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ABSTRACT e

Today, a common methodology for testing a database management S‘attrsbg T.attry

system (DBMS) is to generate a set of test databases and then exe- Size:ggi/. \ Size=1500

cute queries on top of them. However, for DBMS testing, it would X o

be a big advantage if we can control the input and/or the output [Reattrs = Sattrs T.aitrs <ips
size=500/ N\ Size=4000 ‘

(e.g., the cardinality) of each individual operator of a test query for . o T
a particular test case. Unfortunately, current database generators R.attry <:p1 S.attry >:ps  size=2000
generate databases independent of queries. As a result, it is hard to \

guarantee that executing the test query on the generated test data-

bases can obtain the desired (intermediate) query results that match size=1000 size=5000

the test case. In this paper, we propose a novel way for DBMS
testing. Instead of first generating a test database and then seeing
how well it matches a particular test case (or otherwise use a trial-
and-error approach to generate another test database), we @ropos
to generate a query-aware database for each test case. Tothatend,, |NTRODUCTION
we designed a query-aware test database generator called QAGen. . . . )
In additi%n to thg da)t/abase schema and theg set of basic constraints When introducing a new component or technique into a DBMS,

defined on the base tables, QAGen takes the query and the set o'ft is often necessary to validate its correctness and evaluate the rel-
constraints defined on the query as input, and generates a queryff’1 tlvriégztsem{)n(]grovf?fgﬁﬁ:dﬁétﬁovggﬁ rarilsgtiooffirtsetst:r?s;s{eagd
aware test database as output. The generated database guarante‘gogm reheﬁsive s)é’t of test databases anoglJ );hen execu?e many test
that the test query can get the desired (intermediate) query results P y

as defined in the test case. This approach of testing facilitates qlueries over the generated databases to compare the system be-

wide range of DBMS testing tasks such as testing of memory man- hg\r:gagﬁfoigs?gitzgige cnuer\;\:ar?to ?aﬁgggg; Iséggﬁéﬁg:ﬁggis Zﬁcr)w
agers and testing the cardinality estimation components of queryg g te: o genera
a user to define the sizes and the data characteristics (e.g., value

Figure 1: A test case: a query with operator constraints

optimizers. distributions and inter/intra-table correlations) of the base tables.
. . . Examples include IBM DB2 Database Generator [2], DTM Data
Categories and Subject Descriptors Generator [1], MUDD [24], or some research prototypes such as
D.2.5 [Software Engineering: Testing and Debugging-Festing [16], [17] and [7]. Based on the generated test databases, the next
tools H.2.4 [Database Managemerjt Systems—Query process- step is to either create test queries manually, or stochastically gener-
ing ate many valid test queries by query generation tools such as RAGS
[23] or QGEN [22] and execute them to test the system.
General Terms Unfortunately, the current testing approach is inadequate to test
) o . ) individual DBMS components because very often it is necessary
Algorithms, Performance, Reliability, Experimentation to control the input/output of the intermediate operators of a query
during a test. For example, assume that we want to test how a newly
Keywords designed memory manager in a DBMS influences the correctness

and/or the performance of multi-way hash-join queries (i.e., how
the per-operator memory allocation strategy affects the resulting
execution plans). Figure 1 shows a sample test case (figure ex-
tracted from [8]) that is used for testing. A test case is a parametric
query@ p with a set of constraints defined on each operator. In Fig-

Testing, Database, Symbolic Query Processing, Symbolic Data-
base, Symbolic Execution, Query Processing
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republish, to post on servers or to redistribute to listguires prior specific s getermined by the size of its inputs, it would be beneficial if we
permission and/or a fee. '

SIGMOD'07,June 11-14, 2007, Beijing, China. can control the input/output of each individual operator in the query
Copyright 2007 ACM 978-1-59593-686-8/07/00065.00. tree. For example, the memory allocatettQa:¢rg=1.attr, DY the



T, voee T Query aware
Qpm Database 3 o . . : : Database 3 Database3 test database 1
o1 . RAGS/QGEN , .
L Qpr 2 aaqueriess wa [ | Teae e
. Qpr @ et P
Op] -Qpr o T
Database 1 Qpr Database 1 RACSIQGEN Database 1
( RS
Database 2 Database 2 Database 2
(a) Traditional Test DB Generation (b) Query Generation (c) Query Parameter Generation (d) Query—Aware DB Generatio

Figure 2: The DBMS testing problem.

memory manager, can be studied by defining the output cardinality fulfills C. In their pioneering work, they found that their problem
constraint on the joia(R) X o(S) and the output cardinality con-  is A"P-hard. Their approach is illustrated in Figure 2c. Given the
straint ono (7T') in the test case. However, although we can instruct predefined test databases (e.g., Database 1, 2, and 3), it may be
the database engine to evaluate the test query by a specific physicapossible that there are no parameter values that can let test query
evaluation plan (e.g., fixing the join order and forcing the use of Qpr match the requirements defined by test cBseFurthermore,
hash-join as the join algorithm), there is currently no easy way to even if a test database covers a test case (e.g., Database 1), since th
control the intermediate results of a query. solution space is too large, they can only search for approximate so-
lutions (i.e., finding parameter values that make the resulting query
[The DBMS Testing Problem] The DBMS testing problem is to  with cardinalities on operators close to those specified by the test
guarantee that executing a test query on a test database can okease) for select-project-join queries with only single-sided predi-
tain the desired intermediate query results (e.g., output cardinal-cates (e.g.p1 < a or a < p2) or double-sided predicates (e.g.,
ities, join distributions) that are defined by the test case. Figure p1 < a < p2) (Wherea is an attribute angy andp. are parameter
2 illustrates the problem in a conceptual way. In Figure 2(a)-(d), values).
there are two test case®; and 7> (denoted by dots); and there We observe that the test database generation process is the main
are three generated test database instances (denoted by squares)lprit of ineffective DBMS testing. Currently, test databases are
in Figure 2(a)-(c) respectively. In general, a good test databasegenerated without concerning the test queries. Thus the generated
should cover the test cases (i.e., the database content is possible tdatabases cannot guarantee that executing the test query on them
give the desired intermediate query results for a test query whencan obtain the desired (intermediate) query results defined by the
the query is executed on it). However, in traditional test database test case. Therefore, the only way for meaningful testing is to do
generation, the generation process does not take the queries int@ painful trial-and-error test database generation process (ems., g
account. Therefore, it is hard to guarantee that executing the testerate Database 3, 2 and then 1 to find a database that mdtcimes
query@p on the generated database can obtain the desired (inter-Figure 2(a)-(c)), and execute queries generated by RAGS/QGEN,
mediate) query results defined by the test case. Figure 2a showsr execute test queries with parameters instantiated by [8].
this problem. The three generated test databases (Database 1, 2,
and 3) do not cover the test ca®e at all (i.e., executing the test  [Contributions] In this paper, we address the DBMS testing prob-
query ofT> on Database 1, 2, and 3 can never fulfill the constraints lem in a different and novel way: instead of first generating a test
defined byT3). Furthermore, even if a test database covers a test database and then seeing if it is possible for the test query to obtain
case (e.g., Database 1 cov@i3, it is difficult to manually find the the desired query results that match the test case (otherwise use a
correct parameter valud of the test query such that the resulting trial-and-error approach to generate another test database), we pro
qguery matches the constraints defined by the test case. For instancegose to generate a specific test database tailored for each test case

it is unlikely that instantiating the test que€yr in Figure 2a with (see Figure 2d). To that end, we presentie-Aware database
three sets of parameter value§ P’’, P"” manually can matchthe  Gererator (QAGen). Given a database schebfaa parametric
requirements of test cagde. query@ p, and a set of user-defined constraints on each query oper-

Given a test database, query generation tools such as RAGS andtor, QAGen directly generates a datab&sand query parameter
QGEN generate many queries in order to cover a variety of test valuesP such that executing » with parameter value® on D
cases. However, RAGS and QGEN were not designed for testing guarantees that the user requirements imposed on the query opera-
an individual DBMS component. To test an individual DBMS com- tors are fulfilled. QAGen can generate test databases for a variety
ponent, the desired test query is usually given by a tester (e.g., theof complex queries such as TPC-H queries (although we will show
query in Figure 1). In this situation, RAGS and QGEN would re- that some rare cases are skiliP-hard so that we proposed different
quire an extremely large amount of time to generate a query that algorithms to solve them). The test databases generated by QAGen
matches the test query and the requirements of the test case (seean be used in a number of ways in DBMS testing. For example,
Figure 2b). In addition, RAGS and QGEN also rely on what data- in addition to testing the memory manager, we can use QAGen to
bases they are working on or otherwise they never can generate agenerate a test database that guarantees the size of the intermediate
test query that matches the test case (&9., join results to test the accuracy of the cardinality estimation com-

The importance of this DBMS testing problem has been pointed ponents (e.g., histograms) inside a query optimizer by fixing the
out by Bruno et al. [8]. Given a test databaBe a parametric join order! As another example, we can use QAGen to generate
conjunctive queryl p, and cardinality constraints' over the sub- a test database that guarantees the input and the output sizes (the
expressions of) p, they studied how to find the parameter values
P of Qp such that the output cardinality of each operatof)in

"However, it is inapplicable to test the join reordering teatof a query
optimizer directly because in this case gitgysicaljoin ordering should not
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queries).

Another contribution of QAGen is the novel way of defining the Figure 4: QAGen Architecture
test database. Traditional database generators (e.g., [7, 4, 17, 1,
2]) allow constraints to be defined only on the base tables (e.g., a
join distribution is defined on the base tables). As a result, a tester symbols as variables. Since the symbolic database is a generaliza-
cannot specify operator constraints (e.g., the output cardinality of tion of relational databases and provides an abstract representation
a join) in an intrinsic way. QAGen allows a user to annotate con- for concrete data, this gives room to QAGen to control the output
straints on each operator and base tables directly, and thus the usersf each operator of the query.
can easily get a meaningful test database for a distinct test case. The symbolic query processing phase leverages the concept of

Sometimes it would be advantageous to add new kinds of con- traditional query processing. First, the input query is analyzed by
straints to an operator in addition to the cardinality constraint dur- aquery analyzerThen, the user specifies her desired requirements
ing testing. For instance, the aggregation (GROUP-BY) operator on the operators of the query tree. Afterwards, the input query is
may not only need to control the output size (i.e., the number of executed by @ymbolic query engingist like in traditional query
groups), but may also need to control how to distribute the input to processing; i.e., each operator is implemented as an iterator, and the
the predefined output groups (i.e., some groups have more tuplesdata flows from the base tables up to the root of the query tree [15].
while others have fewer). QAGen is designed to be extensible in However, unlike in traditional query processing, the symbolic ex-
order to incorporate new operator constraints easily. ecution of operators deals with symbolic data rather than concrete

data. Each operator manipulates the input symbolic data according

[Roadmap] The remainder of this paper is organized as follows: to the operator’s semantics and the user-defined constraints, and in-
Section 2 gives an overview of QAGen. Section 3 and 4 describe crementally imposes the constraints defined on the operators to the
the algorithms used in QAGen. Section 5 presents the experimen-symbolic database. After this phase, the symbolic database is then
tal results. Section 6 discusses related work. Section 7 containsa query-aware database that captures all requirements defined by

conclusions and suggestions for future work. the test case of the input query (but without concrete data).
The data instantiation phase follows the symbolic query process-
2. QAGEN OVERVIEW ing phase. This phase reads in tuples from the symbolic database

) ) that are prepared by the symbolic query processing phase and in-

The data generation process of QAGen consists of two phasesistantiates the symbols in the tuples by a constraint solver. The in-
(1) the symbolic query processing (SQP) phase, and (2) the data in-stantiated tuples are then inserted into the target database.
stantiation phase. The goal of the symbolic query processing phase Tg allow a user to define different test cases for the same query,
is to capture the user-defined constraints on the query into the targeihe input query of QAGen is in the form of a relational algebra
grates the concept of symbolic execution [18] from software engi- (Gagesp, Customer X Orders) M Lineitem, then the user can
neering into traditional query processing. Symbolic execution is a specify a distribution (e.g., a Zipf distribution) between the lineit-
well known program verification technique, which represents val- ems and the orders that join with customers with an age greater
ues of program variables with symbolic values instead of concrete than p1. On the other hand, if the input query {©rders X
data and manipulates expressions based on those symbolic valuesy ineitem) M oqges,, Customer, then the user can specify the
Borrowing this concept, QAGen first instantiates a database which join distribution between all orders and all lineitems.
contains a set of symbols instead of concrete data (thus the gener- Figure 4 shows the general architecture of QAGen. It consists of

shows an example of a symbolic database with thyebolic rela- Engine, a Symbolic Database and a Data Instantiator.
tions R, S andT'. Essentially, a symbolic relation is just a normal

relational table which consists of a setgyfmbolic tuples Inside 2.1 Query Analyzer
each symbolic tuple, the values are representesyiybolsrather
than by concrete values. For example, the symatioin the sym-
bolic relationR in Figure 3 represents any value under the domain
of attributea. The formal definition of these symbolic database re-
lated terms will be given in Section 3. For the moment, let us just
treat the symbolic relations as normal relations and imagine the

At the beginning of the symbolic query processing phase, QA-
Gen first takes a parametric quepp, the database schemd as
input. The quen@ p is then analyzed by the query analyzer com-
ponent in QAGen. The query analyzer has two functionalities:

(1) Correct knob selections It analyzes the input query and deter-
be fixed by the tester; and the intermediate cardinalitiesaguieed by QA- mines whichknob(s)are available for each operator. A knob can

Gen may affect the optimizer that resulting in a different fitgleevaluation be regarded as a parameter of an operator that controls the output.
plan with different intermediate results. A basic knob that is offered by QAGen is the output cardinality
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Figure 5: Symbolic Query Processing Framework of QAGen

constraint This knob allows a user to control the output size of an tion knob on the next equi-join that joins wifi This step is fairly
operator. However, whether such a knob is applicable depends onsimple and is based on the work of [19] and [21], and the query ana-
the operator and its input characteristics. lyzer can do that without analyzing the data. For space reasons, the
Figure 5 shows the knobs of each operator offered by QAGen un- details of this step are omitted and interested readers are referred
der different cases. As an example, for a simple aggregation queryto [6]. Nevertheless, the query analyzer essentially annotates the
SELECT MAX(a) FROM R, the cardinality constraint knob should appropriate knob(s) to each operator according to Figure 5. As a
not be available for the aggregation operajgr, pecause the output  result, the output of the query analyzer is an annotated query tree
cardinality is always one iR is not empty or is zero iRk is empty with the appropriate knob(s) on each operator.
(Figure 5 case (f)). As another example, the available knob(s) of an (2) Assign physical implementations to operators. As shown
equi-join (X) that joins two relations (with foreign key constraint  above, different knobs are available under different input charac
between two tables) depend on whether the inpyirésgrouped teristics. In general, different (combinations of) knobs of the same
or not on the join keys. If the input is pre-grouped, the equi-join operator need separate implementation algorithms. Moreover, even
can only offer the output cardinality as a single knob (Figure 5 case for the same (combination of) knobs of the same operator, different
(d)). If the input is not pre-grouped, the user is allowed to tune implementation algorithms are conceivable (this is akin to tradi-
the join distribution as well (Figure 5 case (c)). The input of an tional query processing where an equi-join operation can be done
operator igpre-groupedon an attribute: if and only if there is at by hash-join or sort-merge join). Consequently, the other function
least one symbol which is not distinctdn Consider the 2-way join of the query analyzer is to assign the correct (knob-supported) im-

query(R Mp=. S) My=. T on the three symbolic relatiorn, S, plementation to an operator. As a result, the output of the query
andT in Figure 3. When the symbolic relatiaR first joins with analyzer is a knob-annotated query execution plan. Section 3 will
the symbolic relatiors on attributeb andc, it is possible to specify present the implementation algorithms for each (knob-supported)
the join distribution. For example, the first tugleof R joins with operator in QAGen.

the first three tuples of (i.e., t3, t4, t5); and the last tuple2 of
R joins with the last tuple6 of S (kind of like Zipf distribution 2.2 Symbolic Query Engine and Database

25]). However, after the first join, the intermediate join result of . ; .
[R l>]4) S is pre-grouped on attrig)um bandc (e.g., the szmbo:lzl The symbolic query engine of QAQen s _the heart of the sym-
is not distinct on the attribute in the join result). Therefore, if bollg query processing phase and it is similar to a r)ormal query
this intermediate result further joins with the symbolic relatibn engine. Itinterprets the knob-ar_motated query t_axe(_:utlon plan given
on attributen ande, then the distribution cannot be freely specified by the query analyzer. Sympollc query executlonlls also based on
by a user, because if the first tuplel of T joins with the first tuple thg iterator model [15]. That is, an operator reads in tuples from its
t7 of the intermediate results, this implies thdt = a1 and thus child Qperator(s) one-by-one, processes each tuple, and retems th
t11 must join witht8 andt9 as well resultflng tl;]ple to tgel parent operator. h
Lo Before the symbolic query engine starts execution, the user can
The above example shows that it is necessary to analyze thespecify the knob value(s) on the available knob(s) of each operator

query in order to offer the right knobs to the user. For this pur- in the knob-annotated execution plan. It is fine for a user to fill up
h ry analyzer analyzes the in ry in m- ) - ;
pose, the query analyzer analyzes the input query in a botto lJpvalues for some but not all knobs. In this case, the symbolic query

manner (i.e., starting from the input schemg and incrementally engine will evaluate those operators by using default knob values
pre-computes the output characteristics of each operator (e.g., an- gine " P y 9 o
Similar to traditional query processing, most of the operators in

notates an attribute of the output of an operator as pre-grouped if . . . L
necessary). In the example, the query analyzer annotates the atfs)yrtnbohc query E)rtln:cessmg c?n tbhe processetq ina plp?hnln%]hmodle
tributesa, b, andc as pre-grouped in the output & X S. Based 'ul some ca:)nno : _bor examp(;a, ebaggregia lon opdera or Vg'l Eu )
on this information, the query analyzer disables the join distribu- tiple group-by attributes needs to be imp er_".ef‘te as a blocking
operator, and under a special case, the equi-join operator is also a

2The output cardinality of an operator can be specified as solaie value blocking operator. In these cases, the symbolic query engine mate-
or as a selectivity. Essentially they are equivalent. rializes the intermediate results into the symbolic database if nec-




essary. In symbolic query processing, a table in a query tree is ator into the symbolic query engine and then updating the query
regarded as an operator. During its open() method, the table opera-analyzer about the input characteristics that this new knob depends
tor initializes a symbolic relation based on the input schérhand on.

the user-defined constraints (e.g., table sizes) on the base tables.

An operator evaluates the input tuples according to its own se- 3, SYMBOLIC QUERY PROCESSING

mantics. On the one hand, it imposes additional constraints to each . . ) ' .
. . - ) In this section, we first define the data model of symbolic data
input tuple in order to reflect the constraints defined on the operator . . .

and discuss how to physically store the symbolic data. Then we

on the data level. On the other hand, it controls its output to its par- . ; :
. present the algorithms for the operators in symbolic query process-
ent operator so that the parent operator can work on the right tuples.. :
ing through a running example.

As a simple example, assume the input query is a simple selection
queryo.>p, R on the symbolic relatiod in Figure 3 and theuser 3.1 Symbolic Data Model
specifies the output cardinality as 1 tuple. Then, if the getNext()

method of the selection operator iterator is invoked by its parent 3 1.1 Definitions

operator, the selection operator reads in tuplfom R, annotates

a positiveconstraintja; > p1] to the symbola; and returns the
tuple (a1, b1) to its parent. When the getNext() method of the se-
lection operator is invoked the second time, the selection operator
reads in the next tupl& from R, annotates aegativeconstraint

[a2 < p1] to the symbok,. However, this time it doesot return

this tuple to its parent, because the cardinality constraint (1 tuple)

° ﬁlzs?/\(ljgrtfﬁlfr:!?i?\- that sometimes a user may specify some con- symbolic tupler € T'is ann-tuple withn Symbols (s, 53, .-, sn).
g Y SP As a shorthand, the symbe] in tuplet is represented asa;. A

tradicting knob values on the knob-annotated query tree given by symbols, is associated with a set pfedicatesP., (whereP,, can
the query analyzer. For instance, a user may specify the output car. empty). The value of symbe represents any one of the values
dinality of the selection in the above example as 10 tuples even if . - ; e - .

she specified the tablg to have two tuples onlv. During runtime. ™ the domain of attribute,; that satisfiesll predicates inP,,. A
When%n operator cannot fulfill its outpﬂt requi?/émentsgeven thOl’Jgh predicatep € Ps; of a symbols; is a propositional formula that

. ) . -2 "involves at leass;, and zero or more other symbols that appear in
it consumed all the input tuples, then the symbolic query engine different symbolic relation instances. Therefore, a symbatith

stops processing and returns the corresponding error message tﬂs predicatesP,. can be represented by a conjunction of propo-

the user. By referring to the error message, the user can re-tune theSitionall logic formulas. Asymbolic databasés defined as a set
knob values of the corresponding operator(s).

of symbolic relations and there is a one-to-many mapping between
one symbolic database and many relational databases. Finally, a

2.3 Dat? Inst.a.ntlator ) symbolic relation ispre-grouped on an attribute if and only if
The data instantiation phase starts after the symbolic query en-there is a symbol that appears twice in attribute

gine of QAGen has finished processing. The data instantiator reads
in the symbolic tuples from the symbolic database and instantiates 3.1.2 Data Storage

the symbols inside each symbolic tuple by a constraint solver. In  gympolic databases are a generalization of relational databases
QAGen, we treat the constraint solver as an external black box com- anq provide an abstract representation of concrete data. Given the
ponent which takes a constraint formula (in propositional logic) as ¢jose relationship between relational databases and symbolic data-
input and returns a possible instantiation on each variable as outputhases, and the fact of the maturity of relational database technol-
then the constraint solver may returih = 55, bl = 11 asoutput  physical model for storing symbolic data. QAGen opts to leverage
(or any other possible instantiation). Once the data instantiator haseyisting relational databases to implement the symbolic database
collected all the concrete values for a symbolic tuple, it inserts a concept. To that end, a natural idea for storing symbolic data would
corresponding tuple (with concrete values) into the target database pe storing the data in columns of tables, introducing a user-defined
type [3] to describe the columns, and using SQL user-defined func-
2.4 QAGen Agenda tions to implement the symbolic operations. However, symbolic
In general, a complete QAGen system should cover all SQL op- operations (e.g., a join that controls the output size and distribution)
erators listed in Figure 5. In this paper, we only present SQL op- are too complex to be implemented by SQL user-defined functions.
erators that the current version of QAGen supports. They include As a result, we propose to store symbols (and associated predi-
selection &), projection (r), equi-join (X) and aggregationy(). cates) in relational databases by simply usinguhechar SQL
Nevertheless, these are the most commonly used operators todaylata type and let the QAGen symbolic query engine operate on a
and they already suffice to cover 13 out of 22 complex TPC-H [4] relational database directly. This way, we integrate the power of
queries. In Figure 5, the solid lines denote the operators supportedvarious access methods brought by the relational database engine
by the current version of QAGen. The dotted lines show the oper- into symbolic query processing.
ators or cases that the next version of QAGen should support (e.g., The next interesting question is how to normalize a basic sym-
union (U) and minus €)). In addition to Figure 5, QAGen cur-  bolic relation for efficient symbolic query processing. From the
rently does not support the DISTINCT keyword and CHECK con- definition of a symbol, we know that a symbol may be associated
straints imposed on UNIQUE attributes. In general, supporting new with a set of predicates. For example, the symbomay have a
operators (e.g., unioru)), or adding new knobs (which may de- predicatelal > p:] associated with it. As we will see later, most
pend on new input characteristics) to an operator is straightforward of the symbolic operations impose some predicates (from now on,
in QAGen. For example, adding a new knob to an operator simply we use the term predicate instead of constraints) on the symbols.
means incorporating the new QAGen implementation of that oper- Therefore, a symbol may be associated to many predicates. As a

A symbolic relationconsists of aschemaand asymbolic in-
stance The definition of a schema is exactly the same as the clas-
sical definition of a relation schema in [11]. L& ai:dom(a1),

..y ai: dom(ai), ..., an: dom(ay)) be arelation schema with
attributes; and for each attributg, let dom(a;) be the domain of
the attributen;.

A symbolic relation instance is a set®fmbolic tuple§’. Each



c.id c_acctbal o.id o_date | o_cid |_id |_price 1_oid symbol \ predicate
i) cadl c-acctball o-idl | odatel | c_idl ldl I_pricel | o_idl c_acctball | [c_acctball > pi]
Vs cid2 | c_acctbal2 04d2 | o-date2 | cidl lid2 | lpricel | o.idl c_acctbal2 | [c-acctbal2 > pi]
- ‘ .. cid3 | c_acctbal3 od3 | o-datel | c_id2 lad3 | l_pricel | oZidl c_acetbal3 | [c_acctbal3 < pi]
i) 0_5"29=1 cidd | c.acctbald o-id4 | odate2 | c_id2 l4d4 | Lpricel | o.idl c_acctbald | [c_acctbald < pi)
SUM (I_price) >:pa (i) Customer (4 tuples) 0,?115 o_dateb c,@di} l,§d5 l,pMICES 0,1'd2 l,pr%cel laggsuml =5 x l,prz.cel]
A 0.id6 | o_date6 | c_id4 1id6 | l_priced | o_id2 I_price5 | [aggsum2 = 3 X l_priceb]
\;) size=2 (i) Orders (6 tuples) l,z:d? l,prl:cel 0,1:d3 aggsuml | [aggsuml > p2]
o date XSU]\l(l,price) 13d8 | l_priced | o_id4 aggsum?2 [aggsqu < p2]
- size=8: 1ed9 | l_price9 | o_idb (iv) PTable
Zipf 1-id10 | l_pricel0 | o_id6
M X o id = 1oid (iii) Lineitem (10 tuples)
size=4; .. / . (c) Final Symbolic Database
ur}_gfonn . N 0 c.id c_acctbal o.id o_date | o_cid I_id |_price 1_oid symbol | predicate
WM i = o_cig HiNEIEN cidl | c.acctball oidl | odatel | o.cidl  ladl | Lpricel | loidl
size=é/ AN c_id2 c_acctbal2 0-id2 | o-date2 | o_cid2 l2id2 | lprice2 | l_oid2 (iv) PTable
iy O Orderd) c_id3 c_acctbal3 o.id3 | o-date3 | o_cid3 lid3 | l_price3 l_o0id3
c_acctbal >:p1 ~ size=6 c_id4 c_acctbal4 ... ... ... ... ... .
0 1 (i) Customer (4 tuples) 0-id6 | o-dateG | o_cid6 . . o
Customer (a) Input Query Tree (i) Orders (6 tuples) 14d10 | I_pricel0 | l_0id10
size=4 (iii) Lineitem (10 tuples)
(b) Initial Symbolic Database

Figure 6: Running Example

result, QAGen stores the predicates of a symbol in a separate re-3.2.1  Symbolic Execution of Table Operator
lational table called PTable. Reusing the simple selection query
0a>p, R from Figure 3 again, the symbolic relatidt can be rep-
resented by a normal table in a RDBMS nanfedith the schema: In QAGen, a base table in a query tree is regarded as an oper-
R(a: varchar(1024) b: varchar(1024) and a table named PTable  ator. During the open() method, it creates a relational table in a
with the schema: PTable(symbatarchar(1024) predicate:var- RDBMS with the attributes specified in the input scheida Ac-
char(1024). After the selection orR, the relational representation cording to the designed storage model, all attributes are in the SQL
of the symbolic table is: data typevar char. Next, it fills up the table by creating new

| Knob: Table Size (compulsory) |

a | b Symbol | Predicate symbolic tuples until it reaches the defined table size. Each symbol
al b1 al [al > p1] in the newly created tuples is named using the attribute name as
a2 b2 a2 [a2 < p1]

prefix and a unique identification number. Therefore, at the begin-
ning of symbolic query processing, each symbol in the base table
: : should be unique. Figure 6b shows the relational representation of
3.2 SYmt_’O“C Query Evaluatl_on . the three symbolic relations Customer, Orders and Lineitem for the
The major difference between symbolic query execution and tra- rynning example. The getNext() method of the table operator is
ditional query processing is that the input (and thus the output) of the same as the traditional Table-Scan operator that returns a tuple
each operator is symbolic data but not concrete data. The flexibility tg jts parent or returns null (an end-of-result message) if all tuples
of symbolic data allows an operator to control its internal operation have been returned. Note that if the same table is used multiple
and thus its output. Same as traditional processing, an operator isjmes in the query, then the table operator only creates and fills the
implemented as an iterator. Therefore the interface of an operatorpage symbolic table once.
is the same as traditional query processing which consists of three  check constraints defined in the input schehdaare enforced
methods:open() getNext()andclose() During query processing, by adding a predicate to each created symbol. For example, if there
if the operator has problems due to contradicting knob values de- s 3 check constraint CHECKgrice > 0) on the Lineitem table,
fined by the user (e.g., the output cardinality of a selection operator then all values in the attributeprice of the Lineitem table should
is bigger than its input size), that operator should return an error haye an associated tuple (e.dpricel, [lpricel > 0] )) in the
message to the user. For brevity, error detection during symbolic pTaple. In the running example, there are no check constraints on
query processing is not discussed in this paper; itis straightforward g three tables. Therefore, all symbols have no predicate associated
to implement. In the remainder of this section, we assume that no \th them and thus the PTable in Figure 6b is empty. Primary keys,
contradicting knob values are given by the user. unique and not null constraints are enforced already because all
Next, we present the knobs and the algorithms for each operatorsympols are initially unique. Foreign key constraints related to the
through a running example. Unless stated otherwise, the following query are taken care of by the join operator directly.
sub-sections only show the details of tetNext()method of each
operator. All other aspects (e.gpen()andclose() are straightfor- 3.2.2 Symbolic Execution of Selection Operator
ward so that they are omitted for brevity. The running example is ——" _. _ i i
a 2-way join query which can demonstrate the details of the sym- | Knob: Output Cardinalitye (optional; default value = input size) |
bolic execution of selection, equi-join, aggregation and projection. ) )
We will also discuss some special cases of these operators. Fig- L€t/ be the inputand be the output of the selection operator
ure 6a shows the input query tree (with all knobs and their values @nd letp be the selection predicate. The symbolic execution of the
given). The example is based on the following simplified TPC-H selection operator controls the size of the output.aBepending

TableR (2 tuples) PTable (2 tuples)

schema (primary keys are underlined on the input characteristics, the problem hardness and solutions are
Customer (dd int, c.acctbalfloat) completely different. Generally, there are two different cases.
Orders (aid int, o_datedate o_cid REFERENCES Customer)
Lineitem (Lid int, |_pricefloat, |_oid REFERENCES Orders) Case 1: Input is not pre-grouped on the selection attribute(s)

This is case (a) in Figure 5 and the selections in the running ex-



ample (Figure 6a operator (ii) and (vi)) are of this kind. This im-

plementation is chosen by the query analyzer when the input is not

Case 1: Input is not pre-grouped on the join attribute k.
This is case (c) in Figure 5, where the join attribitie the input

pre-grouped on the selection attribute(s) and it is the usual case forS is not pre-grouped. In this case, it is possible to support one more
most queries. In this case, the selection operator controls the outputknob on the equi-join operation:

by:

1. During its getNext() method, read in a tupley invoking getNext() on
its child operator and process with [Positive Tuple Anniotdtif the
output cardinality has not reachedElse proceed to [Negative Tuple
Post Processing] and then return null to its parent.

. [Positive Tuple Annotation] If the output cardinalitydwot reached,
then (a) for each symbalin ¢ that participates in the selection predi-
catep, insert a corresponding tuple, p) to the PTable and (b) return
this tuplet to its parent.

. [Negative Tuple Post Processing] However, if the outmrdinality
has reached, then fetch all the remaining tuplds~ from input I.
For each symbok of tuplet¢ in I~ that participates in the selection
predicatep, insert a corresponding tuplg, —p) to the PTable, and
repeat this step until calling getNext() on its child has naertoiples
(returns null).

Each getNext() call on the selec- cid | cacctbal
tion operator returns gositivetuple Z*;Z; E*Zfiggg
that _satisfies the _selection predicz_ite (i) Output of o; 2 tuples
p to its parent until the output cardi- symbol | predicate
nality has been reached. Moreover, ~cacctball | [c_acctball > pi]
to ensure all negative tuples (i.e., tu- C—acctlljag {C—acet}b]ag 2 Pl%
H - c_acctbal? c_acctbal3 < p1
ples got from the child operator af c.acctbald | [c.acctbald < pi]

ter the output cardinality has been
reached) would not get some instan-

(i) PTable
Table A. After selection

tiated values later in the data instantiation phase that ends up pass-
ing the selection predicate, the selection operator associates the

negation of predicatg to those negative tuples. In the running ex-
ample, the attribute_acctbal in the selection predicafe_acctbal >

p1] of operator (ii) is not pre-grouped, because the data comes
directly from the base Customer table. Since the output cardi-
nality ¢ of the selection operator is 2, the selection operator as-
sociates the positive predicafe.acctbal > p1] to the symbol
c-acctball and c_acctbal2 of the first two input tuples and as-
sociates the negated predicdteacctbal < p:] to the symbol
c-acctbal3 and c_acctbald of the rest of the tuples. Table A(i)
shows the output of the selection operator and Table A(ii) shows
the content of the PTable after the selection.

Case 2: Input is pre-grouped on the selection attribute(s)

This is a special case of selection, and only happens when a se-

lection is on top of a join and there is an attributan the selection
predicatep pre-grouped. In [6], there is a proof that shows that
symbolic execution of selection j§P-hard in this case. However,

due to space constraints, we do not show the formal proof here. Due

Knob:  Join Distributiond (optional; choices = [Uniform or Zipf];

default = Uniform)
The join distributionb defines how many tuples of inpistjoin
with each individual tuple in inpuR. For example, if the join
distribution is uniform, then each tuple R joins with roughly the
same number of tuples ifi. Both join operators in Figure 6a fall
into this case. In this case, the equi-join operator (which supports
both output cardinality: and distributiorb) controls the output by:

1. [Distribution instantiation] During its open() methodstantiate a dis-
tribution generatoiD, with the size ofR as domain (denoted by),
the output cardinality as frequency, and the distribution typas in-
put. This distribution generatdp can be the one in [16] or [9] or any
statistical packages that generateaumbersni, mo, ..., m, which
follow Uniform or Zipf [25] distribution with a total frequecy of c.
The distribution generatab is an iterator with a getNext() method.
For thei-th call on the getNext() method (< 7 < n), it returns the
expected frequencyr; of thei-th number under distributioh

. During its getNext() call, if the output cardinality hastiyet reached,
then (a) check ifn; = 0 or if m; is not yet initialized, if yes, initialize
m; by calling getNext orD and get a tuple ™ from R (m; is the total
number of tuples fron$ that should join with-1). (b) Get a tuplest
from S and decreassn; by one. (c) Join tuple ™ with s+ according
to [Positive Tuple Joining] below. (d) Return the joined leupo its
parent. However, during the getNext() call, if the outputdoaality
has reached already, then process [Negative Tuple Joining] below,
and return null to its parent.

[Positive Tuple Joining] If the output cardinality has neachea:, then

(a) for the tuples™, replace the symbait .k, which is the symbol of
the join key attributek of tuple s, by the symbok-*.j, which is the
symbol of the join key attributg of tupler. After this, the tuple-t
and the tuples™ should share exactly the same symbol on their join
attributes. Note that the replacement of symbols in this stefphe
on both the tuples loaded in the memory and the related tuplessie
table as well (using an SQL statement likegdatek. BaseT able Set
k=r*.j; WHERE k=71.k" to update the symbols on the base table
where the join attributé: comes from). (b) Perform an equi-join on
tuplert andst.

. [Negative Tuple Joining] However, if the output cardityahas reached
¢, then fetch all the remaining tuplés~ from input.S. For each tuple
s~ in S—, randomly look up a symbgl~ on the join keyj in the set
minus between the base table where the join attripatéginates from
and R (using an SQL statement with thd NUS keyword), replace
s~ .k with the symbolj —. This replacement is done on the base tables
only because these tuples are not returned to the parent.

3.

In the running example (Figure 6), after the selection on table

to its hardness and the fact that it rarely happens in practicg (Mosts stomer (operator ii), the next operator is a join between the se-
selection operators can be pushed down by the user who gives th§eciion output (Table A(i) in Section 3.2.2) and table Orders. The

input), QAGen currently does not support this case (Figure 5 case

(b)) and we plan to use approximation algorithms to solve this prob-
lem.

3.2.3 Symbolic Execution of Equi-Join Operator
Knob:

Output Cardinalityc (optional; default value = size of the
non-distinct input)

Let R and S be the inputsO be the output, ang be the sim-
ple equality predicatg = k wherej is the (non-pregrouped) join
attribute onR, andk is the join attribute or that refers toj by
a foreign key relationship. The symbolic execution of the equi-
join operator ensures the join result size.isAgain, depending on
whether the input is pre-grouped or not, the solutions are different,
too.

output cardinality: of that join (operator iii) is 4 and the join distri-
bution is uniform. Since the input of the join on the join key:id

is not pre-grouped, the query analyzer uses the algorithm above to
perform the equi-join. First, the distribution generaidgenerates

2 numbers (which is the size of the inpi}, with total frequency of

4 (output cardinality), and distribution as uniform. Assumee-
turns a sequencg2, 2}. This means that the first customefd1
should take 2 orderso(idl ando_id2) and the second customer
c_id2 should also take 2 orders_{d3 ando_id4). As a result,

the symbol® _cidl ando_cid2 from the Orders table should be re-
placed by_id1 and the symbols_cid3 ando_cid4 from the Orders
table should be replaced byid2 (Step 3 above). In order to fulfill

the foreign key constraint on those tuples which do not join, Step 4
above (Negative Tuple Joining) replacesid5 ando_cid6 by cus-
tomers that did not pass through the selection filter (i.e., customer



c-id3 andc-id4) randomly. Table B(i) below shows the output of

programming algorithm i€ (min(c, Y ¢;) * m), wherec is the

the join and Table B(ii) shows the updated Orders table (join keys desired output cardinality; is the size of thé-th group inS, and

arebold).

o.id o_date | o_cid

cacctbal | oid | odate | cid=ocid cidl
c-acctball | o-dl | o_datel c.idl c.idl
c_acctball | 0-id2 | o_date2 cidl c.id2
c.acctbal2 | 0-id3 | o-date3 c.id2 c.id2
c_acctbal2 | o-id4 | o-dated c.id2 cid3
(i) Output of (o (Customer) X Order); 4 tuples cid4

(i) Orders (4 pos, 2 neg)
Table B. After Joining

After the join operation above, the next operator in the running ex-
ample is another join between the above join results (Table B(i))
and the base Lineitem table (Figure 6b(iii)) in Zipf distribution.
Again, the input of the join on the join kéyoid of the Lineitem

m the number of different groups ifi. If one of the input para-
meters is in binary (e.gm is encoded as a-bit digit and thus
has the size™), then the running time would be exponential in
the input size. Fortunately, this means the special case of the equi-
join operator (with pre-grouped input on the attribi}és solvable
in polynomial time because all the input parameters are given in
unary. Since this case happens more often, we propose a dynamic
programming version of equi-join for this special case.

The equi-join algorithm uses dynamic programming to compute
a subset of the pre-groups with a total count that matches the out-
put cardinality. This is a blocking operator because it needs to read
all the input fromS first (for dynamic programming to solve the

table is not pre-grouped and thus the above equi-join algorithm is Subset-sum problem). For memory reasons, all the input tuples
chosen by the query analyzer. Assume that the distribution genera-from S are materialized in the symbolic database. One optimiza-

tor generates a Zipf sequen{4,2,1,1 for the four tuples in Table

B(i) to join with 8 out of 10 line-items (where 8 is the user-specified
output cardinality of this join operation). Therefore it produces the
following output (join keys ar®old):

L_id |_price | l_oid
cid | cacctbal | odate | ocid | Iid | Iprice | o.id=1I_oid 1Zidl | lpricel | oddl
c_idl | coacctball | o_datel | o_cidl | lidl | I_pricel o.idl 1.id2 | l_price2 | o.idl
cidl | c_acctball | o_datel | o_cidl | l1id2 | I_price2 o.idl 14d3 | lprice3 | oidl
cidl | c_acctball | o_datel | o_cidl | l1d3 | I_price3 o.idl 14d4 | lpriced | oidl
c_idl | c.acctball | o_datel | o_cidl | lid4 | l_priced o.idl 1-id5 | l_price5 | o.id2
c_idl | c-acctball [ o_date2 | o_cidl | l-id5 | l_priceb 0.id2 1_id6 I_price6 | o.id2
ciidl | c_acctball | o_date2 | o_cidl | 1_id6 | l_price6 o.id2 14d7 | lprice7 | 0.id3
c_id2 | c_acctbal2 | o_date3 | o_cid2 | 1id7 | l_price7 0.id3 14d8 | lprice8 | oid4
c_id2 | c_acctbal2 | o_dated | o_cid2 | lid8 | l_price8 o.id4 14d9 | lprice9 | oids

i) Output of (o (Customer) X Order) X Lineitem. 8 tuples 14d10 | I_pricel0 | o.id6

(ii) Lineitem (8 pos, 2 neg)
Table C. After 2-way join

Finally, note that if the two inputs of an equi-join are base tables
(with foreign key constraint), then the output cardinality knob is

disabled by the query analyzer. It is because in that case, all tuples

from input R must join with inputS and thus the output cardinality
must be same as the size®f

Case 2: Input is pre-grouped on the join attribute k.

This is a special case of equi-join when the infus pre-grouped
on the join attributek. This sometimes happens when a preceding
join introduced a distribution ok as in the example in Figure 3.
In the following we show that if the input is pre-grouped on the
join attributek of an equi-join, then the problem of controlling the
output cardinality (even without the join distribution) is reducible
to the subset-sum problem:

The subset-sum problem [14] i k
takes as input an integer swn -

}e.g.c; =5times

- 72 k2 }e.g.co =4times
and a set of integer§' = { c1, 73 k3 }eg.cs =2times
k4 }e.g.ca = 1times
€2 ,...,cm}, andoutputs whether
there exists a subsét™ C C jl km  } e times
TableR TableS

suchthab’ ., ci =c. Con-
sider the tables? and S in the

tion for this case is that it is equal to the input size df, then

all tuples of S must be joined withR and the invocation of the
dynamic programming function can be skipped even if the data is
pre-grouped.

We reuse the figure above to illustrate the algorithm. Assume
the join is on Tablek and TableS and the join predicate i = k.
Assume TableR has three tuples({1), (52), (3)), and TableS
has 12 tuples which are clustered into 4 groups with synifiol
k2, k3, k4 respectively. Furthermore, assume the join®mand
S is specified with an output cardinality as= 7. The dynamic
programming equi-join controls the output as follows:

1. [Dynamic programming] During its open() method, (a) matezéathe
input.S of the join operator. (b) Extract the pre-group size (ei\g= 5,
c2 = 4,c3 = 2, ¢4 = 1) of each symbok: by executing Select
Count(k) From S Group By k Order By Count(k) Desa the mate-
rialized input. (c) Invoke a dynamic programming (dp) functieith
the pre-group sizes and the output cardinality (e:g= 7) as input.
The dp function (omitted here because of space) finds a subsgne
bols K+ in S which results in the desired total output cardinality (e.g.
K+ = {k1,k3} because; + c3 = 5 +2 = 7 = ¢). If the dp func-
tion cannot find any solution, stop processing and repostphoblem
to the user.

2. [Positive Tuple Joining] During getNext(), (a) for eaghmdol ki in
KT, read all tuplesST from the materialized input of which have
ki as the value of attribute. (b) Afterwards, call getNext() o once
and get a tuple, join all tuples inS+ with r by replacing the join key
symbols inS+ with the join key symbols in-. For example, the first
five k1 symbols inS are replaced with1 and the twok3 symbols in
S are replaced withi2 (again, these replacements are done on symbols
loaded in the memory and the changes are propagated to theabbese t
of wherej andk originate from). (c) Return the joined tuples to the
parent.

3. [Negative Tuple Joining] This step is the same as the Negadtiple
Joining step in the simple case (Section 3.2.3 case 1) thad jbie
negative tuples in inpuk with the negative tuples in inpuf.

For equi-joins, there are some more special cases such as both

figure on the right hand side, which are the inputs of such a join. join keys are pre-grouped, or the join keys are bound by check con-

Table R has one attributg with [ tuples all using distinct symbolic
valuesji (i < ). TableS also defines only one attribukeand has
intotal > ¢; rows. The rows ir5 are clustered im: groups, where
thei-th group has exactly; tuples using the same symbolic value
ki (i < m). We now search for a subset of thasegroups inS
which join with arbitrary tuples irR so that the output has the size

straints, etc. However, these cases rarely happen in practice and
interested readers are referred to [6] for details.

3.2.4 Symbolic Execution of Aggregation Operator

Knob:  Output Cardinalityc (optional; default value = input size) |

c. Assume, we find such a subset, i.e., the symbolic values of those Let be the input and be the output of the aggregation operator

groups which result in the output with size The groups returned

and f be the aggregation function. The symbolic execution of the

by such a search induce a solution for the original subset-sum prob-aggregation operator controls the size of the output as

lem.
The subset-sum problem is a weall{>-complete problem and

there exists a pseudopolynomial algorithm which uses dynamic

programming to solve it [14]. The complexity of that dynamic

Simple Aggregation.
This is the simplest case of aggregation where there is no group-
ing (i.e,. no GROUP-BY keyword) defined on the query. In this



case, the query analyzer disables the output cardinality knob be-
cause the output cardinality is either 1 (not-empty input) or 0 (empty
input). In SQL, there are five aggregation functions: MIN, MAX,
SUM, AVG, COUNT. Due to space constraints, this section presents
how to deal with SUM and MIN aggregation only. For the remain-
ing aggregation functions, and complex aggregation functions such
as MAX(l_price) + AVG(l_price), we refer the interested reader to
[6]. Nevertheless, all of them share similar solutions for both pre-
grouped or non-pre-grouped input on the attribute(s).ifrhe fol-
lowing shows the case of non-pre-grouped input:

Let expr be the expression in the aggregation functfowhich
consists of at least a non-empty set of symt®l& expr and let
the size of the inpuf ben.

1. SUM¢(expr). During its getNext() method, (a) the aggregation operator

consumes alh tuples fromI, (b) for each symbaos in S, add a tuple

(s, [aggsum = expri+expra+...+expry]) to the PTable, where
expr; is the corresponding expression on th input tuple; and (c)
return the symbolic tuplénggsum) as output. As an example, assume
there is aggregation function SUMgkice) on top of the join result in
Table C(i) of the previous section. Then, this operatonretwne tuple
(aggsum) to its parent and adds 8 tuples (e.g., the 2nd inserted tuple
is (I_price2, [aggsum = l_pricel + ...+ l_price8])) to the PTable.

In fact, the above is a base case only. Except for a few speasals
that we mentioned in [6], the aggregation operator couldhagt the
number and the size of the above predicates by inserting oayuple
(l-pricel, [aggsum = l_pricel x 8]) to the PTable and replacing
the symbold_price2, ..., l_price8 by the symbol_pricel on the
base table. One reason for doing that is the size of the inpythma
very big, if that is the case, the extremely long predicate maged
the SQLvar char size upper bound. Another reason is to insert fewer
tuples in the PTable. And the most important reason is thatdbeaf
of a constraint solver call is exponential to the size of tiput formula
in the worst case. Therefore, this optimization reducesithe of the
later data instantiation phase. However, there is a tréfddey each
input tuple, the operator has to update the correspondimdpslyin the
base table where this symbol originates from.

. MIN(expr). The MIN aggregation operator also uses similar pred-
icate optimization as SUM aggregation. Again, except for ecip
case described in [6], during its getNext() method, (a) iardg the
first expressiorezpr; as the minimum value and returgezpri) as
output; and (b) replaces the expresséamr; in the remaining tuples
(where2 < ¢ < n) by the second expressierrprs and inserts two
tuples(expri, [expr1 < expra]) and(expra, [expri < expra])to
the PTable.

As an example, assume there is aggregation function Mbk¢e)
on top of the join result in Table C(i). Then, this operatoturas
(l-pricel) as output and inserts 2 tuples to the PTablepricel,
[l-pricel < l_price2]) and(l_price2, [l_pricel < l_price2]) to the
PTable. Moreover_price3, l_price4, ..., l_price8 are replaced by
I_price2 on the base table.

Single GROUP-BY Attribute.

When the aggregation operator has one group-by attribute, the
output cardinalitye defines the number of output groups produced
by the operator. Le# be the single grouping attribute. Again, this
symbolic operation of aggregation can be divided into two cases:

Case 1: Input is not pre-grouped on the grouping attribute

In addition to the cardinality knob, when the symbols of the
grouping attributey in the input are not pre-grouped, it is possi-
ble to support one more knob:

Knob:  Group Distributionb (optional; choices = [Uniform or

Zipf]; default = Uniform)

The group distribution defines how to distribute the input tuples
into the ¢ predefined output groups. In this case, the aggregation
operator controls the output by:

1. [Distribution instantiation] During its open() methodstantiate a dis-
tribution generato, with the size ofl (denoted byn) as frequency,
the output cardinality as domain, and the distribution types input.
The distribution generator is the same one as the one for dmjng
join (Section 3.2.3). It generatesiumbersmny, mo, . .., mc, and the
i-th call on its getNext() metho@ < i < ¢) returns the expected
frequencym; of thei-th number under distributiol(how to deal with
m,; = 0isin [6].

2. During getNext(), calD.get Nezt() to get a frequencyn;, fetchm;
tuples (let them bé;) from I and execute the following steps. If there

are no more tuples from its child operator, return null to asgmt.

. [Group assignment] For each tuplén I;, except the first tuple’
in I;, replace the symbal.g, which is the symbol of the grouping
attribute g of tuple ¢, by the symbolt’.g. t’.g is the symbol of the
grouping attributey of the first tuplet’ in thei-th group. Note that, the
replacement of symbols in this step is done on both the tuptieiba
the memory and the related tuples in the base table as well.

4. [Aggregating] Invoke the Simple Aggregation Operatoihia previous

section (Section 3.2.4) with all the symbols participatethim aggre-
gation function in/; as input.

5. [Result Returning] Construct a new symbolic tuplé g, agg;) to its

parent wheregg; is the symbolic tuple returned by the Simple Aggre-
gation Operator for the-th group. Return the constructed tuple to its
parent.

Case 2: Input is pre-grouped on the grouping attribute
When the input on the grouping attribute is pre-grouped, it is
understandable that this operation does not support the group dis-
tribution knob as in the above case. But if the input is pre-grouped
on the grouping attribute and the output cardinality is the only spec-
ified knob, it is not a hard problem.
The aggregation operator (v)
in the running example (Figure
6) falls into this case. Referring

o_date | SUM(l_price)
o_datel aggsum_1
o_date2 aggsum_2

(i) Output of x (2 tuples)

X X . X symbol \ predicate
to Table C(|), which is the in- c_acctball [c_acctball > pi]
i c_acctbal2 [c_acctbal2 > pi)
.pUt of the aggregatlon Operator c_acctbal3 [c_acctbal3 < pl]
in the example. The grouping c_acctbal4 [c_acctbald < pi)
Ipricel | [aggsum_1 =5 x l_pricel]

attribute in the example s date,
after several joins, the data in
o_date is pre-grouped into 4 pre-
groups 6_datel x 4; o_date2 x 2; o_date3 x 1; o_dated x 1). In

this case, the aggregation operator controls the output by assign-
ing tuples from the same pre-group to the same output group and
each pre-group is assigned intmutput groups in a round-robin
fashion. In the example, the output cardinality of the aggregation
operator is 2. The aggregation operator assigns the first pre-group
(with o_datel) which includes 4 tuples into the first output group.
Then the second pre-group (withdate2) which includes 2 tu-
ples to the second output group. When the third pre-group (with
o_date3) which includes 1 tuple is being assigned to the first out-
put group (because of round-robin), the aggregation operator re-
placeso_date3 with o_datel in order to put the 5 tuples into the
same group. Similarly, the aggregation operator replacéste4

from the input tuple witho_date2. For the aggregation function,
each output group; invokes the Simple Aggregation Operator in
Section 3.2.4 with all the symbols participated in the aggregation
function as input, and gets a new symhaglg,, as output. Fi-
nally, for each group, the operator constructs a new symbolic tuple
(gi,agg4,) and returns it to the parent. Table D(i) shows the out-
put of the aggregation operator, and Table D(ii) shows the updated
PTable after the aggregation in the running example. Furthermore,
since the aggregation involves the attribatéate andi_price, the
Orders table and the Lineitem table are also updated (Figure 6c
shows the updated tables).

I_price5 | [aggsum_2 =3 x l_priceb)
(ii) PTable

Table D. After Aggregation



HAVING and Single GROUP-BY Attribute.

aggsum = l_pricel x 8) are designed for this purpose. After the

Dealing with a HAVING clause is the same as having a selec- data instantiator has collected all the concrete values of a symbolic
tion operator on top of the aggregation result (a rare exception is tuple, itinserts the instantiated tuple into the final test database. The

described in [6]).

Figure 6¢c shows the PTable content
after the HAVING clause. It imposes Table E. Output of
two more constraintsalggsum1 > p2] HAVING clause (1 tuple)
which is the positive tuple and.fgsum?2 < p2] which is the neg-
ative tuple, and it returns Table E to the parent.

odate | SUM(lprice)
o_datel ‘ aggsuml

Multiple GROUP-BY Attributes.

When there are multiple group-by attributes, the aggregation op-
erator depends not only on whether the input is pre-grouped, but
also depends on whether the input on the group-by attributes con-
tain a tree structure characteristic (from relations that have 1:n:m
relationship) or a graph structure characteristic (from relations that
have n:m:qg relationship). QAGen currently supports query with
tree input structure (see Figure 5). Under that case, the hardness of
the problems and the algorithms are similar to the case of the single
group-by attribute. For multiple group-by attributes with graph in-

put structure or if the group-by attributes have domain constraints, 4.

they are strong\"P-hard problems and QAGen currently does not
support them. Due to tight space constraints, we provide the proofs
in [6]. As part of our future work, we plan to use approximation
algorithms to solve these hard problems.

3.2.5 Symbolic Execution of Projection Operator

Symbolic execution on a projection SUM(f’p”ie)
operator is exactly the same as the tra- rape Fé‘j&’j’;} (1 tuple)
ditional query processing, it projects the specified attributes and no
additional constraints are added. As a result, the final projection
operator in the running example takes in the input from Table E

and ends with the result shown in Table F.

3.2.6 Symbolic Execution of Nested Query
Nested queries in symbolic query processing reuses the tech-

nigues in traditional query processing because queries can be uhneste

by using join operators [13]. In order to allow a user to have full
control on the input, the user should give the input query in its
unnested format. If the inner query and the outer query refer to the
same table(s), then the query analyzer disables some knobs on op-
erators that may allow a user to specify different constraints on the
operators that work on the same table in both inner and outer query.

4. DATA INSTANTIATION

The final phase of the data generation process is the data instan-
tiation phase. The data instantiator fetches the symbolic tuples
from the symbolic database and uses a constraint solver (strictly
speaking, the constraint solver is the decision procedure of a model
checker [10]) to instantiate concrete values for them. The constraint
solver takes a propositional formula (remember that all predicates
can be represented by propositional formula) as input and returns a

details of the data instantiator are illustrated by using the running
example as follows:

1. The process starts from any one of the symbolic tablestisayCus-
tomer (4 tuples) table, until all tables are instantiated.

2.
3.

Itreads in a tuple, say(c_id1, c_acctball), from the symbolic tables.

[Look up symbol-to-value cache] For each symbah tuplet, (a) it
first looks ups in a table called SymbolValueCache in the symbolic
database. The SymbolValueCache is a table in the symbolibakxta
that stores the concrete values of the symbols that have hetami
tiated by the constraint solver. (b) If the symbohas been instanti-
ated with a concrete value, then the symbol is initializedhhe same
cached value and then proceeds to the next symbol in

In Figure 6c, the symbat_id1 is the first symbol to be instantiated,
thus it has no instantiated value stored in the SymbolValak€table.
However, assume later when instantiating the first two tupi&rders
table (witho_id1, 0_id2), theiro_cid values will use the same value as
instantiated for_id1 by looking up the SymbolValueCache.

[Instantiate values] Look up the predicatesof s from PTable. (a)

If there are no predicates associated withthen instantiates by a
default value that matches the actual domais of the input schema
M. In the examplec_idl does not have any predicates associated
with it (see PTable in Figure 6). Therefore, the data in&tmt does
not instantiates with a constraint solver but instantiates a unique value
v (because_id is a primary key), say, 1, te_id1l. Afterwards, insert
atuple(s,v) (e.g.,{c_id1, 1)) to the SymbolValueCache.

(b) However, ifs has some predicatd3 in PTable, then compute the
predicate closureof s. The predicate closure of is computed by
recursively looking up all the directly correlated or irelitly corre-
lated predicates of. For example, the predicate closurd giricel is
[aggsum1 =5 x1_pricel AND aggsuml > p2]. Then the predicate
closure (which is in the form of conjunctive propositionatrhula) is
sent to the constraint solver (symbols exist in the Symbok@ache
are replaced by their instantiated values first). The caimgtsolver
instantiates all symbols in the formula in a row (elgpricel = 10,
aggsuml = 50, p2 = 18).

For efficiency purposes, before a predicate closure is sethiet con-
straint solver, the data instantiator looks up another eaahle called
PredicateValuesCache in the symbolic database. This tablees the
instantiated values of predicates. Since many predicaté®iRTable
essentially share the same pattern, the predicates stor@dicate-
ValuesCache are in the predicate pattern format. For exathplpred-
icates f_acctball > pl] and [c_acctbal2 > pl] in Figure 6(c) share
the same patternclacctbal > pl]. As aresult, after the instantiation
of the predicated_acctball > pl1], the data instantiator inserts an en-
try ([c-acctbal > pl], c_acctball, pl) into the PredicateValuesCache
table. When the next predicate closueedfcctbal2 > pl] needs to be
instantiated, the data instantiator looks up the predicafredicate-
ValuesCache by its pattern; if the same predicate patterm Fred-
icateValuesCache, then the data instantiator skips thantiation of
this predicate and reuses the instantiated value @fctball in the
SymbolValueCache table for the symhokcctbal2 (same forpl).

The number of constraint solver calls is minimized by the in-

set of concrete values for the symbols in the formula that satisfies troduction of the SymbolValueCache and PredicateValuesCache ta-
all the input predicates and the actual data types of the symbols. If bles. Experiments show that this feature is crucial or otherwise gen-
the input formula is unsatisfiable, the constraint solver returns error. erating a 1G query-aware database takes weeks instead of hours.
Such errors, however, cannot occur in this phase because contraFinally, note that in Step 4a, if a symbselhas no predicate asso-
dicting knob values are handled during symbolic query processing. ciated with it, the data instantiator assigns a value &xcording

A constraint solver call is an expensive operation. In the worst case, to its domain. Except for attributes with integrity constraints (e.g.,
the cost of a constraint solver call is exponential to the size of the primary keys), those values can be assigned randomly or always
input formula [10]. As a result, the objective of the data instantiator use the same value. It is unnecessary to instantiate any extra data
is to minimize the number of calls to the constraint solver if possi- characteristics (e.g., distribution) for those symbols because they
ble. Indeed, the predicate size optimizations during symbolic query do not participate in the query at all (i.e., their values do not affect
processing (e.g. reducingigsum = l_pricel + ...+ l_price8 to the query results anyway).



5 EXPERIM ENTS # | Symbolic operation size = 10M size = 100M size = 1G

Output-size] Time | Output-size] Time | Output-size] Time
This section shows the results of the experiments with our pro-
totype system QAGen. QAGen was implemented in Java and in-

3

Region <ls

ot

<ls 5 <ls
o(Region) = R1 1| <1s 1| <1s 1] <1s

1

2
3 | Nation 25 | <1s 25 | <1s 25 <ls
stalled on a Linux AMD Opteron 2.2 GHz Server with 4 GB of 4 | (R1X Nation) = R2 5|<1s 5| <1s 5| <1s
. . [, 5| Customer 1.5k | <1s 15.0k 5s 150k 49s
main memory. The symbolic databr_:lse and the target database USed 6 | (72 ¥ Customer) = 3 03 s S0E T 75 905 T 755
PostgreSQL 7.4.8 and they were installed on the same machine.| 7| Orders 150k | ds 150.0k | 455 1.5m | 553s
. I blicl ilabl traint | lled 8 | o(Orders) = R4 4.5k 8s 45.0k | 67s 457.2k | 709s
As a constraint solver, a publicly available constraint solver calle ST BN E) = ook 3s 0.0k 225 oTor T 27,
Cogent [12] was used. 10 Lineiterr.z, ] 60.0k | 26s 690.51« 237s 6001.2k | 2629s
We executed two sets of experiments with the following objec- |15 - kincitem) = H6 AR N N I ML 22
tives: The first experiment (Section 5.1) studied the efficiency of [13]o(Part) = &7 2] s 47| 8s 1451 | 72s
. . S [ 14| (R7T™ R6) = R8 29[ 3s 282 | 27s 2603 | 533s
the symbolic execution of individual operators. The second experi- ist-g e, =0 =1 e
ment (Section 5.2) studied the scalability of QAGen for generating |16 | (Supplier % k8) = k9 29 [ <1s B2 1s 2603 | 6s
H ; ; H + 17 | (Nation X R9) = R10 29 | <1s 282 | <1s 2603 3s
different database sizes for different queries. In all the expetsnen o7 7y =1 1 T Tos
the generated databases 100% met the constraints defined in the iNFSymboiic Query Processing Ol - 205 Tom 535 T61m 135
pu’[ query plan. Data Instantiation (# Cogent-call) 09m : 31s (14) 96m : 03s (14) 1062m : 54s (14)
Total 10m : 51s 108m : 565 1224m : 07s

5.1 Efficiency of Symbolic Operations

Co . . . . Table 1: QAGen Execution Time for TPC-H Query 8
The objective of this experiment is to evaluate (1) the running

time of individual symbolic operators; (2) their scalability, and (3) [Query| Phase]  10M | 100M] G|
the running time of the data instantiation phase by generating three 1 SOP | 02m40s| 26m45s| 321m27s
query-aware databases in different scales (10M, 100M, and 1G). DI 07m:42s| 78m:35s| 844m:52s
The input query was query 8 in the TPC-H benchmark [4]. Its log- Total | 10m:22s| 105m:10s| 1166m:19s
: : : : . 2 SQP | 00m:09s| 01m:32s 16m:47s
ical query plan input to QAGen is shown in Figure 7. We chose DI 02m-27s| 24m-55s| 249m-50s
TPC-H query 8 because it is one of the most complex queries in Total | 02m:365| 26m:27s| 256m:37s
TPC-H with 7-way joins and aggregations. This query has various 3 SQP | 01Im:35s| 16m:18s| 185m:21s
input characteristics to the operators enabling us to evaluate the _'?(')tal gggfggz 1%21:-(2)332 igégmfgg:
performance of different operator implementations (e.g., the nor- ) SoP OTm i8S 12mES6s| 156m22s
mal equi-join and the special case of equi-join that needs dynamic DI 09m:42s| 98m:13s| 1107m:10s
programming). The experiments were carried out in the following Total [ 10m:58s| 111m:09s| 1263m:32s
way: First, three benchmark databases were generateddlsieq 12 SIQP ‘igmflis 151”“_3315 124‘;”1{(2’;5
from TPC-H benchmark. As a scaling factor, we used 10 MB, 100 Total 1425222 143%262 lgglrmn;s‘é
MB, 1GB. Then, we executed query 8 on top of the three TPC-H

databases, and collected the base table sizes and the cardinality of Table 2: QAGen Scalability

each intermediate result under the three scaling factors. The ex-
tracted cardinality of each intermediate result of query 8 is shown
in Table 1 (Output-size) columns. Next, we generated three TPCH- instantiator cached the pattern of the predicates but not the concrete
query-8-aware databases with the collected base table sizes angredicates. We indeed repeated the same experiment by turning off
output cardinalities as input and measured the efficiency of QAGen the caching feature of QAGen, but it ended up that the data in-
for generating databases that produced the same cardinality resultsstantiation phase for a 1G database could not finish within 2 weeks
For this experiment, the join distribution was uniform. because the constraint solver took a lot of time. It proved that the
Table 1 shows the cost breakdown of generating query-aware predicate optimization in SQP and the caching in the data instan-
databases for TPC-H query 8 in detail. QAGen only took about 10 tiator work effectively.
minutes for generating a 10MB query-aware database. The sym-
bolic query processing phase was fast and scaled linearly. It took 5.2 ~ Scalability of QAGen
about 1 minute for 10MB and less than 3 hours for 1G database. The second experiment is to evaluate the scalability of QAGen
The longest SQP operations were the initialization of the big sym- for generating a variety of query-aware test databases. Currently,
bolic table Lineitem (Line 10 in Table 1), and the join between the oaGen supports 13 out of 22 TPC-H queries. It does not sup-
intermediate resul5 and Lineitem (Line 11). That join needed  port some queries because those queries either fall into the special
long time because it accessed the large Lineitem table frequently cases of QAGen (e.g., query 5 (Q5) falls into the special case of
to update the symbolic values of the join attributes. In query 8, selection in Section 3.2.2 case 2); or because some of them use
the input was pre-grouped on the last join (line 17 in Table 1 and non-equi-join (e.g., Q16, Q22). Nevertheless, we generated query
operator (17) in Figure 7). However, the dynamic programming aware databases for the rest of the queries in three different scaling
equi-join finished quickly because the input and output sizes were factors 10M, 100M, and 1G. We only present part of the detailed
not b_ig. Table 1 also shows that the symbolic execution of each regyits (Q1, Q2, Q3, Q10, Q12) here because of space constraints
individual operator scaled well. _ (see Table 3). For all 13 queries, experimental results show that the
~ The data instantiation phase dominated the whole data generajata instantiation (DI) phase was still the time dominating phase
tion process. It tOOk about 9 minutes to instantiate a 10M query and that the Symbo'ic query processing (SQP) phase was fast. In

8 aware database and about 17 hours to instantiate a 1G query §gqgdition, experimental results show that both phases scaled well for
aware database. Nevertheless, about 40% of time were the overy|| 13 TPC-H queries.

head of reading symbolic tuples and inserting concrete tuples (not

shown in the Table). In the experiments, the number of constraint

solver (cogent) calls was small — there were only 14 calls for 3 6. RELATED WORK

scaling factors. The number of calls was constant because the data The closest related work in DBMS testing is the work of [8]
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