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Abstract Testing a specific feature of a DBMS requires
controlling the inputs and outputs of the operators in the
query execution plan. However, that is practically difficult
to achieve because the inputs/outputs of a query depend on
the content of the test database. In this paper, we propose a
framework to test DBMS features. The framework includes
a database generator called QAGen so that the generated test
databases are able to meet the test requirements defined on
the test queries. The framework also includes a set of tools to
automate test case constructions and test executions. A wide
range of DBMS feature testing tasks can be facilitated by the
proposed framework.
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1 Introduction

The complexity of database management systems (DBMS)
makes the addition of new features or the modifications of
existing features difficult. The impact of the modifications on
system performance and on other components is hard to pre-
dict. Therefore, after each modification, it is necessary to run
tests to validate the system correctness and evaluate the rel-
ative system improvements under a wide range of scenarios
and workloads.

Today, a common methodology for testing a database sys-
tem is to generate a comprehensive set of test databases and
then study the before-and-after system behavior by executing
many test queries over those test databases. Test databases
can be generated by database generation tools such as IBM
DB2 Database Generator [23], DTM Data Generator [13],
MUDD [35], as well as some research prototypes (e.g., [4,19,
21]). These tools allow a user to define the sizes and the data
characteristics (e.g., value distributions and inter/intra-table
correlations) of the base tables. The next step is to manually
create test queries, or stochastically generate many valid test
queries using query generation tools such as RAGS [34] or
QGEN [32]. The test queries are then posed on the generated
test databases in order to test the various system compo-
nents such as testing the query optimizer [14] and the query
parser [7].

Unfortunately, the current testing methodology is inade-
quate for testing individual features of database systems. To
do so, it is necessary to control the input/output of query oper-
ators during a test. Consider the following example. Assume
atesting team for a DBMS product wants to test how a newly
designed memory manager influences the correctness and/or
the performance of multi-way hash join queries (i.e., how
the per-operator memory management strategy of the mem-
ory manager affects the resulting execution plans). In order to
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Fig. 1 A test case: a query with operator constraints

do so, a test case like the one shown in Fig. 1 is designed (the
figure is modified from [5]). A test case T is a parameterized
query Q with a set of constraints C defined on the query oper-
ators. In Fig. 1, the test query of the test case first joins a large
filtered table S with a filtered table R to get a small join result.
Then, the small intermediate join result is joined with a fil-
tered table V' to obtain a small final result. Since the memory
requirements of a hash join depends on the size of its inputs,
it would be beneficial if the input/output of each individual
operator in the query tree could be controlled/tuned according
to the test requirements [5]. For example, the memory allo-
cated to M g q7¢rg=V.artr; Dy the memory manager can be stud-
ied by controlling the output cardinality of o (R) x o (S) and
the output cardinality of o (V). Unfortunately, even though
the tester can instruct the database engine to evaluate the test
query with a specific physical execution plan (e.g., fixing the
join order and forcing the use of hash-join as the join algo-
rithm) [5], it is not easy to control the properties of (interme-
diate) results (e.g., the output cardinality of Mg 4rrg=V.artry)
as those properties rely on the content of the test database.

In DBMS feature testing, test queries are usually designed
by testers and executed on some test databases. The test dat-
abases used in testing should cover the test cases, i.e., if the
test query Q (with parameter values P) specified in T is exe-
cuted on D (denoted by Q p(D)), the (intermediate) query
results of Q should meet the constraints C defined in T'.
Unfortunately, existing test database generators do not take
test cases as input. As a result, the test databases generated
by those tools rarely cover the test cases. For example, it is
hard to find a test database to cover the test case in Fig. 1,
which expects the output cardinality to be 10 tuples, unless
the database content is manually tuned.

Recently, Bruno et al. [5] and Mishra et al. [30] view test-
ing DBMS features as a fargeted query generation (TQG)
problem. Given a test database D, a parameterized conjunc-
tive query @, and cardinality constraints C over the
sub-expressions of Q, [5,30] discuss how to find the set of
parameter values P of Q such that the output cardinality of
each operator in Q meets C. The TQG problem is NP-hard
[30]. Therefore, [5,30] develop approximation solutions that
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find P for Q such that the output cardinality of each oper-
ator approximately (instead of exactly) meets C. Although
useful, their approaches are limited by the given test dat-
abases. In particular, given a predefined test database (e.g.,
say, an empty test database in extreme case), there may be
no parameter values that permit the query results of Q to
approximately meet the constraints defined in the test case.
Even if the given test database does cover the test case, as the
solution space is too large, solutions in [5,30] are restricted
to supporting simple SPJ queries with single-sided predi-
cates (e.g., p1 < a or a < py) or double-sided predicates
(e.g., p1 < a < p2) (where a is an attribute and p; and p>
are parameter values). That limits the construction of more
realistic test queries which include operators like grouping
and aggregation and more complicated expressions.

We observe that the test database generation process is the
main culprit of ineffective DBMS feature testing. Currently,
test databases are generated without taking the test cases as
input. Thus, executing a test query on top of such generated
databases does not guarantee that the expected (intermedi-
ate) query results can be obtained. Therefore, the only way
to carry out testing meaningfully is to do a painful trial-and-
error test database generation process. That is, in order to
execute a test case T, we generate many test databases, or
manually tune the content of the generated test databases,
until a suitable test database is found.

In this paper, we address the DBMS feature testing prob-
lem in a different and novel way. We propose a DBMS feature
testing framework which consists of a set of tools. One of
them is a test database generator called QAGen. QAGen is
a “Query-Aware” test database generator which generates
query-aware test databases for each individual test case. It
takes as input a database schema M and a test case 7 (with a
set of constraints C defined on the base tables and optionally
defined on the operators) and generates a query-aware data-
base instance D and query parameter values P such that D
satisfies M and the (intermediate) results of Q p (D) (closely)
meets C.

As QAGen considers the test cases as first-class citizens
during the data generation process, the generated database
instances are able to cover a broader class of test queries (e.g.,
complex TPC-H queries) and useful for a variety of DBMS
feature testing tasks. For example, testers can use QAGen to
generate a test database that controls the size of the interme-
diate join results. With such a test database, they can test the
accuracy of the cardinality estimation components (e.g., his-
tograms) inside a query optimizer by fixing the join order.!

I However, QAGen is not designed to test the join reordering feature of
a query optimizer directly because in this case the physical join order-
ing should not be fixed by the tester; and the intermediate cardinalities
guaranteed by QAGen may affect the optimizer. This can result in a
different physical execution plan with different intermediate results.
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As another example, testers can use QAGenN to generate a test
database that guarantees the input and the output sizes (the
number of groups) for a GROUP-BY operator. With such a
test database, we can evaluate the performance of the group-
ing operation under a variety of cases such as in multi-way
join queries or in nested queries.

In addition to QAGen, the framework also includes a set
of tools to automate the steps of DBMS test case construc-
tion and test case execution. The framework automatically
creates and executes a set of test cases that satisfy a certain
test coverage. As a result, testers do not need to worry how to
determine the constraints of a test query (e.g., the cardinality
constraint “size = 500” in Fig. 1) in order to form useful
test cases.

The contributions of this paper are summarized as follows:

— A DBMS testing framework is presented. The framework
facilitates the tasks of testing various DBMS features. It
includes a query-aware test database generator QAGen,
which is an extension of the one in our earlier work [3].
This version of QAGen has been extended to support all
SQL operators (under a few restrictions) such that a larger
class of SQL queries can be supported.

— Theimplementations of QAGen are presented. New algo-
rithms are introduced in order to improve the performance
of some inefficient operations in [3].

— A DBMS test case generation algorithm is presented. The
algorithm automates the tasks of manually constructing
meaningful DBMS test cases. It is implemented as part of
the framework. Consequently, the framework can auto-
matically evaluate the features of a DBMS and generate
meaningful test reports.

— The efficiency and the effectiveness of the proposed
framework are studied through comprehensive experi-
ments and the detailed experimental results are presented.

The remainder of this paper is organized as follows: Sect. 2
gives an overview of QAGen. Section 3-5 describe the archi-
tecture of QAGen and the algorithms used. Section 6 presents
the testing framework that is built on top of QAGen. Sec-
tion 7 presents the experimental results. Section 8 discusses
related work. Section 9 contains conclusion and suggestions
for future work.

2 QAGen

In this section, we introduce QAGen, which is the most
important component of our DBMS testing framework.
QAGen is a query-aware test database generator that takes
as input a query, a specification of constraints on intermedi-
ate query results (e.g., cardinalities and value distributions),
and a specification of the database schema and generates as

output a query-aware test database. We define the problem
Query-Aware Test Database Generation as follows:
Given a database schema M (where SQL data types are
bounded), a test case T consists of a parameterized SQL
query Q (expressed in the form of a relational algebra
expression) and a set of user-defined constraints C defined
on operator(s) of Q. Find a database instance D and the set
of parameter value(s) P such that D satisfies M and Q p(D)
meets constraints C.

A decision problem can be constructed based on the prob-
lem statement above which asks whether or not a database
instance D exists given T and M. If the set C does not contain
contradicting constraints, we can always find a D by exhaus-
tively trying all possible database instances because the data
types in SQL are bounded.? In practice, however, the hard-
ness of the problem depends on the complexity of the given
0, C and M. For example, in most cases QAGen can gen-
erate a test database D such that Q p(D) meets C exactly.
However, in some cases, QAGen also considers approximate
solutions because the generation process involves solving a
weakly NP-complete problem. Nonetheless, approximate
solutions is widely acceptable in DBMS testing [5,30]. For
instance, to test the memory manager of a DBMS, it does not
matter whether the final join result in Fig. 1 contains exactly
10 tuples or 11 tuples.

2.1 Overview

QAGen is designed for experienced testers as a test auto-
mation tool. Multiple copies of QAGen can be run on the
machines of a test farm in order to generate multiple test
databases simultaneously. The test cases together with the
generated databases can form a large scale regression test
suite of a DBMS product.

In contrast to traditional database generators which only
allow testers to specify constraints on the base tables (a tester
thus cannot specify operator constraints, say, the output car-
dinality of a join in an intrinsic way), QAGen allows a tester
to annotate constraints on both operators and base tables, and
thus the testers can easily get a meaningful test database for
a distinct test case. QAGen is also designed to be extensi-
ble so that it can easily incorporate new operator constraints.
For example, sometimes it would be advantageous to add new
kinds of constraints to an operator in addition to the cardinal-
ity constraint during testing. For instance, the GROUP-BY
operator may need to control not only the output size (i.e.,
the number of groups), but also how to distribute the input

2 A more general problem statement may be constructed if we do
not restrict to SQL (data types). In that case, the problem is undecid-
able because it is undecidable to find solutions for arbitrary predicates
(a reduction from Hilbert’s tenth problem).
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Fig. 2 Example of symbolic query processing (R Mp=c S) Xg=c V

to the predefined output groups (i.e., some groups have more
tuples while others have fewer).

QAGen generates query-aware test databases in two
phases: (1) the symbolic query processing (SQP) phase, and
(2) the data instantiation phase. The goal of the SQP phase is
to capture the user-defined constraints on the query into the
target database. To process a query without concrete data,
QAGen integrates the concept of symbolic execution [25]
from software engineering into traditional query processing.
Symbolic execution is a well known program verification
technique, which represents values of program variables with
symbolic values instead of concrete data, and manipulates
expressions based on those symbolic values. Borrowing this
concept, QAGen first instantiates a database which contains
a set of symbols instead of concrete data (thus the gener-
ated database in this phase is called a symbolic database).
Fig. 2 shows an example of a symbolic database with three
symbolic relations R, S and V. A symbolic relation is a table
that consists of a set of symbolic tuples. Inside each symbolic
tuple, the values are represented by symbols rather than by
concrete values, e.g., symbol $al in symbolic relation R in
Fig. 2 represents any value under the domain of attribute a.
The formal definition of these terms is given in Sect. 4. For
the moment, let us just treat the symbolic relations as nor-
mal relations and treat the symbols as variables. Since the
symbolic database is a generalization of relational databases
and provides an abstract representation for concrete data, this
allows QAGen to control the output of each operator of the
query.

The SQP phase leverages the concept of traditional query
processing. First, the input query is analyzed by a guery ana-
lyzer. Then, users specify their desired constraints on the
operators of the query tree. Afterwards, the input query is
executed by a symbolic query engine as in traditional query
processing; i.e., each operator is implemented as an iterator,
and the data flows from the base tables up to the root of the
query tree [18]. However, unlike traditional query process-
ing, the symbolic execution of operators deals with symbolic
data rather than concrete data. Each operator manipulates
the input symbolic data according to the operator’s seman-
tics and user-defined constraints, and incrementally imposes
the constraints defined on the operators to the symbolic data-
base. After this phase, the symbolic database is a query-aware
database that meets all the constraints defined in the test case
(but without concrete data).
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Fig. 3 QAGen architecture

The data instantiation phase follows the SQP phase. This
phase reads the tuples from the symbolic database that are
prepared by the SQP phase and instantiates the symbols with
real data values. The instantiated tuples are then inserted into
the target database.

To allow a user to define different test cases for the same
query, the input query of QAGen is in the form of a rela-
tional algebra expression. For example, if the input query is
a three-way join query (0uges p, Customer w Orders) X
Lineitem,then users can specify a join key distribution (e.g.,
a Zipf distribution) between the lineitems and the orders that
join with customers with an age greater than pj. On the
other hand, if the input query is (Orders x Lineitem) X
Ouge>p; Customer, then users can specify the join key dis-
tribution between all orders and all lineitems.

Figure 3 shows the general architecture of QAGen. It
consists of the following components: a Query Analyzer, a
Symbolic Query Engine, a Symbolic Database and a Data
Instantiator.

2.2 Query analyzer

In the beginning of the SQP phase, QAGen first takes as input
a parameterized query Q and the database schema M. The
query Q is then analyzed by the query analyzer component
in QAGen. The query analyzer has two functionalities:
(1) Knob annotation. The query analyzer analyzes the input
query and determines which knob(s) are available for each
operator. A knob can be regarded as a parameter of an oper-
ator that controls the output. A basic knob that is offered by
QAGen is the output cardinality.> This knob allows a user
to control the output size of an operator. However, whether
such a knob is applicable depends on the operator and its
input characteristics.

Figure 4 shows the knobs of each operator offered by
QAGen under different cases. As an example, for a simple
aggregation query SELECT MAX (a) FROM R, the cardi-

3 The output cardinality of an operator can be specified as an absolute
value or as a selectivity. Both ways are equivalent.
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Fig. 4 Symbolic query processing framework of QAGen

nality constraint knob should not be available for the aggre-
gation operator (). This is because the output cardinality of
MAX (a) is always one (Fig. 4 case (f)). As another example,
the available knob(s) of an equi-join () depend on whether
the input is pre-grouped or not on the join keys. If the input is
pre-grouped, the equi-join can only offer the output cardinal-
ity as knob (Fig. 4 case (d)). If the input is not pre-grouped,
users are allowed to tune the join key distribution as well
(Fig. 4 case (c)). The input of an operator is pre-grouped
w.r.t. an attribute a if and only if there is at least one symbol
which is not distinct in a (Sect. 3 gives formal definitions
of all input characteristics). Consider a three-way join query
(R Mp=c S) My=, V on the three symbolic relations R, S,
and V in Fig. 2. When symbolic relation R first joins with
symbolic relation S on attributes b and ¢, it is possible to spec-
ify the join key distribution such as joining the first tuple 71
of R with the first three tuples of S (i.e., 3, 4, t5); and the
last tuple 72 of R joins with the last tuple #6 of S (kind of
like Zipf distribution [37]). However, after the first join, the
intermediate join result R Xp—. S is pre-grouped w.r.t. attri-
butes a, b and ¢ (e.g., symbol $al is not distinct on attribute
a in the join result). Therefore, if this intermediate join result
further joins with symbolic relation V on attributes a and e,
then the distribution cannot be freely specified by a user. This
is because if the first tuple 711 of V joins with the first tuple
t7 of the intermediate results, this implies that $el = $al
and thus 711 must join with ¢8 and 79 as well.

This example shows that it is necessary to analyze the
query in order to annotate the proper knobs to the operators.
For this purpose, the query analyzer analyzes the input query
in a bottom-up manner (i.e., starting from input schema M)
and incrementally pre-computes the output characteristics of
each operator (e.g., annotates an attribute of the output of
an operator as pre-grouped if necessary). In the example,
the query analyzer realizes that the intermediate join result

R Xp— Sispre-grouped w.r.t. attributes a, b and c. Based on
this information, the query analyzer disables the join key dis-
tribution knob on the next equi-join that joins with V. Thus,
the query analyzer annotates the appropriate knob(s) to each
operator according to Fig. 4. The output of the query ana-
lyzer is an annotated query tree with the appropriate knob(s)
on each operator. Section 3 presents the details of this step.

Figure 4 is also a summary of the class of SQL queries

that QAGen supports. Comparing with the previous version
of QAGen in [3], this version of QAGen supports all SQL
operators except the Cartesian product operation(x ), which
in practice is rarely used. The dotted lines show some special
cases that the current version of QAGen does not support.
According to Fig. 4, the current version of QAGen already
suffices to cover 14 out of 22 complex TPC-H queries. In this
paper, we assume that the number of possible values in the
domain of a GROUP-BY attribute is greater than the number
of tuples to be output for an aggregation operator.
(2) Assign physical implementations to operators. As
shown in Fig. 4, different knobs are available under differ-
ent input characteristics. In general, different (combinations
of) knobs of the same operator need separate implementa-
tion algorithms. Moreover, even for the same (combination
of) knobs of the same operator, different implementation
algorithms are conceivable (this is akin to traditional query
processing where an equi-join operation can be done by hash-
join or sort-merge join). Consequently, the second purpose
of the query analyzer is to assign an implementation to each
operator and return a knob-annotated query execution plan.
Section 4 presents the implementation algorithms for each
operator in QAGen.

In general, the job of the query analyzer is analogous to
the job of the query optimizer in traditional query process-
ing. However, in the current version of QAGen, only one
implementation algorithm for each (combination of) knob is
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available. If there is more than one possible implementation
for a knob (or a combination of knobs), the query analyzer
can be extended to be a query optimizer, thereby selecting
the most appropriate implementation based on the estimated
query processing time or other quality criteria.

Supporting new variants of an operator (e.g., theta join)
or adding new knobs (which may depend on new input char-
acteristics) to an operator is straightforward in QAGen. For
example, adding a new knob to an operator can be done by
incorporating the corresponding implementation of the oper-
ator into the symbolic query engine and then updating the
query analyzer about the input characteristics that this new
knob depends on.

2.3 Symbolic query engine and database

The symbolic query engine of QAGen is the heart of the
SQP phase and it is similar to a traditional database query
engine. It interprets a knob-annotated query execution plan
given by the query analyzer. The symbolic query engine also
uses an iterator model. That is, every operator is implemented
as an iterator. Each iterator consumes symbolic tuples from
it child iterator(s) one-by-one and returns symbolic tuples to
its parent iterator.

Before the symbolic query engine starts execution, the
user can specify the value(s) for the available knob(s) of each
operator in the knob-annotated execution plan. It is accept-
able to specify values for only a few knobs. If the value of
a knob is not specified, it would be determined according
to the rules given by the creator of the knob (however, base
table sizes must be given by the tester).

Similar to traditional query processing, most operators in
SQP can be processed in a pipelined mode, but some can-
not. For example, the equi-join operator in SQP is a blocking
operator under certain circumstances. In these cases, the sym-
bolic query engine materializes the intermediate results into
the symbolic database if necessary. In SQP, a table in a query
tree is regarded as an operator. During its open() method,
the table operator initializes a symbolic relation based on the
input schema M and the user-defined constraints (e.g., table
sizes) on the base tables.

In SQP, an operator evaluates the input tuples according
to its own semantics. On the one hand, it imposes additional
constraints to each input tuple in order to reflect the con-
straints defined on the operator. On the other hand, it con-
trols its output to its parent operator so that the parent operator
can work on the right tuples. As a simple example, assume
the input query is a simple selection query o,>p, R on sym-
bolic relation R in Fig. 2 and the user specifies the output
cardinality as 1 tuple. If the getNext() method of the selec-
tion operator iterator is invoked, it reads tuple ¢#1 from R,
annotates a positive constraint [$al > pi] (i.e., the selection
predicate) to symbol $al and returns tuple ($al, $H1) to its
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parent. When the getNext() method of the selection opera-
tor is invoked a second time, it reads the next tuple 72 from
R, and annotates a negative constraint [$a2 < pi] (i.e., the
negation of the selection predicate) to symbol $a2. However,
this time, it does not return this tuple to its parent. That is
because the cardinality constraint (1 tuple) is already met.

Note that, although we assume the users of QAGen are
experienced testers, it still possible that they accidentally
specify some contradicting knob values on test cases. For
instance, a tester may accidentally specify the output car-
dinality of the selection in the above example as 10 tuples
even if she specified table R to have only two tuples. In these
cases, QAGen will return corresponding error messages for
the tester to correct the test case.

2.4 Data instantiator

The data instantiation phase starts after the SQP phase. The
data instantiator reads the symbolic tuples from the symbolic
database and instantiates the symbols inside each symbolic
tuple by a constraint solver. In QAGen, we treat the con-
straint solver as an external black box component which takes
as input a constraint formula (in propositional logic) and
returns a possible instantiation on each variable. For exam-
ple, if the input constraint formulais 40 < $al+$b1 < 100,
then the constraint solver may return $al = 55, $61 = 11
as output (or any other correct instantiation). Once the data
instantiator has collected all the concrete values for a sym-
bolic tuple, it inserts a corresponding tuple (with concrete
values) into the target table.

3 Query analyzer in QAGen

This section presents the details of the query analyzer in
QAGen. Given the input relational algebra expression, the
query analyzer serves two purposes: (1) annotates proper
knobs to the query operators, and (2) assigns physical imple-
mentations to operators so as to form a physical execution
plan. QAGen currently supports only one physical imple-
mentation for each possible combination of knobs per rela-
tional algebra operator. As a result, (2) is straightforward and
for brevity we omit details of this step. This section focuses
on (1),1i.e., how to analyze the query and determine the avail-
able knob(s) for each operator in the input query.

The query analyzer determines the input characteristics
of each operator of the input relational algebra expression
in order to decide what kinds of knobs are available for
each operator. In SQP, there are four types of input charac-
teristics: pre-grouped, not pre-grouped, tree-structure, and
graph-structure. Let A be the set of attributes of the input of
an operator. The input characteristics are defined as follows:
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Definition Pre-grouped/Not pre-grouped: The input of an
operator is not pre-grouped with respect to an attributea € A,
iff there is a functional dependency a — A (which means
that a is distinct) that holds in the input. Otherwise, the input
of the operator is pre-grouped with respect to attribute a.

Definition Tree-structure/Graph-structure: A set of attrib-
utes A" C A of the input of an operator has a free-structure,
iff either the functional dependency a; — aj or a; — a;
holds in the input of the operator for all a;, a; in A" and
a; # aj. Otherwise, the set of attributes A" C A of the input
of the operator has a graph-structure.

Since the definition of the input characteristics of an oper-
ator solely depends on the functional dependencies, the type
of knobs available for an operator can be easily determined
according to Fig. 4. In particular, the query analyzer can
compute the set of functional dependencies that holds in
each intermediate result in a bottom-up fashion using the
rules in [2] (i.e., starting from the base tables). Note that,
as it is not possible to derive the complete set of functional
dependences that hold on the (intermediate) results of a rela-
tional algebra expression containing the MINUS operator
[26], QAGen might offer wrong knobs to some operators
above the MINUS operators in some cases. In this cases,
QAGen will warn the users to check the knobs before it starts
processing. Nonetheless, this problematic case rarely hap-
pens in practice. In our experiments of processing 14 TPC-H
queries, QAGen offers correct knobs to all operators.

We reuse the query (R Xp=, S) Mgz=, V in Fig. 2 to
illustrate the pre-grouped and not pre-grouped data charac-
teristics. In Fig. 2, the intermediate result R xp—. S is pre-
grouped w.r.t. attributes a, b and ¢ (where b = ¢) and is not
pre-grouped w.r.t. attribute d. This is because:

— As we will see in the next section, all symbols in the base
tables are initially distinct (see tables R and S in Fig. 2 as
an example). Therefore, the set of non-trivial functional
dependencies of R is {¢ — b,b — a} and the set of
functional dependencies of S is {¢c — d,d — c}.

— According to the functional dependency calculation rule
for joining in [2], the join predicate b = ¢ (with c as a
foreign-key of b) creates a functional dependency ¢ — b.
Therefore, the set of functional dependencies of the inter-
mediate join result R Xp—, Sis {a >b,b—>a,c—d,
d—>c,c—>b,c—>a,d—b,d— a}.

— Among the set of attributes A : {a, b, c,d} of R Xp= S,
attributes ¢ and d functionally determines attributes a
and b. As a result, according to the definition of pre-
grouping, the intermediate result is not pre-grouped w.r.t.
¢ and d but is pre-grouped w.r.t. @ and b.

We use another example to illustrate the concept of tree-
structure and graph-structure input characteristics. Assume
the following table is an intermediate result of a query:

a | b | c | d
$al | $b1 | $cl | $d1
$a2 | $b1 | $cl | $d2
$a3 | $62 | $cl | $d2
$ad | $63 | $c2 | $d1

Assume the following functional dependencies hold in this
intermediate result: a — {b, ¢, d}, and b — {c}. Following
the definitions of tree and graph structure, the attribute set
A = {a, b, ¢} has a tree-structure because all attributes are
functional dependent on each other. On the other hand, the
attribute set A = {a, b, d}has a graph-structure because there
is no functional dependency between b and d (i.e., neither
{b} — {d}, nor {d} — {b} holds in the intermediate result).

4 Symbolic query engine in QAGen

This section presents the details of the symbolic query engine
in QAGen. First, we define the data model of symbolic data
and discuss how to physically store the symbolic data. Then,
we present algorithms for implementing the symbolic exe-
cutions of operators through a running example.

4.1 Symbolic data model
4.1.1 Definitions

A symbolic relation consists of a relational schema and a
symbolic relation instance. The definition of a relational
schema is the same as the classical definition of a relational
schema [9]. Let R(ai:dom(ay), ..., a;: dom(a;), ..., a,:
dom(a,)) be a relational schema with n attributes; and for
each attribute a;, let dom(a;) be the domain of attribute a;.
A symbolic relation instance is a collection of symbolic
tuples T (using bag semantics; in order to support SQL).
Each symbolic tuple t € T is a n-tuple with n symbols:
(S1, 52, ..., Sy). As a shorthand, symbol s; in tuple ¢ can be
referred by ¢.a;. A symbol s; is associated with a set of pred-
icates P;; (N.B. Py, can be empty). The value of symbol s;
represents any one of the values in the domain of attribute
a; that satisfies all predicates in Py;. The symbols s; and s;
represent different values if i # j and they are from the same
attribute. A predicate p € Py, of a symbol s; is a proposi-
tional formula that involves at least s; and zero or more other
symbols that appear in different symbolic relation instances.
Therefore, a symbol s; with its predicates Py, can be repre-
sented by a conjunction of propositional logic formulas. A
symbolic database is defined as a set of symbolic relations

@ Springer



E. Loetal.

and there is a one-to-many mapping between one symbolic
database and many traditional relational databases.

4.1.2 Data storage

Symbolic databases are a generalization of relational dat-
abases and provide an abstract representation of concrete
data. Given the close relationship between relational dat-
abases and symbolic databases, and the maturity of relational
database technology, it may not pay off to re-design another
physical model for storing symbolic data. QAGen opts to
leverage existing relational databases to implement the con-
cept of a symbolic database. To that end, a natural idea for
storing symbolic data is to store the data in columns of tables,
introduce a user-defined type (UDT) to describe the col-
umns, and use SQL user-defined functions to implement the
symbolic operations. However, symbolic operations (e.g., a
join that controls the output size and distribution) are too
complex to be implemented by SQL user-defined functions.
As a result, we propose to store symbols (and associated
predicates) in relational databases by simply using the var-
char SQL data type and letting the QAGen symbolic query
engine operate on a relational database directly. This way, we
integrate the power of various access methods brought by the
relational database engine into SQP.

The next interesting question is how to normalize a sym-
bolic relation for efficient SQP. From the definition of a sym-
bol, we know that a symbol may be associated with a set of
predicates. For example, symbol $a1 may have a predicate
[$al > p;] associated with it. As we will see later, many
symbolic executions of operators impose some predicates
(from now on, we use the term predicate instead of con-
straint) on the symbols. Therefore, a symbol may be asso-
ciated with many predicates. As a result, QAGen stores the
predicates of a symbol in a separate relational table called

PTable. Reusing Fig. 2 again, symbolic relation R can be
represented by a normal table in a RDBMS named R with
the schema: R(a: varchar, b: varchar) and a table named
PTable with the schema: PTable(symbol: varchar, predicate:
varchar). After a simple selection o,>p, R on table R, the
relational representation of symbolic table R is:

a | b symbol | predicate
$al $v1 $al [$al > p1]
$a2 $52 $a2 [$a2 < p1]
Table R (2 tuples) PTable (2 tuples)

Finally, note that even if a symbol $al is representing a
concrete value (e.g., symbol $a1 has a value 5 after a selec-
tion o,—5 R), the concrete value of $al is still expressed as a
concrete predicate [$a1 = 5] in the PTable.

4.2 Symbolic query evaluation

The major difference between SQP and traditional query pro-
cessing is that the input (and thus the output) of each operator
is symbolic data. The flexibility of symbolic data allows an
operator to control its internal operation and thus its output.
As in traditional query processing, an operator in SQP is
implemented as an iterator. Therefore, the interface of an
operator is the same as in traditional query processing which
consists of three methods: open(), getNext() and close().
Next, we present the knobs and the algorithms for each
operator through a running example. Unless stated other-
wise, the following sub-sections only show the details of the
getNext() method of each operator. All other aspects (e.g.,
open() and close()) are straightforward so that they may be
omitted for brevity. The running example is a three-way join
query which demonstrates the details of the symbolic execu-
tion of selection, equi-join, aggregation, and projection. We
also discuss some special cases of these operators. Figure 5a

c.id ‘ c_acctbal o_id | o_date | o_cid 1id | 1_price | 1_oid symbol | predicate
Sc_idl | $c.acctball $o_id1 | $o.date 1 | So_cidl $1_id1 $I_pricel $l_oidl |
(vi) $c_id2 | $c_acctbal2 $0_id2 | $o.date2 | So_cid2 $1.id2 $1_price2 $1_0id2 PTable
T $c_id3 | $c_acctbal3 $o_id3 | $o_date3 | So_cid3 $1_id3 $l_price3 $1_o0id3
Sl Sc_id4 | $c_acctbald . [ . o
™ size=1 Customer (4 tuples) $0-id6 | $o_date 6 | So_cide . e
SUM (I_price) >:pa Orders (6 tuples) $1_id10 | $l_pricel0 | $l_0id10
e Lineitem (10 tuples)
iv), size=2 b e .
Initial Symbolic Database
odate X.SUM (I_price) ( ) b
. size=8;
Zipf
(i) pq o id — Loid c.id c_acctbal o.id o_cid Lid 1_price 1_oid symbol | predicate
size=4; L $cid1 | Sc_acctball $o0.id1 | $o_date 1 | $c_idl $l_id1 $l_pricel $o_id1 Sc_acctball [$c_acctball > py]
uniform n v Sc.id2 | Sc_acctbal2 $0.id2 | $o_date?2 | Sc.idl $1_id2 $1_pricel | So_id1 Scacctbal2 | [$c_acctbal2 > pi]
GV d — ocid Lineitem Scid3 | Sc_acctbal3 $o0_id3 | $o_date1 | Sc_id2 $l_id3 | $l_pricel | $o.idl Sc_acctbal3 | [$c_acctbal3 < pi]
- AT 04 size=10 $cd4 | Sc_acctbald $o.id4 | $odate? | $cid2 $iid4 | $lpricel | $oid1 $c_acctbald | [$c_acctbald < p,]
size=2 / , Customer (4 tuples) $o_id5 | $o_date5 | $c_id3 $1_id5 $i_price5 | $o_id2 $l_pricel [$aggsum 1 =5 x I_pricel]
i O Orders $0.id6 | $o_date 6 | $c.id3 $1.id6 $1_price5 | $o_id2 $l_price5 [$aggsum 2 = 3 x I price5]
. Qchctba L 2:p1 size=6 Orders (6 tuples) $1.id7 $l pricel | $o.id3 Saggsum 1 | [$aggsum 1 > p2]
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Fig. 5 Running example
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shows the input query tree (with all knobs and their values
given). The example is based on the following simplified
TPC-H schema (primary keys are underlined):
Customer (c_id int, c_acctbal float)
Orders (o_id int, o_date date, o_cid REFERENCE
Customer)
Lineitem (l_id int, 1_price float, |_oid REFERENCE
Orders)

4.2.1 Symbolic execution of the table operator

Knob: Table Size (compulsory)

In QAGen, a base table in a query tree is regarded as an
operator. During the open() method, it creates a relational
table in a RDBMS with the attributes specified on input
schema M. According to the designed storage model, all
attributes are in the SQL data type varchar. Next, it fills up
the table by creating new symbolic tuples until it reaches the
defined table size. Each symbol in the newly created tuples is
named using the attribute name as prefix and a unique iden-
tification number. Therefore, at the beginning of SQP, each
symbol in the base table should be unique. Figure 5b shows
the relational representation of the three symbolic relations
Customer, Orders and Lineitem for the running example. The
getNext() method of the table operator is the same as the tra-
ditional Table-Scan operator that returns a tuple to its parent
or returns null (an end-of-result message) if all tuples have
been returned. Note that if the same table is used multiple
times in the query, then the table operator only creates and
fills the base symbolic table once.

Primary keys, unique and not null constraints are already
enforced because all symbols are initially unique. Foreign
key constraints related to the query are taken care of by the
join operator directly.

4.2.2 Symbolic execution of the selection operator

Knob: Output Cardinality ¢

(optional; default value = input size)

Let I be the input and O be the output of the selection
operator o and let p be the selection predicate. The symbolic
execution of the selection operator controls the cardinality ¢
of the output. Depending on the input characteristics, the dif-
ficulty and the algorithms for this execution are completely
different. Generally, there are two different cases.

Case 1: Input is not pre-grouped w.r.t. the selection attri-
bute(s) This is case (a) in Fig. 4 and the selections in the
running example (Fig. 5a operator (i) and (v)) are in this
case. This implementation is chosen by the query analyzer

when the input is not pre-grouped w.r.t. the selection attri-
bute(s) and it is the usual case for most queries. In this case,
the selection operator controls the output as follows:

1. During its getNext() method, read in a tuple 7 by invoking
getNext() on its child operator and process with [Posi-
tive Tuple Annotation] if the output cardinality has not
reached c. Else proceed to [Negative Tuple Post Process-
ing] and then return null to its parent.

2. [Positive Tuple Processing] If the output cardinality has
not reached c, then (a) for each symbol s in 7 that partici-
pates in the selection predicate p, insert a corresponding
tuple (s, p) to the PTable; and (b) return this tuple 7 to
its parent.

3. [Negative Tuple Post Processing] However, if the output
cardinality has reached c, then fetch all the remaining
tuples I~ from input /. For each symbol s of tuple ¢ in
I~ that participates in the selection predicate p, insert
a corresponding tuple (s, —p) to the PTable, and repeat
this step until calling getNext() on its child has no more
tuples (returns null).

Each getNext() call on the selection operator returns to its
parent a positive tuple that satisfies the selection predicate p
until the output cardinality has been reached. Moreover, to
ensure that all negative tuples (i.e., tuples obtained from the
child operator after the output cardinality has been reached)
would not get some instantiated values later in the data instan-
tiation phase that ends up passing the selection predicate,
the selection operator associates the negation of predicate
p with those negative tuples. In the running example, attri-
bute c_acctbal in the selection predicate [c_acctbal > pi]
of operator (i) is not pre-grouped, because the data comes
directly from the base Customer table. Since the output car-
dinality ¢ of the selection operator is 2, the selection oper-
ator associates the positive predicate [c_acctbal > pi] to
symbols $c¢_acctball and $c_acctbal?2 of the first two input
tuples and associates the negated predicate [c_acctbal < pi]
to symbols $c_acctbal3 and $c_acctbald of the rest of the
input tuples. Table 1(i) shows the output of the selection oper-
ator and Table 1(ii) shows the content of the PTable after the
selection.

Case 2: Input is pre-grouped w.r.t. the selection attri-
bute(s)

This is case (b) in Fig. 4. This implementation is chosen
by the query analyzer when the input is pre-grouped with
respect to any attribute that appears in the selection predicate
p- In this case, we can show that the problem of controlling
the output cardinality is reducible to the subset-sum problem.

The subset-sum problem [17] takes as input an integer
sum c and a set of integers C = {c1, 2, ..., ¢}, and outputs
whether there exists asubset C* C Csuchthat ' o, ¢; =
c. Consider Fig. 6, which is an example of pre-grouped input
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Table 1 After selection

c_id c_acctbal

(i) Output of o; 2 tuples

$c_idl $c_acctball
$c_id2 $c_acctbal2
Symbol Predicate
(ii) PTable

$c_acctball
$c_acctbal2
$c_acctbal3
$c_acctbald

[$c_acctball > pi]
[$c_acctbal2 > pi]
[$c_acctbal3 < pi]
[$c_acctbald < p1]

k
$k1  }eg ci =5 times
$k2  }eg. co =4 times
$k3  }e.g c3 =3times
$k4  Yeg. ca = 1times

Skm } cm times
Input 7

Fig. 6 Pre-grouped selection

of a selection. Input / defines one attribute k and has in total
> ¢; rows. The rows in [ are clustered in m groups, where
the ith group has ¢; tuples with the same symbolic value k;
(i < m). We now search for a subset of those m groups in /
such that the output has the size c. Assume, we find such a
subset, i.e., the symbolic values of those groups which result
in the output with size c. The groups returned by such a search
induce a solution for the original subset-sum problem.

The subset-sum problem is a weakly A/P-complete prob-
lem and there exists a pseudopolynomial algorithm which
uses dynamic programming to solve it [17]. The complexity
of the dynamic programming algorithm is O(cm), where c is
the expected output cardinality and m is the number of differ-
ent groups in /. When c is large, the dynamic programming
algorithm runs very slow. Furthermore, it is also possible that
there is no subset in the input whose sum meets ¢ as well.
As aresult, when the query analyzer detects that the input of
a selection is pre-grouped, it allows the user to specify the
following knob in addition to the output cardinality knob:

Knob: Approximation ratio €

The approximation ratio knob allows the selection to ret-
urn an approximate number of tuples rather than the exact
number of tuples that is specified by the testers and this is a
new feature of this version of QAGen.

There are several approximation schemes in the literature
to solve the subset-sum problem (e.g., [22,24,33]). However,
these approximation schemes are not directly applicable in
our case. We illustrate this problem using a toy test case
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Fig. 7 A test case with the approximation ratio knob

(see Fig. 7). The test query in the test case is a two-way
join query with an aggregation. In Fig. 7, the tester defines
that the output cardinality of the selection as 50 tuples with
an approximation ratio of 0.1. Assume that the input of the
selection in Fig. 7 has 80 tuples but they are pre-grouped into
three clusters (a cluster ¢ consists of 36 tuples, and two clus-
ters ¢ and c3 consist of 22 tuples each) with respect to both
attributes attry and attr; after the two-way join. In order to
pick the correct subset of pre-grouped tuples with a total car-
dinality of ¢ (¢ = 50 in the example), the selection operator
needs to solve the subset-sum problem by an approximation
scheme. Unfortunately, all existing approximation schemes
are designed to return a subset whose sum is smaller than
(or equal to) the target sum. Consequently, it is possible that
an approximation scheme suggests picking clusters ¢y and
c3 from the pre-grouped input, such that the selection returns
a total of 44 tuples (which is actually the best solution with
target sum as 50 tuples) as output. However, if the selection
really returns 44 tuples, then the upper aggregation oper-
ator x in Fig. 7 would experience a “lack-of-tuple” error
(it expects to have 45 or more input tuples). Even though
the target users of QAGen are experienced testers, it is still
difficult for them to specify a semantically correct test case
when the system allows tolerances on the operator’s cardinal-
ity constraint. This practical problem drove us to develop an
approximation scheme that returns a subset with sum greater
than or equal to the target sum ¢ and has an approxima-
tion ratio €. We call this new problem as the Overweight
Subset-Sum Problem and it requires non-trivial modifications
to the current approximation schemes. Note that an alterna-
tive method to solving the “lack-of-tuple” error is to con-
sider the information from the parent operator. For example,
in Fig. 7, by considering the cardinality requirement of the
aggregation operator, the selection operator can look for a
subset of clusters whose totally cardinality in the range from
45 to 50 tuples. Then, the problem can be reduced to a subset
range-sum problem. In this work, we opt to solve the prob-
lem as an overweight subset-sum problem because it allows
a user to control the approximation ratio.
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Algorithm APPROXIMATE_ OVERWEIGHT_SUBSET_SUM(P)

Input: (a) A list of sorted integers C' = [c1,c2, ..., cm] Where ¢; <
ci+1 (b) Target sum ¢, (c) Approximation ratio e

Output: A subset of integers C* C C such that ¢ < ZciEC+ ¢; with
approximation ratio e

1. if3c; €Cic; >c

2. then Trim C' by removing elements ¢;41, ..., ¢m

3. Set the largest possible optimal solution pasp = c¢1 +c2 + ... +
¢ > cwherecy +co2+ ...+ ¢r—1 < c.Ilf e > ¢ return {c,}. If
no such r exists, return “no solution exists”.

4. Set quantization factor d = (¢/2)%p

5. Set number of buckets g = [p/d] + min{r, [2/€]}

6. Initialize g+ 1 approximate answer buckets B= { By, B1, ..., By}

7. Initialize a subset-sum array X of size g+ 1 where X [¢] stores the
subset-sum of the elements in B;. Set X[0] = 0 and X[i] = —1
1<i<yg)

8. Setlist S = [c1,ca, ..., cu] Where ¢, < (e/2)p

9. Setlist L = [cut1;Cut2, -+ Cm] Where cyt+1 > (¢/2)p
10. Return S as the answer if L is empty

11. for each number c; € L

12. Set the quantized value of v; of ¢; as [¢;/d]

13. for each j = g — v; down-to 0

14. if X[j]# -1

15. then le[]-‘r’UZ] < X[]]-i-cl

16. then set Bj+vz = Bj U {Ci},

17. set X[j +vi] = X[j] + ¢

18. for each bucket B; € B with X[i] # —1

19. setj =0

20. while X[i] < ¢

21. set B; = B; U{c;}, where c; is the j-number in list
S,

22. set X[i] = X[i] + ¢

23. j=j+1

24. return B;, where X[i| = min(X[j]) forall 0 < j < g and

X[l 2 ¢

Fig. 8 Approximation scheme for the overweight subset-sum problem

Our new approximation scheme is based on the “quanti-
zation method” [22] and consists of two phases. It takes a list
C of sorted numbers as input. Then, it first separates the input
list of numbers into two lists: large number list L and small
number list S. In the first phase, it tries to quickly come up
with a set of approximation solutions by only considering the
numbers with large values (i.e., only elements in L). Then,
in the second phase, it tries to fine tune the approximation
solutions by the set of small numbers in S.

Figure 8 shows the pseudocode of the approximation sch-
eme. In the beginning, it trims input list C if it contains
more than one number which has a value greater than or
equal to the target sum c. For example, assume input list C
is [1,2,5,6,13,27,44, 47, 48], the target sum c is 30, and
the approximation ratio € is 0.1. After line (1-2), C becomes
[1,2,5,6, 13,27, 44] because 47 and 48 cannot be part of
the answer. Then, it tries to quantize the large values into
different buckets (line 4-7) in order to minimize the number
of subsequent operations from line 11 to line 24. Based on
the quantization factor d, the algorithm quantizes the input
list of numbers into g buckets. The quantization factor d is
carefully chosen such that it is large enough to give a man-

ageable number of buckets and at the same time respecting
the error bound given by the approximation ratio € [22]. The
quantization factor d is computed based on the approxima-
tion ratio € and one of the possible subset-sums p. Such a p
value is found (line 3) by adding c1, c2, . .. until the sum is
at least the target sum c; if no such value is found, the sum
of all values in C must be less than ¢, and we can conclude
that there is no solution for the overweight subset-sum prob-
lem. An interesting special case is that, if the last value of the
sum, ¢, is at least ¢, we immediately know {c; } is the desired
optimal solution to the overweight subset-sum problem. X is
a subset-sum array. Entry X[i] stores the subset-sum of the
elements in bucket B; (line 7). Initially, X[0] is set to 0 as a
boundary condition and X[i] (where i # 0) is set to —1 to
make sure a subset-sum cannot exceed i x d in any case.

In the example, p =142+ 5+ 6+ 13 + 27 = 54, and
thus the quantization level d and the number of buckets g are
0.135 and 406, respectively. Afterwards, the algorithm cre-
ates g + 1 approximate answer buckets 53 and a subset-sum
array X, where each approximate answer bucket B; will hold
a set of numbers whose the sum is close to a factor i of the
quantization factor d (i.e., the subset-sum is close to i x d)
and X[i] represents the total sum of numbers in B;.

As mentioned, the input list of numbers is separated into
two lists S and L according to the numbers’ value (lines 8—
9). In the example, the small list S consists of the first two
numbers 1 and 2 in the input list C and the large list L con-
sists of all the rest of the numbers [5, 6, 13, 27, 44]. Then,
the first phase (lines 11-17) begins by examining each num-
ber in the large number list L and tries to assign the number
into different buckets. For example, the first number in L is
5 and its quantized values is [5/0.1357 = 38. Therefore, the
algorithm sets B3g = {5} and the corresponding subset-sum
array entry X[38] has a value of 5. Similarly, for the second
number 6 in L, its quantized value is [6/0.1357 = 44. As a
result, the algorithm sets B4 to be {6}, updates X[44] to be
6, sets Bgy to be {5, 6} and updates X[82] to have a value of
11 (= 5 + 6). If a bucket is non-empty, the algorithm only
updates the bucket (and its corresponding subset-sumin X) if
the updated subset-sum is larger than the current subset-sum
of that bucket (lines 15-17).

In the second phase (lines 18-23), the algorithm tries to
fine tune each approximate answer bucket B by adding the
numbers in the small list S, one-by-one, until it exceeds the
target sum c. Afterwards, the algorithm scans array X and
identifies the subset which has the smallest subset-sum that
is greater than the target sum c. Finally, it returns the corre-
sponding subset in B as the final result.

The complexity of our proposed approximation scheme
is O(m/€?). For the correctness proof and the complexity
analysis, we refer the readers to [28]. We now reuse Fig. 6
to illustrate the overall algorithm of the selection operator.
Assume that the input has 13 tuples which are clustered into 4
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groups with symbol $k 1, $k2, $43, and $k4, respectively. Fur-
thermore, assume that the output cardinality and the approx-
imation ratio is defined as 7 tuples and 0.2, respectively. The
pre-grouped input selection controls the output as follows:

1. [Subset-sum solving] During its open() method, (a) mate-
rialize input / of the selection operator; (b) extract the
pre-group size (e.g., c; = 5,¢3 = 4,c3 = 3,¢c4 = 1)
of each symbol k; by executing “Select Count(k) From
I Group By k Order By Count(k)” on the materialized
input; (c) invoke the approximation scheme in Fig. 8
with the pre-group sizes (the set of numbers), the output
cardinality (the target sum), and the approximation ratio
€ as input. The output of this step is a subset of symbols
K™ in I such that the output cardinality (approximately)
meets the constraint (e.g., K™ = {$k1, $k3} because
c1+c¢3 =543 =8> c¢). If no such subset exists, then
stop processing and report this error to the user.

2. [Positive Tuple Processing] During getNext(), (a) for
each symbol k; in K, read all tuples /" from the mate-
rialized input of I which have k; as the value of attribute
k; (b) for each symbol s that participates in the selection
predicate p in tuple ¢ of I T, insert a corresponding tuple
(s, p) to the PTable; (c) return tuple ¢ to the parent.

3. [Negative Tuple Post Processing] This step is the same
as the Negative Tuple Post Processing step in the simple
case (Sect. 4.2.2 case 1) that annotates negative predi-
cates to each negative tuple.

Note that, in this case, the selection is a blocking opera-
tion because it needs to read all the tuples from input / first
in order to solve the subset-sum problem. One optimization
for this case is that if ¢ is equal to the input size of I, then
all input tuples must be returned to its parent and thus the
subset-sum solving function can be skipped even though the
input data is pre-grouped.

4.2.3 Symbolic execution of the equi-join operator

Knob: Output Cardinality ¢
(optional; default value = size of the

non-distinct input)

Let R and S be the inputs, O be the output, and p be
the simple equality predicate j = k where R is the not-
pre-grouped w.r.t. join attribute j, and k is the join attribute
on S that refers to j by a foreign key relationship. The sym-
bolic execution of the equi-join operator ensures that the join
result size is c. Again, depending on whether the input is
pre-grouped or not, the solutions are different.

Case 1: Input is not pre-grouped w.r.t. join attribute k.
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This is case (c) in Fig. 4, where input § is not pre-grouped
w.r.t. join attribute k. In this case, it is possible to support one
more knob on the equi-join operation:

Knob: Join Key Distribution b
(optional; choices = [Uniform or Zipf];

default = Uniform)

The join key distribution b defines how many tuples of
input S join with each individual tuple in input R. For exam-
ple, if the join key distribution is uniform, then each tuple in
R joins with roughly the same number of tuples in S. Both
join operators in Fig. 5a fall into this case. In this case, the
equi-join operator (which supports both output cardinality ¢
and distribution b) controls the output as follows:

1. [Distribution instantiating] During its open() method,
instantiate a distribution generator Z, with the size of
R as domain (denoted by n), the output cardinality ¢
as frequency, and the distribution type b as input. This
distribution generator Z can be the one that has been
proposed earlier (e.g., [6,19]) or any statistical packages
that generate n numbers m, ms, . .., m, following Uni-
form or Zipf [37] distribution with a total frequency of
¢.* The distribution generator Z is an iterator with a get-
Next() method. For the ith call on the getNext() method
(0 < i < n),itreturns the expected frequency m; of the
ith number under distribution b.

2. During its getNext() call, if the output cardinality has not
yetreached c, then (a) check if m; = 0 orif m; has not yet
initialized, and, if so, initialize m; by calling getNext()
on Z and get a tuple »* from R (m; is the total num-
ber of tuples from S that should join with rT); (b) get a
tuple st from S and decrease m; by one; (c) join tuple
¥+ with s according to [Positive Tuple Joining] below;
(d) return the joined tuple to the parent. However, during
the getNext() call, if the output cardinality has reached
c already, then process [Negative Tuple Joining] below,
and return null to its parent.

3. [Positive Tuple Joining] If the output cardinality has not
reached c, then (a) for tuple sT, replace symbol st .k,
which is the symbol of the join key attribute k of tuple
s*, by symbol ™. j, which is the symbol of the join key
attribute j of tuple r+. After this, tuple »* and tuple s™
should share exactly the same symbol on their join attri-
butes. Note that the replacement of symbols in this step is
done on both tuples loaded in the memory and the related

4 The technique is also applicable to other distributions as long as
the corresponding distribution generator is available. Furthermore,
although rarely happens, it is possible that the n numbers returned by
the distribution generator may sum up to be larger than c. In this case,
as users of QAGen are prepared to getting approximation answers in
some cases, the process continues but the users will get informed after
the data generation.
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Table 2 After joining

c_acctbal o_id o_date c_id=o_cid
(i) Output of (o (Customer) x Order); 4 tuples

$c_acctball $o_idl $o_datel $c_idl
$c_acctball $o_id2 $o_date? $c_idl
$c_acctbal2 $o_id3 $o_date3 $c_id2
$c_acctbal2 $o_id4 $o_dated $c_id2
o_id o_date o_cid

(ii) Orders (4 pos, 2 neg)

$o_idl $o_datel $c_id1

$So_id2 $o_date2 $c_id1

$o_id3 $o_date3 $c_id2

$o_id4 $o_dated $c_id2

$So_id5 $o_date5 $c_id3

$o_id6 $o_date6 $c_id4

tuples in base table as well (using an SQL statement like
“Update k.BaseT able Set k=r*.j WHERE k=s*.k” to
update the symbols on the base table where join attribute
k comes from); (b) perform an equi-join on tuple ™ and
st

4. [Negative Tuple Joining] However, if the output cardi-
nality has reached c, then fetch all the remaining tuples
S~ frominput S. For each tuple s~ in S, randomly look
up asymbol j~ onthe join key j in the set minus between
the base table where join attribute j originates from and
R (that step can be implemented by composing an SQL
statement using the SQL MINUS operator), replace s~ .k
with symbol j~. This replacement is done on the base
tables only because these tuples are not returned to the
parent.

In the running example (Fig. 5), after the selection on table
Customer (operator (i)), the next operator is a join between
the selection output (Table A(i) in Sect. 4.2.2) and table
Orders. The output cardinality ¢ of that join (operator (ii))
is 4 and the join key distribution is uniform. Since the input
of the join is not pre-grouped w.r.t. the join key o_cid, the
query analyzer uses the algorithm above to perform the equi-
join. First, the distribution generator Z generates 2 numbers
(whichis the size of input R), with total frequency of 4 (output
cardinality), and uniform distribution. Assume Z returns the
sequence {2, 2}. This means that the first customer $c_id1
should take 2 orders ($0_id 1 and $0_id2) and the second cus-
tomer $c_id?2 should also take 2 orders ($o_id3 and $o_id4).
As a result, symbols $o_cid1 and $o_cid?2 from the Orders
table should be replaced by $¢_id 1 and symbols $o_cid3 and
$0_cid4 from the Orders table should be replaced by $c¢_id2
(Step 3 above). In order to fulfill the foreign key constraint
on those tuples which do not join, Step 4 (Negative Tuple
Joining) replaces o_cid5 and o_cid6 by customers that did

not pass through the selection filter (i.e., customer $c_id3
and $c_id4) randomly. Table 2(i) below shows the output
of the join and Table 2(ii) shows the updated Orders table
(updated join keys are bold).

After the join operation above, the next operator in the run-
ning example is another join between the above join results
(Table 2(i)) and the base Lineitem table (Fig. 5b(iii)). Again,
the input of the join on the joinkey /_oid of the Lineitem table
is not pre-grouped and thus the above equi-join algorithm is
chosen by the query analyzer. Assume that the distribution
generator generates a Zipf sequence {4,2,1,1} for the four
tuples in Table 2(i) to join with 8 out of 10 line-items (where
8 is the user-specified output cardinality of this join opera-
tion). Therefore, it produces the following output (updated
join keys are bold):

Finally, note that if the two inputs of an equi-join are base
tables (with foreign key constraint), then the output cardinal-
ity knob is disabled by the query analyzer. This is because in
that case, all tuples from input S must join with a tuple from
input R and thus the output cardinality must be same as the
size of S.

Case 2: Input is pre-grouped w.r.t. join attribute k.

This is case (d) in Fig. 4 and this implementation is chosen
by the query analyzer when input S is pre-grouped w.r.t. join
attribute k. This sometimes happens when a preceding join
introduces a distribution on k as in the example in Fig. 2.
In the following we show that if the input is pre-grouped
w.r.t. join attribute k of an equi-join, then the problem of
controlling the output cardinality (even without the join key
distribution) is also reducible to the subset-sum problem.

Consider tables R and S in Fig. 9, which are the inputs of
such a join. Table R has one attribute j with/ tuples all using
distinct symbolic values j; (i <[). Table S also defines only
one attribute k and has in total > ¢; rows. The rows in S are
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j k
$51 $k1  }eg c1 =5 times
$52 $k2  }eg co =4times
$53 $k3  }e.g c3 = 3times

$k4  }eg ca =1times
$51 $km  } cm times

Table R Table S

Fig. 9 Pre-grouped equi-join

clustered into m groups, where the ith group has exactly c¢;
tuples using the same symbolic value k; (i < m). We now
search for a subset of those m groups in § that join with arbi-
trary tuples in R so that the output has size c. Assume that we
find such a subset, i.e., the symbolic values of those groups
which result in the output with size c. The groups returned by
such a search induce a solution for the original subset-sum
problem.

For testing the feature of a DBMS, again, it is sufficient for
the equi-join to return an approximate number of tuples that
is close to the user specified cardinality. As a result, when
the query analyzer detects that one of the equi-join inputs is
pre-grouped, then it allows the user to specify the following
knob in addition to the output cardinality knob:

Knob: Approximation Ratio €

Again, this is a blocking operator because it needs to read
all the input tuples from S first (to solve the subset-sum prob-
lem). Similar to the optimization in the selection operator, if
c is equal to the input size of S, then all tuples of S must be
joined with R and the subset-sum solving function can be
skipped even though the data is pre-grouped.

We reuse Fig. 9 to illustrate the algorithm. Assume the
join is on Table R and Table S and the join predicate is j =
k. Assume Table R has three tuples (($/1), ($72), ($73)),
and Table S has 12 tuples which are clustered into 4 groups
with symbols $k1, $k2, $k3, $k4, respectively. Furthermore,
assume the join on R and § is specified with an output car-
dinality as ¢ = 7. The pre-grouped input equi-join controls
the output as follows:

1. [Subset-sum solving] During its open() method, (a) mate-
rialize input S of the join operator; (b) extract the pre-
group size (e.g. ¢ = 5, ¢ =4,¢c3 =3,¢c4 = 1) of
each symbol k; by executing “Select Count(k) From S
Group By k Order By Count(k) Desc” on the material-
ized input; (c) invoke the approximation scheme in Fig. 8
with the pre-group sizes (the set of numbers), the output
cardinality (the target sum), and the approximation ratio
€ as input. The output of this step is a subset of symbols
KT in I such that the output cardinality (approximately)
meets the constraint (e.g., K+ = {$k1, $k3} because
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c1 +c¢3 =543 =8> c¢). If no such subset exists, then
stop processing and report this error to the user.

2. [Positive Tuple Joining] During getNext(), (a) for each
symbol k; in K, read all tuples S* from the material-
ized input of S which have k; as the value of attribute k;
(b) afterwards, call getNext() on R once and get a tuple
r, join all tuples in ST with r by replacing the join key
symbols in ST with the join key symbols in . For exam-
ple, the first five $41 symbols in S are replaced with $ 1
and the three $43 symbols in § are replaced with $;2
(again, these replacements are done on symbols loaded
in the memory and the changes are propagated to the
base tables where j and k originate from); (c) return the
joined tuples to the parent.

3. [Negative Tuple Joining] This step is the same as the Neg-
ative Tuple Joining step in the simple case (Sect. 4.2.3
case 1) that joins the negative tuples in input R with the
negative tuples in input S.

4.2.4 Symbolic execution of the aggregation operator

Knob: Output Cardinality ¢

(optional; default value = input size)

Let I be the input and O be the output of the aggregation
operator and f be the aggregation function. The symbolic
execution of the aggregation operator controls the size of the
output as c.

Simple Aggregation This is the simplest case of aggrega-
tion where there is no grouping operation (i.e,. no GROUP-
BY keyword) defined on the query. In this case, the query
analyzer disables the output cardinality knob because the
output cardinality always equals to one. In SQL, there are five
aggregation functions: SUM, MIN, MAX, AVG, COUNT.
For simple aggregation, the solutions are very similar for both
pre-grouped or non-pre-grouped input on the attribute(s) in
f . The following shows the case of non-pre-grouped input:

Let expr be the expression in the aggregation function f
which consists of at least a non-empty set of symbols S in
expr and let the size of input / be n.

1. SUM(expr). During its getNext() method, (a) the aggre-
gation operator consumes all n tuples from 7; (b) for each
symbol s in S, adds a tuple (s, [aggsum = expri +
expry + ...+ expry]) to the PTable, where expr; is
the corresponding expression on the ith input tuple; and
(c) returns symbolic tuple ($aggsum) as output. As an
example, assume there is an aggregation function
SUM(I_price) on top of the join result in Table C(i) of
the previous section. Then, this operator returns one tuple
($aggsum) to its parent and adds 8 tuples (e.g., the 2nd
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inserted tuple is ($/_price2, [Saggsum = $I_pricel +
$I_price2 + ...+ $l_price8])) to the PTable.

The above is a base case. If there are no additional con-
straints that will be further imposed on the predicate sym-
bols, the aggregation operator will optimize the number
and the size of the above predicates by inserting only one
tuple ($I_pricel, [Saggsum = $I_pricel x 8]) to the
PTable and replacing symbols $/_price2,...,$1_price8
by symbol $/_pricel on the base table. One reason for
doing this is the size of the input may be very big. If
that is the case, the extremely long predicate may exceed
the SQL varchar size upper bound. Another reason is
to insert fewer tuples in the PTable. However, the most
important reason is that the cost of a constraint solver
call is exponential to the size of the input formula in the
worst case. Therefore, this optimization reduces the time
of the later data instantiation phase. However, there is a
trade-off: for each input tuple, the operator has to update
the corresponding symbol in the base table where this
symbol originates from.

2. MIN(expr). If possible, the MIN aggregation operator

also uses similar predicate optimization as SUM aggre-
gation. During its getNext() method, it (a) regards the
first expression expry as the minimum value and returns
(expr1) as output; and (b) replaces the expression expr;
in the remaining tuples (where 2 < i < n) by the second
expression expry and inserts two tuples (expry, [expr;
< expry]) and (expry, [expr1 < exprz]) to the PTable.
Note that this optimization must be aware of whether
the input is pre-grouped or not. If it is, not only the first
but all tuples with expr; are kept and the remaining are
replaced with symbol expr;.
As an example, assume that there is an aggregation func-
tion MIN(I_price) on top of the join result in Table C(i).
Then, this operator returns ($/_pricel) as output and
inserts two tuples into the PTable: ($I_pricel,
[$I_pricel < $l_price2])and ($I_price2,[$I_pricel
< $I_price2]) to the PTable. Moreover, according to
step (b) above, $I_price3, $I_priced, ..., $I_price8
are replaced by $/_price2 on the base table.

3. MAX(expr). During its getNext() method, it (a) regards
the first expression expr; as the maximum value and
returns (expry) as output; and (b) replaces the expres-
sion expr; in the remaining tuples (where 2 < i < n)
by the second expression expr, and inserts two tuples
(expri, [expr1 > expra]) and (expr>, [expr] > expra])
to the PTable.

4. COUNT(expr). The aggregation operator handles the
COUNT aggregation function in a similar way to tra-
ditional query processing. During its getNext() method,
(a) it counts the number of input tuples, n; (b) add a
tuple ($aggcount, $aggcount = n) to the PTable; and
(c) returns a symbolic tuple ($aggcount) as output.

5. AVG(expr). It is the similar to the case of the SUM
aggregation. During its getNext() method, (a) the aggre-
gation operator consumes all # tuples from /; (b) for each
symbol s in S, it adds a tuple (s, [Saggavg = (expri +
expry+ ...+ expry)/n]) to the PTable, where expr; is
the corresponding expression on the ith input tuple; and
(c) returns symbolic tuple (aggavg) as output. The opti-
mization can be illustrated by our example: It adds only
one tuple ($/_pricel, [$aggavg = $I_pricel]) to the
PTable and replaces symbols $/_price2, ..., $I_price8
by symbol $/_pricel on the base table.

In general, combinations of different aggregation func-
tions in one operator (e.g. MIN(exprl) + MAX(expr2))
need different yet similar solutions. Their solutions are
straightforward and we do not cover them here.

Single GROUP-BY Attribute When the aggregation oper-
ator has one GROUP-BY attribute, the output cardinality ¢
defines how to assign the input tuples into ¢ output groups.
Let g be the single grouping attribute. For all algorithms
we assume that g has no unique constraint in the database
schema. Otherwise, the grouping is predefined by the input
already and the query analyzer disables all knobs on the
aggregation operator for the user. Again, this symbolic oper-
ation of aggregation can be divided into two cases:
Case 1: Input is not pre-grouped w.r.t. the grouping attri-
bute

In addition to the cardinality knob, when the symbols of
the grouping attribute g in the input are not pre-grouped, it
is possible to support one more knob:

Knob:  Group Distribution b

(optional; choices = [Uniform or Zipf]; default = Uniform)

The group distribution b defines how to distribute the input
tuples into ¢ predefined output groups. In this case, the aggre-
gation operator controls the output as follows:

1. [Distribution instantiating] During its open() method,
instantiate a distribution generator Z, with the size of
I (denoted by n) as frequency, the output cardinality ¢ as
domain, and the distribution type b as input. The distribu-
tion generator is the same one as that for doing equi-join
(Sect. 4.2.3). It generates ¢ numbers mi, my, ..., M,
and the ith call on its getNext() method (0 < i < ¢)
returns the expected frequency m; of the ith number
under distribution b.

2. During getNext(), call Z.getNext() to get a frequency
m;, fetch m; tuples (let them be /;) from / and execute
the following steps. If there are no more tuples from its
child operator, return null to the parent.

3. [Group assigning] For each tuple ¢ in I;, except the first
tuple ¢" in I;, replace symbol 7.g, which is the symbol of
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Table 3 After 2-way join

c_id c_acctbal o_date o_cid 1_id 1_price o_id =1_oid
(i) Output of (o (Customer) x Order) X Lineitem. 8 tuples

$c_idl $c_acctball  $o_datel  $o_cidl  $l_idl  $I_pricel  $o_idl
$c_idl $c_acctball  $o_datel  S$So_cidl $l_id2  $I_price2  $o_idl
$c_idl $c_acctball  $o_datel  So_cidl $l_id3  $I_price3  $o_idl
$c_idl $c_acctball  $o_datel  So_cidl $l_id4  $I_priced4  $o_idl
$c_idl $c_acctball  $o_date2  $o_cidl  $l_id5 $I_price5 $o_id2
$c_idl $c_acctball  $o_date2  $o_cidl $l_id6  $I_price6  $o_id2
$c_id2 $c_acctbal2  $o_date3  $o_cid2 $l_id7  $I_price7  $o_id3
$c_id2 $Sc_acctbal2  $o_dated  $o_cid2  $l_id8  $I_priceS $o_id4
1id 1_price 1_oid

(ii) Lineitem (8 pos, 2 neg)

$1_idl $I_pricel $o_id1

$1 id2 $I_price2 $o_id1

$!_id3 $I_price3 $o_id1

$l_id4 $I_priced $o_id1

$!_id5 $I_price5 $o_id2

$/_id6 $I_price6 $o_id2

$1_id7 $I_priceT $o_id3

$!1_id8 $I_price8 $o_id4

$1_id9 $1_price9 So_id5

$1_id10 $1_pricel0 S$o_id6

the grouping attribute g of tuple ¢, by symbol ¢'.g. t'.g is
the symbol of the grouping attribute g of the first tuple ¢’
in the ith group. Note that the replacement of symbols in
this step is done on both the tuples loaded in the memory
and the related tuples in the base table as well.

4. [Aggregating] Invoke the Simple Aggregation Operator
mentioned early in this section with all the symbols par-
ticipated in the aggregation function in /; as input.

5. [ResultReturning] Construct a new symbolic tuple {¢’.g,
aggi), where agg; is the symbolic tuple returned by the
Simple Aggregation Operator for the ith group. Return
the constructed tuple to its parent.

Sometimes, during the open() method, the distribution
generator Z may return 0 when the distribution is skewed
(e.g., Zipf distribution with high skew factor). In this case,
it may happen that an output group does not get any input
tuple and the final number of output groups may be fewer
than the expected output cardinality. There are several ways
to handle this case. One way is to regard this as an runtime
error which lets users know that they should not specify such
a highly skewed distribution when they ask for many output
groups. Another way is to adjust the distribution generator
Z such that it first assigns one tuple to each output group
(which consumes c tuples), and then it starts assigning the
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remaining n — c tuples according to the distribution genera-
tion algorithm. This ensures that the cardinality constraint is
met. However, the final distribution may not strictly adhere to
the original distribution. Here, we assume the user does not
specify any contradicting constraints, therefore QAGen uses
the first approach (i.e., return a runtime error).

Case 2: Input is pre-grouped w.r.t. the grouping attribute

When the input on the grouping attribute is pre-grouped,
it is understandable that this operation does not support the
group distribution knob as in the above case. But if the input
is pre-grouped w.r.t. the grouping attribute and the output
cardinality is the only specified knob, the operation is fairly
simple.

The aggregation operator (iv) in the running example
(Fig. 5a) falls into this case. Referring to Table 3(i), which is
the input of the aggregation operator in the example. After
several joins, the input is pre-grouped into four pre-groups
w.r.t. o_date ($o_datel x 4; $o_date2 x 2; $o_date3 x 1,
$o_dated x 1). In this case, the aggregation operator con-
trols the output by assigning tuples from the same pre-group
to the same output group and each pre-group is assigned
into ¢ output groups in a round-robin fashion. In the exam-
ple, the output cardinality of the aggregation operator is
two. The aggregation operator assigns the first pre-group
(with $o_datel) which includes four tuples into the first
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Table 4 After aggregation

o_date SUM(I_price)
(i) Output of x (2 tuples)

$o_datel Saggsum_1
$o_date2 Saggsum_2
Symbol Predicate

(ii) PTable

$c_acctball
$c_acctbal2
$c_acctbal3
$c_acctbald
$i_pricel

[$c_acctball > pq)
[$c_acctbal2 > pi]
[$c_acctbal3 < pi]
[$c_acctbald < pi]
[$aggsum_1 =5 x $I_pricel]

$I_price5 [$aggsum_2 =3 x $I_price5]

Table 5 Output of HAVING clause (1 tuple)

o_date SUM(I_price)

$o_datel Saggsuml

output group. Then the second pre-group (with $o_date2)
which includes two tuples is assigned to the second out-
put group. When the third pre-group (with $o_date3) which
includes one tuple is being assigned to the first output group
(because of round-robin), the aggregation operator replaces
$o_date3 with $o_datel in order to put the five tuples into
the same group. Similarly, the aggregation operator replaces
$0_date4 from the input tuple with $o_date2. For the aggre-
gation function, each output group g; invokes the Simple
Aggregation Operator mentioned early in this section with
all the symbols that participated in the aggregation function
as input, and gets a new symbol agg,, as output. Finally,
for each group, the operator constructs a new symbolic tuple
(gi»aggyg,;) and returns it to the parent. Table 4(i) shows the
output of the aggregation operator, and Table 4(ii) shows the
updated PTable after the aggregation in the running example.
Furthermore, since the aggregation operator involves attri-
butes o_date and [_price, the Orders table and the Lineitem
table are also updated (Fig. Sc shows the updated tables).

HAVING and Single GROUP-BY Attribute In most cases,
dealing with a HAVING clause is the same as dealing with a
selection.

Figure 5c shows the PTable content after the HAVING clause.
It imposes two more constraints: [$aggsum1 > p2] which
is the positive tuple and [$aggsum?2 < p2] which is the neg-
ative tuple, and it returns Table 5 to the parent.

There is a special case for the aggregation operator tog-
ether with the HAVING clause. When there is more than one
parameter in the query which influences the number of tuples
of each output group implicitly, it is necessary to ask the user
to define the count of each output group explicitly. However,

this special case rarely happens in practice and no queries in
the TPC-H benchmark pose this behavior. Nonetheless, for
completeness, QAGen also deals with this special case by
proposing two different algorithms for pre-grouped and not
pre-grouped attributes. However, due to space limit, we omit
the detail here and refer to the reader to [28]

Multiple GROUP-BY Attributes  If there is a set of GROUP-
BY attributes G, the implementation of the aggregation oper-
ator depends not only on whether the input is pre-grouped,
but also depends on whether the GROUP-BY attributes in
the input have a tree-structure or have a graph-structure (see
Sect. 3). QAGen currently supports queries with tree-
structure GROUP-BY attributes (see Fig. 4).

The aggregation operator treats aggregation with multiple
GROUP-BY attributes in the same way as the case of a sin-
gle GROUP-BY attribute (Sect. 4.2.4). Assume attribute a,,
is the attribute in G which is functionally dependent on the
least number of other attributes in G. The aggregation oper-
ator treats aj, as the single GROUP-BY attribute and sets the
rest of the attributes in A to a constant value v (attribute a,, is
selected because it has the largest number of distinct symbols
in the input comparing to the other attributes).

As an example, assume the following table is an input to
an aggregation operator.

b c d

Assume the set of GROUP-BY attributes A is {b, c, d},
and the functional dependencies which hold on the input of
the aggregation operator are: {b} — {c,d} and {c} — {d}.
According to the definition in Sect. 3, the set of GROUP-BY
attributes G has a tree-structure.

In the input above, attribute b is functionally dependent on
no attributes where d is functional dependent on b and c. As
aresult, the aggregation operator treats attribute b as the sin-
gle GROUP-BY attribute and invoke the single GROUP-BY
aggregation implementation. Other attributes use the same
symbol for all input tuples (e.g., set all symbols for attribute
ctobecl).

Since the aggregation operator with multiple-group attri-
butes is handled by the aggregation operator that supports a
single GROUP-BY attribute, it shares the same special cases
(HAVING clause on top on an aggregation where the param-
eter values control the group count) as the case of aggregation
with a single GROUP-BY attributes.

4.2.5 Symbolic execution of the projection operator

Symbolic execution on a projection operator is exactly the
same as the traditional query processing, it projects the spec-
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Table 6 Output of (1 tuple)

SUM(I_price)

Saggsuml

ified attributes and no additional constraints are added. As a
result, the final projection operator in the running example
takes in the input from Table 5 and ends with the result shown
in Table 6. However, the current version of QAGen has not
supported the DISTINCT keyword yet and we will handle
this keyword in our next version.

4.2.6 Symbolic execution of the union operator

In SQL, the UNION operator eliminates duplicate tuples if
they exist. On the other hand, the UNION ALL operator does
not eliminate duplicates. In SQP, the query analyzer does not
offer any knob to the user to tune the UNION ALL operation.
Therefore, the symbolic execution of the UNION ALL oper-
ation is straightforward to implement: it reuses the UNION
ALL operator in RDBMS and unions the two inputs into one.

For the UNION operation, in SQP, the query analyzer
offers users the following knob:

Knob: Output Cardinality ¢

(optional; default value = size of R + size of §)

Let R and S be the inputs of the UNION operation which
are not pre-grouped. The symbolic execution of the UNION
operator controls the output as follows:

1. During its getNext() call, if the output cardinality has
not yet reached c, then (a) get a tuple ¢ from R (or from
S alternatively); and (b) return ¢ to its parent. However,
during the getNext() call, if the output cardinality has
reached c already, then process [Post-processing] below
and return null to its parent.

2. [Post-processing] Fetch the remaining tuples R~ and S~
from inputs R and S, respectively, set the symbols in
tuple R~ and S~ to have the same symbol as one of the
returned tuples ¢ in the previous step.

4.2.7 Symbolic execution of the MINUS operator

In SQL, the MINUS operator selects all distinct rows that
are returned by the query on the left hand side but not by the
query on the right hand side.

Let R and S be the non-pre-grouped inputs of the MINUS
operation. In this case, the query analyzer offers users the
following knob:

Knob: Output Cardinality ¢

(optional; default value = size of R)
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The symbolic execution of the MINUS operator controls
the output as follows:

1. During its getNext() call, if the output cardinality has not
yet reached c, then (a) get a tuple ™ from R, and; (b)
return rT to its parent. However, during the getNext()
call, if the output cardinality has reached c already, then
process [Post-processing] below, and return null to its
parent.

2. [Post-processing] Fetch a tuple r~ from R, fetch all
tuples S~ from S, set the symbols in tuple s~ € S™
to have the same symbol as .

4.2.8 Symbolic execution of the INTERSECT operator

Knob: Output Cardinality ¢

(optional; default value = size of R)

In SQL, the INTERSECT operator returns all distinct
rows selected by both queries. Currently, QAGen supports
INTERSECT with non-pre-grouped inputs. Let R and S be
the input of the INTERSECT operator, the symbolic execu-
tion of the INTERSECT operator is as follows:

1. During its getNext() call, if the output cardinality has not
yet reached c, then (a) get a tuple »+ from R, and get a
tuple s™ from S; (b) set the symbols of sT as same as r+
andreturn 7 to its parent. However, during the getNext()
call, if the output cardinality has reached c already, return
null to its parent.

4.2.9 Symbolic execution of nested queries

Nested queries in SQP reuses the techniques in traditional
query processing because queries can be unnested by using
join operators [16]. In order to allow a user to have full con-
trol on the input, the user should rewrite nested queries into
their unnested forms before inputting to the system. If the
inner query and the outer query refer to the same table(s),
then the query analyzer disables some knobs on operators
that may allow a user to specify different constraints on the
operators that work on the same table in both inner and outer

query.

5 Data instantiator in QAGen

This section presents the details of the data instantiator in
QAGen. The data instantiator is responsible for the final
phase of the whole data generation process. It fetches the
symbolic tuples from the symbolic database and uses a con-
straint solver (strictly speaking, the constraint solver is a deci-
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sion procedure [12]) to instantiate concrete values for them.
The constraint solver takes as input a propositional formula
(remember that a predicate can be represented by a formula
in propositional logic). It returns a set of concrete values for
the symbols in the formula that satisfies all the input pred-
icates and the actual data types of the symbols. If the input
formula is unsatisfiable, the constraint solver returns an error.
Such errors, however, cannot occur in this phase because we
assume there are no contradicting knob values. A constraint
solver call is an expensive operation. In the worst case, the
cost of a constraint solver call is exponential to the size of
the input formula [8]. As a result, the objective of the data
instantiator is to, if possible, minimize the number of calls
to the constraint solver. Indeed, the predicate optimizations
during SQP (e.g. reducing $aggsum = $I_pricel + --- +
$/_price8to $aggsum = $l_pricel x 8) are designed for
this purpose. After the data instantiator has collected all the
concrete values of a symbolic tuple, it inserts the instanti-
ated tuple into the final test database. The details of the data
instantiator are as follows:

1. The process starts from any one of the symbolic tables.
Itreadsinatuple ¢, say ($c_id1, $c_acctball), from the
symbolic tables.

3. [Look up symbol-to-value cache] For each symbol s in

tuple ¢, (a) it first looks up s in a cache table called Sym-
bolValueCache. SymbolValueCache stores the concrete
values of the symbols that have been instantiated by the
constraint solver; (b) if symbol s has been instantiated
with a concrete value, then the symbol is initialized with
the same cached value and then proceeds with the next
symbol in 7.
In the running example, assume the constraint solver ran-
domly instantiates the Customer table (4 tuples) first.
Since symbol $c_id1 is the first symbol to be instan-
tiated, it has no instantiated value stored in Symbol-
ValueCache. However, assume later when instantiating
the first two tuples of Orders table (with $o_id 1, $0_id?2),
their o_cid values will use the same value as instantiated
for $c_id1 by looking up SymbolValueCache.

4. [Instantiate values] Look up predicates P of s from the
PTable. (a) If there are no predicates associated with s,
then instantiate s by a unique value that is within the
domain of s in input schema M.

In the example, $c_id1 does not have any predicates
associated with it (see PTable in Fig. 5). Therefore, the
data instantiator does not instantiate s with a constraint
solver but instantiates a unique value v (because c_id is
a primary key), say, 1, to $c_id1. Afterwards, insert a
tuple (s, v) (e.g., ($c_id1, 1)) into SymbolValueCache.
(b) However, if s has some predicates P in the PTable,
then compute the predicate closure of s. The predicate
closure of s is computed by recursively looking up all

the directly correlated or indirectly correlated predicates
of s. For example, the predicate closure of $/_pricel
is [$aggsuml =5 x $I_pricel AND Saggsuml >
p2]. Then the predicate closure (which is in the form
of a formula in propositional logic) is sent to the con-
straint solver (symbols that exist in SymbolValueCache
are replaced by their instantiated values first). The con-
straint solver instantiates all symbols in the formula in a
row (e.g., $I_pricel = 10, $aggsum1 = 50, p2 = 13).
For efficiency purposes, before a predicate closure is sent
to the constraint solver, the data instantiator looks up
another cache table called PredicateValuesCache. This
cache table caches the instantiated values of predicates.
Since many predicates in the PTable are similar in terms
of their constraints they are capturing, the data instan-
tiator only needs to store the query predicates stored in
PredicateValuesCache. For example, predicates
[$c_acctball > plland [$c_acctbal2 > pl]inFig. 5¢
share the same query predicate: [$c_acctbal
> pl]. As a result, after the instantiation of predicate
[Sc_acctball > pl], the data instantiator inserts an
entry ([c_acctbal > p1], $c_acctball, p1) into Predi-
cateValuesCache. When the next predicate closure
[$c_acctbal2 > pl] needs to be instantiated, the data
instantiator looks up its query predicate in Predicate Valu-
esCache; if its query predicate is found in Predicate Valu-
esCache, then the data instantiator skips the instantiation
of this predicate and reuses the instantiated value of
$c_acctball in  SymbolValueCache for symbol
$c_acctbal2 (same for pl).

The number of constraint solver calls is minimized by
the introduction of the cache tables SymbolValueCache and
PredicateValuesCache. Experiments show that this feature is
crucial or otherwise generating a 1GB query-aware database
takes weeks instead of hours. Finally, note that in Step 4a,
if a symbol s has no predicate associated with it, the data
instantiator assigns a value to s according to its domain and
its related integrity constraints (e.g., primary keys). In gen-
eral, those values can be assigned randomly or always use
the same value. However, it is also possible to instantiate
some extra data characteristics (e.g., distribution) for those
symbols to test certain aspects of the query optimizer even
though those the values of symbols would not affect the query
results.

6 The framework
This section presents the DBMS feature testing framework.
So far, the discussion of QAGen is restricted to having a

complete test case as input and generating a query-aware test
database as output. A test case, as shown in Fig. 1, has to
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consist of an SQL query Q and a set of knob values defined
on each query operator. In practice, the most tricky job is to
determine different sets of knob values for the test query in
order to form different useful test cases. Currently, the knob
values of a test case are manually chosen by the testers. The
framework includes a tool to automate this step.

In software engineering, the test case selection problem is
a way of forming a test suite for a program by generating test
cases with different combinations of parameter values [1].
One way of choosing the values of a parameter is called the
Category Partition (CP) method [31]. The CP method sug-
gests the tester first partitions the domain of a parameter into
subsets (called partitions) based on the assumption that all
points in the same subset result in a similar behavior from
the test object. The tester should select one value from each
partition to form the set of parameter values.

Consider a simple query R x S joining two tables R and
S. Assume table R has 1,000 tuples and table S has 2,000
tuples and the two tables are not connected by foreign-key
constraints. In this case, the values for the output cardinality
knob for the join could be formed by partitioning the pos-
sible knobs values into, say, four partitions: Extreme case
partition (0 tuple), Minimum case partition (1 tuple), Nor-
mal case partition (500 tuples), and Maximum case partition
(1,000 tuples). In addition, Uniform distribution and Zipf
distribution can be regarded as two partitions of the join key
distribution knob.

Having decided the set of values for each parameter
(knob), the next step is to combine those values to form dif-
ferent test cases (i.e., a test suite). There are various algo-
rithms (known as combination strategies) for combining the
parameter values and forming different test suites. Each algo-
rithm will produce a test suite that achieves a certain cover-
age. One well-known coverage is called Each-used coverage
(a.k.a. I-wise coverage). It requires every parameter value
of every parameter to be included in at least one test case
in the test suite. Consider a program with three parameters
A, B and C and their respective sets of parameter values
{al, a2},{b1, b2} and {cl, c2}. An example test suite that
satisfies the Each-used coverage is shown in Fig. 10a, which
includes two test cases 7 and 7>. Another classical coverage
is Pair-wise coverage (a.k.a. 2-wise coverage). It requires that
every possible pair of intersecting values of any two param-
eters is included in some test cases in the test suite. Consider

T :{A=al,B=0b1,C =cl}
To:{A=al,B=0b2C=c2}
Ty :{A=al,B=01,C =cl} T3:{A=al,B=01,C =c2}
Ty :{A=a2,B=102,C =c2} Ty: {A=a2,B=0b1,C =cl}
Ts5: {A=a2,B=102,C =c2}
T6: {A=a2,B=102,C =cl}
(a) Each-used Coverage
(b) Pair-wise Coverage

Fig. 10 Coverage example
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T1 : {o1 = 1(min), x= 1(min), o2 = 1(min)}

T> : {o1 = 1(min), X= 1(maz), o2 = 1(min)}

T3 : {o1 = 1(min), x= 2000(mazx), oo = 2000(maz)}

Ty : {o1 = 1000(max), X= 1(min), oz = 1(min)}

Ts : {o1 = 1000(maz), Xx= 2000(min), oo = 2000(maz)}
Ts : {o1 = 1000(max), x= 1(max), o2 = 1(min)}

Fig. 11 A pair-wise test suite generated by current combination strat-
egies

the same example program as above, an example test suite
that satisfies the Pair-wise coverage is shown in Fig. 10b,
which includes six test cases. Other classic coverage includes
T-wise [36], Variable strength [11], and N-wise coverage and
each coverage criterion has its own pros and cons and they are
served for different types of applications. There are different
combination strategies to generate test suites that satisfy dif-
ferent coverage criteria. For example, the AETG algorithm
[10]is a non-deterministic algorithm that generates test suites
which satisfy the Pair-wise coverage.’ As another example,
the Each Choice algorithm [1] is a deterministic algorithm
that generates test suites which satisfy the Each-used cover-
age. However, there are two problems that make it impossi-
ble to directly apply these algorithms in our automatic testing
framework.

The first problem is that the knobs are correlated to each
other in aknob-annotated QAGen execution plan. As aresult,
it is not easy to do category partitioning. As an example, it is
difficult to partition the cardinality of the root (aggregation)
operator of TPC-H Query 8 (see Fig. 14a) because the inter-
esting value of the maximum case partition (i.e., the maxi-
mum number of output groups) depends on the cardinalities
of its child operators.

The second problem is that the correlation of operators
in a knob-annotated QAGen execution plan causes exist-
ing combination strategies to generate test suites that may
not satisfy the coverage criterion. For example, consider a
select-join query o1(R) x 02(S) where R has 1,000 tuples
and S has 2,000 tuples, and S has a foreign key referring to
R on the join attribute. Assume that we are able to determine
the minimum and the maximum cardinality of each operator:

| min  max
ol 1 1,000
g} 1 2,000
X 1 2,000

Then, according to the existing Pair-wise test suite com-
binational strategies, a test suite like the one in Fig. 11 will
be returned. However, if we look closer into the test suite, we
find that the generated test suite actually does not strictly ful-
fill the Pair-wise criterion. For test case T; and T3, the selec-

> Non-deterministic algorithms means that it may generate different
test suites every time.
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tions on R and S return 1 tuple. Consequently, no matter the
output cardinality of the join is defined as the minimum case
partition (77) or the maximum case partition (7>), the join
can only return 1 tuple. As a result, 77 and 7> are the same
and the final test suite does not make sure every possible pair
of interesting values of any two knobs is included.

To automate the task of creating a set of meaningful test
cases, it is necessary to devise a new set of combination strat-
egies for each coverage that avoid the above problems. In the
following, a simple method for generating /-wise test suites
is presented. Discussion on how to design different combi-
nation strategies that satisfy different coverages would be an
interesting research topic for the software engineering com-
munity.

One reason for using /-wise coverage in the framework is
that there may be many knobs available in a QAGen query
execution plan. Defining coverage stronger than /-wise (e.g.,
2-wise) may then result in a very large test suite. In addition,
based on /-wise coverage, itis possible to design an algorithm
so that the knob values are not affected by the correlations of
the output cardinalities between operators in a query.

The following shows the test case generation algorithm.
It takes as input a knob-annotated query plan and returns a
set of test cases.

1. [Creating a test case for each cardinality /-wise parti-
tion] For each partition g of the output cardinality knob,
create a temporary test case 7.

2. [Assigning /-wise value to distribution knob] For each
temporary test case Ty, create a test case Tyq from Ty
using a distribution knob value d. The value d should
not be repeated until each value is used once at least.

3. [Assigning real values to the cardinality partition] For
each test case Tyq, parse test query Q of T,y in a bottom-
up manner and assign cardinality values to T4 according
to Table 7.

Figure 12 shows the test case generation process of a sim-
ple query o (R) x S. In the current framework, we only

Table 7 Knob value table for the minimum and maximum partitions
(The notation used in the table follows the discussion in Sect. 4. For
example, R denotes the input of an unary operator and |R| denotes its
cardinality)

Operator Minimum partition Maximum partition
Selection 1 |R|

Aggregation 1 |R|

Join 1 |S]

Union max(|R]|, |S]) |R| + |S]

Minus |R| —|S] |R|

Intersect 1 min(|R], |S])
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Fig. 12 Test case generation example

consider the minimum and the maximum partitions for the
cardinality knob and only Zipf and Uniform distribution for
the distribution knob. Although the test generation algorithm
is simple, experimental results show that the generated test
suite can effectively generate different query-aware test dat-
abases that show different system behaviors of a commercial
database system. In this work, we regard this simple SQL test
case generation algorithm as a starting point for this new SQL
test case generation problem. There are two points worth to
notice here. First, the test case generation algorithm does not
allow the same table to be used twice in the input of a binary
operator, for example, the query R X R is prohibited. Sec-
ond, Table 7 does not capture the cases of pre-grouping input
and the cases of having two disjoint subqueries [15] for a
binary operator.

Figure 13 shows the automatic DBMS feature testing
framework. It is an extension of the QAGen architecture in
Fig. 3. As usual, the tester gives a parameterized query Q and
the schema M as input. After the query analyzing phase, the
tester specifies the size of the base tables, and a test suite that
satisfies the /-wise coverage is generated from the test suite
generator. Each test case is then processed by the Symbolic
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Fig. 13 The DBMS feature
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Query Engine and the Data Instantiator and a query-aware
test database is generated as usual. Finally, the test query of
the test case is automatically executed against the generated
database, and the execution details (e.g., the execution plan,
cost, time) are inserted into the test report.

Note that, in general, testers use their domain knowledge
in order to create input test queries. However, this step can
also be automated by query generation tools (e.g., RAGS [34]
and QGEN [32]). Furthermore, if the query analyzer detects
that there are some operators with pre-grouped input or with
disjoint subqueries in the query execution plan, it will prompt
the tester to verify that automated generated test case before
QAGen starts execution. As part of the future work, we plan
to further improve the framework in order to eliminate these
restrictions.

7 Experiments

We have run a set of experiments to evaluate our frame-
work. The implementation is written in Java and it is installed
on a Linux AMD Opteron 2.4 GHz Server with 6 GB of
main memory. The symbolic database and the target data-
base use PostgreSQL 8.1.11 and they are installed on the
same machine. As a constraint solver, a publicly available
constraint solver called Cogent [12] is used. Cogent is for-
mally a decision procedure written in C. It takes as input a
propositional formula and returns an instantiation of the vari-
ables in the formula if that is satisfiable. QAGen interacts
with Cogent by writing the predicates to a text file and invokes
Cogent through the Java Runt ime class. QAGen then parses
the output of Cogent (variable-value pairs) back into its inter-
nal representation. During the experiments, if the approxima-
tion ratio knob is enabled by the query analyzer, the value
0.1 is used.

We execute three sets of experiments with the following
objectives: The first experiment (Sect. 7.1) studies the effi-
ciency of the various operations in QAGen . The second
experiment (Sect. 7.2) studies the performance of QAGen for
generating databases in different sizes for different queries.
The last experiment (Sect. 7.3) uses the testing framework to
generate different test databases for the same query in order
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to study if the framework could effectively show different
behavior of a commercial database system. In all experi-
ments, all generated databases met the constraints (e.g.,
cardinality, approximation ratio) specified in the test cases.

7.1 Efficiency of QAGen operations

The objectives of this experiment are to evaluate the run-
ning time of individual QAGen operations and their scala-
bility by generating three query-aware databases in different
scales (10M, 100M, and 1G). The input query is query 8
in the TPC-H benchmark. Its logical query plan is shown in
Fig. 14a. We have chosen TPC-H query 8 because it is one
of the most complex queries in TPC-H with 7-way joins and
aggregations. This query has various input characteristics to
the operators enabling us to evaluate the performance of dif-
ferent operator implementations (e.g., it involves both the
normal equi-join and the special case of equi-join that needs
solving the subset sum problem). The experiments are carried
out as follows: first, three benchmark databases are generated
using dbgen from the TPC-H benchmark. As a scaling factor,
we use 10 MB, 100 MB, and 1 GB. Then, we execute query 8
on top of the three TPC-H databases, and collect the base table
sizes and the cardinality of each intermediate result of each
scale. The extracted cardinality of each intermediate result of
query 8 is shown in Table 8 (Output-size) columns. Next, we
generate three TPC-H-query-8-aware databases with the col-
lected base table sizes and output cardinalities as input and
measure the efficiency of QAGen for generating databases
that produces the same cardinality results. The value distri-
bution between two joining tables is uniform distribution.®
Table 8 shows the cost breakdown for generating query-
aware databases for TPC-H query 8 in detail. QAGen takes
less than 5min to generate a 10 MB query-aware database.
The SQP phase is fast and scales linearly. It takes about 2 min
for a 10 MB database and about three hours for a 1G data-
base. The longest SQP operation is the initialization of the
large symbolic table Lineitem (#10 in Table 8), and the join
between the intermediate result RS and Lineitem (#11). This

6 Note that the above procedure is for carrying out experiments only.
Users of QAGen are expected to specify the cardinalities and approxi-
mation ratio by themselves.
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Table 8 QAGen Execution time for TPC-H query 8

Symbolic query processing size = 10M size = 100M size=1G

# Symbolic operation Output- Time Output- Time Output- Time
size size size

1 Region <ls 5 <ls 5 <ls

2 o(Region)=R1 1 <ls 1 <ls 1 <ls

3 Nation 25 <ls 25 <ls 25 <ls

4 (R1 xNation) = R2 5 <ls 5 <ls 5 <ls

5 Customer 1.5k <ls 15.0k 7s 150k 61s

6 (R2xCustomer) = R3 0.3k Is 3.0k 125 299.5k 85s

7 Orders 15.0k 8s 150.0k 87s 1.5m 923s

8 o(Orders)= R4 4.5k 125 45.0k 1065 457.2k 1,040

9 (R3 XR4)=R5 0.9k 4s 9.0k 37s 91.2k 3455

10 Lineitem 60.0k 34s 600.5k 403s 6001.2k 3,344

11 (R5wLineitem)= R6 3.6k 45s 35.7k 441s 365.1k 5,650s

12 Part 2.0k <ls 20.0k 8s 200k 89s

13 o (Part)=R7 12 Is 147 13s 1,451 I11s

14 (R7 XR6)=R8 29 S5s 282 45s 2,603 762s

15 Supplier 0.1k <ls 1k <ls 10k 3s

16 (Supplier xR8)=R9 29 <ls 282 s 2,603 15s

17 (Nation xR9)=R10 29 <ls 282 <ls 2,603 Ss

18 x(R8)=RI11 2 <ls 2 1s 2 9s

Total SQP time Im:53s 19m:22s 207m: 27s

Data instantiation size=10M size=100M size=1G

19 Reading tuples from SDB 113s 16m: 04 169m: 16s

20 Populating tuples into DB 29s 4m:52s 47m: 51s

21 Cogent time/# calls/avg. # variables 3s/14/1 3s/14/1 53s/14/1

Total DI time 2m: 26s 23m:51s 247m: 33s

> 4m:19s 43m: 13s 455m: 0s

join takes a long time because it accesses the large Lineitem
table frequently to update the symbolic values of the join attri-
butes. In query 8, the input is pre-grouped on the last join (#17
in Table 8 and operator (17) in Fig. 14) and the approximation
ratio knob is enabled. This join finishes quickly because the
input size is not large. Based on this result, the performance
of the proposed approximation scheme can be predicted by
the detailed theoretical analysis given in [28]. Table 8 also
shows that the symbolic execution of each individual opera-
tor scales well.

For TPC-H query 8, the data instantiation (DI) phase runs
slightly longer than the SQP phase. It takes about 3 min to
instantiate a 10 M query-8-aware database and about 4 hours
to instantiate a 1G query-8-aware database. Nevertheless,
indeed about 70% of the DI time is spent on reading the
symbolic tuples from the symbolic tables and the PTable via
JDBC (#19 in Table 8) for instantiation and about 20% of
the DI time is spent on populating the instantiated tuples into
the final database tables (#20). In the experiments, the num-
ber of constraint solver (cogent) calls is small — there are

only 14 calls for the three scaling factors (#21 in Table 8).
The number of calls is constant because the data instantiator
extracts the query predicates for instantiation and therefore
it does not increase with the number of tuples. Furthermore,
#21 in Table 8 also reveals that the constraint formula sent
by QAGen to Cogent has few variables (only one) and the
time spent on Cogent is indeed significantly small. We repeat
the same experiment by turning off the caching feature of
QAGen, but it ends up that the data instantiation phase for
a 1G database takes weeks instead of hours. This shows that
the predicate optimization in SQP and the caching in the data
instantiator work effectively.

7.2 Scalability of QAGen

The objective of this experiment is to evaluate the scalabil-
ity of QAGen for generating a variety of query-aware test
databases. Currently, QAGen supports 14 out of 22 TPC-H
queries. It does not support some queries because some of
them use non-equi-joins (e.g., Q17, Q22). Nevertheless, we
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Table 9 QAGen scalability—TPC-H

10M 100M 1G
Ql
Symbolic query processing 4m:24s 37m:57s 407m:32s
Data instantiation Im:59s 18m:50s 222m:07s
> 6m:23s 56m:47s 629m:39s
Q2
DB overhead % 63% 62% 59%
Cogent time/calls/avg. variables 1s/4/16 1s/4/16 25/4/16
Symbolic query processing 14s 2m:29s 23m:24s
Data instantiation 15s 1m:44s 19m:29s
> 295 4m:13s 42m:53s
Q3
DB overhead % 38% 54% 51%
Cogent time/calls/avg. variables <1s/8/29 1s/8/29 1s/8/29
Symbolic query processing 2m:16s 23m:43s 258m:16s
Data instantiation 2m:29s 25m:25s 270m:32s
> 4m:45s 49m:08s 528m:438s
Q4
DB overhead % 42% 44% 45%
Cogent time/calls/avg. variables 3s/12/14.5 2s/12/14.5 3s/12/14.5
Symbolic query processing 3m:26s 43m:14s 404m:53s
Data instantiation 2m:34s 25m:29s 283m:12s
> 6m:0s 68m:43s 638m:05s
Q6
DB overhead % 61% 59% 60%
Cogent time/calls/avg. variables 25/8/14.6 25s/8/14.6 25/8/14.6
Symbolic query processing 2m:32s 25m:23s 263m:50s
Data instantiation 3m:0s 31m:07s 349m:43s
> 5m:32s 56m:30s 613m:33s
Q8
DB overhead % 40% 40% 42%
Cogent time/calls/avg. variables <1s/4/16 1s/4/16 1s/4/16
Symbolic query processing 2m:0ls 19m:43s 207m:27s
Data instantiation 2m:33s 24m:08s 247m:33s
> 4m:34s 43m:51s 455m:0s
DB overhead % 40% 41% 42%
Cogent time/calls/avg. variables 2s/14/1 3s/14/1 3s/14/1
Q9
Symbolic query processing 3m:37s 30m:06s 320m:07s
Data instantiation 2m:20s 22m:42s 249m:12s
> 5m:57s 52m:48s 549m:19s
DB overhead % 45.9% 51.45% 48%
Cogent time/calls/avg. variables 25/8/66 3s/8/66 25/8/66
Q10
Symbolic query processing 1m:45s 19m:22s 194m:10s
Data instantiation 2m:36s 25m:50s 263m:22s
> 4m:21s 45m:12s 457m:32s
DB overhead % 39% 39% 38%
Cogent time/calls/avg. variables 25/8/14.8 3s/8/14.8 35/8/14.8
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Table 9 continued

10M 100M 1G
Q12
Symbolic query processing 3m:30s 35m:02s 345m:17s
Data instantiation 4m:19s 45m:11s 475m:38s
> Tm:49s 80m:13s 820m:55s
DB overhead % 39% 38% 40%
Cogent time/calls/avg. variables 1s/4/18.2 1s/4/18.2 2s/4/18.2
Ql4
Symbolic query processing Im:14s 22m:29s 225m:04s
Data instantiation 2m:05s 47m:11s 464m:30s
> 3m:19s 69m:40s 639m:34s
DB overhead % 33% 30% 31%
Cogent time/calls/avg. variables 25s/4/16.3 3s/4/16.3 3s/4/16.3
Q15
Symbolic query processing Im:30s 23m:01s 229m:38s
Data instantiation 2m:07s 46m:38s 451m:56s
> 3m:37s 69m:39s 681m:34s
DB overhead % 36% % 31 38%
Cogent time/calls/avg. variables 2s/4/16 2s/4/16 2s/4/16
Ql6
Symbolic query processing 12s 2m:17s 45m:24s
Data instantiation 14s 1m:46s 40m:53s
> 28s 4m:03s 86m:17s
DB overhead % 35% 40% 38%
Cogent time/calls/avg. variables <1s/8/28 25/8/28 3s/8/28
Q18
Symbolic query processing 2m:03s 20m:22s 204m:12s
Data instantiation 2m:45s 24m:18s 271m:30s
> 4m:48s 48m:40s 475m:49s
DB overhead % 34% 32% 38%
Cogent time/calls/avg. variables <1s/4/18 1s/4/18 2s/4/18
Q19
Symbolic query processing 2m:26s 41m:06s 429m:58s
Data instantiation 2m:50s 8lm:13s 739m:18s
> S5m:16s 122m:19s 1,169m:16s
DB overhead % 41% 32% 55%
Cogent time/calls/avg. variables 25s/8/15.8 25s/8/15.8 25s/8/15.8

generate query-aware databases for the rest of the queries in
three different scaling factors 10M, 100M and 1 G. Table 9
shows the detailed results. Experimental results show that
both phases scale linearly for all 14 TPC-H queries. Con-
sistent with the previous experiment, Table 9 shows that our
techniques successfully minimize the overhead that spent on
the expensive Cogent. First, the number of calls to Cogent
is independent of the scaling factor. Second, the average
number of variables in a constraint formula has been min-
imized to a level that only a minimum of 1 variable (Q8)
and a maximum of 66 variables (Q9) exists in the constraint
formula. As a result, Cogent does not exhibit its worst case

behavior in all cases (at most 3 seconds are spent on Cogent).
Table 9 shows that a large portion of the running time is spent
on the interactions with the backend database: updating base
symbolic tables (stored in PostgreSQL) during SQP, reading
tuples from symbolic databases (essentially PostgreSQL) for
data instantiation and inserting tuples into the final (Post-
greSQL) database. Nevertheless, the overall running time is
still fairly satisfactory: for most queries (Q1, Q3, Q4, Q6, QS,
Q9,Q10,Q12,Q14,Q15, Q18) a 1G useful query-aware test
database can be obtained in about 10 hours (1 night); for some
queries (Q2 and Q16) QAGen finishes in minutes and for an
extreme case (i.e., Q19) QAGen finishes in 1 day. Com-
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Table 10 Knob values and

resulting execution plans Result TPC-H(Uniform/Zipf) MIN-Uniform MAX-Zipf
R1 1 1 5
R2 5 1 25
R3 3k 1 15k
R4 45k 1 150k
R5 9k 1 150k
R6 36k 1 600k
R7 147 1 20k
R8 282 1 600k
R9 282 1 600k
R10 282 1 600k
R11 2 1 2
Execution plan Fig. 14b Fig. l4c Fig. 14d

pare with the databases generated by the existing database
generators that offer little help to meaningful DBMS test-
ing, testers just need to run QAGen on multiple machines
for some nights, once per each test case. After that, they can
re-use the useful query-aware test databases again and again
in their subsequent testing phases.

7.3 Effectiveness of the DBMS feature testing framework

The objective of this experiment is to show how the test dat-
abases that are generated by the automatic testing framework
can show different behavior of a DBMS. In this experiment,
the target database size is fixed at 100 MB and the input
query is query 8 in TPC-H. The experiments are carried out
in the following way: First, we generate four query-aware
databases for TPC-H query 8. Then, we execute query 8 on
the four generated databases (on PostgreSQL) and study their
physical execution plans. The first database [MIN-Uniform]
is automatically generated by the testing framework using
the minimum case partition. The database will let query 8
to have the minimum cardinality on each intermediate result
during execution. In the [MIN-Uniform] database, the key
values between two joining relations have a Uniform distri-
bution. Furthermore, during a grouping operation, tuples will
be uniformly distributed into different groups in the [MIN-
Uniform] database. The second database [MAX-Zipf] is also
generated by the test framework using the maximum case
partition with a Zipf distribution. The third database [TPCH-
Uniform] is manually added to the test suite and is generated
by QAGen using the intermediate result sizes extracted from
executing query 8 on TPC-H dbgen database (as in the first
experiment above). The last database [TPCH-Zipf] is gen-
erated by QAGen using the same intermediate result sizes
as [TPCH-Uniform] but with a Zipf distribution. Table 10
shows the intermediate result sizes of the above set up.

@ Springer

Figure 14 shows the physical execution plans of execut-
ing TPC-H query 8 on the generated query-aware databases.
By controlling the output cardinalities of the operators, it
causes PostgreSQL to use different join strategies. For exam-
ple, when the cardinality of each output is minimum [MIN-
Uniform], PostgreSQL tends to use a left-deep-join order
(Fig. 14c). When the cardinality of each output is maximal
[MAX-Zipf], PostgreSQL tends to use a bushy-tree join order
(Fig. 14d). The output cardinalities also strongly influence
the choice of physical operators; when the output cardinal-
ity is large, PostgreSQL tends to use hash joins (Fig. 14d).
However, when the output cardinality is small, PostgreSQL
tends to use fewer hash joins but used sort-merge-joins and
nested-loop-joins (Fig. 14b,c). The input and output cardinal-
ity also influence the choice of physical aggregation opera-
tors. When the input to the aggregation (i.e., R10 in Table 2)
is minimum or same as the TPC-H size, then PostgreSQL
tends to use group aggregation (Fig. 14b,c). However, when
the input to is maximum, then PostgreSQL tends to first do
a hash aggregation and then sort it (Fig. 14d).

Controlling the distributions of the query operators shows
that the operators in PostgreSQL are less sensitive to the data
distribution. For example, when the cardinality is same as
TPC-H size (Fig. 14b), the distribution knob does not influ-
ence the execution plans. Moreover, the distribution knob
also has less influence on the choice of physical operators.

In this experiment, we attempt to use other database gen-
eration tools to generate the same set of test databases which
can produce the same intermediate query results. We try to
run this experiment with two commercial test database gen-
erators, DTM Data Generator and IBM DB2 Test Database
Generator, and one research prototype [21].” However, these
tools only allow constraining the base tables properties and

7 We also attempt to evaluate the tools [4,5] from Microsoft, however
their tools are not publicly available.
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Fig. 14 a Input Query b—d Base Tables: C = Customer, N = Nation, L = Lineitem, O = Orders, P = Part, R = Region, S = Supplier
execution plans of TPC-H Physical Operators: ga = Group Aggregate, hash = Hash, ha = Hash Aggregate, hj = Hash Join
query 8 mj = Merge Join, nlj = Nested Loop Join, sort = Sort
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we fail to manually control the intermediate result sizes for
the purposes of this experiment.

8 Related work

The closest related work in DBMS testing is the work of
[5,30] which studies the generation of query parameters for
test queries with given test databases. However, existing data-
base generation tools such as IBM DB2 Database Generator
and others (e.g., [4,19,21]) were designed to generate gen-
eral-purpose test databases and do not take account of test
queries, and thus the generated databases cannot guarantee
sufficient coverage of specific test cases. As a consequence,
[5,30] may hardly find a good database to work on and only
SPJ queries are supported.

QAGen extends symbolic execution [25] and proposes
the concept of SQP to generate query-aware databases. SQP
is related to constraint databases (e.g., [27]); however, con-
straint databases focus on constraints that represent infinite
concrete data (e.g., spatial-temporal data) whereas SQP
works on finite but abstract data. Recently, [2] also stud-
ied the problem of query-aware test database generation. In
particular, based on the work in [2,29] proposed the concept
of reverse query processing, which takes as input an applica-
tion query and the corresponding query result, and returns a
corresponding database instance. The focus of reverse query
processing is to generate minimal size test databases for
functional tests of database applications, which cannot con-
trol the intermediate query results for the purpose of testing
DBMS features.

The automatic testing framework in this paper is related
to a number of software testing research work. For example,
[1] first states the test case selection problem for traditional

program testing. Some solutions for the traditional test case
selection problem can be found in [1,10,11,20,36].

9 Conclusions and future work

This work presented a framework for DBMS feature testing.
The framework includes a test database generator QAGen
that generates tailor-made test databases for different DBMS
test cases. QAGen is based on SQP, a technique that com-
bines traditional query processing and symbolic execution
from software engineering. It has shown that QAGen is able
to generate query-aware databases for complex queries and
it scales linearly. By using the framework, test cases for test-
ing the features of a DBMS can be constructed automatically
and test reports can be obtained with minimal human effort.

QAGen is a test automation tool that runs in the back-
ground. Although the test databases are not generated in sec-
onds, each test case only generates a test database once and
then the generated test database can be used for testing many
times. For benchmarking, however, it would be advantageous
to generate a single test database (or at least a minimal num-
ber of test databases if a minimal or single test database is
not doable) that can cover multiple test queries. We are in the
process of extending QAGen for performance testing. The
basic idea of this new version of QAGen is as follows: Given
a number of test cases 71, 13, ..., T,, we first symbolically
process each test case T; separately (without data instanti-
ation) and obtain n individual symbolic database instances
SDBy, SDB,,..., SDB,,. Then, we design a symbolic data-
base integrator to “merge” the symbolic database instances
in best-effort. After the “merging” step, we re-use QAGen’s
data instantiator to instantiate the symbolic databases with
real values. The time consuming data instantiation step is
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invoked only once per merged benchmark database. There-
fore, the test generation process is fast and a handful of bench-
mark databases can be obtained.

As requested by some industry partners, we are also in
the process of extending QAGen to generate query-aware
databases with duplicate data values and null values, which
both have impacts on various database components. Another
interesting future direction is to extend the current testing
framework so that it supports more coverage criteria. For
example, it would be interesting if the framework could gen-
erate test cases where an operator (e.g. selection) gets a max-
imum partition input but returns a minimum partition output.
Finally, we believe the work on SQP can be integrated with
traditional symbolic execution so as to extend program verifi-
cation and test case generation techniques to support database
applications.
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