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ABSTRACT
Today, a common methodology for testing a database management
system (DBMS) is to generate a set of test databases and then exe-
cute queries on top of them. However, for DBMS testing, it would
be a big advantage if we can control the input and/or the output
(e.g., the cardinality) of each individual operator of a test query for
a particular test case. Unfortunately, current database generators
generate databases independent of queries. As a result, it is hard to
guarantee that executing the test query on the generated test data-
bases can obtain the desired (intermediate) query results that match
the test case. In this paper, we propose a novel way for DBMS
testing. Instead of first generating a test database and then seeing
how well it matches a particular test case (or otherwise use a trial-
and-error approach to generate another test database), we propose
to generate a query-aware database for each test case. To that end,
we designed a query-aware test database generator called QAGen.
In addition to the database schema and the set of basic constraints
defined on the base tables, QAGen takes the query and the set of
constraints defined on the query as input, and generates a query-
aware test database as output. The generated database guarantees
that the test query can get the desired (intermediate) query results
as defined in the test case. This approach of testing facilitates a
wide range of DBMS testing tasks such as testing of memory man-
agers and testing the cardinality estimation components of query
optimizers.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—Testing
tools; H.2.4 [Database Management]: Systems—Query process-
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General Terms
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Keywords
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Figure 1: A test case: a query with operator constraints

1. INTRODUCTION
When introducing a new component or technique into a DBMS,

it is often necessary to validate its correctness and evaluate the rel-
ative system improvements under a wide range of test cases and
workloads. Today, a common methodology is to first generate a
comprehensive set of test databases and then execute many test
queries over the generated databases to compare the system be-
havior before and after the new component is incorporated. For
generating test databases, current database generation tools allow
a user to define the sizes and the data characteristics (e.g., value
distributions and inter/intra-table correlations) of the base tables.
Examples include IBM DB2 Database Generator [2], DTM Data
Generator [1], MUDD [24], or some research prototypes such as
[16], [17] and [7]. Based on the generated test databases, the next
step is to either create test queries manually, or stochastically gener-
ate many valid test queries by query generation tools such as RAGS
[23] or QGEN [22] and execute them to test the system.

Unfortunately, the current testing approach is inadequate to test
individual DBMS components because very often it is necessary
to control the input/output of the intermediate operators of a query
during a test. For example, assume that we want to test how a newly
designed memory manager in a DBMS influences the correctness
and/or the performance of multi-way hash-join queries (i.e., how
the per-operator memory allocation strategy affects the resulting
execution plans). Figure 1 shows a sample test case (figure ex-
tracted from [8]) that is used for testing. A test case is a parametric
queryQP with a set of constraints defined on each operator. In Fig-
ure 1, the test query of the test case first joins a large filtered table
S with a filtered tableR to get a small join result. Then the small
intermediate join result is joined with a filtered tableT to obtain a
small final result. Since the memory requirements of a hash join
is determined by the size of its inputs, it would be beneficial if we
can control the input/output of each individual operator in the query
tree. For example, the memory allocated to1S.attr6=T.attr7

by the
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Figure 2: The DBMS testing problem.

memory manager, can be studied by defining the output cardinality
constraint on the joinσ(R) 1 σ(S) and the output cardinality con-
straint onσ(T ) in the test case. However, although we can instruct
the database engine to evaluate the test query by a specific physical
evaluation plan (e.g., fixing the join order and forcing the use of
hash-join as the join algorithm), there is currently no easy way to
control the intermediate results of a query.

[The DBMS Testing Problem] The DBMS testing problem is to
guarantee that executing a test query on a test database can ob-
tain the desired intermediate query results (e.g., output cardinal-
ities, join distributions) that are defined by the test case. Figure
2 illustrates the problem in a conceptual way. In Figure 2(a)-(d),
there are two test cases,T1 andT2 (denoted by dots); and there
are three generated test database instances (denoted by squares)
in Figure 2(a)-(c) respectively. In general, a good test database
should cover the test cases (i.e., the database content is possible to
give the desired intermediate query results for a test query when
the query is executed on it). However, in traditional test database
generation, the generation process does not take the queries into
account. Therefore, it is hard to guarantee that executing the test
queryQP on the generated database can obtain the desired (inter-
mediate) query results defined by the test case. Figure 2a shows
this problem. The three generated test databases (Database 1, 2,
and 3) do not cover the test caseT2 at all (i.e., executing the test
query ofT2 on Database 1, 2, and 3 can never fulfill the constraints
defined byT2). Furthermore, even if a test database covers a test
case (e.g., Database 1 coversT1), it is difficult to manually find the
correct parameter valuesP of the test query such that the resulting
query matches the constraints defined by the test case. For instance,
it is unlikely that instantiating the test queryQP in Figure 2a with
three sets of parameter valuesP ′, P ′′, P ′′′ manually can match the
requirements of test caseT1.

Given a test database, query generation tools such as RAGS and
QGEN generate many queries in order to cover a variety of test
cases. However, RAGS and QGEN were not designed for testing
an individual DBMS component. To test an individual DBMS com-
ponent, the desired test query is usually given by a tester (e.g., the
query in Figure 1). In this situation, RAGS and QGEN would re-
quire an extremely large amount of time to generate a query that
matches the test query and the requirements of the test case (see
Figure 2b). In addition, RAGS and QGEN also rely on what data-
bases they are working on or otherwise they never can generate a
test query that matches the test case (e.g.,T2).

The importance of this DBMS testing problem has been pointed
out by Bruno et al. [8]. Given a test databaseD, a parametric
conjunctive queryQP , and cardinality constraintsC over the sub-
expressions ofQP , they studied how to find the parameter values
P of QP such that the output cardinality of each operator inQP

fulfills C. In their pioneering work, they found that their problem
is NP-hard. Their approach is illustrated in Figure 2c. Given the
predefined test databases (e.g., Database 1, 2, and 3), it may be
possible that there are no parameter values that can let test query
QP match the requirements defined by test caseT2. Furthermore,
even if a test database covers a test case (e.g., Database 1), since the
solution space is too large, they can only search for approximate so-
lutions (i.e., finding parameter values that make the resulting query
with cardinalities on operators close to those specified by the test
case) for select-project-join queries with only single-sided predi-
cates (e.g.,p1 ≤ a or a ≤ p2) or double-sided predicates (e.g.,
p1 ≤ a ≤ p2) (wherea is an attribute andp1 andp2 are parameter
values).

We observe that the test database generation process is the main
culprit of ineffective DBMS testing. Currently, test databases are
generated without concerning the test queries. Thus the generated
databases cannot guarantee that executing the test query on them
can obtain the desired (intermediate) query results defined by the
test case. Therefore, the only way for meaningful testing is to do
a painful trial-and-error test database generation process (e.g., gen-
erate Database 3, 2 and then 1 to find a database that matchesT1 in
Figure 2(a)-(c)), and execute queries generated by RAGS/QGEN,
or execute test queries with parameters instantiated by [8].

[Contributions] In this paper, we address the DBMS testing prob-
lem in a different and novel way: instead of first generating a test
database and then seeing if it is possible for the test query to obtain
the desired query results that match the test case (otherwise use a
trial-and-error approach to generate another test database), we pro-
pose to generate a specific test database tailored for each test case
(see Figure 2d). To that end, we present a Query-Aware database
Generator (QAGen). Given a database schemaM , a parametric
queryQP , and a set of user-defined constraints on each query oper-
ator, QAGen directly generates a databaseD and query parameter
valuesP such that executingQP with parameter valuesP on D

guarantees that the user requirements imposed on the query opera-
tors are fulfilled. QAGen can generate test databases for a variety
of complex queries such as TPC-H queries (although we will show
that some rare cases are stillNP-hard so that we proposed different
algorithms to solve them). The test databases generated by QAGen
can be used in a number of ways in DBMS testing. For example,
in addition to testing the memory manager, we can use QAGen to
generate a test database that guarantees the size of the intermediate
join results to test the accuracy of the cardinality estimation com-
ponents (e.g., histograms) inside a query optimizer by fixing the
join order.1 As another example, we can use QAGen to generate
a test database that guarantees the input and the output sizes (the
1However, it is inapplicable to test the join reordering feature of a query
optimizer directly because in this case thephysicaljoin ordering should not
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number of groups) for an aggregation operator (GROUP-BY) in
order to evaluate the performance of the aggregation algorithm un-
der a variety of cases (e.g,. in multi-way join queries or in nested
queries).

Another contribution of QAGen is the novel way of defining the
test database. Traditional database generators (e.g., [7, 4, 17, 1,
2]) allow constraints to be defined only on the base tables (e.g., a
join distribution is defined on the base tables). As a result, a tester
cannot specify operator constraints (e.g., the output cardinality of
a join) in an intrinsic way. QAGen allows a user to annotate con-
straints on each operator and base tables directly, and thus the users
can easily get a meaningful test database for a distinct test case.

Sometimes it would be advantageous to add new kinds of con-
straints to an operator in addition to the cardinality constraint dur-
ing testing. For instance, the aggregation (GROUP-BY) operator
may not only need to control the output size (i.e., the number of
groups), but may also need to control how to distribute the input to
the predefined output groups (i.e., some groups have more tuples
while others have fewer). QAGen is designed to be extensible in
order to incorporate new operator constraints easily.

[Roadmap] The remainder of this paper is organized as follows:
Section 2 gives an overview of QAGen. Section 3 and 4 describe
the algorithms used in QAGen. Section 5 presents the experimen-
tal results. Section 6 discusses related work. Section 7 contains
conclusions and suggestions for future work.

2. QAGEN OVERVIEW
The data generation process of QAGen consists of two phases:

(1) the symbolic query processing (SQP) phase, and (2) the data in-
stantiation phase. The goal of the symbolic query processing phase
is to capture the user-defined constraints on the query into the target
database. To process a query without concrete data, QAGen inte-
grates the concept of symbolic execution [18] from software engi-
neering into traditional query processing. Symbolic execution is a
well known program verification technique, which represents val-
ues of program variables with symbolic values instead of concrete
data and manipulates expressions based on those symbolic values.
Borrowing this concept, QAGen first instantiates a database which
contains a set of symbols instead of concrete data (thus the gener-
ated database in this phase is called asymbolic database). Figure 3
shows an example of a symbolic database with threesymbolic rela-
tionsR, S andT . Essentially, a symbolic relation is just a normal
relational table which consists of a set ofsymbolic tuples. Inside
each symbolic tuple, the values are represented bysymbolsrather
than by concrete values. For example, the symbola1 in the sym-
bolic relationR in Figure 3 represents any value under the domain
of attributea. The formal definition of these symbolic database re-
lated terms will be given in Section 3. For the moment, let us just
treat the symbolic relations as normal relations and imagine the

be fixed by the tester; and the intermediate cardinalities guaranteed by QA-
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plan with different intermediate results.
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symbols as variables. Since the symbolic database is a generaliza-
tion of relational databases and provides an abstract representation
for concrete data, this gives room to QAGen to control the output
of each operator of the query.

The symbolic query processing phase leverages the concept of
traditional query processing. First, the input query is analyzed by
aquery analyzer. Then, the user specifies her desired requirements
on the operators of the query tree. Afterwards, the input query is
executed by asymbolic query enginejust like in traditional query
processing; i.e., each operator is implemented as an iterator, and the
data flows from the base tables up to the root of the query tree [15].
However, unlike in traditional query processing, the symbolic ex-
ecution of operators deals with symbolic data rather than concrete
data. Each operator manipulates the input symbolic data according
to the operator’s semantics and the user-defined constraints, and in-
crementally imposes the constraints defined on the operators to the
symbolic database. After this phase, the symbolic database is then
a query-aware database that captures all requirements defined by
the test case of the input query (but without concrete data).

The data instantiation phase follows the symbolic query process-
ing phase. This phase reads in tuples from the symbolic database
that are prepared by the symbolic query processing phase and in-
stantiates the symbols in the tuples by a constraint solver. The in-
stantiated tuples are then inserted into the target database.

To allow a user to define different test cases for the same query,
the input query of QAGen is in the form of a relational algebra
expression. For example, if the input query is a 2-way join query
(σage>p1

Customer 1 Orders) 1 Lineitem, then the user can
specify a distribution (e.g., a Zipf distribution) between the lineit-
ems and the orders that join with customers with an age greater
than p1. On the other hand, if the input query is(Orders 1

Lineitem) 1 σage>p1
Customer, then the user can specify the

join distribution between all orders and all lineitems.
Figure 4 shows the general architecture of QAGen. It consists of

the following components: a Query Analyzer, a Symbolic Query
Engine, a Symbolic Database and a Data Instantiator.

2.1 Query Analyzer
At the beginning of the symbolic query processing phase, QA-

Gen first takes a parametric queryQP , the database schemaM as
input. The queryQP is then analyzed by the query analyzer com-
ponent in QAGen. The query analyzer has two functionalities:

(1) Correct knob selections.It analyzes the input query and deter-
mines whichknob(s)are available for each operator. A knob can
be regarded as a parameter of an operator that controls the output.
A basic knob that is offered by QAGen is the output cardinality
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Figure 5: Symbolic Query Processing Framework of QAGen

constraint.2 This knob allows a user to control the output size of an
operator. However, whether such a knob is applicable depends on
the operator and its input characteristics.

Figure 5 shows the knobs of each operator offered by QAGen un-
der different cases. As an example, for a simple aggregation query
SELECT MAX(a) FROM R, the cardinality constraint knob should
not be available for the aggregation operator (χ), because the output
cardinality is always one ifR is not empty or is zero ifR is empty
(Figure 5 case (f)). As another example, the available knob(s) of an
equi-join (1) that joins two relations (with foreign key constraint
between two tables) depend on whether the input ispre-grouped
or not on the join keys. If the input is pre-grouped, the equi-join
can only offer the output cardinality as a single knob (Figure 5 case
(d)). If the input is not pre-grouped, the user is allowed to tune
the join distribution as well (Figure 5 case (c)). The input of an
operator ispre-groupedon an attributea if and only if there is at
least one symbol which is not distinct ina. Consider the 2-way join
query(R 1b=c S) 1a=e T on the three symbolic relationsR, S,
andT in Figure 3. When the symbolic relationR first joins with
the symbolic relationS on attributeb andc, it is possible to specify
the join distribution. For example, the first tuplet1 of R joins with
the first three tuples ofS (i.e., t3, t4, t5); and the last tuplet2 of
R joins with the last tuplet6 of S (kind of like Zipf distribution
[25]). However, after the first join, the intermediate join result of
R 1 S is pre-grouped on attributea, b andc (e.g., the symbola1
is not distinct on the attributea in the join result). Therefore, if
this intermediate result further joins with the symbolic relationT

on attributea ande, then the distribution cannot be freely specified
by a user, because if the first tuplet11 of T joins with the first tuple
t7 of the intermediate results, this implies thate1 = a1 and thus
t11 must join witht8 andt9 as well.

The above example shows that it is necessary to analyze the
query in order to offer the right knobs to the user. For this pur-
pose, the query analyzer analyzes the input query in a bottom-up
manner (i.e., starting from the input schemaM ) and incrementally
pre-computes the output characteristics of each operator (e.g., an-
notates an attribute of the output of an operator as pre-grouped if
necessary). In the example, the query analyzer annotates the at-
tributesa, b, andc as pre-grouped in the output ofR 1 S. Based
on this information, the query analyzer disables the join distribu-

2The output cardinality of an operator can be specified as an absolute value
or as a selectivity. Essentially they are equivalent.

tion knob on the next equi-join that joins withT . This step is fairly
simple and is based on the work of [19] and [21], and the query ana-
lyzer can do that without analyzing the data. For space reasons, the
details of this step are omitted and interested readers are referred
to [6]. Nevertheless, the query analyzer essentially annotates the
appropriate knob(s) to each operator according to Figure 5. As a
result, the output of the query analyzer is an annotated query tree
with the appropriate knob(s) on each operator.
(2) Assign physical implementations to operators.As shown
above, different knobs are available under different input charac-
teristics. In general, different (combinations of) knobs of the same
operator need separate implementation algorithms. Moreover, even
for the same (combination of) knobs of the same operator, different
implementation algorithms are conceivable (this is akin to tradi-
tional query processing where an equi-join operation can be done
by hash-join or sort-merge join). Consequently, the other function
of the query analyzer is to assign the correct (knob-supported) im-
plementation to an operator. As a result, the output of the query
analyzer is a knob-annotated query execution plan. Section 3 will
present the implementation algorithms for each (knob-supported)
operator in QAGen.

2.2 Symbolic Query Engine and Database
The symbolic query engine of QAGen is the heart of the sym-

bolic query processing phase and it is similar to a normal query
engine. It interprets the knob-annotated query execution plan given
by the query analyzer. Symbolic query execution is also based on
the iterator model [15]. That is, an operator reads in tuples from its
child operator(s) one-by-one, processes each tuple, and returns the
resulting tuple to the parent operator.

Before the symbolic query engine starts execution, the user can
specify the knob value(s) on the available knob(s) of each operator
in the knob-annotated execution plan. It is fine for a user to fill up
values for some but not all knobs. In this case, the symbolic query
engine will evaluate those operators by using default knob values.

Similar to traditional query processing, most of the operators in
symbolic query processing can be processed in a pipelining mode
but some cannot. For example, the aggregation operator with mul-
tiple group-by attributes needs to be implemented as a blocking
operator, and under a special case, the equi-join operator is also a
blocking operator. In these cases, the symbolic query engine mate-
rializes the intermediate results into the symbolic database if nec-



essary. In symbolic query processing, a table in a query tree is
regarded as an operator. During its open() method, the table opera-
tor initializes a symbolic relation based on the input schemaM and
the user-defined constraints (e.g., table sizes) on the base tables.

An operator evaluates the input tuples according to its own se-
mantics. On the one hand, it imposes additional constraints to each
input tuple in order to reflect the constraints defined on the operator
on the data level. On the other hand, it controls its output to its par-
ent operator so that the parent operator can work on the right tuples.
As a simple example, assume the input query is a simple selection
queryσa≥p1

R on the symbolic relationR in Figure 3 and the user
specifies the output cardinality as 1 tuple. Then, if the getNext()
method of the selection operator iterator is invoked by its parent
operator, the selection operator reads in tuplet1 from R, annotates
a positiveconstraint[a1 ≥ p1] to the symbola1 and returns the
tuple 〈a1, b1〉 to its parent. When the getNext() method of the se-
lection operator is invoked the second time, the selection operator
reads in the next tuplet2 from R, annotates anegativeconstraint
[a2 < p1] to the symbola2. However, this time it doesnot return
this tuple to its parent, because the cardinality constraint (1 tuple)
is already fulfilled.

It is worth noting that sometimes a user may specify some con-
tradicting knob values on the knob-annotated query tree given by
the query analyzer. For instance, a user may specify the output car-
dinality of the selection in the above example as 10 tuples even if
she specified the tableR to have two tuples only. During runtime,
when an operator cannot fulfill its output requirements even though
it consumed all the input tuples, then the symbolic query engine
stops processing and returns the corresponding error message to
the user. By referring to the error message, the user can re-tune the
knob values of the corresponding operator(s).

2.3 Data Instantiator
The data instantiation phase starts after the symbolic query en-

gine of QAGen has finished processing. The data instantiator reads
in the symbolic tuples from the symbolic database and instantiates
the symbols inside each symbolic tuple by a constraint solver. In
QAGen, we treat the constraint solver as an external black box com-
ponent which takes a constraint formula (in propositional logic) as
input and returns a possible instantiation on each variable as output.
For example, if the input constraint formula is40 < a1+b1 < 100,
then the constraint solver may returna1 = 55, b1 = 11 as output
(or any other possible instantiation). Once the data instantiator has
collected all the concrete values for a symbolic tuple, it inserts a
corresponding tuple (with concrete values) into the target database.

2.4 QAGen Agenda
In general, a complete QAGen system should cover all SQL op-

erators listed in Figure 5. In this paper, we only present SQL op-
erators that the current version of QAGen supports. They include
selection (σ), projection (π), equi-join (1) and aggregation (χ).
Nevertheless, these are the most commonly used operators today
and they already suffice to cover 13 out of 22 complex TPC-H [4]
queries. In Figure 5, the solid lines denote the operators supported
by the current version of QAGen. The dotted lines show the oper-
ators or cases that the next version of QAGen should support (e.g.,
union (∪) and minus (−)). In addition to Figure 5, QAGen cur-
rently does not support the DISTINCT keyword and CHECK con-
straints imposed on UNIQUE attributes. In general, supporting new
operators (e.g., union (∪)), or adding new knobs (which may de-
pend on new input characteristics) to an operator is straightforward
in QAGen. For example, adding a new knob to an operator simply
means incorporating the new QAGen implementation of that oper-

ator into the symbolic query engine and then updating the query
analyzer about the input characteristics that this new knob depends
on.

3. SYMBOLIC QUERY PROCESSING
In this section, we first define the data model of symbolic data

and discuss how to physically store the symbolic data. Then we
present the algorithms for the operators in symbolic query process-
ing through a running example.

3.1 Symbolic Data Model

3.1.1 Definitions
A symbolic relationconsists of aschemaand asymbolic in-

stance. The definition of a schema is exactly the same as the clas-
sical definition of a relation schema in [11]. LetR(a1:dom(a1),
. . . , ai: dom(ai), . . . , an: dom(an)) be a relation schema withn
attributes; and for each attributeai, let dom(ai) be the domain of
the attributeai.

A symbolic relation instance is a set ofsymbolic tuplesT . Each
symbolic tuplet ∈ T is ann-tuple withn symbols: 〈s1, s2, . . . , sn〉.
As a shorthand, the symbolsi in tuple t is represented ast.ai. A
symbolsi is associated with a set ofpredicatesPsi

(wherePsi
can

be empty). The value of symbolsi represents any one of the values
in the domain of attributeai that satisfiesall predicates inPsi

. A
predicatep ∈ Psi

of a symbolsi is a propositional formula that
involves at leastsi, and zero or more other symbols that appear in
different symbolic relation instances. Therefore, a symbolsi with
its predicatesPsi

can be represented by a conjunction of propo-
sitional logic formulas. Asymbolic databaseis defined as a set
of symbolic relations and there is a one-to-many mapping between
one symbolic database and many relational databases. Finally, a
symbolic relation ispre-grouped on an attributea if and only if
there is a symbol that appears twice in attributea.

3.1.2 Data Storage
Symbolic databases are a generalization of relational databases

and provide an abstract representation of concrete data. Given the
close relationship between relational databases and symbolic data-
bases, and the fact of the maturity of relational database technol-
ogy, it may not pay off to re-invent the wheel and design another
physical model for storing symbolic data. QAGen opts to leverage
existing relational databases to implement the symbolic database
concept. To that end, a natural idea for storing symbolic data would
be storing the data in columns of tables, introducing a user-defined
type [3] to describe the columns, and using SQL user-defined func-
tions to implement the symbolic operations. However, symbolic
operations (e.g., a join that controls the output size and distribution)
are too complex to be implemented by SQL user-defined functions.
As a result, we propose to store symbols (and associated predi-
cates) in relational databases by simply using thevarchar SQL
data type and let the QAGen symbolic query engine operate on a
relational database directly. This way, we integrate the power of
various access methods brought by the relational database engine
into symbolic query processing.

The next interesting question is how to normalize a basic sym-
bolic relation for efficient symbolic query processing. From the
definition of a symbol, we know that a symbol may be associated
with a set of predicates. For example, the symbola1 may have a
predicate[a1 ≥ p1] associated with it. As we will see later, most
of the symbolic operations impose some predicates (from now on,
we use the term predicate instead of constraints) on the symbols.
Therefore, a symbol may be associated to many predicates. As a
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SUM(l price) ≥:p2

o id = l oid
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π

χ

c id = o cid⋊⋉

c acctbal ≥:p1

σ

o date

σ

c id c acctbal

c id1 c acctbal1
c id2 c acctbal2
c id3 c acctbal3
c id4 c acctbal4
(i) Customer (4 tuples)

o id o date o cid

o id1 o date1 c id1
o id2 o date2 c id1
o id3 o date1 c id2
o id4 o date2 c id2
o id5 o date5 c id3
o id6 o date6 c id4

(ii) Orders (6 tuples)

l id l price l oid

l id1 l price1 o id1
l id2 l price1 o id1
l id3 l price1 o id1
l id4 l price1 o id1
l id5 l price5 o id2
l id6 l price5 o id2
l id7 l price1 o id3
l id8 l price5 o id4
l id9 l price9 o id5
l id10 l price10 o id6

(iii) Lineitem (10 tuples)

symbol predicate

c acctbal1 [c acctbal1 ≥ p1]
c acctbal2 [c acctbal2 ≥ p1]
c acctbal3 [c acctbal3 < p1]
c acctbal4 [c acctbal4 < p1]
l price1 [aggsum1 = 5 × l price1]
l price5 [aggsum2 = 3 × l price5]
aggsum1 [aggsum1 ≥ p2]
aggsum2 [aggsum2 < p2]

(iv) PTable

(c) Final Symbolic Database
c id c acctbal

c id1 c acctbal1
c id2 c acctbal2
c id3 c acctbal3
c id4 c acctbal4
(i) Customer (4 tuples)

o id o date o cid

o id1 o date1 o cid1
o id2 o date2 o cid2
o id3 o date3 o cid3
. . . . . . . . .

o id6 o date6 o cid6
(ii) Orders (6 tuples)

l id l price l oid

l id1 l price1 l oid1
l id2 l price2 l oid2
l id3 l price3 l oid3
. . . . . . . . .

. . . . . . . . .

l id10 l price10 l oid10
(iii) Lineitem (10 tuples)

symbol predicate

(iv) PTable

(b) Initial Symbolic Database

Figure 6: Running Example

result, QAGen stores the predicates of a symbol in a separate re-
lational table called PTable. Reusing the simple selection query
σa≥p1

R from Figure 3 again, the symbolic relationR can be rep-
resented by a normal table in a RDBMS namedR with the schema:
R(a: varchar(1024), b: varchar(1024)) and a table named PTable
with the schema: PTable(symbol:varchar(1024), predicate:var-
char(1024)). After the selection onR, the relational representation
of the symbolic tableR is:

a b
a1 b1
a2 b2
TableR (2 tuples)

Symbol Predicate
a1 [a1 ≥ p1]
a2 [a2 < p1]

PTable (2 tuples)

3.2 Symbolic Query Evaluation
The major difference between symbolic query execution and tra-

ditional query processing is that the input (and thus the output) of
each operator is symbolic data but not concrete data. The flexibility
of symbolic data allows an operator to control its internal operation
and thus its output. Same as traditional processing, an operator is
implemented as an iterator. Therefore the interface of an operator
is the same as traditional query processing which consists of three
methods:open(), getNext()andclose(). During query processing,
if the operator has problems due to contradicting knob values de-
fined by the user (e.g., the output cardinality of a selection operator
is bigger than its input size), that operator should return an error
message to the user. For brevity, error detection during symbolic
query processing is not discussed in this paper; it is straightforward
to implement. In the remainder of this section, we assume that no
contradicting knob values are given by the user.

Next, we present the knobs and the algorithms for each operator
through a running example. Unless stated otherwise, the following
sub-sections only show the details of thegetNext()method of each
operator. All other aspects (e.g.,open()andclose()) are straightfor-
ward so that they are omitted for brevity. The running example is
a 2-way join query which can demonstrate the details of the sym-
bolic execution of selection, equi-join, aggregation and projection.
We will also discuss some special cases of these operators. Fig-
ure 6a shows the input query tree (with all knobs and their values
given). The example is based on the following simplified TPC-H
schema (primary keys are underlined):

Customer (cid int, c acctbalfloat)
Orders (oid int, o datedate, o cid REFERENCES Customer)
Lineitem (l id int, l pricefloat, l oid REFERENCES Orders)

3.2.1 Symbolic Execution of Table Operator
Knob: Table Size (compulsory)

In QAGen, a base table in a query tree is regarded as an oper-
ator. During the open() method, it creates a relational table in a
RDBMS with the attributes specified in the input schemaM . Ac-
cording to the designed storage model, all attributes are in the SQL
data typevarchar. Next, it fills up the table by creating new
symbolic tuples until it reaches the defined table size. Each symbol
in the newly created tuples is named using the attribute name as
prefix and a unique identification number. Therefore, at the begin-
ning of symbolic query processing, each symbol in the base table
should be unique. Figure 6b shows the relational representation of
the three symbolic relations Customer, Orders and Lineitem for the
running example. The getNext() method of the table operator is
the same as the traditional Table-Scan operator that returns a tuple
to its parent or returns null (an end-of-result message) if all tuples
have been returned. Note that if the same table is used multiple
times in the query, then the table operator only creates and fills the
base symbolic table once.

Check constraints defined in the input schemaM are enforced
by adding a predicate to each created symbol. For example, if there
is a check constraint CHECK(l price ≥ 0) on the Lineitem table,
then all values in the attributel price of the Lineitem table should
have an associated tuple (e.g.,〈lprice1, [lprice1 ≥ 0] 〉) in the
PTable. In the running example, there are no check constraints on
all three tables. Therefore, all symbols have no predicate associated
with them and thus the PTable in Figure 6b is empty. Primary keys,
unique and not null constraints are enforced already because all
symbols are initially unique. Foreign key constraints related to the
query are taken care of by the join operator directly.

3.2.2 Symbolic Execution of Selection Operator
Knob: Output Cardinalityc (optional; default value = input size)

Let I be the input andO be the output of the selection operatorσ

and letp be the selection predicate. The symbolic execution of the
selection operator controls the size of the output asc. Depending
on the input characteristics, the problem hardness and solutions are
completely different. Generally, there are two different cases.

Case 1: Input is not pre-grouped on the selection attribute(s)
This is case (a) in Figure 5 and the selections in the running ex-



ample (Figure 6a operator (ii) and (vi)) are of this kind. This im-
plementation is chosen by the query analyzer when the input is not
pre-grouped on the selection attribute(s) and it is the usual case for
most queries. In this case, the selection operator controls the output
by:

1. During its getNext() method, read in a tuplet by invoking getNext() on
its child operator and process with [Positive Tuple Annotation] if the
output cardinality has not reachedc. Else proceed to [Negative Tuple
Post Processing] and then return null to its parent.

2. [Positive Tuple Annotation] If the output cardinality has not reachedc,
then (a) for each symbols in t that participates in the selection predi-
catep, insert a corresponding tuple〈s, p〉 to the PTable and (b) return
this tuplet to its parent.

3. [Negative Tuple Post Processing] However, if the output cardinality
has reachedc, then fetch all the remaining tuplesI− from input I.
For each symbols of tuple t in I− that participates in the selection
predicatep, insert a corresponding tuple〈s,¬p〉 to the PTable, and
repeat this step until calling getNext() on its child has no more tuples
(returns null).

Each getNext() call on the selec- c id c acctbal
c id1 c acctbal1
c id2 c acctbal2
(i) Output ofσ; 2 tuples

symbol predicate

c acctbal1 [c acctbal1 ≥ p1]
c acctbal2 [c acctbal2 ≥ p1]
c acctbal3 [c acctbal3 < p1]
c acctbal4 [c acctbal4 < p1]

(ii) PTable
Table A. After selection

tion operator returns apositivetuple
that satisfies the selection predicate
p to its parent until the output cardi-
nality has been reached. Moreover,
to ensure all negative tuples (i.e., tu-
ples got from the child operator af-
ter the output cardinality has been
reached) would not get some instan-
tiated values later in the data instantiation phase that ends up pass-
ing the selection predicate, the selection operator associates the
negation of predicatep to those negative tuples. In the running ex-
ample, the attributec acctbal in the selection predicate[c acctbal ≥
p1] of operator (ii) is not pre-grouped, because the data comes
directly from the base Customer table. Since the output cardi-
nality c of the selection operator is 2, the selection operator as-
sociates the positive predicate[c acctbal ≥ p1] to the symbol
c acctbal1 and c acctbal2 of the first two input tuples and as-
sociates the negated predicate[c acctbal < p1] to the symbol
c acctbal3 and c acctbal4 of the rest of the tuples. Table A(i)
shows the output of the selection operator and Table A(ii) shows
the content of the PTable after the selection.
Case 2: Input is pre-grouped on the selection attribute(s)

This is a special case of selection, and only happens when a se-
lection is on top of a join and there is an attributea in the selection
predicatep pre-grouped. In [6], there is a proof that shows that
symbolic execution of selection isNP-hard in this case. However,
due to space constraints, we do not show the formal proof here. Due
to its hardness and the fact that it rarely happens in practice (most
selection operators can be pushed down by the user who gives the
input), QAGen currently does not support this case (Figure 5 case
(b)) and we plan to use approximation algorithms to solve this prob-
lem.

3.2.3 Symbolic Execution of Equi-Join Operator
Knob: Output Cardinalityc (optional; default value = size of the

non-distinct input)

Let R andS be the inputs,O be the output, andp be the sim-
ple equality predicatej = k wherej is the (non-pregrouped) join
attribute onR, andk is the join attribute onS that refers toj by
a foreign key relationship. The symbolic execution of the equi-
join operator ensures the join result size isc. Again, depending on
whether the input is pre-grouped or not, the solutions are different,
too.

Case 1: Input is not pre-grouped on the join attributek.
This is case (c) in Figure 5, where the join attributek in the input

S is not pre-grouped. In this case, it is possible to support one more
knob on the equi-join operation:

Knob: Join Distributionb (optional; choices = [Uniform or Zipf];
default = Uniform)

The join distributionb defines how many tuples of inputS join
with each individual tuple in inputR. For example, if the join
distribution is uniform, then each tuple inR joins with roughly the
same number of tuples inS. Both join operators in Figure 6a fall
into this case. In this case, the equi-join operator (which supports
both output cardinalityc and distributionb) controls the output by:

1. [Distribution instantiation] During its open() method, instantiate a dis-
tribution generatorD, with the size ofR as domain (denoted byn),
the output cardinalityc as frequency, and the distribution typeb as in-
put. This distribution generatorD can be the one in [16] or [9] or any
statistical packages that generaten numbersm1, m2, . . . , mn which
follow Uniform or Zipf [25] distribution with a total frequency of c.
The distribution generatorD is an iterator with a getNext() method.
For thei-th call on the getNext() method (0 ≤ i ≤ n), it returns the
expected frequencymi of thei-th number under distributionb.

2. During its getNext() call, if the output cardinality has not yet reachedc,
then (a) check ifmi = 0 or if mi is not yet initialized, if yes, initialize
mi by calling getNext onD and get a tupler+ from R (mi is the total
number of tuples fromS that should join withr+). (b) Get a tuples+

from S and decreasemi by one. (c) Join tupler+ with s+ according
to [Positive Tuple Joining] below. (d) Return the joined tuple to its
parent. However, during the getNext() call, if the output cardinality
has reachedc already, then process [Negative Tuple Joining] below,
and return null to its parent.

3. [Positive Tuple Joining] If the output cardinality has not reachedc, then
(a) for the tuples+, replace the symbols+.k, which is the symbol of
the join key attributek of tuples+, by the symbolr+.j, which is the
symbol of the join key attributej of tupler+. After this, the tupler+

and the tuples+ should share exactly the same symbol on their join
attributes. Note that the replacement of symbols in this step is done
on both the tuples loaded in the memory and the related tuples inbase
table as well (using an SQL statement like “Updatek.BaseTable Set
k=r+.j WHERE k=s+.k” to update the symbols on the base table
where the join attributek comes from). (b) Perform an equi-join on
tupler+ ands+.

4. [Negative Tuple Joining] However, if the output cardinality has reached
c, then fetch all the remaining tuplesS− from inputS. For each tuple
s− in S−, randomly look up a symbolj− on the join keyj in the set
minus between the base table where the join attributej originates from
andR (using an SQL statement with theMINUS keyword), replace
s−.k with the symbolj−. This replacement is done on the base tables
only because these tuples are not returned to the parent.

In the running example (Figure 6), after the selection on table
Customer (operator ii), the next operator is a join between the se-
lection output (Table A(i) in Section 3.2.2) and table Orders. The
output cardinalityc of that join (operator iii) is 4 and the join distri-
bution is uniform. Since the input of the join on the join keyo cid

is not pre-grouped, the query analyzer uses the algorithm above to
perform the equi-join. First, the distribution generatorD generates
2 numbers (which is the size of the inputR), with total frequency of
4 (output cardinality), and distribution as uniform. AssumeD re-
turns a sequence:{2, 2}. This means that the first customerc id1
should take 2 orders (o id1 ando id2) and the second customer
c id2 should also take 2 orders (o id3 and o id4). As a result,
the symbolso cid1 ando cid2 from the Orders table should be re-
placed byc id1 and the symbolso cid3 ando cid4 from the Orders
table should be replaced byc id2 (Step 3 above). In order to fulfill
the foreign key constraint on those tuples which do not join, Step 4
above (Negative Tuple Joining) replaceso cid5 ando cid6 by cus-
tomers that did not pass through the selection filter (i.e., customer



c id3 andc id4) randomly. Table B(i) below shows the output of
the join and Table B(ii) shows the updated Orders table (join keys
arebold).

c acctbal o id o date c id=o cid
c acctbal1 o id1 o date1 c id1
c acctbal1 o id2 o date2 c id1
c acctbal2 o id3 o date3 c id2
c acctbal2 o id4 o date4 c id2
(i) Output of(σ(Customer) 1 Order); 4 tuples

o id o date o cid
o id1 o date1 c id1
o id2 o date2 c id1
o id3 o date3 c id2
o id4 o date4 c id2
o id5 o date5 c id3
o id6 o date6 c id4
(ii) Orders (4 pos, 2 neg)

Table B. After Joining

After the join operation above, the next operator in the running ex-
ample is another join between the above join results (Table B(i))
and the base Lineitem table (Figure 6b(iii)) in Zipf distribution.
Again, the input of the join on the join keyl oid of the Lineitem
table is not pre-grouped and thus the above equi-join algorithm is
chosen by the query analyzer. Assume that the distribution genera-
tor generates a Zipf sequence{4,2,1,1} for the four tuples in Table
B(i) to join with 8 out of 10 line-items (where 8 is the user-specified
output cardinality of this join operation). Therefore it produces the
following output (join keys arebold):

c id c acctbal o date o cid l id l price o id = l oid
c id1 c acctbal1 o date1 o cid1 l id1 l price1 o id1
c id1 c acctbal1 o date1 o cid1 l id2 l price2 o id1
c id1 c acctbal1 o date1 o cid1 l id3 l price3 o id1
c id1 c acctbal1 o date1 o cid1 l id4 l price4 o id1
c id1 c acctbal1 o date2 o cid1 l id5 l price5 o id2
c id1 c acctbal1 o date2 o cid1 l id6 l price6 o id2
c id2 c acctbal2 o date3 o cid2 l id7 l price7 o id3
c id2 c acctbal2 o date4 o cid2 l id8 l price8 o id4

i) Output of(σ(Customer) 1 Order) 1 Lineitem. 8 tuples

l id l price l oid
l id1 l price1 o id1
l id2 l price2 o id1
l id3 l price3 o id1
l id4 l price4 o id1
l id5 l price5 o id2
l id6 l price6 o id2
l id7 l price7 o id3
l id8 l price8 o id4
l id9 l price9 o id5
l id10 l price10 o id6
(ii) Lineitem (8 pos, 2 neg)

Table C. After 2-way join

Finally, note that if the two inputs of an equi-join are base tables
(with foreign key constraint), then the output cardinality knob is
disabled by the query analyzer. It is because in that case, all tuples
from inputR must join with inputS and thus the output cardinality
must be same as the size ofS.

Case 2: Input is pre-grouped on the join attributek.
This is a special case of equi-join when the inputS is pre-grouped

on the join attributek. This sometimes happens when a preceding
join introduced a distribution onk as in the example in Figure 3.
In the following we show that if the input is pre-grouped on the
join attributek of an equi-join, then the problem of controlling the
output cardinality (even without the join distribution) is reducible
to the subset-sum problem:

The subset-sum problem [14] j
j1
j2
j3
...
...
jl

TableR

k
k1 } e.g.c1 = 5 times
k2 } e.g.c2 = 4 times
k3 } e.g.c3 = 2 times
k4 } e.g.c4 = 1 times
...

km } cm times
TableS

takes as input an integer sumc
and a set of integersC = { c1,
c2 ,. . ., cm}, and outputs whether
there exists a subsetC+ ⊆ C

such that
P

ci∈C+
ci = c. Con-

sider the tablesR andS in the
figure on the right hand side, which are the inputs of such a join.
TableR has one attributej with l tuples all using distinct symbolic
valuesji (i ≤ l). TableS also defines only one attributek and has
in total

P
ci rows. The rows inS are clustered inm groups, where

thei-th group has exactlyci tuples using the same symbolic value
ki (i ≤ m). We now search for a subset of thosem groups inS

which join with arbitrary tuples inR so that the output has the size
c. Assume, we find such a subset, i.e., the symbolic values of those
groups which result in the output with sizec. The groups returned
by such a search induce a solution for the original subset-sum prob-
lem.

The subset-sum problem is a weaklyNP-complete problem and
there exists a pseudopolynomial algorithm which uses dynamic
programming to solve it [14]. The complexity of that dynamic

programming algorithm isO(min(c,
P

ci) ∗ m), wherec is the
desired output cardinality,ci is the size of thei-th group inS, and
m the number of different groups inS. If one of the input para-
meters is in binary (e.g.,m is encoded as an-bit digit and thus
has the size2n), then the running time would be exponential in
the input size. Fortunately, this means the special case of the equi-
join operator (with pre-grouped input on the attributek) is solvable
in polynomial time because all the input parameters are given in
unary. Since this case happens more often, we propose a dynamic
programming version of equi-join for this special case.

The equi-join algorithm uses dynamic programming to compute
a subset of the pre-groups with a total count that matches the out-
put cardinality. This is a blocking operator because it needs to read
all the input fromS first (for dynamic programming to solve the
subset-sum problem). For memory reasons, all the input tuples
from S are materialized in the symbolic database. One optimiza-
tion for this case is that ifc is equal to the input size ofS, then
all tuples ofS must be joined withR and the invocation of the
dynamic programming function can be skipped even if the data is
pre-grouped.

We reuse the figure above to illustrate the algorithm. Assume
the join is on TableR and TableS and the join predicate isj = k.
Assume TableR has three tuples (〈j1〉, 〈j2〉, 〈j3〉), and TableS
has 12 tuples which are clustered into 4 groups with symbolk1,
k2, k3, k4 respectively. Furthermore, assume the join onR and
S is specified with an output cardinality asc = 7. The dynamic
programming equi-join controls the output as follows:

1. [Dynamic programming] During its open() method, (a) materialize the
inputS of the join operator. (b) Extract the pre-group size (e.g.c1 = 5,
c2 = 4, c3 = 2, c4 = 1) of each symbolki by executing “Select
Count(k) From S Group By k Order By Count(k) Desc” on the mate-
rialized input. (c) Invoke a dynamic programming (dp) functionwith
the pre-group sizes and the output cardinality (e.g.,c = 7) as input.
The dp function (omitted here because of space) finds a subset of sym-
bolsK+ in S which results in the desired total output cardinality (e.g.,
K+ = {k1, k3} becausec1 + c3 = 5 + 2 = 7 = c). If the dp func-
tion cannot find any solution, stop processing and report this problem
to the user.

2. [Positive Tuple Joining] During getNext(), (a) for each symbol ki in
K+, read all tuplesS+ from the materialized input ofS which have
ki as the value of attributek. (b) Afterwards, call getNext() onR once
and get a tupler, join all tuples inS+ with r by replacing the join key
symbols inS+ with the join key symbols inr. For example, the first
five k1 symbols inS are replaced withj1 and the twok3 symbols in
S are replaced withj2 (again, these replacements are done on symbols
loaded in the memory and the changes are propagated to the base tables
of wherej andk originate from). (c) Return the joined tuples to the
parent.

3. [Negative Tuple Joining] This step is the same as the Negative Tuple
Joining step in the simple case (Section 3.2.3 case 1) that joins the
negative tuples in inputR with the negative tuples in inputS.

For equi-joins, there are some more special cases such as both
join keys are pre-grouped, or the join keys are bound by check con-
straints, etc. However, these cases rarely happen in practice and
interested readers are referred to [6] for details.

3.2.4 Symbolic Execution of Aggregation Operator
Knob: Output Cardinalityc (optional; default value = input size)

Let I be the input andO be the output of the aggregation operator
andf be the aggregation function. The symbolic execution of the
aggregation operator controls the size of the output asc.

Simple Aggregation.
This is the simplest case of aggregation where there is no group-

ing (i.e,. no GROUP-BY keyword) defined on the query. In this



case, the query analyzer disables the output cardinality knob be-
cause the output cardinality is either 1 (not-empty input) or 0 (empty
input). In SQL, there are five aggregation functions: MIN, MAX,
SUM, AVG, COUNT. Due to space constraints, this section presents
how to deal with SUM and MIN aggregation only. For the remain-
ing aggregation functions, and complex aggregation functions such
as MAX(l price) + AVG(l price), we refer the interested reader to
[6]. Nevertheless, all of them share similar solutions for both pre-
grouped or non-pre-grouped input on the attribute(s) inf . The fol-
lowing shows the case of non-pre-grouped input:

Let expr be the expression in the aggregation functionf which
consists of at least a non-empty set of symbolsS in expr and let
the size of the inputI ben.

1. SUM(expr). During its getNext() method, (a) the aggregation operator
consumes alln tuples fromI, (b) for each symbols in S, add a tuple
〈s, [aggsum = expr1+expr2+ . . .+exprn]〉 to the PTable, where
expri is the corresponding expression on thei-th input tuple; and (c)
return the symbolic tuple〈aggsum〉 as output. As an example, assume
there is aggregation function SUM(lprice) on top of the join result in
Table C(i) of the previous section. Then, this operator returns one tuple
〈aggsum〉 to its parent and adds 8 tuples (e.g., the 2nd inserted tuple
is 〈l price2, [aggsum = l price1+ . . .+ l price8]〉) to the PTable.

In fact, the above is a base case only. Except for a few specialcases
that we mentioned in [6], the aggregation operator could optimize the
number and the size of the above predicates by inserting only one tuple
〈l price1, [aggsum = l price1 × 8]〉 to the PTable and replacing
the symbolsl price2, . . . , l price8 by the symboll price1 on the
base table. One reason for doing that is the size of the input may be
very big, if that is the case, the extremely long predicate may exceed
the SQLvarchar size upper bound. Another reason is to insert fewer
tuples in the PTable. And the most important reason is that the cost of
of a constraint solver call is exponential to the size of the input formula
in the worst case. Therefore, this optimization reduces the time of the
later data instantiation phase. However, there is a trade-off: for each
input tuple, the operator has to update the corresponding symbol in the
base table where this symbol originates from.

2. MIN(expr). The MIN aggregation operator also uses similar pred-
icate optimization as SUM aggregation. Again, except for a special
case described in [6], during its getNext() method, (a) it regards the
first expressionexpr1 as the minimum value and returns〈expr1〉 as
output; and (b) replaces the expressionexpri in the remaining tuples
(where2 < i ≤ n) by the second expressionexpr2 and inserts two
tuples〈expr1, [expr1 < expr2]〉 and〈expr2, [expr1 < expr2] 〉 to
the PTable.

As an example, assume there is aggregation function MIN(lprice)
on top of the join result in Table C(i). Then, this operator returns
〈l price1〉 as output and inserts 2 tuples to the PTable:〈l price1,
[l price1 < l price2]〉 and〈l price2, [l price1 < l price2]〉 to the
PTable. Moreover,l price3, l price4, . . . , l price8 are replaced by
l price2 on the base table.

Single GROUP-BY Attribute.
When the aggregation operator has one group-by attribute, the

output cardinalityc defines the number of output groups produced
by the operator. Letg be the single grouping attribute. Again, this
symbolic operation of aggregation can be divided into two cases:

Case 1: Input is not pre-grouped on the grouping attribute
In addition to the cardinality knob, when the symbols of the

grouping attributeg in the input are not pre-grouped, it is possi-
ble to support one more knob:

Knob: Group Distributionb (optional; choices = [Uniform or
Zipf]; default = Uniform)

The group distributionb defines how to distribute the input tuples
into thec predefined output groups. In this case, the aggregation
operator controls the output by:

1. [Distribution instantiation] During its open() method, instantiate a dis-
tribution generatorD, with the size ofI (denoted byn) as frequency,
the output cardinalityc as domain, and the distribution typeb as input.
The distribution generator is the same one as the one for doingequi-
join (Section 3.2.3). It generatesc numbersm1, m2, . . . , mc, and the
i-th call on its getNext() method(0 ≤ i ≤ c) returns the expected
frequencymi of thei-th number under distributionb (how to deal with
mi = 0 is in [6].

2. During getNext(), callD.getNext() to get a frequencymi, fetchmi

tuples (let them beIi) from I and execute the following steps. If there
are no more tuples from its child operator, return null to its parent.

3. [Group assignment] For each tuplet in Ii, except the first tuplet′

in Ii, replace the symbolt.g, which is the symbol of the grouping
attributeg of tuple t, by the symbolt′.g. t′.g is the symbol of the
grouping attributeg of the first tuplet′ in thei-th group. Note that, the
replacement of symbols in this step is done on both the tuple loaded in
the memory and the related tuples in the base table as well.

4. [Aggregating] Invoke the Simple Aggregation Operator in the previous
section (Section 3.2.4) with all the symbols participated inthe aggre-
gation function inIi as input.

5. [Result Returning] Construct a new symbolic tuple〈t′.g, aggi〉 to its
parent whereaggi is the symbolic tuple returned by the Simple Aggre-
gation Operator for thei-th group. Return the constructed tuple to its
parent.

Case 2: Input is pre-grouped on the grouping attribute
When the input on the grouping attribute is pre-grouped, it is

understandable that this operation does not support the group dis-
tribution knob as in the above case. But if the input is pre-grouped
on the grouping attribute and the output cardinality is the only spec-
ified knob, it is not a hard problem.

The aggregation operator (v) o date SUM(l price)
o date1 aggsum 1
o date2 aggsum 2
(i) Output ofχ (2 tuples)

symbol predicate

c acctbal1 [c acctbal1 ≥ p1]
c acctbal2 [c acctbal2 ≥ p1]
c acctbal3 [c acctbal3 < p1]
c acctbal4 [c acctbal4 < p1]
l price1 [aggsum 1 = 5 × l price1]
l price5 [aggsum 2 = 3 × l price5]

(ii) PTable
Table D. After Aggregation

in the running example (Figure
6) falls into this case. Referring
to Table C(i), which is the in-
put of the aggregation operator
in the example. The grouping
attribute in the example iso date,
after several joins, the data in
o date is pre-grouped into 4 pre-
groups (o date1× 4; o date2× 2; o date3× 1; o date4× 1). In
this case, the aggregation operator controls the output by assign-
ing tuples from the same pre-group to the same output group and
each pre-group is assigned intoc output groups in a round-robin
fashion. In the example, the output cardinality of the aggregation
operator is 2. The aggregation operator assigns the first pre-group
(with o date1) which includes 4 tuples into the first output group.
Then the second pre-group (witho date2) which includes 2 tu-
ples to the second output group. When the third pre-group (with
o date3) which includes 1 tuple is being assigned to the first out-
put group (because of round-robin), the aggregation operator re-
placeso date3 with o date1 in order to put the 5 tuples into the
same group. Similarly, the aggregation operator replaceso date4
from the input tuple witho date2. For the aggregation function,
each output groupgi invokes the Simple Aggregation Operator in
Section 3.2.4 with all the symbols participated in the aggregation
function as input, and gets a new symbolagggi

as output. Fi-
nally, for each group, the operator constructs a new symbolic tuple
〈gi, agggi

〉 and returns it to the parent. Table D(i) shows the out-
put of the aggregation operator, and Table D(ii) shows the updated
PTable after the aggregation in the running example. Furthermore,
since the aggregation involves the attributeo date andl price, the
Orders table and the Lineitem table are also updated (Figure 6c
shows the updated tables).



HAVING and Single GROUP-BY Attribute.
Dealing with a HAVING clause is the same as having a selec-

tion operator on top of the aggregation result (a rare exception is
described in [6]).

Figure 6c shows the PTable content o date SUM(l price)

o date1 aggsum1
Table E. Output of

HAVING clause (1 tuple)

after the HAVING clause. It imposes
two more constraints: [aggsum1≥ p2]
which is the positive tuple and [aggsum2 < p2] which is the neg-
ative tuple, and it returns Table E to the parent.

Multiple GROUP-BY Attributes.
When there are multiple group-by attributes, the aggregation op-

erator depends not only on whether the input is pre-grouped, but
also depends on whether the input on the group-by attributes con-
tain a tree structure characteristic (from relations that have 1:n:m
relationship) or a graph structure characteristic (from relations that
have n:m:q relationship). QAGen currently supports query with
tree input structure (see Figure 5). Under that case, the hardness of
the problems and the algorithms are similar to the case of the single
group-by attribute. For multiple group-by attributes with graph in-
put structure or if the group-by attributes have domain constraints,
they are strongNP-hard problems and QAGen currently does not
support them. Due to tight space constraints, we provide the proofs
in [6]. As part of our future work, we plan to use approximation
algorithms to solve these hard problems.

3.2.5 Symbolic Execution of Projection Operator
Symbolic execution on a projection SUM(l price)

aggsum1
Table F. Output of π(1 tuple)operator is exactly the same as the tra-

ditional query processing, it projects the specified attributes and no
additional constraints are added. As a result, the final projection
operator in the running example takes in the input from Table E
and ends with the result shown in Table F.

3.2.6 Symbolic Execution of Nested Query
Nested queries in symbolic query processing reuses the tech-

niques in traditional query processing because queries can be unnested
by using join operators [13]. In order to allow a user to have full
control on the input, the user should give the input query in its
unnested format. If the inner query and the outer query refer to the
same table(s), then the query analyzer disables some knobs on op-
erators that may allow a user to specify different constraints on the
operators that work on the same table in both inner and outer query.

4. DATA INSTANTIATION
The final phase of the data generation process is the data instan-

tiation phase. The data instantiator fetches the symbolic tuples
from the symbolic database and uses a constraint solver (strictly
speaking, the constraint solver is the decision procedure of a model
checker [10]) to instantiate concrete values for them. The constraint
solver takes a propositional formula (remember that all predicates
can be represented by propositional formula) as input and returns a
set of concrete values for the symbols in the formula that satisfies
all the input predicates and the actual data types of the symbols. If
the input formula is unsatisfiable, the constraint solver returns error.
Such errors, however, cannot occur in this phase because contra-
dicting knob values are handled during symbolic query processing.
A constraint solver call is an expensive operation. In the worst case,
the cost of a constraint solver call is exponential to the size of the
input formula [10]. As a result, the objective of the data instantiator
is to minimize the number of calls to the constraint solver if possi-
ble. Indeed, the predicate size optimizations during symbolic query
processing (e.g. reducingaggsum = l price1+ . . .+ l price8 to

aggsum = l price1 × 8) are designed for this purpose. After the
data instantiator has collected all the concrete values of a symbolic
tuple, it inserts the instantiated tuple into the final test database. The
details of the data instantiator are illustrated by using the running
example as follows:

1. The process starts from any one of the symbolic tables, say,the Cus-
tomer (4 tuples) table, until all tables are instantiated.

2. It reads in a tuplet, say〈c id1, c acctbal1〉, from the symbolic tables.

3. [Look up symbol-to-value cache] For each symbols in tuple t, (a) it
first looks ups in a table called SymbolValueCache in the symbolic
database. The SymbolValueCache is a table in the symbolic database
that stores the concrete values of the symbols that have been instan-
tiated by the constraint solver. (b) If the symbols has been instanti-
ated with a concrete value, then the symbol is initialized with the same
cached value and then proceeds to the next symbol int.

In Figure 6c, the symbolc id1 is the first symbol to be instantiated,
thus it has no instantiated value stored in the SymbolValueCache table.
However, assume later when instantiating the first two tuplesof Orders
table (witho id1, o id2), theiro cid values will use the same value as
instantiated forc id1 by looking up the SymbolValueCache.

4. [Instantiate values] Look up the predicatesP of s from PTable. (a)
If there are no predicates associated withs, then instantiates by a
default value that matches the actual domain ofs in the input schema
M . In the example,c id1 does not have any predicates associated
with it (see PTable in Figure 6). Therefore, the data instantiator does
not instantiates with a constraint solver but instantiates a unique value
v (becausec id is a primary key), say, 1, toc id1. Afterwards, insert
a tuple〈s, v〉 (e.g.,〈c id1, 1〉) to the SymbolValueCache.

(b) However, ifs has some predicatesP in PTable, then compute the
predicate closureof s. The predicate closure ofs is computed by
recursively looking up all the directly correlated or indirectly corre-
lated predicates ofs. For example, the predicate closure ofl price1 is
[aggsum1 = 5×l price1 AND aggsum1 ≥ p2]. Then the predicate
closure (which is in the form of conjunctive propositional formula) is
sent to the constraint solver (symbols exist in the SymbolValueCache
are replaced by their instantiated values first). The constraint solver
instantiates all symbols in the formula in a row (e.g.,l price1 = 10,
aggsum1 = 50, p2 = 18).

For efficiency purposes, before a predicate closure is sent to the con-
straint solver, the data instantiator looks up another cache table called
PredicateValuesCache in the symbolic database. This table caches the
instantiated values of predicates. Since many predicates inthe PTable
essentially share the same pattern, the predicates stored inPredicate-
ValuesCache are in the predicate pattern format. For example,the pred-
icates [c acctbal1 ≥ p1] and [c acctbal2 ≥ p1] in Figure 6(c) share
the same pattern: [c acctbal ≥ p1]. As a result, after the instantiation
of the predicate [c acctbal1 ≥ p1], the data instantiator inserts an en-
try 〈[c acctbal ≥ p1], c acctbal1, p1〉 into the PredicateValuesCache
table. When the next predicate closure [c acctbal2 ≥ p1] needs to be
instantiated, the data instantiator looks up the predicatein Predicate-
ValuesCache by its pattern; if the same predicate pattern is in Pred-
icateValuesCache, then the data instantiator skips the instantiation of
this predicate and reuses the instantiated value ofc acctbal1 in the
SymbolValueCache table for the symbolc acctbal2 (same forp1).

The number of constraint solver calls is minimized by the in-
troduction of the SymbolValueCache and PredicateValuesCache ta-
bles. Experiments show that this feature is crucial or otherwise gen-
erating a 1G query-aware database takes weeks instead of hours.
Finally, note that in Step 4a, if a symbols has no predicate asso-
ciated with it, the data instantiator assigns a value tos according
to its domain. Except for attributes with integrity constraints (e.g.,
primary keys), those values can be assigned randomly or always
use the same value. It is unnecessary to instantiate any extra data
characteristics (e.g., distribution) for those symbols because they
do not participate in the query at all (i.e., their values do not affect
the query results anyway).



5. EXPERIMENTS
This section shows the results of the experiments with our pro-

totype system QAGen. QAGen was implemented in Java and in-
stalled on a Linux AMD Opteron 2.2 GHz Server with 4 GB of
main memory. The symbolic database and the target database used
PostgreSQL 7.4.8 and they were installed on the same machine.
As a constraint solver, a publicly available constraint solver called
Cogent [12] was used.

We executed two sets of experiments with the following objec-
tives: The first experiment (Section 5.1) studied the efficiency of
the symbolic execution of individual operators. The second experi-
ment (Section 5.2) studied the scalability of QAGen for generating
different database sizes for different queries. In all the experiments,
the generated databases 100% met the constraints defined in the in-
put query plan.

5.1 Efficiency of Symbolic Operations
The objective of this experiment is to evaluate (1) the running

time of individual symbolic operators; (2) their scalability, and (3)
the running time of the data instantiation phase by generating three
query-aware databases in different scales (10M, 100M, and 1G).
The input query was query 8 in the TPC-H benchmark [4]. Its log-
ical query plan input to QAGen is shown in Figure 7. We chose
TPC-H query 8 because it is one of the most complex queries in
TPC-H with 7-way joins and aggregations. This query has various
input characteristics to the operators enabling us to evaluate the
performance of different operator implementations (e.g., the nor-
mal equi-join and the special case of equi-join that needs dynamic
programming). The experiments were carried out in the following
way: First, three benchmark databases were generated usingdbgen
from TPC-H benchmark. As a scaling factor, we used 10 MB, 100
MB, 1GB. Then, we executed query 8 on top of the three TPC-H
databases, and collected the base table sizes and the cardinality of
each intermediate result under the three scaling factors. The ex-
tracted cardinality of each intermediate result of query 8 is shown
in Table 1 (Output-size) columns. Next, we generated three TPCH-
query-8-aware databases with the collected base table sizes and
output cardinalities as input and measured the efficiency of QAGen
for generating databases that produced the same cardinality results.
For this experiment, the join distribution was uniform.

Table 1 shows the cost breakdown of generating query-aware
databases for TPC-H query 8 in detail. QAGen only took about 10
minutes for generating a 10MB query-aware database. The sym-
bolic query processing phase was fast and scaled linearly. It took
about 1 minute for 10MB and less than 3 hours for 1G database.
The longest SQP operations were the initialization of the big sym-
bolic table Lineitem (Line 10 in Table 1), and the join between the
intermediate resultR5 and Lineitem (Line 11). That join needed
long time because it accessed the large Lineitem table frequently
to update the symbolic values of the join attributes. In query 8,
the input was pre-grouped on the last join (line 17 in Table 1 and
operator (17) in Figure 7). However, the dynamic programming
equi-join finished quickly because the input and output sizes were
not big. Table 1 also shows that the symbolic execution of each
individual operator scaled well.

The data instantiation phase dominated the whole data genera-
tion process. It took about 9 minutes to instantiate a 10M query
8 aware database and about 17 hours to instantiate a 1G query 8
aware database. Nevertheless, about 40% of time were the over-
head of reading symbolic tuples and inserting concrete tuples (not
shown in the Table). In the experiments, the number of constraint
solver (cogent) calls was small – there were only 14 calls for 3
scaling factors. The number of calls was constant because the data

# Symbolic operation size = 10M size = 100M size = 1G

Output-size Time Output-size Time Output-size Time

1 Region 5 < 1s 5 < 1s 5 < 1s

2 σ(Region) = R1 1 < 1s 1 < 1s 1 < 1s

3 Nation 25 < 1s 25 < 1s 25 < 1s

4 (R1 1 Nation) = R2 5 < 1s 5 < 1s 5 < 1s

5 Customer 1.5k < 1s 15.0k 5s 150k 49s

6 (R2 1 Customer) = R3 0.3k 1s 3.0k 7s 299.5k 75s

7 Orders 15.0k 4s 150.0k 45s 1.5m 553s

8 σ(Orders) = R4 4.5k 8s 45.0k 67s 457.2k 709s

9 (R3 1 R4) = R5 0.9k 3s 9.0k 22s 91.2k 277s

10 Lineitem 60.0k 26s 600.5k 237s 6001.2k 2629s

11 (R5 1 Lineitem) = R6 3.6k 34s 35.7k 348s 365.1k 4694s

12 Part 2.0k < 1s 20.0k 5s 200k 60s

13 σ(Part) = R7 12 1s 147 8s 1451 72s

14 (R7 1 R6) = R8 29 3s 282 27s 2603 533s

15 Supplier 0.1k < 1s 1k < 1s 10k 3s

16 (Supplier 1 R8) = R9 29 < 1s 282 1s 2603 6s

17 (Nation 1 R9) = R10 29 < 1s 282 < 1s 2603 3s

18 χ(R8) = R11 2 < 1s 2 1s 2 10s

Symbolic Query Processing 01m : 20s 12m : 53s 161m : 13s

Data Instantiation (# Cogent-call) 09m : 31s (14) 96m : 03s (14) 1062m : 54s (14)

Total 10m : 51s 108m : 56s 1224m : 07s

Table 1: QAGen Execution Time for TPC-H Query 8

Query Phase 10M 100M 1G

1 SQP 02m:40s 26m:45s 321m:27s
DI 07m:42s 78m:35s 844m:52s
Total 10m:22s 105m:10s 1166m:19s

2 SQP 00m:09s 01m:32s 16m:47s
DI 02m:27s 24m:55s 249m:50s
Total 02m:36s 26m:27s 256m:37s

3 SQP 01m:35s 16m:18s 185m:21s
DI 09m:34s 97m:07s 1016m:59s
Total 11m:09s 113m:25s 1202m:20s

10 SQP 01m:16s 12m:56s 156m:22s
DI 09m:42s 98m:13s 1107m:10s
Total 10m:58s 111m:09s 1263m:32s

12 SQP 02m:11s 21m:32s 244m:07s
DI 12m:01s 123m:04s 1387m:27s
Total 14m:12s 144m:36s 1631m:34s

Table 2: QAGen Scalability

instantiator cached the pattern of the predicates but not the concrete
predicates. We indeed repeated the same experiment by turning off
the caching feature of QAGen, but it ended up that the data in-
stantiation phase for a 1G database could not finish within 2 weeks
because the constraint solver took a lot of time. It proved that the
predicate optimization in SQP and the caching in the data instan-
tiator work effectively.

5.2 Scalability of QAGen
The second experiment is to evaluate the scalability of QAGen

for generating a variety of query-aware test databases. Currently,
QAGen supports 13 out of 22 TPC-H queries. It does not sup-
port some queries because those queries either fall into the special
cases of QAGen (e.g., query 5 (Q5) falls into the special case of
selection in Section 3.2.2 case 2); or because some of them use
non-equi-join (e.g., Q16, Q22). Nevertheless, we generated query-
aware databases for the rest of the queries in three different scaling
factors 10M, 100M, and 1G. We only present part of the detailed
results (Q1, Q2, Q3, Q10, Q12) here because of space constraints
(see Table 3). For all 13 queries, experimental results show that the
data instantiation (DI) phase was still the time dominating phase
and that the symbolic query processing (SQP) phase was fast. In
addition, experimental results show that both phases scaled well for
all 13 TPC-H queries.

6. RELATED WORK
The closest related work in DBMS testing is the work of [8]
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which studied how to generate query parameters for test queries
with the test databases given. However, existing database gen-
eration tools such as [2, 1, 16, 17, 7] were designed to generate
general-purpose test databases without concerning the test queries,
and thus the generated databases cannot guarantee they cover spe-
cific test cases. As a consequence, [8] can hardly find a good data-
base to work on and eventually only a limited subset of SQL is
supported.

QAGen extends symbolic execution [18] and proposes the con-
cept of symbolic query processing (SQP) to generate query-aware
databases. SQP is related to constraint databases (e.g., [20]); how-
ever, constraint databases focus on constraints that represent infi-
nite concrete data (e.g., spatial-temporal data) whereas SQP works
on finite but abstract data. Recently, [5] also studied the problem
of query-aware test database generation. In particular, [5] proposed
the concept ofreverse query processingwhich takes an application
query and the corresponding query result as input, and processes
the query reversely in order to generate a database that can return
the given query result. The focus of reverse query processing is to
generate minimal size test databases for functional testing of data-
baseapplications, rather than testing the DBMS itself.

7. CONCLUSIONS AND FUTURE WORK
This work presented QAGen, a system which generates tailor-

made test databases for different DBMS test cases. QAGen is
based on symbolic query processing, a technique that combines
traditional query processing and symbolic execution from software
engineering. It could be shown that QAGen is able to generate
query-aware databases for complex queries and it scales linearly.

As described in our agenda (Section 2.4), one of our most im-
portant avenues for future work is to support more operators and to
support more special cases in QAGen. Another important piece of
future work is to exploit the possibility of generate a single database
for different query plans of the same test query to test the plan se-
lection feature of the query optimizer. Finally, we believe the work
of SQP can be integrated with traditional symbolic execution so as
to extend program verification and test case generation techniques
to support database applications.
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