation. In our implementation, we observed that
if the clusters contain on average more than 10 times as many
irrelevant triples as there are relevant ones, performance of
query evaluation starts to degrade. For this reason, we set the
threshold on minimality as 0.1.

There are two reasons for choosing a hierarchical clustering
algorithm. First, the way hierarchical clustering works is
aligned with our clustering objectives as clusters are merged
one pair at a time until a global objective is achieved. This
is not true for centroid-based clustering [34] or spectral clus-
tering [34]. Second, other algorithms such as k-means [34]
require the final number of clusters to be known in advance,
which is not possible in our case.

As an assumption that generally holds, we expect the final
clustering to be fine-grained since subgraphs that match the
queries in the workload are likely to be comparable in size to
the query graphs, which are relatively small. Furthermore, the
final clusters are not likely to be much larger than these sub-
graphs due to the minimality threshold. Therefore, a bottom-up
(agglomerative) approach can reach the clustering objective in
fewer number of iterations than a top-down (divisive) approach
(hence, the reason why we start with a completely segmented
clustering and employ agglomerative clustering).

A critical issue is to decide which pair of clusters to merge
in each iteration. We define a distance function § : P x P —
[0, 1] over the clusters such that: (i) § = 1 is reserved for
clusters that should not be merged; (ii) a smaller distance
between two clusters implies that the decrease in segmentation
is higher (with a lower trade-off in minimality) if these two
clusters are merged.

To compute the pairwise distances between clusters, we
rely on the annotations of edges in each pair of clusters,
namely, the set of (gid, sid, t)-tuples. We define the distance
between a pair of clusters as a combination of two Jaccard
distances: dg is defined over the sets of subgraph identifiers
(sid), and ¢ is defined over the sets of query identifiers (gid).
For any cluster P € P, let w5(P) and 7,(P) denote the set of
subgraph identifiers and the set of query identifiers with which
P is annotated, respectively. Given two clusters P, and P, the
distances d5(P;, P;) and dg(P1, P;) are defined as follows:

[ma(P) N (P)

o5 =1 () Um(B)
L Im(P) (B
N |74 (P1) Uy (Py)]

The two distance functions are complementary. That is,
by merging P; with P, segmentation decreases by at least
|ms(P1)N7s(Py)|, therefore, dg is more sensitive to predicting
the expected change in segmentation. Likewise, |m,(P;) U
Tq(P2)| — |mg(P1) Nmq(P2)| is a more accurate approximation
of the expected decrease in minimality; thus, dgp is more
sensitive to changes in minimality. Hence, our reliance on a
combination of both distances. However, in doing so, we pay
particular attention to some race conditions. Specifically, the
distance function is designed such that the following order,
in which clusters are merged, is always preserved: (i) a pair
of clusters with dg = 0 (which also implies that dg = 0)
are merged before any other pair of clusters; (ii) clusters with
ds # 0 and 6g = 0, are merged next; (iii) finally, clusters
with dg # 0 and dg # 0 are merged according to a combined
distance § = adg + (1 — av)dg, where o = 0.5.

Note that in the first two cases, minimality will not decrease
because the two clusters that are merged have subgraphs that
match only a single query. Hence, they are preferred over
the third case, in which minimality is expected to decrease.
Furthermore, even though the first and second cases are both
guaranteed to reduce segmentation (without compromising
minimality), the first case can achieve the same objective with
smaller clusters, hence, it is preferred over the other. When
two clusters P; and P, are merged, all distances between
the new cluster and any other existing cluster P, for which
§(P1, Py) <1ord(Pa Py) <1 need to be updated.

3) Updating the Physical Representation: Once a suitable
clustering is computed, the system performs the transformation
from the current physical representation to the desired one as
a set of atomic update operations (i.e., deletion and insertion)
on the set of physical clusters in the storage system. Each
operation has the property that before and after the operation,
the database represents exactly the same RDF graph but using
a different clustering.

The update operations are executed concurrently with the
queries, which is possible because our schemaless evaluation



1) Compute the result of the whole BGP over the whole RDF graph
according to Def. 5.

(a) Algorithm I: HolisticEvaluation

1) Decompose the BGP into its triple patterns;
2) For each triple pattern,
a) Use indexes to locate only those clusters that have a subgraph
that matches the triple pattern;
b) For each satisfying cluster, compute the result of the triple
pattern over that cluster according to Def. 5;
¢) Take the union of the results; and

3) Join the intermediate results from Step 2.

1) Use indexes to locate only those clusters that have a subgraph
that matches the whole BGP;

2) For each satisfying cluster, compute the result of the whole BGP
over that cluster according to Def. 5; and

3) Take the union of the results.

(c) Algorithm III: OptimalEvaluation

1) Preferably, do not decompose the BGP at all; however, if neces-
sary, decompose it into as few number of segments as possible;

2) For each query segment, execute OptimalEvaluation.

3) Join the intermediate results from Step 2.

(b) Algorithm II: TriviallyDecomposedEvaluation

(d) Algorithm IV: SchemalessEvaluation

Fig. 4: Alternative query evaluation algorithms

approach (SE) is designed with an isolation guarantee: once
results are computed within a cluster, query evaluation does not
need to access that cluster anymore, allowing it to be updated
while query evaluation proceeds over other clusters. In order
to ensure that updates do not take place before a query has
completely “consumed” the contents of a cluster, we use a
two-level locking scheme (details omitted in this paper).

V. QUERY EVALUATION

A good clustering algorithm is not sufficient for exploiting
the optimizations that the group-by-query representation pro-
vides. The problem is that a query evaluation algorithm that is
oblivious to the underlying group-by-query representation can
easily obscure and even reverse the effects of clustering.

Consider 2 typical ways of evaluating BGPs over fixed,
non-adaptable representations: In HolisticEvaluation (Fig 4a),
the whole BGP is evaluated over the whole RDF graph [10],
whereas in TriviallyDecomposedEvaluation (Fig. 4b), the BGP
is decomposed into its triple patterns, and each triple pattern
is evaluated independently over a clustering of the graph [25].

While both algorithms produce correct results over the
group-by-query representation, they would be far from the
optimal choice. On the one hand, as experiments show [11],
HolisticEvaluation needs to consider the entire RDF graph,
which may lead to processing of irrelevant parts even when
the graph has been indexed (cf., gStore [10]). TriviallyDecom-
posedEvaluation, on the other hand, decomposes the BGP all
the way down to its triple patterns, which results in suboptimal

performance. Consider evaluating Q= 7w K E>?y R
over Clustering A (cf., Fig. 3c). Despite the fact that Clustering
A is the optimal one for @) (cf., Section 1V), in Step 2(a)
of TriviallyDecomposedEvaluation, indexes cannot efficiently
localize query evaluation to only P, because P contains at
least one edge for each label A, B and C. That is, P; contains
a match for each triple pattern in the query. This results in
the generation of irrelevant intermediate result tuples that may
remain in the query evaluation pipeline until all the joins in
Step 3 are completed. Thus, TriviallyDecomposedEvaluation not
only performs unnecessary computations, but it also results in
poor I/O and cache utilization.

In short, neither HolisticEvaluation nor TriviallyDecom-
posedEvaluation truly exploits the fact that triples in the group-
by-query representation are already being clustered based on
the results of the queries in the workload. This is a useful
property because given a query from the workload, it is very
likely that subgraphs that match the query (i.e., subgraphs
that contribute to the result of the query as per Def. 5), are
each contained within at most a single (but not necessarily
the same) cluster. Recall how the two subgraphs in Clustering
A in Fig. 3c that match () are each contained in a single
cluster.! Intuitively, if the aforementioned conditions hold,
the correct result of a BGP can be obtained (i) without
decomposing the BGP at all, and (ii) by evaluating the whole
BGP independently over each cluster in the group-by-query
representation and taking the union of the results, thereby
avoiding the join step of TriviallyjDecomposedEvaluation. We
capture these optimizations in OptimalEvaluation (Fig. 4c).

OptimalEvaluation is much more efficient than both Holis-
ticEvaluation and TriviallyDecomposedEvaluation. First, when
evaluating ) over Clustering A, P; can be pruned out already
in the first step of the algorithm, which results in good data
localization. Second, since the query is evaluated entirely over
P> (as opposed to being decomposed), query evaluation does
not produce any irrelevant intermediate result tuples—in fact,
there are no intermediate results. Needless to say, by fetching
only a single cluster from the storage system, the algorithm
also achieves better I/O and cache utilization.

Naturally, the storage advisor strives to compute a group-
by-query clustering such that for every query in the workload,
every subgraph that matches that query spans at most one clus-
ter. However, sometimes, this may be too ambitious to achieve.
In practice, the above condition may not hold for some queries
in the workload, for which OptimalEvaluation would not be ap-
plicable. Even in that case, we argue that reverting all the way
down to the decomposition into triple patterns (i.e., Trivially-
DecomposedEvaluation) may be unnecessary. Therefore, we
propose SchemalessEvaluation (Fig. 4d) that encapsulates both
TriviallyDecomposedEvaluation and OptimalEvaluation, but de-
pending on the underlying group-by-query representation, can

ICoincidentally, in this example, both subgraphs are contained also within
the same cluster, but that is not a necessary condition.



accommodate a whole range of decompositions in between.
Before any formalization, we answer some questions.

QI1— In SchemalessEvaluation, how can a decomposition of
the query be found that produces the correct result?

A — We follow a bottom-up approach. That is, we start
with the decomposition of the query into its triple pat-
terns (i.e., TriviallyDecomposedEvaluation), which always
produces correct results regardless of the underlying group-
by-query representation (cf., Theorem 1 in Section V-1),
and rely on equivalence rules to simplify the decomposition.
These equivalence rules are conditional, and they exploit
various properties about graphs to dynamically determine
whether subgraphs that match the query spill into multiple
group-by-query clusters (Section V-2).

Q2— How can one efficiently determine, at runtime, whether
any of the matching subgraphs of a query spill into multiple
group-by-query clusters?

A — We follow a lazy approach. Initially i.e., whenever a
query is evaluated for the first time, it is assumed that all
of the matching subgraphs of the query spill into multiple
clusters. However, as queries are evaluated, summary infor-
mation is maintained, which is used in firing the conditional
equivalence rules in subsequent queries. We call this the spill
index (Section V-4).

Q3— In Step 1 of OptimalEvaluation, how are the relevant
clusters determined?

A — We use another index, called the cluster index. This
index is also constructed in a lazy fashion. That is, given
the first query, the index assumes that any of the clusters
could be relevant to the evaluation of the query. However,
as queries are evaluated, it uncovers more information about
the clusters and indexes them (Section V-5).

Q4— What data structures are utilized to facilitate subgraph
matching within a cluster?

A — To perform subgraph matching within each cluster, we
represent each RDF graph in the group-by-query cluster
as an adjacency list and use a variation of Ullmann’s
algorithm [29]. For each vertex ¢ in the BGP, we compute
candidate matching vertices in the RDF graph. If ¢ is a URI
or literal, one can directly lookup the vertex in the adjacency
list. Otherwise, if ¢ is a variable, we rely on the labels of
the edges that are incident on 9 to prune the search space.
While it is possible to build an index (other than adjacency
list) over each cluster to facilitate subgraph matching, it is
outside the scope of this paper.

1) Building Blocks of Schemaless-Evaluation (SE):
OptimalEvaluation and SchemalessEvaluation rely on two new
operations: prune (Def. 8) and clustered-match (Def. 9). Prune
corresponds to Step 1 of OptimalEvaluation, while clustered-
match corresponds to Steps 2 and 3.

Definition 8: Given a clustering P of an RDF graph and a
BGP @), a prune of P with respect to ), which is denoted by
oq(P), is defined as og(P) = {PeP | [Q]r #0}.

The key aspect of prune is that unless there is a subgraph
in a cluster that matches the whole query, that cluster will
be discarded, even if the query has partial matches. We will
exploit this property further when building indexes over the
clusters (cf., Section V-5).

Definition 9: Let (Q be a BGP, P be a clustering of an
RDF graph G and P’ C IP. The clustered-match of Q over I/,

denoted as Q|P’], is defined by [Q|P'|]c = Upcp [Q] P

Clustered-match is different from standard match in that
[Qle = [Q|P]]e will hold only if every subgraph of G
that matches () is contained in at most one cluster in P.
Note that this is exactly the objective of the group-by-query
clustering (cf., Section IV). Thus, for most queries in the
workload, we expect to rely on OptimalEvaluation to compute
the correct query results. Of course, for cases when the
clustering algorithm achieves its objective only partially, the
query will have to be decomposed into smaller segments
(cf., SchemalessEvaluation) such that for each segment @,
[Qi]le = [Qi|P]]¢ holds. To determine a good decomposition
(ideally, one with the least number of segments), we start with
a decomposition that always produces the correct query result
regardless of how the RDF graph is clustered, and compute
a better decomposition by dynamically analyzing the current
state of the clustering. Next, we formalize these concepts. We
start by defining so called SE expressions.

SE expressions can be defined recursively. Given a BGP ()
and a clustering of an RDF graph P, Q|P| and Q|og(P)] are
SE expressions (they correspond to Steps 1 and 2 of Optimal-
Evaluation, respectively). If M; and M, are SE expressions,
then so are (M; U My) and (M7 > M) (they correspond to
Step 3 of OptimalEvaluation and Step 3 of SchemalessEva-
luation, respectively).

We show that with the the trivial decomposition of a
BGP, in which the BGP is decomposed into its triple patterns
(Def. 10), we can guarantee the construction of an SE expres-
sion M such that [Q]¢ = [M]¢g for any BGP @ and any
clustering P of an RDF graph G (Theorem 1). We call this
expression the baseline SE expression (Def. 11).

Definition 10: Given a BGP Q = (V, E), then the trivial
decomposition of () is defined as the set @ = {Q1,...,Qx} of
BGPs, where each @Q; € Q contains exactly one edge, the set of

k k

edges in each Q; are disjoint, V = |J V(Q:), E = | E(Q;).
=1 =1

Definition 11: Let () be a BGP, let G be an RDF graph,

and let P be a clustering of G. If {Q1,...,Qx} is the trivial

decomposition of @, then the baseline SE expression for @
over P is Q1P| >+ <1 Qp | P].

Theorem 1: Given a BGP (), an RDF graph G and a
clustering P of G, [Q]¢ = [M] g, where M is the baseline
SE expression for Q over PP.

The proof of Thm. 1 and all subsequent proofs are in the
extended version of our paper [31].

2) Query Rewriting Rules: To realize the aforementioned
rewrite of the baseline expression into an equivalent expression
with fewer number of join operations, we introduce equiva-
lence rules that are in two categories: generic and conditional.
Generic rules are applicable irrespective of how the RDF graph
is clustered, whereas the applicability of a conditional rule
depends on whether the clustering satisfies certain conditions.

Assuming @ 4 and @) are two BGPs, let P be a clustering
of an RDF graph with subsets Py,...,P,, (P; C P for all



Name Equivalence Rules Condition
m
1 Expansion [QalP]] = U [QalP;i]] ‘U1 P, =P
2 | Join elimination* [QalPy] < QB [P2]] =0 Thm. 2
3 | Join reduction*® [QalP1] < Qp|P1]] Thm. 3
=[(Qa®Qs)(P1]]
4 | Identity (><) QD=0 =0 Q1,Q0,Q3
5 | Identity (U) QUDI=0UQ = are sets of
6 Associativity (><1) Q1 > (22 > Q3) solution
= (21 Q) Q3 mappings
7 | Associativity (U) Q1 U (22 U03)
= (2 UQ2)UQs
8 | Distributivity Q1 > (Q2 U Q3)
(> over U) = (Ql [ QZ) U (Ql > Qg)
9 Reﬂexivily Q1 <1 Qo = Qo 1 Q1

TABLE II: Equivalence rules that are applicable to the eval-
vation of SE expressions (Py,...,P,, represent sets of RDF

graphs).

i €{1,...,m}). Table II lists the equivalence rules. Rules 1-
3 are specific to the clustered-match operation, whereas rules
4-9 are derived from SPARQL algebra [35]. Rules that are
marked with an asterisk (*) are conditional. Observe that the
expansion rule relies on a condition that is independent of the
way the graph is clustered. In other words, for any clustering
P of an RDF graph, one may generate some Py, ... ,P,,, such
that the condition is satisfied. On the contrary, we shall see
that the conditions in join elimination and join reduction are
directly related to the way the graph is clustered; therefore,
they need to be checked every time a query is evaluated. The
following two theorems formalize these conditions and show
their correctness.

Theorem 2: Given a clustering P of an RDF graph G
and two BGPs Q4 and Qp with V(Q4) N V(Qgp) # 0,
let I = U Py, P;)EPy xPs V(P;) N V(P;), where P1,P; C P.
Then, [[QA [Py [ = Qp|P2]]c = 0 if, for each vertex v € I,
there exists a vertex 0 € V(Qa) N V(QB) and an edge
€ € inc(Qa,v)Uinc(Qp, 0) such that é is not compatible (cf.,
Def. 3) with any edge in Jpp, p, inc(P,v), where inc(G, v)
denotes the set of edges that are incident on a vertex v.

Definition 12: Given two BGPs Q4 and (Qp, we define
the concatenation of Q4 and Qp, denoted by Q4 © Qp, as
a BGP Q = (V,E) such that (i) V =V (Q4)UV(Qp) and

(i) B = E(Qa) UE(Qp).
Theorem 3: Given a clustering P of an RDF graph G and
two BGPs Q4 and Qg with V(QA)NV(Qp) # 0, [Qa|P]
BlP|le = [(Qa®QpB)|P|]¢ if, for each vertex v such
that | cont(P,v)| > 1 (where cont(PP,v) denotes the subset of
clusters in PP that contain v), either

(i) there exists a vertex ¥ € V(Qa) N V(Qp) and an
edge é € inc(Qa,v) U inc(@p,?) such that é is not
compatible with any edge from |Jpcp inc(P,v), or

(ii) there exists a single cluster P & P such that for
every edge e € Upep inc(P,v) and for every vertex
0 € V(Qa) NV(Qp), if e is compatible with an edge
from inc(Qa4, ) Uinc(Qp,d), then cont(P,e) = {P}.

Let QQ be Q4 ® QB (i.e., the concatenation of two BGPs).
Theorem 3 formalizes that if () does not have any matching
subgraph that spans multiple clusters, then () can be evaluated
by (i) computing the matching subgraphs of ¢ within each
cluster in isolation, and (ii) taking the union of the results from

inc(P,v1) | inc(P,v2) | inc(P,vs) in inc(P, va)
A A A B

vl — V2 Vo < V1 v3 — Vg P V4 —r V11
A B B e}

vl — Vg vy —> U3 V3 < V2 P2 V4 < V3
B B C C

v — U5 vy — Uy V3 — Vg Py vy — “107

C C
vy — U7 vy —vig P

TABLE III: Incident edges on v;—v,4 in Clustering A (Fig. 3¢)

/N '><‘/ > \

B \ /\ /
/\ Q1) Q2] Qs b \ - \
/
1Q
|

[Q1] Q2] 1@Qs] \ N\
| | | [P ] \ [Q1] [Q2] |Q3](|[@Q1] [Q2] [1Q3)
9Q:1 9Q2 9Qs - ‘ ‘ ‘ ‘ ‘
l l l Py Po| | P Py PP P | Py
W’—T join reduction join
elimination
(@ (b) (©)

Fig. 5: Tllustration of query rewriting and optimization.

step (i), thereby omitting the join. Thus, if partial matches
of Q4 and QB do not join across clusters, query evaluation
can be simplified. Condition (i) guarantees that clusters in
consideration do not share common vertices (or if there are
such vertices then they are not related to the evaluation of Q));
and condition (ii) says that if there is such a vertex, the edges
incident on that vertex do not match the query edges. Under
these circumstances, () cannot have any matching subgraph
that spans multiple clusters and the join can be eliminated.

Let us revisit the earlier query evaluation example and
demonstrate how join reduction can be applied to the

. A B C
schemaless-evaluation of query 7w —7x —7?y —7z over the
clustering in Fig. 3c. The baseline SE expression for this BGP
is Q1P| > Qo|P| s Q3|P), where 2w ‘7z, 7z 7y,
Ty .2 are the three BGPs @1, Q2 and Q3 in the trivial
decomposition of the query, and P consists of P; and P» in
Fig. 3c. For simplicity, we ignore prune operations for now.
If [Q2|P] < Q3|P]¢ = [(Q29Q3)|P]]. this baseline SE
expression can be rewritten as Q1|P] <t (Q2®Q3)|P]. For
the given clustering, the four vertices vy, vs, v3 and vy exist in
multiple clusters. Therefore, we need to check the conditions
in Theorem 3. Note that inc(Q2, 7y) Uinc(Qs, ?y) consists of
two edges, namely, (?x, B, ?y) and (?y, C,?z). Condition (i)
holds for v; because (?y,C,?7z) is not compatible with any
of the edges in inc(P,vy), which is illustrated in Table III.
For vq, (?y, B, ?7z) is not compatible with any of the edges in
inc(P,v9) due to the direction of edges. The same argument
applies to vy4. Regarding vs, both (?x, B, ?y) and (?y,C,?72)
have at least one compatible edge; therefore, we also need
to check condition (ii) for vs. Since all compatible edges are
from the same cluster, namely, P», the baseline SE expression
can be simplified to Q1[P] > (Q2 ® Q3)|P|. Continuing
with the process, the expression can be further simplified to

(Q19Q2DQ3)|P].

3) Query Rewriting Algorithm: The algorithm for rewrit-
ing a baseline SE expression proceeds in three phases.



We describe this algorithm using the example illustrated in
Fig. 5. Consider a baseline SE expression: Q1|og, (P)] <
Q2100,(P)| > Q3|0q,(P)] (Fig. 5a). First, the joins in the
baseline expression are reordered according to their estimated
selectivities [36]. Second, by using generic equivalence rules,
the expression is transformed into a canonical form. An SE
expression is in canonical form if it consists of the union of a
set of sub-expressions 71 U- - -UT,,,, where each sub-expression
is made up of the exact same set of clustered-match operations,
which differ only in the clusters they operate on.

To compute the canonical SE expression, first, each prune
operation is evaluated, producing multiple sets of clusters with
one set for each prune operation (Fig. 5b). As illustrated in
Fig. 5b, these sets of clusters are factorized into maximal com-
mon subsets such that factorization produces as few segments
as possible. For example, let P = {P,, Py, P., Py} denote the
set of clusters in the example; and assume that {P,, P,} is a
prune of P with respect to @ and {P,, Py, Py} and {P,, P,}
are prunes with respect to Q2 and )3, respectively. Then,
P, = {P,,P,} and Py = {P,;} are the maximal common
subsets. In the next step, each clustered-match operation is
expanded across the corresponding subsets of clusters using
Rule 1. Rules 4-9 are applied to the nodes of the expression-
tree in a bottom-up fashion, which is repeated until no further
rewriting is possible. At this stage, the canonical expression is
produced (Fig. 5c¢).

In the third phase, each sub-expression in the canonical
form is optimized independently using conditional rules (i.e.,
Rules 2-3) as well as Rules 4-9. In this regard, join reduction
and join elimination are applied recursively to the nodes of
each sub-expression until the original query is decomposed
into as few segments as possible. The right-hand side of union
is eliminated using join elimination (Fig. 5¢) and the remaining
expression is simplified to (Q1 ® Q2@ Q3)|S1] using join
reduction.

For a given BGP, an SE expression is generated (which of
the equivalent expressions the system chooses is the topic of
Section V-2). Fig. 5a illustrates a tree representation of such an
SE expression. Then, each sub-expression of the form o, (P)
is evaluated by pruning out the irrelevant clusters using the
cluster index (Fig. 2b). Consequently, each sub-expression of
the form Q;|oq,(P)] is simplified to Q;|P;], where P; C PP.
Then, for each resulting sub-expression Q;|P; |, (i) the sub-
expression is evaluated in isolation on each cluster using a
standard subgraph matching technique [29], and (ii) the results
from each evaluation are unioned. In the subsequent steps,
intermediate tuples from the evaluation of each sub-expression
are joined or unioned according to the standard definitions in
SPARQL algebra [30].

4) Spill Index: We maintain information that is relevant
to the computation of conditional equivalence rules in the
spill index (cf., Fig. 2b). The spill index is constructed in a
lazy fashion. As the baseline expressions are rewritten, more
information is uncovered about the clusters in the underlying
representation such as the vertices the clusters have in com-
mon, the labels of the edges that are incident on these vertices,
etc (cf., Table III). Consequently, this information is utilized to
more efficiently rewrite the subsequent baseline expressions.

5) Cluster Index: To prune the clusters irrelevant to a
query, we employ another index, called the cluster index (cf.,
Fig. 2b). The cluster index is also constructed in a lazy fashion,
which is similar to database cracking [37].

Before any query is evaluated, the cluster index consists of
a doubly-linked list of pointers to all of the clusters. Initially,
the index does not assume anything about the contents within
each cluster. However, as queries are evaluated, it uncovers
more information about the clusters and indexes them as
follows: When the first BGP, say Q"' is evaluated, the list is
divided into two segments, namely, P; and P, such that every
cluster that lies to the left of a pivot has matching subgraphs
for the BGP, whereas those to the right do not. The overhead
of restructuring the list is small. Note that the list has to be
traversed anyway to compute the matching subgraphs; while
doing so, clusters can be reordered in-place and in one pass
over the list. For the next BGP, QQ, there are three possible
scenarios: (i) If Q2 is the same as Q', query results can be
computed directly from the clusters in P;, which does not need
to be divided any further. (ii) If Q? is a strict supergraph of Q*,
a subset of clusters in [P; are relevant. Therefore, IP; needs to
be traversed and divided into two segments: P; ; and IP; ,. like
previously. (iii) For all other cases, potentially some clusters
in both P; and P,. have matching subgraphs of 2. Therefore,
both lists need to be traversed and divided further.

As the list of cluster pointers gets divided into multiple
segments, we keep track of the segments that are relevant to
the particular queries using a decision tree. For every segment
of clusters that contain at least one matching subgraph for any
BGP in the decision tree, we also maintain two second-tier
indexes. The vertex-index is a hash table that maps URIs to
the subset of clusters that contain vertices of that URI. The
range-index keeps track of the minimum and maximum literal
values within each cluster for each distinct predicate, and it
works as a filter when clusters are traversed.

6) Benefits: In Section 1V, we introduced the group-by-
query representation and showed its advantages using two
contrasting examples. We also described a practical clustering
algorithm to compute a good group-by-query representation.
In Section V, we demonstrated that a poorly designed query
evaluation algorithm could easily diminish the benefits of
clustering, even if the clustering were to be perfect. Therefore,
we introduced schemaless-evaluation, which is specifically
optimized for the group-by-query representation.

Schemaless-evaluation offers important advantages. First
of all, it is possible to compute a clustering such that most
of the queries in a workload do not require join operations
across clusters. Even in the worst case when a query cannot be
rewritten as any other expression, the baseline SE expression
still guarantees correct results, thereby providing flexibility to
compute a clustering that favors the most frequent queries in
a workload and allowing the clustering to be updated as these
frequencies change.

Second, we limit the scope of subgraph matching to
contents within each cluster, thereby providing isolation with
significant benefits. Since clusters are now truly isolated from
each other, new clusters can be added and existing clusters
can be split or merged without affecting the integrity of query
evaluation on other parts of the graph. Consequently, query



TABLE IV: Overview of our experimental evaluation using WatDiv stress testing tool
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(b) For each query template, comparison of CDB against fastest
and slowest systems at WatDiv 100M RDF triples

Fig. 6: Detailed results

evaluation can be more easily interleaved with re-clustering of
the graph, which is one of the key objectives of our work.
There is also an opportunity for parallelization—subgraph
matching can be performed concurrently on multiple clusters.

Third, when determining whether or not a cluster contains
a subgraph that matches a query, the index needs to consider
only the subgraphs that reside within a single cluster.

VI. EXPERIMENTAL EVALUATION

For experiments, we use a commodity machine with AMD
Phenom II x4 955 3.20 GHz processor, 16 GB of main
memory and a Seagate 3.AA hard disk drive with 100 GB of
free disk space. The operating system is Ubuntu 12.04 LTS.

For our evaluations, we primarily use the Waterloo
SPARQL Diversity Test Suite (WatDiv) because it facilitates
the generation of test cases that are far more diverse than any
of the existing benchmarks [11]. In this regard, we use the
WatDiv data generator to create two datasets: one with 10
million RDF triples and another with 100 million RDF triples
(we observe that systems under test (SUT) load data into main
memory on the smaller dataset whereas at 100M triples, SUTs
perform disk I/0). Then, using the WatDiv query template
generator, we create 125 query templates and instantiate each
query template with 100 queries, thus, obtaining 12500 queries
(http://db.uwaterloo.ca/watdiv/stress- workloads.tar.gz).

The primary objective of our experimental evaluation is
to quantify the benefits of the group-by-query clustering

over fixed, workload-oblivious representations. Therefore, we
compare chameleon-db (CDB) [31], which is our prototype
implementation of the group-by-query clustering approach,
with five popular systems, namely, RDF-3x [7], MonetDB [17],
4Store [18] and Virtuoso Open Source (VOS) versions 6.1 [19]
and 7.1 [8]. RDF-3x follows the single-table approach and
creates multiple indexes; MonetDB is a column-store, where
RDF data are represented using vertical partitioning [5]; and
the last three systems are industrial systems. Both 4Store and
VOS group and index data primarily based on RDF predicates,
but VOS 6.1 is a row-store whereas VOS 7.1 is a column-store.
We configure these systems so that they make as much use of
the available main memory as possible.

We evaluate each system independently on each query
template. Specifically, for each query template, we first warm
up the system by executing the workload for that query
template once (i.e., 100 queries). Then, we execute the same
workload five more times (i.e., 500 queries). We report average
query execution time over the last five workloads.

Our prototype starts with a completely segmented cluster-
ing, where each cluster consists of a single triple. For reasons
discussed throughout the paper, this clustering is bad for almost
any type of workload: it potentially leads to defragmentation,
poor data localization and generation of irrelevant intermediate
result tuples. For each query template, we let chameleon-db
execute the first 100 queries using this suboptimal clustering,
but set a timeout threshold of 30 minutes. If the system
manages to execute the first 100 queries within the timeout



TABLE V: Experimental evaluation over a crawl of the DBpedia dataset
execution time is reported in milliseconds.

. For each query template, mean (geometric) query

Q1 Q2 Qs Qa Qs Qe Qr Qs Qo Q1o Qi1 Q12 Qis Qiq
RDF-3x 3.5 257.7 8.1 11.8 13.1 22.8 31.6 98.4 5761.9 81.4 17.0 21.8 21.4 38.0
VOS [7.1] 12.2 19.8 2.8 4.4 13.6 28.4 24.2 27.8 6359.6 13.3 19.3 29.9 27.8 14.1
MonetDB 41.2 29.9 27.9 22.8 54.0 57.3 30.6 60.3 1700.0 99.3 47.6 113.4 39.9 46.9
4Store 767.6 1176.7 502.9 519.7 550.8 739.8 1006.9 689.6 30953.5 557.6 537.4 495.5 489.5 512.6
CDB 4.0 35.1 0.6 0.8 0.8 20.9 N/A 392.3 N/A N/A N/A 1.3 1.5 N/A

threshold, then after the execution of the 100*" query, we
allow the storage advisor to compute a better group-by-query
clustering (on average, computation of the group-by-query
clustering takes 317.6ms on the larger dataset). In that case,
the last 500 queries are executed over the group-by-query
clustering presented in Section IV.? This way, with the given
timeout threshold, we were able to collect results for a majority
of 92 query templates over the smaller dataset and 76 query
templates over the larger one. In the remainder of this section,
we focus on only these query templates.

Note that the time to update the underlying physical
representation is reflected in the execution times of the first
few of the last 500 queries (cf., Section IV-3). Furthermore,
for the first few queries, indexes are not yet fully constructed
and the cache can be cold. In particular, we observe that query
execution times can improve by an order of magnitude once
the indexes are fully constructed and the cache is warm.

Table IV demonstrates that with the group-by-query clus-
tering, it is possible to achieve significantly better, consistent
performance across a diverse selection of queries than any
of the workload-oblivious approaches that we have compared
with. That is, for both datasets, our prototype performs better
with the lowest mean query execution time. Furthermore, for
the 10M dataset, chameleon-db is the fastest system for over
80% of the considered 92 query templates.

Fig. 6a and 6b depict the absolute mean query execution
times for each query template. To avoid cluttering the charts,
for each query template, (in addition to chameleon-db) we
display data points for only the fastest and the slowest systems
among RDF-3x, MonetDB, 4Store, VOS [6.1] and VOS [7.1]
for that particular query template, where the fastest system
for one query template is not necessarily the same as that
for another query template (cf., Fig. 1 and Table IV). It is
important to note that for query templates in which chameleon-
db is not the fastest system (i.e., the right hand sides of
Fig. 6a and 6b), it is still orders of magnitude faster than the
slowest system. On the other hand, going from the smaller
dataset to the larger, we observe a decrease in the percentage of
queries for which chameleon-db is fastest. Next, we investigate
this issue to prioritize potential future work.

First, we quantify how much the group-by-query clustering
improves performance and try to see if there are any anomalies
specific to the 100M triples dataset. We observe that with
group-by-query clustering, there is significant reduction in
mean query execution time, and the scale of this reduction is
consistent in both datasets. Specifically, for 10M triples, query
execution becomes faster by a factor of 5.0 (from a geometric

2Improving system performance for the completely segmented clustering or
choosing a different initial clustering is beyond the scope of this paper.

mean of 23.5ms to 4.7ms), and for 100M triples, it becomes
faster by a factor of 4.8 (from a geometric mean of 195.0ms
to 40.4ms). This rules out any major anomalies.

Second, we divide the queries into two groups: (i) those for
which our prototype was the fastest, and (ii) all the remaining
ones. We analyze the query logs, where we keep track of which
query plan the system is using (i.e., OptimalEvaluation vs.
SchemalessEvaluation) for a particular query, as well as
the mean group-by-query cluster size (i.e., in terms of the
number of triples) at the time that query is being evaluated.
We make two important observations (for the 100M triples
dataset): (i) in the second group, the mean cluster sizes are
about an order of magnitude larger than those in the first
one; and (ii) for the first group, 82.9% of the queries have
been evaluated with OptimalEvaluation, whereas only 29.7%
of queries have been evaluated with OptimalEvaluation in
the second group. Upon further manual inspection, we also
note that in some problematic cases, it would have been
possible to choose OptimalEvaluation if we had stronger but
potentially more compute-intensive conditional equivalence
rules (cf., Section V-2). Consequently, as future work, better
data structures can be developed to improve performance of
subgraph matching within each cluster, especially when the
clusters are large (cf., Q4 in Section V). Moreover, query
rewriting rules can be extended.

Third, cache misses can lead to disproportionately large
increases in query evaluation time; therefore, it is important
that the system takes full advantage of the group-by-query
clustering. One problem that we have omitted in this paper is
the serialization of clusters across the storage system. That is,
the algorithm in Section IV deals with the problem of placing
triples in clusters, but it does not consider the latter problem.’
Consequently, techniques can be developed as part of future
work to decide how clusters should be serialized.

We repeat our evaluations also on a crawl of the DBpedia
dataset* [38]. We focus on BGPs in this paper, therefore, we
utilize the query logs provided by the benchmark to extract
14 BGP templates®. Note that most queries in the DBpedia
query logs are repetitive and a large portion of the queries
consist of only a single or few triple patterns. To avoid bias, for
queries having 3-10 triple patterns, we pick the most frequent
templates and then instantiate each query template with 25
queries, making sure that there is at least one instantiation
(per template) that returns a non-empty result.

Our evaluations on DBpedia are consistent with those on
WatDiv: (i) for workloads in which chameleon-db completes

3We serialize clusters in the order they are updated, which can be random.
“http://benchmark.dbpedia.org/benchmark\_50.nt.bz2
Shttps://cs.uwaterloo.ca/~galuc/files/dbpedia-test-queries.tar.gz



its warm-up phase without timing out, group-by-query cluster-
ing can achieve consistently good performance (cf., Table V),
and (ii) chameleon-db times out on some workloads before
re-partitioning kicks in due to similar reasons discussed for
the WatDiv experiments. One difference is that we observe
less variation among systems’ query execution times across
the workloads, which is consistent with our observation that
DBpedia queries are not as diverse as WatDiv queries [11].

VII. CONCLUSIONS

In this paper, we develop a schemaless group-by-query
representation for RDF data. The main advantage of this
representation is that it is workload-driven, allowing the
adjustment of physical data structures and indexes in the
database according to the queries that are being executed
in the database system. We also propose query optimization
techniques that work effectively with our schemaless group-
by-query representation that do not sacrifice correctness while
supporting workload-awareness. Through implementation of
our techniques in our system prototype chameleon-db and ex-
perimental evaluation against five workload-oblivious systems,
we show that chameleon-db generally outperforms these other
systems across a diverse selection of queries by a significant
margin. Our future work consists of three milestones (some of
which are discussed in more detail in [16]): (i) interleaving
clustering with query evaluation so that re-clustering can take
place after the execution of each query; (ii) improving the
cluster index; and (iii) adaptively co-clustering group-by-query
clusters on the storage system.
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