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Abstract

We address the generation of execution plans for object-oriented database queries.
This is a challenging area of study because, unlike the relational algebra, a uni-
formly accepted set of object algebra operators has not been defined. Additionally,
a standardized object manager interface analogous to storage manager interfaces
of relational systems does not exist. We define the interface to an object manager
whose operations are the executable elements of query execution plans. Parameters
to the object manager interface are streams of tuples of object identifiers. The
object manager can apply methods and simple predicates to the objects identified
in a tuple. Two algorithms for generating execution plans for queries expressed in
an object algebra are presented. The first algorithm runs quickly but may produce
inefficient plans. The second algorithm enumerates all possible execution plans and
presents them in an efficient, compact representation.

1 Introduction

There is significant interest in object-oriented database management systems (OODBMS)
as an approach to handle the data management problems of complex application domains
such as engineering databases, office information systems and knowledge bases. The spe-
cific features of an OODBMS are still topics of considerable debate [ABDT89, SRLT90]
even though certain trends are emerging. However, what is not debated is that, in order
to become a viable technology, object-oriented systems have to provide at least the data
management functionality (e.g., declarative query formulation, optimization, transaction
processing, etc.) that their relational counterparts provide. With this understanding, we
have initiated a research project investigating query models and query processing issues
in object-oriented database systems. This paper describes the results of one part of this
investigation. Our companion papers [SO89, SO90b, SO90¢| discuss other related issues.
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We have defined a query processing methodology for an OODBMS (Figure 1) similar
to that for relational systems (see, for example [GV89, JK84]). Queries are expressed
in a declarative language which requires no user knowledge of object implementations,
execution paths or processing strategies. The query expression is first reduced to a
normalized form and then converted to an equivalent object algebra expression. This
form of the query is a nested expression which can be viewed as a tree whose nodes
are algebra operators and whose leaves represent the extents of classes in the database.
The algebra expression 1s next checked for type consistency to insure that predicates and
methods are not applied to objects which do not support the requested functions. This
is not as simple as type checking in general programming languages since intermediate
results, which are sets of objects, may be composed of heterogeneous types. The next
step in query processing is the application of equivalence preserving rewrite rules to the
type consistent algebra expression. Lastly, an execution plan which specifies an ordering
of primitive low-level operations while still respecting object encapsulation is generated
from the optimized algebra expression.

normalized object type optimized execution
declarative calculus algebra consistent algebra plan
query expression expression expression expression alternatives
calculus calculus—algebra algebra i execution plan :

typechecking

optimization transformation optimization | generation

Figure 1: Query processing methodology

This paper addresses the last step in the query processing methodology shown in
Figure 1, namely execution plan generation, which is the process of mapping high level
representations of queries (i.e., object algebra expressions) to sequences of data manip-
ulation operators of an object manager. Details of the data model, full definition of
calculus and algebra, including translation algorithms, and some of the rewrite rules are
covered in [SO90b]. The full suite of algebra rewrite rules is discussed in [SO89]. The
type checking rules are given in [SO90¢] and the typechecking algorithm is presented
in [Str91].

In the case of the relational data model [Cod70], there is a close correspondence be-
tween algebra operations and the low level primitives of the physical system [SACT79].
The mapping between relations and files, and tuples and records may have contributed
to this strong correspondence. However, there is no analogous, intuitive correspondence
between object algebra operators and physical system primitives. Thus any discussion of
execution plan generation must first define the low level object manipulation primitives
which will be the building blocks of execution plans. We call this low level object ma-
nipulation interface the Object Manager (OM) interface. Object managers have received
attention lately in the context of distributed systems [BHIJL86, DLA88, MG89, VKC86],
programming environments [Dec86, Kae86] and databases [CDRS86, CM84, EE87, HZ87,
KBCT88, VBD89]. These object managers differ in terms of their support for data ab-
straction, concurrency, and object distribution. In addition, they are typically oriented
towards “one-at-a-time” object execution which is an inefficient paradigm for query pro-
cessing.

The fundamental contributions of this paper are the following:



e Definition of a new OM interface which maintains many features of previous object
managers but operates on streams of objects. This definition would not have been
necessary if there was a standard, widely-accepted OM interface. In the absence
of such a standard, we define our own interface and use it in the generation of
execution plans.

e Description of algorithms for generating execution plans whose processing steps are
calls to the stream-oriented object manager interface.

Along these lines the paper is organized as follows. Section 2 reviews the object model
and query language for which we generate query execution plans. Section 3 presents the
object manager interface. Next, two algorithms for generating query execution plans are
developed. The algorithm of Section 4 is simple but may not find best plans. Section 5
presents a more complex algorithm which finds all feasible plans. In Section 6 we discuss
two issues related to query optimization in OODBMSs that we do not address specifically
in this paper: the use of OM cost functions to select an “optimum” execution plan and
the optimization of method executions. We conclude in Section 7 with some observations
about our methodology and suggestions for future work.

2 Overview of the Data and Query Model

This section presents the fundamental features of the data model as well as the query
model that we use to investigate query processing issues in object-oriented database
systems. Due to space constraints, the description given here is brief and appeals to
intuition. For a rigorous and formal definition of these concepts, the reader is referred
to [SO90b] and [Str91]. As with the OM interface, the definition of the data model, which
encompasses many of the features common to other object data models, is necessitated
by the lack of a standard model specification.

2.1 Objects

Objects are viewed as instances of abstract data types (ADT) which can only be manipu-
lated via functions defined by the type. Types are organized in an inheritance hierarchy
which allows multiple inheritance. Each object has a unique, time invariant identity
which 1s independent of its state. Relations on object identities such as equality and
set inclusion provide the basis for primitive query operations. All other relations among
objects are implemented by the ADT interfaces.

2.2 Classes and Methods

Our model interprets a class both as a definition of an ADT interface via methods and
as a template for all the objects which are instances of the type. Methods are named
functions whose arguments and result are objects. Each method has a signature of the
form Cy X ... x C,, — Cresyiy where C1 ... C,, specify the class of the argument objects
and Cj.sqe specifies the class of the result object. All classes in the database form a lattice
where the root node represents the most general class of objects and any individual class
may have multiple parents. Subclasses inherit behavior from their parents and may define
additional methods. Thus, the class lattice provides inclusion polymorphism [CW85]



which allows an object of class C' to be used in any context specifying a superclass of C'
[SZ90].

2.3 Primitive Object Operations

Objects encapsulate a state and a behavior. Methods defined on the class which an
object is an instance of define the object’s behavior. Behavior is revealed by applying
a method to an object. The result of a method application is another object. The dot
notation <op...0,>.Mm1.Mo - My, 1s used to denote method application and method
composition. Figure 2 illustrates the processing denoted by this operation when we
assume that methods m; and m,, take three arguments each, and method m, takes 2
arguments. Method m; is applied to objects <01, 02, 05> resulting in object 71, method
mso 1s applied to objects <rq, 04> returning object rs, and so on until the final result
object 7, is obtained by applying method m,, to objects <r;,_1,0,-1, 0,>. The notation
<01 ...0p>.mlist will be used when the list of method names is unimportant.

Op—_1,0
09, 03 04 n—1;Yn
1 3 m—1
01 —= My mo A My = Tm

Figure 2: Composition of method applications.

An object’s state is captured by its value which is distinct from its identity [KC86,
SB85]. Object values are either an atomic value provided by the database system (integer,
string, uninterpreted byte sequence [CDRS86]), a set value which is a collection of object
identifiers, or a structural value. Structural values are visible only to class implementors
and can encompass attributes (tuples), discriminated unions, etc. as in [ACO85]. Any
aspects of structural values which are required by users of a class should be revealed by
the implementor via a method.

We define four comparison operators which can be used in queries: ==, €, =, and =
whose semantics are shown in Tables 1 and 2. The == operator tests for object identity
equality; i.e., 0; == o0; evaluates to true when o; and o; denote the same object. The
€ and =, operators apply to set valued objects and denote set value inclusion and set
value equality respectively. As shown in the tables, one of the operands can denote a
value 1f required. The last operator, =, can only be used to test the value of an atomic
object.

2.4 Predicate Formation

Atoms are primitive operations of the data model which return a boolean result. Atoms
reference lower case, single letter object variables which range over sets of objects when
used in a query. The legal atoms are as follows:



Table 1: Semantics of 0;00; as a function of the object value type.

02'907'
0i o9 =1 = | € | _=o

atomic T/F T/F undefined | undefined
atomic structural || T/F | undefined | undefined | undefined
set T/F | undefined T/F undefined
atomic T/F | undefined | undefined | undefined
structural | structural || T/F | undefined | undefined | undefined
set T/F | undefined T/F undefined
atomic T/F | undefined | undefined | undefined
set structural || T/F | undefined | undefined | undefined

set T/F | undefined T/F T/F

Table 2: Semantics of aflo; as a function of the object value type.

afo;
a | 0i == | = | € | =q
atomic undefined T/F undefined | undefined
valy structural || undefined | undefined | undefined | undefined
set undefined | undefined T/F undefined
atomic undefined | undefined | undefined | undefined
{valy, ... ,val,} | structural || undefined | undefined | undefined | undefined
set undefined | undefined | undefined T/F

e 0;00; where:
— 0; and o; are object variables or denote an operation of the form <oy ... 0,>.mlist
where 01 ...0, are object variables.

— 0 is one of the operators ==, =, € or =y,.

e alo; where:

— 0; 1s an object variable or denotes an operation of the form <oy ...0,>.mlist
where 01 ...0, are object variables.

— a 18 the textual representation of an atomic value or a set of atomic values.

— 0 1s one of the operators =, € or =,.

Predicates are formed by connecting atoms with A, V and — as required.

Example 2.1 Let p, ¢ and r be object variables. Then the following are examples of
legal atoms and their semantics:

1. (p == q) — Are the objects denoted by p and ¢ the same object?

2. (p €<q,r>.mlist) — Is the identifier of p contained in the set value of the object
obtained by applying the methods in mlist to the objects <q,r>7

3. (<p,q>.mlist =, r) — Is the set value of the object obtained by applying the
methods in mlist to the objects <p, ¢> pairwise equal to the set value of the object
denoted by r?



4. (“59” = p) — Is “59” the atomic value of the object denoted by p?

5. (“69” € p) — Does the set value of the object denoted by p include an identifier for
the object whose atomic value is “569”7

6. ({“59”, %617} =, <p, ¢, r>.mlist) — Does the set value of the object obtained by
applying the methods in mlist to the objects <p, ¢, 7> contain only two identifiers
for objects whose atomic values are “59” and “6177 <

2.5 Query Language — An Object Algebra

The object algebra contains both binary and n-ary operators. Let © be an operator in
the algebra. We use the notation P © (@ ...Qy) for algebra expressions where P and
Q; denote sets of objects. In the case of a binary operator we will use P © @) without
loss of generality. The algebra defines five object preserving [SS90] operators: union,
difference, select, generate and map. These are fundamental operators; others may be
defined (e.g., intersection) for convenience in terms of these. Object preservation means
that algebra operators return objects which exist in the database and do not create
new objects. We have restricted our consideration to object-preserving algebras for two
reasons. First, any OODBMS query language must have a complete object-preserving
query facility independent of whether it additionally creates new objects. The ability to
retrieve any object in the database utilising relationships defined by the type hierarchy
or defined by ADT operations on objects is a fundamental requirement. Second, object-
creating operations raise a number of issues which were not addressed in this research,
such as the type of the created objects and the operations they support, the relationship
between object creation and dynamic schema evolution, and so on.

We will use a sample database similar to that of [Kim89] depicted in Figure 3. Dou-
ble lines represent subclass relationships and thin lines denote method signatures. For
simplicity, only unary methods (e.g., manufacturer: Vehicle — Company) are used in the
examples although real databases would take advantage of multiple argument methods
(e.g., employees*: Company x City — SetOfPerson). Methods marked with an asterisk
such as employees* and cars* return objects with set values.

The following are the precise definitions of the algebra operators that are supported
in our model.

Union (denoted P U @Q): The union is the set of objects which are in P or @ or both.
An equivalent expression for union is { o | P(0) V Q(0) }.

Difference (denoted P — @): The difference is the set of objects which are in P and
not in Q. An equivalent expression for difference is { o | P(0) A—=Q(0) }. The
intersection operator, P N @, can be derived by P — (P — Q).

Select (denoted P op (Q1...Qr)): Select returns the objects denoted by p in each
vector <p,q1...qr> € P X Q1 X ...x @ which satisfies the predicate F'. An
equivalent expression for select is {p|P(p)AQ1(q1)A .. AQr(¢r) AF(p,q1,---,q5)}
Multiple operands permit explicit joins as described in [Kim89]. An explicit join is
a join between arbitrary classes which support (a sequence of) method applications
resulting in comparable objects.
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Figure 3: Sample database schema.

Example 2.2 The query “find all persons who live in a city which has an auto
company” is an example of an explicit join. The select expression for this query
is Person op {AutoCompany) where ' = (<p>.address ==<a>.location), a ranges
over AutoCompany, and p ranges over Person. <

The result of this expression 1s a set of Person objects, rather than sets of <
Person, AutoCompany > objects. This 1s due to the object-preserving nature of
the algebra which disallows creation of new objects. In this sense, select is more
like the traditional semijoin operator. As a result, the selection P op (Q1... Q%)
always returns a subset of P.

Generate (denoted Q1 7% (Q2...Qy)): F is a predicate with the condition that it must
contain one or more generating atoms for the target variable ¢, i.e.; ¢ does not range
over any of the argument sets. The operation returns the objects denoted by ¢ in
F for each vector <q1...qp> € @1 X ... X Qp which satisfies the predicate F'. An
equivalent expression for generate is {t|Q1 (q1) A ... AQk (Qr) AF (t,q1...qx))}-

Generating atoms are unique in that they generate values for variables which do
not range over an input set of the query (Table 3). They are called generating
atoms because they generate objects for « from a constant value (entry 5), from
the content of other objects (entries 2,4), or by applying methods to objects (entries
3,4). As an illustration, consider the query @ 7€pe<qyr>.m“st) (R). Variables q and
r in the predicate range over the argument sets ¢ and R respectively and thus
can be considered ‘bound’ in the query. However, variable p is not bound to any
argument set and the atom p €<q, r>.mlist will evaluate to true only when p ranges
over the objects in the set value of the objects obtained by the method applications.
Under these conditions then, the atom generates values for p.



Table 3: Generating atoms for x.

1 r==o0

2 r€Eo

3| x ==<o01,...,0,>.mlist
4| x€<oy,...,o0n>mlist
5 r=a

Example 2.3 An example is the query “return all cars driven by presidents of
auto companies” where the cars* method applied to a company president re-
turns an object whose value is a set of car objects. The generate expression for
this query is AutoCompany % () where F' = (¢t €<a>.president.cars). The query
“find all cities auto company employees live in” combines unnesting of set values
with method application. The algebra expression is AutoCompany 7% () where
F = (x €<a>.employees Nt == <x>.address). Note that predicate F' contains
generating atoms for two variables, # and ¢, although only objects for ¢ are included
in the result as specified by the 7% notation. <

Map (denoted @1 +—must (Q2...Qr)): Let mlist be a list of method names of the form
my - My. Map applies the sequence of methods in mliist to each object ¢; € Q4
using objects in (@2 ...Qy) as parameters to the methods in mlist. This returns
the set of objects resulting from each sequence application. If no method in mlist
requires any parameters, then (Qs ... Q) is the empty sequence (). Map is a special
case of the generate operator whose equivalent is { ¢ | Q1(q1)A. . AQr(qr)At == <
q1...qp>.mlist }. This form of the generate operation warrants its own definition
as it occurs frequently and supports several useful optimizations. Map is similar to
the image operator of [SZ90].

3 The Object Manager

As we indicated in Section 1, relational DBMSs benefit from the close correspondence
between the relational algebra operations and low level access primitives of the physical
system. Therefore, access plan generation in relational systems basically concerns the
choice and implementation of the most efficient algorithms for executing individual al-
gebra operators and their combinations. In OODBMSs the issue is more complicated
due to the difference in the abstraction levels of behaviorally defined objects and their
storage. Encapsulation of objects, which hides their implementation details, and the
optimization of queries against these objects pose a challenging design problem which
can simply be stated as follows: “At what point in query processing should the query
optimizer access information regarding the storage of objects?” We differentiate between
two types of object storage information: representation information, which specifies the
data structures used to represent objects themselves, and physical storage information
regarding the clustering of objects, indexes defined on them, etc. If object storage is
under the control of an object manager, the design question can be posed in terms of the
level of OM interface. Physical optimization of query executions requires storage infor-
mation, arguing for a high-level OM interface that is accessed early in the optimization



process. Many systems that are typically called “complex object systems” choose this
approach. Encapsulation, on the other hand, hides storage details and, therefore, argues
for a low-level OM interface that is accessed late in the process.

3.1 OM Design Principles

Since our data model treats objects as instances of abstract data types, encapsulation
is a fairly important consideration. Furthermore, in our work, we are interested in
investigating how far we could go with query processing without accessing the physical
storage information. Therefore, we have elected to define a fairly low-level OM interface
that 1s accessed late in the optimization process. Furthermore, the OM interface does
not reveal any physical organization information. In other words, we are defining a
lower level of abstraction than that provided by the data model and object algebra. We,
therefore, split what is usually called “access path selection” in relational systems into two
steps: (1) execution plan generation, which is the mapping of object algebra expressions
to object manager interface expressions; and (2) access plan selection, which involves
the selection of the “optimum” execution plan and the efficient implementation of the
object manager interface operations. In one sense, this is similar to query processing
in distributed database systems [OV91] which involves both global plan generation and
local optimization. In this paper we are mainly concerned with the first step, briefly
touching upon the second in Section 6.1.

Object algebra expressions which are the input to the execution plan generation
process have several important characteristics:

1. They can be represented as a graph whose nodes are object algebra operators and
whose edges represent streams (sets) of objects. Thus intermediate results do not
have any structure. In fact, the intermediate results can be thought of as streams
of individual object identifiers.

2. Some algebra operators (op, 7% ) are qualified by a predicate. Predicates are formed
as a conjunction of atoms, each of which may reference several variables. The
variable corresponding to the result of the algebra operation is called the target
variable.

3. A variable name appearing in multiple atoms of a predicate implies a ‘join’ of
some kind; i.e., objects denoted by the variable must satisfy several conditions
concurrently.

The last point, namely implied ‘joins’ between object variables within a predicate, is
the driving factor behind our query execution and execution plan generation strategy.
Consider the predicate F' for the select operation P op (O, R, S, T)

F = o==(<p,q,r>m1) AN (g€t) A (¢ ==<s>m3) (1)
where p is the target variable and O, P, R, S, T are inputs to the operation. All values
for ¢ are generated by the atoms in the predicate. The result of this select operation can

be defined as

{o|F(o,p,q,r,s,1)is true for <o,p,r,s,1>€ OXPxRxSxT } (2)



o|lplgq|lr|s|t
al | x | x|x|x (0 ==<p, ¢, r>.my)
a2 X x| (g €t)
a3 X X (¢ ==<s>.m>)

Table 4: Dependencies between variables in a predicate.

Table 4 identifies which variables are referenced in each atom (numbered left to right)
and reflects the dependencies between the variables. It should be clear from the table
that an object denoted by ¢ must satisfy all atoms concurrently. However, if we are to
respect the data abstraction afforded by objects, then it is not possible for the query
processor to directly evaluate all three atoms concurrently as required. Instead, it 1s
more likely that we call upon another agent which can perform individual operations on
objects that correspond to the individual atoms. This would then require the ability to
keep track of the combinations of variables in Ox P x Rx.SxT which satisfy F. This
intuition leads to the following design decisions.

1. The low level operators used to generate an execution plan for an algebra level
operator will consume and generate streams (sets) of tuples of object identifiers. We
introduce the notation [a, b, ¢, -] to denote a stream of tuples of object identifiers
of the form {<a,b,c,--->}. For convenience we will call this an oid-stream in the
remainder of the document. This way relationships among variables and the atoms
they satisfy can be maintained over a sequence of operations.

2. The object manager interface performs low level operations comparable to individ-
ual atoms in a predicate.

3.2 OM Interface Specification

The object manager interface specifies a calling sequence and semantics for performing
operations on oid-streams. Four operation types are defined:

1 OMy([i1], [i2], [o]) — gstream union

2 OMyp([i1], [i2], [0]) — stream difference
3 OM.yu([i1], -, [in], [0], meth, pred) — atom evaluation
4 OMuw([#1], .-, [in], [0]) — stream reduction

where [i,,] and [0] denote input and output oid-streams respectively. The semantics of
the OM calls are described next.

(1) Stream Union: This operator generates the union of the two input oid-streams.
Streams [i1] and [i5] must reference the same variable names though not necessarily
in the same order. The operation is analogous to the relational union operator. The
output oid-stream contains those tuples which are present in [i1] or [i2] projected
onto the variables identified by the output specifier [o].

(2) Stream Difference: This operator generates the difference of the two input oid-
streams. Streams [i1] and [i3] must reference the same variable names though
not necessarily in the same order. The operation is analogous to the relational



difference operator. The output oid-stream contains those tuples which are in [i1]
but not in [is] projected onto the variables identified by the output specifier [o].

(3) Atom Evaluation: This operator applies the (optional) method given by meth to
each member of [i1] X ... X [i,] creating the intermediate oid-stream [i;] X ... X
[in] x [res] where res is the result of the method application for each iy,... i,
combination. Next, the predicate pred is applied to the intermediate oid-stream
and the result is projected onto those variables given in the output stream identifier
[0]. More specifically:

e [i1],...,[in] denote a set of oid-streams which represent the input to the object
manager call. A variable name may appear in only one input stream.

e [0] denotes the oid-stream which will be returned as output of the object
manager call. A variable name may appear only once in the output stream.
Variables referenced in the oid-stream [o] are a subset of those in the input
streams or the special identifier res.

e methis an optional method application specifier of the form <a, b, - - >.mname,
where a, b, - - - correspond either to variables in the input streams or are the
textual representation of an atomic value. The special identifier res denotes
the result of the method application and can be referenced in the output
stream and predicate.

e pred is an optional predicate on objects in the input streams and/or result
of the meth field. The full set of permissible predicates is given in Table 5.
Variables in the predicate correspond either to variables in the input streams,
the special identifier res or are the textual representation of an atomic value
(denoted by const in the table).

Table 5: Predicates allowed in OM., 4 calls.
0; == O]'
0; € 0j

% =g 9§

const = o

const € o
o € const

const =¢ o

An OM,,,; call must have either a method or a predicate specified, and can have
both if required. If specified, the method is always applied before the predicate is
evaluated. The special identifier res denotes the result of the method application
and can be referenced in the output stream or predicate only if a method is specified.

The input streams may contain variables which are not referenced in the output
stream, the method or the predicate. In this case the respective oids in the input
streams are ignored. Variables referenced in the input streams and output stream
but not in the method or predicate are carried through without modification. In
this case, the unreferenced oid in each input tuple which satisfies the predicate after
the optional method has been applied is copied unchanged to the corresponding



output tuple. There is no relationship or restrictions on the ordering of variables
in the input streams and output stream.

Example 3.1 Consider the atom evaluation operation
OM.,ai([a, b], [c], [res, €], <e,a>.m, b € res)
The semantics of this operation are given by the following algorithm.

for (each tuple t : <a,b,¢> € [a,b] x [¢]) begin - iterate over cross product
let res be the object returned by <t.c,t.a>.m! — method application
if (¢.b € res) then — set value inclusion
add the tuple <res,t.c> to the output stream
end <

(4) Stream Reduction: This operator combines and reduces the number of input
streams by performing an equijoin on those variables which are common to all
input streams. This requires that all input streams have at least one variable name
in common. The semantics of the operation is best described using an example.

Example 3.2 Consider the stream reduction
OMy([a, b, c],[b,d,c],[e, e, b], [a,b,e])

The variables common to all input streams are b and ¢. We can rewrite the opera-
tion as

OMpq([Cl, bl, Cl], [bz, d, Cz], [6, Cs, bg], [Cl, b, 6])

in order to differentiate the different sources for variables b and e¢. The input
streams are first combined by taking their cross product which results in the oid-
stream [a, b1, ¢1, ba, d, ¢a, €, c3, b3]. The final result stream is of the form [a, b, ¢] and
contains only those tuples from the previous intermediate result where (by = by =
bs) A(cl =2 =1¢3). O

4 Execution Plan Generation

Execution plan generation can be thought of as creating a mapping from object algebra
expression trees to trees of object manager operations. A query is initially represented
as a tree of object algebra operators as shown in Figure 4(a). Edges in the figure have
been annotated with oid-stream labels to indicate that a set of objects can be considered
a stream of individual objects as well. For example, the set of objects denoted by P can
be thought of as the stream of objects [p] where p € P. One unique feature of object
algebra expression trees is that all edges represent streams of single objects, never streams
of multiple objects. This is due to the closed nature of the algebra which insures that
the output of any operation can be used as input to another.

1We use the notation t.c to denote component ¢ of tuple ¢.



Figure 4: Mapping object algebra expression trees to object manager operation trees.

The graph in Figure 4(b) represents an execution plan corresponding to the algebra
tree on the left. An ezecution plan graph is a graph whose nodes are OM operators
and whose edges are oid-streams. It 1s evaluated from the leaves to the root. The
subtrees within dotted boxes are sequences of object manager operations corresponding
to individual algebra operators of the original query. Edges which do not cross subtree
boundaries may represent streams of tuples of objects (e.g., [p, ¢] and [s, 0]). In addition,
streams may be used as input to multiple object manager operations within a subtree,

e.g., [q]-
The following sections shows how the mapping to object manager operators is per-
formed for each of the object algebra operators (U, —, o, —miise and 75).

4.1 Union and Difference Operations

The union and difference operators map directly to their object manager counterparts.
Inputs and output of these two algebra operations are always unary streams of objects
even though OMy and OMy;z accept streams of tuples of object identifiers.

4.2 Map Operation

Reviewing briefly, the map operator Q1 ;. m, {(Q2,...,Q) denotes the sequence of
method applications <q1,...,qz>.m1...m, where <q1,...,qr > are drawn from @ x
... X Qp. Since the object manager interface can only apply one method per call, the
method sequence must be decomposed into individual method applications. Determining
which ¢; are parameters for a given m; is discussed in [SO90c] and is not repeated here.
Figure 5 depicts how the map operation Q1 —um, mymsm. (@2, @3, Qa, Qs, Qs, @7)
is represented as a sequence of OM operations. The full algorithm to perform this
transformation is given in [8(590&] and is omitted here due to space limitations.



my OMeU@l([r:‘}]a [Q7]a [7“65], <rs, q7>.My4, ¢)

ms3 [q7] OM.va([ral, [g5], [g6], [rs], <72, 45, g6>.m3, 3 == res)
[rﬂ/
msa lgs] [g6] OM cpai([r1], [q3], [qa], [r2], <71, ¢, qa>.m2, 70 == res)
[r/ \
my lg3] [ga4] OM .pai([q1], [g2], [1], <q1, g2>.ma, v == res)
[fh] [Q2]

Figure 5: Execution plan generation for the object algebra map operator.

4.3 Select and Generate

The select and generate operators introduce complexity into execution plan generation
due to their use of predicates. At first it may appear that the two should be treated
separately as the select operator returns a subset of an input set while the generate oper-
ator generates objects from those in the input sets. But from the perspective of low level
execution plan creation, they are quite similar. Consider again the selection predicate
of Equation 1. Even though the operation is a selection, the predicate generates values
for ¢q. There is no inherent difference in complexity between predicates for selections
and those for generate operations. The only real distinction between the two is that
the target variable of a generate operation does not correspond to one of the input sets.
The first requirement in creating select and generate execution plans is to rewrite the
predicate such that each atom corresponds to just a single object manager call. Sev-
eral substitutions are given in [SO90a] which insure that there is a one-to-one mapping
between atoms in the predicate and object manager calls.

We outline a simple algorithm for mapping select and generate algebra operators to
execution plan graphs. The algorithm takes three inputs: (1) a set of atoms corresponding
to a simplified predicate, (2) a set of variable names identifying inputs to the object
algebra operation, and (3) the name of the target variable. Output is an execution plan
graph. The algorithm uses a hypergraph [Ber73] representation of the predicate. The
hypergraph contains one node for each unique variable name referenced in the atoms
of the predicate and is initialized with an edge for each atom of the predicate which
covers all nodes corresponding to variables referenced in the atom. (Note that edges in a
hypergraph define subsets of its nodes.) The nodes are marked as either red or green. A
green node indicates that values for this variable exist, either because the variable ranges
over one of the input sets or because an object manager call has generated values for
it. A red marking indicates that values do not exist, i.e., the variable may not be used



yet. The node markings are initialized to reflect the variables which represent inputs to
the object algebra operation. The algorithm proceeds by successively placing into the
execution plan graph OM., 4 operations for atoms (hypergraph edges) until all atoms
have been placed. An atom is eligible for placement in the execution plan graph if all
the nodes in its corresponding edge are green, or only one node is red but it represents
a variable whose values are generated by the atom. The complete algorithm is given in
[SO90a].

Example 4.1 We apply the algorithm described above to produce an execution plan
graph for the select operation whose predicate was given in (1). Figure 6 shows the
initialized hypergraph with an edge for each atom in the predicate. Note that the node
for ¢ is red while all others are green indicating ¢ does not range over an input set.
Initially, both atoms a2 and a3 are eligible for placement because all but one node in
their respective hypergraph edges are green and each atom generates values for the single
red node. Atom al isineligible at this point as it does not generate values for the red node.
Let us assume atom a3 is chosen at random leading to placement of its corresponding
object manager call (labeled as a3 in Figure 6) in the execution plan graph. After placing
a3, q 18 colored green since values now exist for it and the edge for atom a3 is removed
from the hypergraph. At this point, both remaining atoms are eligible for placement and
we assume atom al is randomly chosen. The output oid-stream of the corresponding
OM call is [p, ¢] because (1) atom al overlaps with a2 on ¢, and (2) p is the target
variable and needs to be retained for the final result. The algorithm terminates after
placing the remaining atom, a2. <

[s]

Figure 6: Hypergraph representation of a predicate and corresponding execution plan
graph.

5 Select/Generate Execution Plans Revisited

The previous section introduced the notion of an execution plan as a tree of object
manager operations. Queries expressed as trees of object algebra operators are converted



to execution plans by mapping each operator in the algebra tree to a corresponding
subgraph of object manager operations. Outlines of algorithms were given to perform
this mapping for union and difference, map, and the select and generate operators.
This section examines the mapping process for select and generate operators in more
detail. The algorithm presented in Section 4.3 is quite limited in that it can only generate
execution plans which are a linear sequences of OM .4 operations. Specifically:

e only one execution plan is generated,

e the ordering of multiple eligible OM operations i1s determined by random choice
and does not allow a cost-based analysis of different orderings,

e object manager operations are never performed in parallel, and
o OMy is not used to reduce intermediate oid-streams.

Ideally we would like to generate a family of execution plans from which a best plan
can be chosen based on some cost criteria. To assist us in an exhaustive generation of
execution plans, we extend the notion of a join template [RR82] to define a processing
template. A processing template represents a family of logically equivalent execution
plans. They are used as an intermediate formalism in mapping object algebra query
trees to execution plan graphs. A processing template for the predicate of Equation 1 is
given in Figure 7.

A processing template consists of two types of nodes: stream nodes and operator nodes.
Stream nodes (drawn as rectangles in Figure 7) represent intermediate results in a tree
of object manager operations, i.e., execution plan graph. In other words, stream nodes
reflect the variables present in an intermediate oid-stream and the atoms which were
evaluated to produce them. Since there are conceivably many ways to produce equivalent
oid-streams, each stream node in the processing template represents an equivalence class
of oid-streams.

Each stream node has two fields. The top field denotes the object variables present in
the oid-stream. The bottom field denotes which atoms have been evaluated in order to
create the oid-stream, but does not indicate the order in which the atoms were evaluated.
We will refer to these atoms as being consumed by the stream node.

Operator nodes (drawn as circles in Figure 7) denote the OM_,y 4 or OMy operations
in a execution plan graph. An operator node is labeled with an atom number (al, a2,
etc.) if it corresponds to a OM,yq operation and with M if it is a stream reduction
operation.

Stream nodes with no consumed atoms, i.e., the leaf nodes, represent the original
input streams of an object algebra select or generate operator. We define the final node
as the stream node in the processing template whose variables field contains just the
target variable of the object algebra operator and whose atoms consumed field contains
all the atoms in the object algebra operator’s simplified predicate. The final node is
always node 0.

Edges represent the flow of tuples from one operator node to the next. Referring to
Figure 7, nodes 1 through 5 represent the original input streams to the algebra opera-
tion of Equation 1 and node 0 represents the final result. Node 6 is the result of the
object manager operation OM yqi([s], [¢], <s>.ma, ¢ == res) and node 7 is the result of
OM.,ai([t], [9], ¢, ¢ € t). Each of these stream nodes represents an equivalence class of
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Figure 7: Processing template and one of its execution plans.




size one as they each only have one operator node feeding into them. Node 8 represents
an equivalence class with three members. Using oid-streams subscripted with their pro-
cessing template node numbers to indicate their source, the following OM calls all create
the equivalent output denoted by stream node 8.

OM..a(ld]s, [t]5, [dls, ¢, 0 € 1) (atom a2)
OM..ai([q]7, [8ls, [d]g, <s>.m2,q == res) (atom a3)
OM([¢]6, l4)7, [als) (reduction on q)

Each connected subtree of edges in the processing template which includes all initial
nodes and the final node is a valid execution plan. As an example, the dashed edges in
Figure 7 correspond to the execution plan shown in the top right of the diagram.

The full algorithm which, given a select or generate operation in the object algebra,
returns a processing template which enumerates all possible execution plan graphs for
that operation, is presented in [SO90a]. This paper outlines the algorithm using an
extended example (Figure 7).

This example shows how a processing template is developed for the object algebra
operation of Equation 1. An initial processing template is created by identifying the
input streams of the algebra operation and placing nodes for each of them. In this
example the input streams are [o], [p], [r], [s] and [t] corresponding to nodes 1,2,3,4
and 5 respectively. The final node, node 0, is also placed in the processing template. Its
variables field contains either the variable being restricted in the case of a select operation
or the target variable in the case of a generate operation. The example operation is a
selection on the input set P, thus p is placed in the final node. Similarly, all atoms of
the reduced predicate (al,a2,a3) are placed in the final node’s consumed atoms field.

Once the initial processing template is created, the following steps are repeated until
it 1s no longer possible to create any new stream nodes. Each iteration of the following
steps is referred to as a pass through the algorithm.

Pass 1: Recall that processing template stream nodes represent oid-streams which can
be combined to evaluate atoms or to remove duplicates. The first step of each pass then,
is to enumerate all possible ways of combining stream nodes. We use the algorithm
given in [OL88] for join enumeration but modify it slightly such that it does not produce
combinations where a stream node is combined with itself (self-join). The final node is
not included in the enumeration. Enumeration of the initial processing template results
in the following permutations of stream nodes. Each permutation is shown as a set of
stream node numbers and the sets are organized by size.

1: {1} {2} {3} {4} {5}

2: {1,2} {1,3} {2,3} {1,4} {2,4} {3,4} {1,5} {2,5} {3,5} {4,5%}

3: {1,2,3} {1,2,4} {1,3,4} {2,3,4} {1,2,5} {1,3,5} {2,3,5} {1,4,5}
{2,4,5} {3,4,5}

4: {1,2,3,4} {1,2,3,5} {1,2,4,5} {1,3,4,5} {2,3,4,5}

5: {1,2,3,4,5}

Similar to the filtering process described in [OL88], each permutation is tested to
determine whether it is a useful combination of stream nodes. FEach permutation of
stream nodes defines mappings to sets of variables and sets of consumed atoms. For



example the permutation {1,2,5} defines the mapping shown in Figure 8. We define
two interesting types of mappings:

1. The variable sets are disjoint and together, all the variables exactly match those
required by an atom which has not been consumed by any of the nodes in the
permutation. In other words, an unused atom can be consumed using exactly those
streams represented by the nodes in the permutation. The set of atoms which can
be consumed by the combination of streams in the permutation (i.e., eligible for
placement) is shown in Figure 8.

— {o} A .+ variables
—— {p}

— {t} — {s} (¢
SR {1,2,8) —={ } " {4}y — {a3} {5} —= {a2}
| Lo v e —

— = {}

—={} '}  atoms eligible for placement

" node permutation " consumed atoms

Figure 8: Mappings from stream nodes to variables, consumed atoms and eligible atoms.

The first permutation in Figure 8, {1,2,5}, does not meet our criteria while the
others do. Although the variables which {1,2,5} maps to are disjoint, they do not
exactly match the variables required by an unconsumed atom.

For each permutation with a non-empty set of eligible atoms, we consume each
atom in the set by adding a stream node and operator node with appropriate
connections to the processing template. In Pass 1, permutation {4} leads to the
placement of stream node 6 and the operator node labeled a3 while permutation
{5} leads to placement of stream node 7 and the operator node labeled a2. No
other placements are possible. Since each stream node in the processing template
represents an equivalence class of oid-streams, we do not always place a new stream
node. If a stream node already exists with the appropriate set of variables and
consumed atoms, only the operator node is added and the appropriate connections
made.

2. One or more variables are replicated in each of the variable sets. Discussion of this
case 1s deferred to Pass 2 since the condition does not occur during Pass 1 in this
example.

At the end of the first pass the processing template consists of stream nodes 0-7 and the

OM operations which connect them.

Pass 2: Pass 2 begins by again enumerating all possible combinations of stream nodes.
However, since the contents of a stream node are not modified after it is initially added



to the processing template (only new connections are made), we only need to enumerate
all new permutations of stream nodes which were not considered in any of the previous
passes.

As before, we build the mappings of stream node permutation to variables and con-
sumed atoms and apply the filtering criteria. In this pass, both types of mappings which
we consider interesting occur.

1. Mapping type 1 — the variable sets are disjoint and together, all variables exactly
match those required by an atom which has not been consumed by any of the stream
nodes in the permutation. These criteria are met by permutations {4,7}, {5,6},
{1,2,3,6} and {1,2,3,7}. Permutation {4,7}, which can be used to consume
atom a3, would result in a stream node whose consumed atoms are a2 and a3 and
whose variables field includes only ¢. Since this is identical to stream node 8, we
just make the connections to node 8 rather than create a new stream node. This
maintains the notion of a stream node representing an equivalence class of oid-
streams. The same is true for permutation {5,6} which can be used to consume
atom a2.

Permutations {1,2,3,6} and {1,2,3,7} also meet our criteria and result in the
creation of nodes 9 and 10 respectively.

2. Mapping type 2 — one or more variables are replicated in each of the variable
sets. This condition means that several stream nodes exist with values for the
same variable(s) and that an OMy operation can be used to combine and reduce
the oid-streams. Permutation {6,7} meets this criteria for variable ¢ as shown in
Figure 9.

{a}

— {a}
{e,7}
I_ {a2}

{as}

Figure 9: Node permutation with replicated variables.

Each stream node in the permutation represents values for variable ¢ generated by
a different set of atoms. In other words, node 6 represents values for ¢ generated
by atom @3 while node 7 represents values for ¢ generated by atom a2. The nodes
are joined by an OMy operation and all variables required by unconsumed atoms
are carried through to the output oid-stream. In this case, the output oid-stream
would contain only the variable ¢ and would have consumed atoms a2 and a3.
Since this is equivalent to node 8, we only add the OMy operator node and make
connections to node 8 rather than create an entirely new stream node.

Pass 3: Enumeration of all stream nodes results in the following interesting permuta-
tions: {1,2,3,8}, {7,9}, {8,9}, {6,10}, {8,10} and {9,10}. All of these permutations



cause insertion of operator nodes only and do not cause any new stream nodes to be
added to the processing template. The first permutation consumes an atom resulting in
the placement of an OM.,,; operation while all others result in OMy operations. A
further criteria is applied to the OMy creating permutations which was not mentioned
earlier.

Each of the stream nodes in the permutation must add to the consumed atoms field of
the result. For example, permutation {6,9} is not acceptable as all of node 6’s consumed
atoms ({a3}), are already represented in those of node 9 ({a1,a3}).

The algorithm terminates after Pass 3 because no new stream nodes were created
in this pass. In other words, enumerating all stream node combinations again will not
result in any permutations which were not evaluated previously.

6 Discussion

There are a number of issues related to the approach that we have taken and related
to the scope of our investigation that we would briefly like to touch upon. These issues
involve the selection of the “optimum” execution plan and the optimization of the method
executions.

6.1 Choosing the “Optimum” Plan

Output of the enumeration algorithm described above is a processing template which
identifies a family of logically equivalent query execution plans. Each connected subtree
of edges in the processing template which includes all initial nodes and the final node is
a valid plan. But which is the best plan?

Section 3 defined an object manager interface but our research does not address its
implementation. An implementation design would be highly dependent on the object
representation, the technique used to bind method code to objects and other system
parameters. Thus, although we do not propose a specific cost function, we assume that
the object manager is capable of using oid-stream statistics to derive a cost for calls to
its interface.

Appropriate oid-stream statistics might be stream cardinality and information about
the classes represented in the stream. For a given call, the object manager could derive a
processing cost and statistics for the resulting output oid-stream. A processing template
could then be annotated with cost information as follows.

Initially only leaf nodes (which are stream nodes) of the processing template would
have stream statistics associated with them. If the leaf nodes correspond to the leaf
nodes of the original object algebra query, then they represent the extent or deep extent
of classes in the database and their statistics are readily available. Otherwise the leaf
nodes represent the output of a previous subtree of object manager calls and the output
oid-stream statistics of the appropriate subtree are attached.

Working from leaf to root in the processing template, the object manager cost function
is used to assign a processing cost to each operator node as well as a set of stream statistics
for the stream node the operator feeds into. All operator nodes and stream nodes in
the processing template can be annotated with cost and statistical information in this
fashion. The total cost of any specific execution plan within the processing template is
the sum of the operator costs which are included in the execution plan’s subgraph. If



time information is included in the cost function, then when operator nodes execute in
parallel, only the longest running operator should be included in the sum.

Note that cost information can not be used to prune the search space of the processing
template generation algorithm. The search space of the algorithm is defined by the
number of stream nodes present in the processing template at the start of each pass. This
value can only be affected by the criteria used to define the “interesting permutations”
which cause new operator and stream nodes to be created.

6.2 Optimization of method executions.

Our research concentrates primarily on the optimization of query primitives. Ideally,
query optimization should be possible for queries which utilize user defined methods.
But this is highly dependent on the language used to define those methods. In the
worst case, the only optimizations possible are those provided by the compiler of the
method implementation language. Examples of such optimizations are inline subroutine
expansion, removal of loop invariants and efficient pipeline and register usage.

One approach assumes that behavioral abstraction is maintained at the logical level,
while a structural object-oriented system exists at the lowest implementation level [GM8S].
Objects and classes involved in a query are requested to reveal structural information by
the query processor. Revealed expressions which still contain encapsulated behavior
are recursively requested to reveal their equivalent (sequence of) structural expressions.
When the revealing process bottoms out, the structural manipulation primitives are op-
timized by an extended relational query optimizer.

Another approach would be to use a purely functional language for user defined
methods. Expressions in such languages can be recursively decomposed to sequences
of primitive data manipulation operations. These decomposed sequences can then be
optimized using the techniques described earlier.

Clearly, optimization of user defined methods is closely tied to the ability to reason
about expressions in the method implementation language and 1s a significant area for
future research.

7 Conclusion

This paper investigates the problem of generating execution plans for queries against
object-oriented databases. Two primary topics are developed: (1) what interface should
an object subsystem provide for efficient execution of queries, and (2) how to trans-
late object algebra expressions into execution plans which consist of calls to the object
subsystem interface.

Most of the object-oriented systems proposed to date provide the ability to apply
methods and extract subcomponents for single objects only. However, processing queries
efficiently requires that similar operations be applied to streams of objects. The object
manager interface proposed in this paper does just this. Execution plans are represented
as trees of object manager operations whose edges denote the flow of oid-streams.

The overall strategy for generating an execution plan consists of mapping each indi-
vidual algebra operator in a tree of object algebra operators to a subtree of functionally
equivalent object manager calls. Algorithms are outlined in this paper to perform this



mapping for each of the five primary object algebra operators: union, difference; select,
map and generate.

While the mapping process for the union, difference and map operators is primarily
one-to-one, the mapping for the select and generate operations is one-to-many. A variant
of the join template [RR82], called the processing template, is developed and used to
represent the many subtrees of object manager calls which are logically equivalent to a
single select or generate operation.

The execution plan generation method proposed in this paper introduces some inter-
esting questions related to query optimization. Equivalence preserving transformation
rules for logical optimization of object algebra expressions are derived in [SO90b]. The
execution plan generation scheme proposed here assumes that these rules have been used
to ameliorate the original object algebra query prior to plan generation. Plan generation
then replaces each individual algebra operator with a “best” subtree of object manager
calls. In other words, the overall shape of the query tree remains the same as that which
was arrived at during logical optimization. One area of future research indicated by this
methodology is the development of equivalence preserving rewrite rules for trees of object
manager operations. Such rules would allow global optimization of the entire execution
plan as opposed to merely picking “best” subtrees. Another interesting topic would be
to develop an execution plan generation strategy which cycles back and forth between
the logical algebra optimization phase and the execution plan generation phase. This
would allow interleaving transformations which change the shape of the query with the
introduction of execution plan subtrees possibly resulting in more efficient plans.
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