Experimenting with Temporal Relational Databases

Iqbal A. Goralwalla®, Abdullah U. Tansel® and M. Tamer Ozsu®

“Laboratory for Database Systems Research, *Baruch College—CUNY,
Department of Computing Science, University of Alberta 17 Lexington Avenue, Bo x 513,
Edmonton, Alberta, Canada T6G 2H1. New York NY 10010, USA.
{igbal,ozsu}@cs.ualberta.ca uztbb@cunyvm.bitnet

Tel: (403) 492 2860, Fax: (403) 492 1071

Abstract

In this paper we describe an implementation of a temporal relational database management system
based on attribute timestamping. The algebraic language of the system includes relational algebra oper-
ators, restructuring operators and temporal operators. We then use this system to carry out experiments
on the performance of different types of temporal databases: databases using attribute timestamping,
databases using tuple timestamping where relations are in temporal normal form and databases using tu-
ple timestamping where a single relation is used. We run sample queries against these types of temporal
databases and measure the processing time of these queries. This study verifies that the major per-
formance trade off between different types of temporal databases is between the restructuring (unpack)
operation needed in temporal databases using attribute timestamping and the join operation needed
in temporal databases using tuple timestamping. Furthermore, the experiments show that keeping all
temporal tuples in one single relation does not prove to be an effective alternative for temporal databases
which use tuple timestamping.

Keywords: temporal databases, attribute timestamping, tuple timestamping, temporal queries.

1 Introduction

A database contains data pertaining to an organization and its activities. It forms a data repository from
which information is extracted for various purposes. Conventional databases can be viewed as snapshot
databases in that they represent the state of an enterprise at one particular time, i.e., they contain only
current data. As a database changes, out-of-date information representing past states of the enterprise is
discarded.

Time is an attribute of all real-world phenomena. Events occur at specific points in time; objects and
the relationships among objects exist over time. The ability to model this temporal dimension of the real
world is essential to many information system applications. Examples of these are econometrics, banking,

inventory control, medical records, airline reservations, versions in CAD/CAM applications, statistical and

scientific data, etc. The attributes of an object (i.e., an entity or a relationship) assume different values
over time. The set of these values form the history of that object. A database which maintains past,
present and future data (i.e., object histories) is called a Temporal Database (TDB).

In the last decade there has been extensive research activity on temporal databases. An initial summary
of research projects can be found in [24] which also includes a bibliography on temporal databases [15].
Additional bibliographies on temporal databases are given in [27, 26]. Furthermore, Kline provides an
update to previous bibliographies on temporal databases in [13]. Snodgrass [25] reports on the status and
research directions in temporal databases while Pissinou et al. [19] report on the outcome of a workshop
on the infrastructure for temporal databases. A recent book [30] provides a comprehensive treatment of
the current state-of-the-art in temporal databases.

Most of the research on temporal databases has concentrated on extending the relational model [5] to
handle time in an appropriate manner. These extensions can be grouped into two main categories. The
first approach uses First Normal Form (INF) relations in which special time attributes are added to a
relation and the history of an object (attribute) is modeled by several INF tuples [1, 14, 16, 20, 23]. This
approach is known as tuple timestamping. The second approach uses Non-First Normal Form (NINF)
relations in which time is attached to attribute values of a relation and the history of an object (attribute)
is modeled by a single NINF tuple [4, 9, 28]. This approach is known as attribute timestamping.

Although substantial research activity on temporal databases has been going on, modeling temporal
data and temporal query languages have been the topics most investigated. There has been very little
work in the implementation of temporal databases. TQUEL [23] is the only exception which is a prototype
implementation on INGRES database system. The underlying model is based on attaching time stamps
to tuples, hence INF relations. Moreover, even though tuple timestamping and attribute timestamping
are the two main approaches of modeling temporal relational databases, there has been no practical study
done to point out and thereby qualify the theoretical trade-offs in using either approach.

In this paper we describe the implementation of a memory resident prototype temporal relational
database management system [10] (TDBMS) which uses attribute timestamping (AT). We feel the attribute
timestamping approach is closer to user thought process as compared to tuple timestamping. In addition,
there is minimum data redundancy as all historical data belonging to an object (attribute) is modeled in
one single tuple. We use TDBMS to generate two types of databases which use tuple timestamping. In the
first database (T'T), time varying attributes are distributed over multiple relations, each in the temporal
normal form described in [16]. In the second database (TTL), a single relation is used to hold all its

pertaining time varying attributes. We then investigate the performance of AT, TT and TTL databases

on different types of queries. We see the following as the two main contributions of this paper:

1. Our prototype is the first implementation of a temporal database management system based on
attribute timestamping. It demonstrates the feasibility of such databases. Even though it needs
more work for incorporating indexing for query optimization, in its present form it provides a useful

environment for experimentation with temporal databases.

2. We use the implemented system to study the performance of the two main approaches of modeling
temporal databases. This is the first practical study which compares the attribute timestamping and
tuple timestamping approaches. The results reported here will provide useful insight into the design

of temporal databases.

The rest of the paper is organized as follows. In Section 2, the temporal relational model together with its
algebra is given. Section 3 describes the implementation of the temporal relational database management
system. In Section 4 various experiments are conducted on the performance of different temporal database

types. The paper concludes with a discussion and avenues for future research in Section 5.

2 The Temporal Relational DBMS (TDBMS)

In our temporal model, each time-varying attribute value is a <time, value> pair. The time part of this
pair is taken to be the interval in which the value is valid as opposed to the time point at which the value
became valid. The latter approach creates complications in expressing and interpreting the relational
algebra operations since it splits the time interval between two successive pairs, causing the successor pair
to be examined if the time duration over which the value is valid is needed. Hence, we opted for the former
approach and represent the time component of time-varying attributes as intervals.

Let V' be the set of all possible integers, reals, and strings and T be a set of time points which is totally
ordered under the less than-equal-to (<) relation. The points are identified relative to an origin ¢y as shown
below:

T = {to,t1, ..., t;, ..., now}

to < t1... < t; < ...now
t;=t_1+1land t; =ty +1

to is the starting time and now is the marking symbol for the current time. Time-varying attribute

values are represented as triplets of the form, < [l,u),» >. [l,u) is the time component (interval), with [

‘ E4# ‘ Ename ‘ *$Department *$Salary ‘

{<[Jan 84, Jan 85), Shoe>, {<[Jan 84, June 85), 20K>,
111 Tom
<[Jan 85, now], Toys>} <[June 85, now], 25K>}
122 Ann {<[Jan 86, now], Sales>} {<[Jan 86, now), 30K>}

{<[Jan 89, June 90),32K>,
133 John {<[Jan 89,now], Toys>}

<[June 90, now], 40K>}

Figure 1: Employee relation.

and u standing for the lower and upper bounds of the interval respectively. v (v € V') is the data value
which is valid over the time interval [l,u).
Sets of triplets represent the history of an attribute. A relation containing such attributes is called a

valid time relation. In our model, a valid time relation may have four types of attributes:
o Atomic attributes: contain atomic values from domains which are subsets of V.

o Triplet-valued attributes: contain triplets as atomic values. A triplet is of the form < [l,u),v > where

lLbueT and v e V.
o Set-valued attributes: are sets of atomic values. These values are considered independent of time.

o Set-triplet valued attributes: contain sets of triplets as values. Each set is a collection of one or more

triplets defined over a subset of the interval [ty, now], and represents the attribute’s history.

In order to differentiate different types of attributes we use the following notation. Atomic attributes
are referred to by their names, Set-valued attributes are prefixed by a “*” | e.g., *A, *B, triplet-valued
attributes are prefixed by a dollar sign, e.g., $A, $B, and set-triplet valued attributes are prefixed by a
star and dollar, e.g., *$A, *$B, etc. To refer to the components of a triplet-valued attribute, $A, we use
$A;, $A, and $A4,. They refer to the lower bound, upper bound, and value components of the triplet,
respectively. A valid time relation is a nested relation with one level of nesting, i.e., attribute values can be
sets. Figure 1 gives an example valid time relation. All tuples of the Fmployee relation are homogeneous

[9]. TDBMS however, allows non-homogeneous tuples as well.

2.1 Temporal Relational Algebra

The set of Temporal Relational Algebra (TRA) operations includes the five basic operations of the relational

algebra with slight modifications for handling temporal data, the two re-structuring operations, pack and

‘ E4# ‘ Ename ‘ $Department ‘ *$Salary ‘

{<[Jan 84, June 85), 20K>,
111 Tom <[Jan 84, Jan 85), Shoe>

<[June 85, now], 25K>}

{<[Jan 84, June 85), 20K>,
111 Tom <[Jan 85, now], Toys>

<[June 85, now], 25K>}

122 Ann <[Jan 86, now], Sales> {<[Jan 86, now), 30K>}

{<[Jan 89, June 90), 32K>,
133 John <[Jan 89,now], Toys>

<[June 90, now], 40K>}

Figure 2: Employee,npacr relation.

unpack [17] which directly apply to temporal relations, and new operations for manipulating temporal
data. The formal definitions of the TRA operations can be found in [28, 29]. We now describe the TRA
operations we have implemented and illustrate the workings of each operation using the Employee relation

given in Figure 1:

1. Set operations (union, intersection, difference)/Cartesian product/Project/Natural Join:

These operations are the same as the relational algebra operations.

2. Selection (select A from R where F'): The selection operator selects the tuples from the valid time
relation R which satisfy the formula F' and projects out the attribute(s) A. F'is a formula which could
contain any type of attribute, comparison operators (i.e., =, #,>,>, <, <) and connectives (and, or,
not). These comparison operators have been used instead of temporal operators like overlap, during,
etc. to keep the implementation simple. Note that temporal operators add to the user-friendliness of
the query. However, omitting them does not diminish the expressive power of TRA. In the Selection
operation when a triplet-valued attribute $X is used, its components can be referenced. Note that

our selection operation includes the selection and projection operations of relational algebra.

3. Unpack (unpack R on A): The unpack operation creates a family of tuples for each tuple of R
when it is applied on one of R’s set-valued or set-triplet valued attributes, A. One tuple is created
for each element of the set in the attribute value. As an example, the result of unpack Employee

on Department is shown in Figure 2.

4. Pack (pack R on A): The pack operation when applied to an atomic or triplet-valued attribute
A of a valid time relation R, collects the values in attribute A into a single tuple component for
tuples whose remaining attributes agree. For example, applying pack on the Department attribute

of Employeenpacr yields back the Employee relation.

E4# ‘ Ename ‘ Department ‘ From ‘ To ‘ *$Salary ‘

{<[Jan 84, June 85), 20K>,

111 Tom Shoe Jan 84 | Jan 85

<[June 85, now], 25K>}

<[Jan 84, June 85), 20K>,
111 Tom Toys Jan 85 | now <l)

<[June 85, now], 25K>}
122 Ann Sales Jan 86 | now {<[Jan 86, now), 30K>}

<[Jan 89, June 90), 32K>,
133 John Toys Jan 89 | now {<[7an une 90)

<[June 90, now], 40K>}

Figure 3: Employeetq.. relation.

5. Triplet-decomposition (tdec R on $A): This operation breaks the triplet valued attribute $A
of the valid time relation R into its components. It adds two new attributes for representing the
upper and lower bounds of the time interval to R. The value field replaces $A. For example, tdec

Employee,npack on Department gives the relation shown in Figure 3.

6. Triplet-formation (tform R on V', L, U): tform creates a triplet-valued attribute from the three
attributes V, L, and U of the valid time relation R which correspond to the value component, lower
bound, and upper bound of the triplet respectively. Triplet-formation is the inverse operation of
triplet-decomposition. For example, tform Employeesq.. on Department, From, To gives back the

Employee,pnpacr relation.

7. Slice (slice R $A by $B): Let $4 and $B be two triplet-valued attributes. The slice operator trims
the time of $A4 with respect to the time of $B. In other words, the intersection of intervals of $4 and
$B is assigned to $4 as its time reference. There are two other versions of this operation. Uslice
operation forms the union of the time intervals of $4 and $B and assigns it as the time component
of $A. Dslice operation is similar to slice, except the difference of the time intervals of $4 and $B
is assigned to the time component of $A4. In both Uslice and Dslice operations, attribute A becomes
a set-triplet valued attribute, since union (difference) of two intervals is not one single interval. For
example, after unpacking the EFmployee relation on the Department and Salary attributes, slice

FEmployee Department by Salary gives the relation shown in Figure 4.

8. Drop-time (droptime R on A): This operation gets rid of the time components of the triplet-
valued or set-triplet valued attribute A and converts it into an atomic or a set-valued attribute,
respectively. For example, Figure 5 shows the Employee relation with the time of the Department

attribute dropped.

‘ E4# ‘ Ename ‘ $Department

‘ $Salary

111 Tom <[Jan 84, Jan 85), Shoe> <[Jan 84, June 85) 20K>
111 Tom <[Jan 85, June 85), Toys> | <[Jan 84, June 85), 20K>
111 Tom <[June 85, now], Toys> <[June 85, now], 25K>
122 Ann <[Jan 86, now], Sales> <[Jan 86, now], 30K>
133 John <[Jan 89, June 90), Toys> | <[Jan 89, June 90), 32K>
133 John <[June 90, now], Toys> <[June 90, now], 40K>

Figure 4: Employeegy;.. relation.

‘ E4# ‘ Ename ‘ *Department | *$Salary ‘

{<[Jan 84, June 85), 20K>,
111 Tom {Shoe, Toys}
<[June 85, now], 25K>}
122 Ann {Sales} {<[Jan 86, now], 30K>}
<[Jan 89, June 90), 32K>,
133 John {Toys} {<[7an une 90)
<[June 90, now], 40K>}

Figure 5: Employeegsim. relation.

9. Enumeration (ENUM1, ENUM2): The enumeration operation derives a relation of uniform data
for a set of specified time points or intervals from a valid time relation. To handle the semantic issues
which arise when applying aggregates to historical data, two versions of the enumeration operation
have been developed. Let Xy be a set of atomic attributes and let X, be a set of set-triplet valued
attributes. ENUM1 (enuml R <{X;} {X32} > {T}) returns the values of the designated attributes
at the specified time points. For each of the specified time points in T, each tuple of the valid

time relation R is retrieved. The triplets of the set-triplet valued attribute(s) X, are examined

in turn for intersection with the specified time point. If an intersection is found, the data values

of the attribute(s) X; and X, are retrieved. For example, enuml Employee<{E# }{Department,
Salary }>{“010185” “010190”} gives the relation shown in Figure 6.

On the other hand, ENUM2 (enum2 R < {X;} {aggrf(X3)} > {T}) returns an appropriate aggre-
gated value for an attribute by utilizing all of its values which are valid over a specified time intervalin
T. For each of the specified time intervals in T the triplets of the set-triplet valued attribute X5 are ex-
amined in turn for intersection. The aggregation function, aggrfis then applied to all qualifying data
values of attribute Xo. The aggregated value and attribute(s) Xy are then retrieved. For example,

enum?2 Employee<{E#} {first(Department), sum(Salary)}> {“010684010186” “010190010191” } gives

E# | Department | Salary | T

111 | Toys 20K 01/01/85
111 | Toys 25K 01/01/90
122 | Sales 30K 01/01/90
133 | Toys 32K 01/01/90

Figure 6: Employeeyym1 relation.

E# | Department | Salary | T

111 | Shoe 45K [01/06/84,01/01/86)
111 | Toys 25K [01/01/90,01/01/91)
122 | Sales 30K [01/01/90,01/01/91)
133 | Toys 72K [01/01/90,01/01/91)

Figure 7: Employeepymo relation.

the relation shown in Figure 7.

3 Implementation of the Temporal Relational DBMS

3.1 Representation of the triplets

TDBMS has been implemented on top of ERAM [8], a memory resident database management system
which is based on the extended relational model and extended relational algebra [17, 18]. The extended
relational model allows relations with set-valued attributes where there is only one level of nesting. It has
specifically been formulated for statistical databases, and hence includes powerful aggregation features.
The extended relational algebra includes the five basic operations of relational algebra with extensions for
handling set-valued relations, and the pack and unpack restructuring operations.

ERAM has been implemented in the C-programming language on top of the UNIX internal file structure
and Unix standard 1/0 library. It is an operational system and has successfully been used and tested in
several universities over the past years. EFRAM provides a natural environment for the implementation of
TDBMS since it supports (one level) nested relations. It directly supports atomic and set-valued attributes
of valid time relations. Additionally, the pack and unpack operations in ERAM help in making and
breaking set-triplet valued attributes of a valid time relation. Moreover, with a coding method triplet-
valued and set-triplet valued attributes of a valid time relation can be translated to the corresponding

attributes of ERAM. Two alternatives are considered:

1. The first alternative is to convert triplet-valued attributes into three separate atomic attributes such
that < [l,u),v > becomes [, u and v. For the set-triplet valued attributes, we create three set-valued

attributes. As an example, consider the following set of triplets:

{<1,2,a>,<3,4,b>,<5,6,c>}

l

*LL *U *V

{1,3,5} {2,4,6} {a,b,c}

The lower bound values (I) of each triplet in the set-triplet valued attribute are combined into a single
set-valued attribute i.e., * L. The same is the case for the upper bounds i.e., * U and the value i.e., *V
fields of triplets. Naturally, each of the set-valued attributes has components which have the same
type which is also required by ERAM. However, the problem in this alternative is to maintain the
order of the components in each set-valued attribute. Otherwise it would be impossible to reconstruct
the original triplets from these three separate attributes. Furthermore, duplicates are not allowed in
set-valued attributes. Duplicate values may appear when a set-triplet valued attribute is broken into
its components. This necessitates conversion of duplicates into unique values so that they can be
safely manipulated by ERAM. However, this would lead to considerable computational complexity

in manipulating and updating the prefixes in each relational operation.

2. In the second alternative, a triplet is coded into a single value. That is, < [l,u),v > becomes [uv,
a single string, hence, a triplet-valued attribute becomes an atomic attribute in ERAM. Similarly, a
set-triplet valued attribute is converted to a set-valued attribute. Thus, the triplets of the preceeding
example become 12a, 34b, 56¢c, and hence the second method, converting triplets into strings is

prefered and is used in the implementation.

3.2 Data Formats for Time

We use the following data structure in representing a triplet:

lower bound (1) | upper bound (u) | value (v) ‘

where the lower and upper bounds are represented as time points. A time point is represented as ddmmyy

where dd (5 bits) refers to the day, mm (4 bits) refers to the month, and yy (7 bits) stands for the year.
Thus, the system can accommodate 128 years where t time granularity is a day. Hence, the lower and
upper bounds are compressed into a total of four bytes. The value of a triplet is concatenated to these four
bytes to form the final string. When needed, they are uncompressed to their original form, in presenting
the results and in implementing TRA operations. To keep the present implementation task simpler we do

not consider time points beyond the current time, now.

3.3 Implementation of the Relational Commands

We have modified ERAM to accommodate TRA operations. We also have added code for the new op-
erations of TRA. Details of the commands and their syntax are given in [10]. Triplets are written into
relations in compressed form. Most of the TRA operations require decompression of these values into their
components, i.e., the selection operation or the unpack operation which requires a sorting operation to
eliminate the duplicate tuples in the result.

We briefly comment on the implementation methodology used for the unpack, join and enumeration
operations since they are frequently used in the sample queries. For the unpack operation, a sequential
scan is made of the operand relation and each tuple of the original relation is written to a temporary file
as many times as the number of instances of the specified attribute. The temporary file is then sorted
to eliminate duplicates before loading the tuples back to the relation. Unpack operation does not create
duplicates if one or more atomic attributes of the operand relation form a key. To accommodate this case,
we implemented another version of the unpack operation without sorting. In the join operation, only the
tuple identifiers and the join attributes of the operand relations are written to temporary files. These files
are then sorted to eliminate duplicates after which a sequential scan is made to get the matching tuples
on the join attributes. The tuple identifiers are used to fetch the qualifying tuples of the original relations
and load them into the new relation. The enuml operation returns the values of designated attributes
at specified time points in one sequential scan over the operand relation. The triplets of the designated
attributes are examined in turn for intersection with the specified time point. If an intersection is found,

the data values of the attributes are selected.

3.4 Example Queries

In this section we give example queries and their temporal algebra expressions, TAE. The queries use the
Employee relation of Figure 1 which is created in TDBMS. We also provide the results produced by the

system in Figure 8.

10

Query 1: What are the E#s of employees currently making more than 30K?
TAE: select E# from (enuml Employee<{E#} {Salary}>{now}) where Salary > 30

The enum1 operation selects the salary values at the current time, now. The select operation then
selects the E4ts of employees whose salary is more than 30K. Note that an unpack operation on the salary
attribute, followed by a selection is an alternative way to obtain the same result. However, for large rela-

tions, the enuml operation is more efficient.

Query 2: What are the E4ts and department history of employees who make more
than 30K in their salary history?
TAE: select E# Department from (unpack Employee on Salary) where SalaryV> 30
In this query, the entire history of salary values is searched for a match. As opposed to Query 1, we
have to use the unpack operation here. After the unpack, the value field of each salary triplet (salaryV) is

checked for a match.

Query 3: What are the E#s and current department of employees who make between
25K and 30K in their salary history?
TAE: enuml (select E# Department from (unpack Employee on Salary) where SalaryV >
25 and SalaryV < 30)<{E#} {Department}>{now}
This query is similar to Query 2. It tests a condition in the history of salary values and retrieves the
current department values of the qualifying tuples.
Query 4: What were the E4ts and salaries of employees when they worked for the
Toys department?
TAE: select E# Salary from (slice (unpack (unpack Employee on Department) on Salary)
Salary by Department) where DepartmentV = “Toys”
After the department and salary attributes are unpacked, the time component of the salary attribute is
aligned with respect to that of the department attribute. The E#s and salary values of the employees who

worked in the Toys department are then selected.

Query 5: What is the average salary each employee earned?

TAE: (unpack Employee on Salary)<E# avg(Salary)>

11

E# | Department
E4# E# *$Department
111 Toys
133 133 | {<[Jan 89, now], Toys>}
122 Sales
(Q1) (Q2) (Q3)
E# $Salary E# | Salary
111 <[June 85, now], 25K> 111 | 22.50
133 | <[Jan 89, June 90), 32K> 122 | 30.00
133 <[June 90, now], 40K> 133 | 36.00
(Q4) (Q5)

Figure 8: Results of the Example Queries

4 Experiments with the Temporal Relational DBMS

4.1 Overview

In this section we show how the TDBMS can be used for measuring the performance of queries on temporal
databases which support tuple timestamping and those that support attribute timestamping. A valid time
relation consisting of only atomic attributes is a regular INF relation. In this relation, certain atomic
attributes can be designated for the time reference of tuples. Such a relation in TDBMS simulates tuple
timestamping. Hence, our implementation supports both tuple timestamping and attribute timestamping
and provides a natural environment for evaluating their performance. In this respect queries of both
database types (tuple timestamping and attribute timestamping) have the same overhead due to the
structure of TDBMS. However, the system will be slightly biased towards attribute timestamping since
set-valued attributes and some compression are not required in the implementation of tuple timestamping.

Our aim is to measure the performance of different types of temporal databases using various queries
in terms of processing time. We have chosen a set of sample queries with varying characteristics such as,
comparison between atomic attributes, atomic and triplet-valued attributes and triplet-valued and triplet-
valued (time-varying) attributes. A list of these queries is provided in Appendix 2. This list covers many
of the sample queries included in [12], except those that are defined for testing the user friendliness of
temporal query languages. A detailed listing of the algebraic expressions, expressed in TDBMS for these

queries can be found in [11]. We have executed these queries against the following database types:

e AT: A temporal database using attribute timestamping.

e TTL: A temporal database using tuple timestamping where a single relation is used.

12

e TT: A temporal database using tuple timestamping where relations are in temporal normal form.

Note that we consider two cases for tuple timestamping. This will enable us to see how the performance
of temporal databases using tuple timestamping changes depending on whether a single relation is used to
hold all the temporal data belonging to similar objects (TTL), or several relations are used to hold the

same temporal data (TT). To ensure consistency, AT, TTL, and TT databases contain the same data.

4.2 Generating the AT Data
4.2.1 Database Schema

A test database, eval has been created for the evaluation of the database types mentioned in the previous

section. It consists of four relations, namely, Emp, Dept, Proj and Assigned. These relations are:

(a) Emp(ssno, name, address, *$salary, *$skills, *$dname)
(b) Dept(dno, dname, *$budget, *$manager)

(c) Proj(pno, pname, *$budget)
(

d) Assigned(ssno, pno, *$type of work, *$rating)

The Assigned relation shows employees and the projects they are assigned to. Attribute type of work
denotes the different types of work carried out by the employee. For each assignment, the employee gets
a rating, say, 0—100 for different periods of time. The rest of the relations and their attributes are self-
explanatory. This database is created as a AT database under TDBMS. Temporal databases using tuple

timestamping are generated from it as described in Sections 4.3 and 4.4.

4.2.2 Populating the Database

Each of the relations mentioned in the previous section is populated with data generated randomly from
a uniform distribution. The random function, drand/8() which returns non-negative double-precision
floating-point values uniformly distributed over the interval [0.0, 1.0), is used to generate random data.
The random number is then converted to an attribute value. The range of the attribute values is listed in
Table 1. Tt should be noted that for each of the set-valued and set-triplet valued attributes in TDBMS,
two bytes are allocated in each tuple. These hold pointers to a bucket of set values. For convenience, two

assumptions have been made while creating the historical data:

13

Attribute || Relation | Value Range Time Range | Size (bytes)
ssNo Emp 1-500 — 2
name Emp E1-E500 — 4
address Emp A1-A500 — 4
salary Emp 50K—120K 01/01/70—now 6
skills Emp S1-S10 01/01/70—now 7
dname || Emp D1-D20 01/01/70—now 7
dno Dept 1-20 — 2
dname || Dept D1-D20 - 3
budget Dept 5000K—6000K | 01/01/70—now 6
manager || Dept M1-M20 01/01/70—now 7
pno Proj 1-50 — 2
pname || Proj P1—P50 - 3
budget Proj 5000K—6000K | 01/01/70—now 6
ssno Assigned | 1-500 — 2
pno Assigned | 1-50 — 2
type Assigned | W1-W10 01/01/70—now 7
rating Assigned | 0—100 01/01/70—now 6

Table 1: Attribute Ranges.

1. All the tuples of a relation are homogeneous, i.e., each set-triplet valued attribute of a tuple has the

same starting and ending times. Note that TDBMS supports non-homogeneous tuples as well.

2. The instances of each set-triplet valued attribute are continuous, i.e., we assume no null values or

discontinuities in the tuples of these relations.

4.3 Generating the TTL Data

The test database eval and the relations given in Section 4.2.1 are used to generate the relations which
use tuple timestamping where the whole temporal data of a relation is contained within a single relation.
These temporal relations are generated by first unpacking the relations on each set-triplet valued attribute
and then intersection slicing each (triplet-valued) attribute by the other (triplet-valued) attribute. This
will ensure that each attribute has the same time reference. A droptime operation is then carried out on

each temporal attribute except one. Triplet-decomposition on this attribute gives the desired relation. For

14

example, the Deptttl is created using the following algebra expression:

Deptttl := tdec (droptime (slice (slice (unpack (unpack Dept on budget) on manager)

budget by manager) manager by budget) on budget) on manager

For ease of reading, we rename the attributes A,, A;, and A, of the result of triplet-decomposition
operation with the attribute names A, from and to respectively. The resulting TTL relations are as

follows:

(a) Empttl(ssno, ename, address, salary, skills, dname, from, to)
(b) Deptttl(dno, dname, budget, manager, from, to)
(c¢) Projttl(pno, pname, budget, from, to)

(d) Assignedttl(ssno, pno, type of work, rating, from, to)

4.4 Generating the TT Data

The test database eval and the relations given in Section 4.2.1 are used to generate the relations which use
tuple timestamping and are in temporal normal form. From each relation using attribute timestamping,
a family of relations is created. The non-time varying attributes are collected into a relation whereas each
time-varying attribute and the key are kept in a separate relation. These temporal relations are created
by first projecting out the desired attributes from the original relations, unpacking the set-triplet valued
attributes and then performing a triplet-decomposition operation. For example, the Empsl is created

using the following algebra expression:
Empsl := tdec (unpack (project Emp on ssno salary) on salary) on salary

We rename the names of attributes created as a result of triplet-decomposition operation similar to the

TTL case. The resulting TT relations are as follows:

a) Empa(ssno, ename, address)
b) Empsl(ssno, salary, from, to)
¢) Empsk(ssno, skills, from, to)
d) Empd(ssno, dname, from, to)
e

f

Depta(dno, dname)

(
(
(
(
(e)
(f) Deptb(dno, budget, from, to)

15

(g) Deptm(dno, manager, from, to)
(h) Proja(pno, pname)

(i) Projb(pno, budget, from, to)

(j) Assignedt(ssno, pno, type of work, from, to)
(

k) Assignedr(ssno, pno, rating, from, to)

4.5 Queries

The list of example queries used for the performance evaluation is given in Appendix 2. Fach query is
executed against the database types AT, TTL and TT. We consider two types of queries: AT¢, TTLc
and TT ¢ stand for queries involving only current data. On the other hand, ATy, TTLy and TTy are

the queries which involve part or all of the historical data represented in a temporal database.

4.6 Database Parameters

Maintaining longer histories increases the database size. Similarly, the frequency of update and insertion
operations also affect the database size. However, the performance degradation is obvious upon increasing
the database size. Thus, we use the length of history kept as the determining factor of the database size
and perform our experiments by changing the number of triplets in set-triplet valued attributes. To see the
effect of the length of history on the performance of different databases, we consider two cases by changing
the number of triplets in a set-triplet valued attribute. In case A1, a set-triplet valued attribute contains
5 triplets, whereas in case A2, it contains 10 triplets. Thus, case A2 represents a database which carries
a longer history and A1 represents a relatively shorter history. If the length of history is the same, A2
represents a database where there are frequent changes. Table 2 gives the relation sizes for these two cases.
The cardinality of the Empttl relation in case A2 could not be calculated since the intermediate relations
resulting from the unpack operations were too large.

Query processing times for parameter set A1 and A2 are given in Appendix 1. In the table of run A1,
the second and third columns represents the results for the temporal databases using attribute timestamp-
ing. The second column (AT¢) gives processing time of the queries involving current data. The third
column (ATy) is the processing time for the historical queries. The next two columns show processing
time of queries in the case of temporal databases using tuple timestamping (TT¢ and TTyy) where re-
lations are in temporal normal form. The last two columns show processing time of queries in the case
of temporal databases using tuple timestamping (TTL¢c and TTLyg) where a single temporal relation is

used. We did not run the queries for the TTL type database for run A2 since the resulting relations are

16

Relations Case A1l Case A2

Tuple length | Cardinality || Tuple length | Cardinality
Emp 16 500 16 500
Dept 9 20 9 20
Proj 7 50 7 50
Assigned 8 2000 8 2000
Empttl 22 6487 22 —
Deptttl 14 180 14 380
Projttl 11 250 11 500
Assignedtt] 13 17980 13 37947
Empa 10 500 10 500
Empsl 8 2500 8 5000
Empsk 9 2500 9 5000
Empd 9 2500 9 5000
Depta 5 20 5 20
Depth 8 100 8 200
Deptm 9 100 9 200
Proja 5 50 5 50
Projb 8 250 8 500
Assignedt 11 10000 11 20000
Assignedr 10 10000 10 20000

Table 2: Relation sizes for Case A1 and A2.

4.7 The Computing Environment

17

too large and obviously its performance would be much slower.

that the interferance would unfavourably affect a database type.

All the experiments were carried out on a Sparc ELC workstation on a local area network. Some (marginal)
interference is possible since the machine was connected to network (Ethernet). However, most of Ethernet
work is done by the controller, not by the CPU. Hence the interference can be ignored. Moreover, since all

three database types are subjected to the same (marginal) interference, and therefore, we do not expect

The processing times are given in terms of the time the process spent in user mode. Since we are

concerned primarily with retrieval type of queries, we do not consider the time spent in system/kernel

mode.

4.8 Experiments and Results

All experiments are based on databases given in Section 4.6, and sample queries listed in Appendix 2. We
conducted three experiments. In the first experiment, the sample queries were run against the sample AT
database. In the second experiment the queries were run on the TT database and the third experiment
was run on the TTL database. In the following interpretation, we mostly refer to the results of parameter
set A1l. The table for case A2 gives the results for larger databases and confirms the results obtained in

case Al.

Q1.0, Q1.1 and Q1.2 are point queries which select one tuple i.e., the salary of a particular employee.
AT databases perform better then TT and TTL databases since the salary history of an employee is
contained within a single tuple. On the other hand, TT and TTL databases have the salary history of an
employee spread over multiple tuples requiring multiple accesses. Additionally, TTL databases perform
slower then TT databases due to the longer tuple length and increased cardinalities of TTL relations.

Q1.3 and Q1.4 are also point queries selecting a tuple but retrieving two and three attributes, respec-
tively. There is not much difference between these queries and Q1.0, Q1.1 and Q1.2 in the performance
of AT databases since the multiple attributes are retrieved from a single qualifying tuple. Similarly, there
is not much difference in the performance of TTL databases since the number of qualifying tuples does
not vary significantly from those of Q1.0, Q1.1 and Q1.2. The performance of TT databases however
degrades due to one join operation for Q1.3 and two join operations for Q1.4. The join operation is
necessary since the attributes to be retrieved are distributed over multiple relations.

Q1.5, Q1.6 and Q1.7 are range queries which retrieve one set-triplet valued attribute, the salary of
employees. Q1.5 retrieves employees whose names are less than E144. This selects 10% of the employee
relation, i.e., 50 tuples since employee names are character strings and string comparison is used in the
query. More specifically, employees with names E1, E10-E14, and E100-E143 are selected (Employee names
range from E1 to E500 as shown in Table 1). Q1.6 selects 20% of the employee relation, i.e., 100 tuples
and Q1.7 selects all the salary values in the employee relation, i.e., 500 tuples. The performance of all
three types of databases degrades from Q1.5 to Q1.6 due to 50 more tuples being selected. TT databases
do not perform as well as AT databases due to the join operation. The time required for AT databases

almost doubles from Q1.6 to Q1.7. This is due to the entire salary values being retrieved and the length

18

of the salary attribute. In contrast, the time required for T'T databases decreases from Q1.6 to Q1.7.
Although all tuples are selected, the absence of a join improves the performance. The TTy version of
Q1.7 is a simple projection. In the TTL databases case, the time for TTL¢ increases from Q1.6 to
Q1.7 due to more tuples being selected in Q1.7. However, TTLy is a simple projection, hence the time
decreases from Q1.6 to Q1.7

Q1.8, Q1.9 and Q1.10 are range queries which retrieve two set-triplet valued attributes, the salary
and departments of employees. The number of tuples selected are identical to Q1.5, Q1.6 and Q1.7
respectively. The response times in these queries are higher then their Q1.5, Q1.6 and Q1.7 counterparts
due to the retrieval of an additional set-triplet valued attribute. Again, TT databases do not perform as
well as AT databases due to the join operation. Two join operations are required in Q1.8 and Q1.9 as
compared to a single join in queries Q1.5 and Q1.6. Even though a single join is required for the TTy
version of Q1.10, the time spent in processing the query is quite high due to the join being on the entire
Empsl and Empd relations. The explanation for the performance of TTL databases is similar to the one
given for queries Q1.5, Q1.6 and Q1.7.

Q1.11,Q1.12 and Q1.13 are range queries which retrieve three set-triplet valued attributes, the salary,
departments and skills of employees. The number of tuples selected are identical to Q1.5, Q1.6 and Q1.7
respectively. As expected, the times for these queries are higher then Q1.8, Q1.9 and Q1.10 due to the
retrieval of an additional set-triplet valued attribute. Other trends are similar to those noticed for queries
Q1.8, Q1.9 and Q1.10. Three join operations are required in Q1.11 and Q1.12. The performance
degradation in the TTy version of Q1.13 is quite striking due to the joins between the entire Empsl,
Empd and Empsk relations.

Q1.14 selects the current department of the employees who satisfy a condition in the past (i.e., salary
= 60K on 01/01/72). The time required in processing the TT queries is higher then the AT queries due
to the requirement of a join operation in TT. TTL queries take longer to process due to longer tuples and
larger cardinality of selected tuples.

Q2.0 selects ssno’s of employees whose salary is greater than 60K. Q2.1 is similar to Q2.0 except
the skills of employees are retrieved instead of ssno’s. The processing time of AT and TT databases
increases from Q2.0 to Q2.1 due to the retrieval of a set-triplet valued attribute in the latter query. The
processing time of TTL however is almost constant due to retrieval of an atomic attribute in both Q2.0
and Q2.1. Processing the ATy query takes significantly longer than the TTg query. ATy query requires
an unpack operation for reaching the historical values. The unpack operation has heavy 1/0 overhead since

it reads/writes entire historical tuples which are longer into temporary relations. Elimination of duplicates

19

also requires sorting which is very costly. Q2.1 retrieves skills of employees. It requires a join operation in
processing T'T queries, thus increasing their processing time. However, T'T database still performs much
better than the AT database.

Q3.0 is a range query which returns ssno’s of employees whose salary is between 50K and 70K. Q3.1
is similar but retrieves skills of employees. The performance trends in Q3.0 and Q3.1 are similar to Q2.0
and Q2.1 respectively.

Q4.0 is a join query. The historical versions of all types of databases perform better than the current
versions due to the extra selection operation required in the current queries. All types of databases require
a join, but the length and cardinality of selected tuples is greater in TTL, followed by TT, and finally
AT databases. This is substantiated by the increase in processing time from AT to TT to TTL as seen
in Table 5. Q5.0 also shows a similar performance pattern.

Q6 and QT are join queries. The first one involves a salary value and the second one involves a range
of salary values. The explanation for the increase in proccesing time from AT to TTL databases in Q6 is
similar to that of Q4.0. The performance of AT databases degrades in Q7 due to the unpack operation.

Q8 involves a join operation between two time-varying attributes. Processing times are more or less
the same for AT and TT databases. The processing time for TTLyg query in both Q8 and Q8.1 is very
high since the entire Deptttl and Projttl relations are joined. The number of tuples participating in the
join and their length is quite large, hence the increasing the processing time.

Q9 is another join query. Processing times of AT and TT¢ queries are not significantly different.
Although an unpack operation is needed in the ATy query, since only a single tuple is unpacked, the
processing time does not increase much.

Queries 11 through 15 are aggregation queries. In larger databases we were not able to complete Q11
for ATy since the unpack operation created too many intermediate tuples, beyond the capacity of the
system. Furthermore, the unpack operation required for the ATy queries increased the processing time
significantly in comparison to the other database types. Overall, in queries Q1.0 to Q9, AT databases had
better performance in 76% of the current queries whereas TT databases performed better in 24% of the
current queries. In historical queries, TTL databases performed better only in 27% of the queries when

compared to AT databases.

20

5 Conclusions and Future Work

In this work, we described the implementation of a temporal relational database management system
(TDBMS) on top of an existing relational database management system (ERAM). ERAM provided a
natural environment for the implementation of the methodology introduced in [28] for incorporating the
time dimension into the relational model. The implemented system attaches time to attribute values,
supports a time granularity of days and allows different types of attributes to coexist in relations: atomic
values, triplets and their sets, and handles historical data in a convenient way. TDBMS includes revised
versions of the basic set of operations of the extended relational algebra and new operations which convert
one attribute type to another and do selection over the time dimension. A statistical interface has also been
added to TDBMS. This interface includes aggregate functions and transformations of data into tabular
forms suitable for advanced statistical analysis. The enumeration operation which derives a table of uniform
data for a set of specified time points or intervals from a valid time relation is also included in the interface.

We then used TDBMS to generate two types of temporal databases that use tuple timestamping. The
first database contains relations which are in the temporal normal form of [16] while the second database
contains a single relation is used to hold all its time varying attributes. Sample queries were run on these
three database types and the processing time of each query was measured. We can derive several useful

conclusions from the experiments of Section 4:

1. As one would expect, large volume of data in temporal databases increase the processing time of
temporal queries. However, as the size of the database decreases from parameter set A2 to A1l and
shorter history is maintained in the database the performance of temporal databases would converge

to the performance of snapshot databases.

2. In case of point queries selecting one attribute value of fewer tuples, the AT database performs better
than the TT database. AT ¢ queries executing on a single relation take less processing time than their
TTc counterparts since AT databases contain fewer tuples than TT databases. Additionally, in AT
databases, the set-membership operator is used to select the desired triplet(s) from the history of a
set-triplet valued attribute. Moreover, TT database requires join operations when several temporal
attributes are requested by the query. It can be seen that AT queries involving more than one
temporal attribute require less processing time. In the TT¢ queries however, the join operation
increases the processing time. Similarly, ATy queries involving more than one temporal attribute
require less processing time since a simple select operation is used to fetch the entire history values

of the desired attribute. TTy queries on the other hand require a join operation to fetch the desired

21

values. Thus, as the number of qualifying tuples increase and one or more attributes are retrieved,

TT queries become more expensive.

3. Unpackis a costly operation to reach the values of historical attributes. Though the unpack operation
can be completed in one scan, it still needs sorting to eliminate duplicates. Furthermore, the inter-
mediate tuples are written to temporary files. This creates an extra overhead for AT databases since
the tuples are longer and require more I/O time. Queries requiring unpack operation degrades the
performance of AT databases faster than the performance of T'T queries requiring join operations.
In TDBMS, the join operation is carried out in an efficient way. Optimization procedures for the
unpack operation are also needed. Furthermore, an operation which allows access to the elements
of a set-triplet valued attribute can be added to TRA. This operation will be used in most of the
queries requiring an unpack on a set-triplet valued attribute. Such an operation is similar to enum1

and can be processed by a sequential scan of the operand relation.

4. Tt was also seen that having all temporal attributes within a single relation (TTL) gives better
performance then TT only in a few queries not involving joins of temporal attributes. In general,
TTL databases require more processing time than AT and TT databases due to the large size of
TTL relations. For joins involving temporal attributes, the performance of TTL database degrades
substantially as seen by queries Q8.0 and Q8.1. Therefore, for tuple timestamping TTL is not a

better choice than TT relations.

5. As the size of the temporal database increases, we observe degradation in the performance of AT
and TT databases. The length of history kept in the database as well as the frequency of changes
in attribute values directly affects the size of the database. However, magnitude of the performance
degradation is more than the proportional change in the database size. Furthermore, processing time
of queries for AT and TT databases in general are stable from one query to another with occasional
jumps. These jumps occur in queries requiring an unpack operation in AT databases whereas they

occur in queries requiring excessive join operations in TT databases.

The TDBMS prototype is the first implementation where attribute timestamping is used. It will be
useful in testing the theory developed for temporal databases. It will also form the foundation for future
implementation of temporal query languages, temporal query optimization, and performance evaluation of
alternative temporal models.

Our study verifies that the major performance trade off between different types of temporal databases

22

is between the restructuring (unpack) operation needed in temporal databases using attribute timestamp-
ing and the join operation needed in temporal databases using tuple timestamping. Furthermore, the
experiments show that keeping all temporal tuples in one single relation does not prove to be an effective
alternative for temporal databases which use tuple timestamping.

Performance evaluation of temporal DBMSs, especially of temporal query processing has received
marginal interest in the research community. The results of our experiments emphasize the need of a
detailed performance study of temporal databases using attribute timestamping and those using tuple
timestamping. The work of Ahn and Snodgrass [2, 3] is a good starting point if mirrored to temporal
databases using attribute timestamping. In [2], Ahn and Snodgrass, run a benchmark set of queries to
study the performance of their prototype system on four types of databases: static, rollback, historical
and temporal. Furthermore, they propose an analytical model which analyses the input and output cost
of temporal queries on various access methods [3]. We follow an empirical approach and measure the ac-
tual performance of representative sample of temporal queries on temporal databases supporting attribute
timestamping and those supporting tuple timestamping. The results that we report in the previous section
provide useful insight into the performance of temporal databases using tuple timestamping and attribute
timestamping.

The absence of a time index and appropriate access paths also account for the performance variation in
our experimental study. An actual performance study of different types of temporal databases would entail
using time indexes to better optimize the unpack, join and other temporal operations. Quite a number of
studies have been done on the development of time indexes for temporal databases [6, 7, 21, 22]. However,
all of them assume an underlying temporal model based on tuple timestamping. It is clear that further
research should also be carried out for the addition of a time index to improve processing of certain class
of temporal queries in a temporal model using attribute timestamping. Once this is done, a comprehensive
performance study on the different approaches of modeling temporal databases can be carried out.

In this work, we obtained attribute values from uniform distributions. Our results can be verified by
analytic cost estimations. However, in real life attribute distributions are not uniform, on the contrary
most of the time they are skewed. We focussed our attention on retrieval queries and we have not consid-
ered update operations. We do not expect much of a difference for simple update operations requiring few
tuples. However, certain update patterns as well as update operations affecting larger number of tuples
may cause a performance difference in AT and TT databases. We plan to consider these issues, possible
optimization of TRA operations and their effect on the performance of AT and TT databases in a sepa-

rate work. Other database functions such as concurrency control, crash recovery, etc., are also among the

23

topics that could be incorporated to the prototype implemented. Problems created by temporal databases

in handling these functions also deserves further investigation.

Acknowledgement

We would like thank Professors Gultekin Ozsoyoglu and Meral Ozsoyoglu for permitting us to use the
ERAM database package. The work of Abdullah Uz Tansel is partially supported by the PSC/CUNY
research grant 665307. The work of Igbal A. Goralwalla and M. Tamer Ozsu has been supported by the
Natural Sciences and Engineering Research Council of Canada under research grant OGP0951.

References

[1] Ariav, G., “A Temporally Oriented Data Model”, ACM TODS, Vol.11, No.4, 1986.

[2] Ahn, 1., Snodgrass, R., “Partitioned Storage for Temporal Databases”, Information Systems, Vol.13,
No.4, pp 369-391, 1988.

[3] Ahn, I., Snodgrass, R., “Performance Analysis of Temporal Queries”, Information Sciences, Vol.49,
1989, pp 103-143.

[4] Clifford, J., Croker, A., “HRDM: A Historical Relational Data Model”, Proc. of the Third IEEE

International Conf. on Data Engineering, 1987.

[5] Codd, E.F., “A Relational Model of Data for Large Shared Data Banks”, Comm. of ACM. Vol.13
No.6 (1970) pp 377-387.

[6] Elmasri, R., Wuu, G.T.J., Kim, Y., “The Time Index - An Access Structure for Temporal Data,” in
Proc. of the 16th VLDB Conference, Brisbane, Austrailia, August 1990.

[7] Koramajiam, V., Kamel, 1., Elmasri, R., Waheed, S., “The Time Index+: An Incremental Access
Structure for Temporal Databases,” in Proc. of the CIKM Conference, 1994.

[8] Hou, Wen-chi., “The Implementation of the Extended Relational Database Management System”, MS
thesis, Case Western Reserve University, 1985.

[9] Gadia, S.K., “A Homogeneous Relational Model and Query Languages for Temporal Databases”,
ACM TODS, Vol.13, No.4, 1988.

[10] Goralwalla, I.A., “An Implementation of a Temporal Relational Database Management System”, MS
thesis, Bilkent University, June 1992.

[11] Goralwalla, 1.A., Tansel, A., Ozsu, M.T., “An Empirical Study of the Performance of Temporal
Relational Databases,” Technical Report TR94-15, Department of Computing Science, University of
Alberta, November 1994.

[12] Jensen, C.S., et al., “A Consensus Test Suite of Temporal Database Queries”, Aalborg University,
Technical Report R93-2034, November 1993.

[13] Kline, N., “An Update of the Temporal Database Bibliography,” ACM SIGMOD Record, Vol.22,
No.4, pp. 66-80, December 1993.

24

[14] Lorentzos, N.A., Johnson, R.G., “Extending Relational Algebra to Manipulate Temporal Data”, In-
formation Systems, Vol.15, No.3, 1988.

[15] McKenzie, M., “Bibliography: Temporal Databases,” ACM SIGMOD Record, Vol.15, No.4, pp. 40-52,
December 1986.

[16] Navathe, S.B., Ahmed, R., “A Temporal Relational Model and A Query Language,” Information
Sciences, Vol.49, No.2, pp. 147-175, 1989.

[17] Ozsoyoglu, Z.M., Ozsoyoglu, G., “An Extension of Relational Algebra for Summary Tables”, Proc.
Second LBI, Workshop on Statistical Database Management, 1983.

[18] Ozsoyoglu, G., Ozsoyoglu, Z.M., Matos, V., “Extending Relational Algebra and Relational Calculus
with Set-Valued Attributes and Aggregate Functions”, ACM Trans. Database Syst., Vol.12, No.4,
Dec. 1987, pp 566-592.

[19] Pissinou, N., et al., “Towards an Infrastructure for Temporal Databases: Report of an Invitational

ARPA/NSF Workshop,” ACM SIGMOD Record, Vol.23, No.1, pp. 35-51, March 1994.

[20] Sarda, N., “Extensions to SQL for Historical Databases”, IEEE Trans. on Knowledge and Data Fn-
gineering, Vol.2, No.2, June 1990, pp 220-230.

[21] Segev, A., Gunadhi, H., “Efficient Indexing Methods for Temporal Relations,” TEEE Transactions on
Knowledge and Data Enginnering, Vol.5 , No.3, June 1993.

[22] Shen, H., Ooi, B.C., Lu, H., “The TP-Index: A Dynamic and Efficient Indexing Mechanism for
Temporal Databases,” in Proc. of the International Conference on Data Engineering, 1994.

[23] Snodgrass, R., “The Temporal Query Language, TQuel”, ACM Trans. Database Syst., Vol.12, No.2
pp-247-298, June 1987.

[24] Snodgrass, R. (Ed.), “Research Concerning Time in Databases: Project Summaries”, ACM SIGMOD
Record, Vol.15, No.4, December 1986.

[25] Snodgrass, R., “Temporal Databases: Status and Research Directions”, ACM SIGMOD Record,
Vol.19, No.4, pp 83-89, December 1990.

[26] Soo, M.D., “Bibliography on Temporal Databases”, ACM SIGMOD Record, Vol.20, No.1, pp. 14-23,
March 1991.

[27] Stam, R., Snodgrass, R.T., “A Bibliography on Temporal Databases,” IEEE Database Engineering,
Vol.7, No.4, pp. 231-239, December 1988.

[28] Tansel, A.U., “Adding Time Dimension to Relational Model and Extending Relational Algebra”,
Information Systems Vol.13 No.4 (1986) pp 343-35 5.

[29] Tansel, A.U., “A Statistical Interface for Historical Relational Databases”, Proc. of the Third TEEE
International Conf. on Data Engineering. 1987, pp 538-546.

[30] Tansel, A., et al., “Temporal Databases: Theory, Design, and Implementation”, Benjamin/Cummings,
1993.

25

Appendix 1: Processing times (in seconds) for runs A1l and A2

[Q [ATc [ATYH [[TT¢ [TTH || TTLc [TTLy || [Q [ATc [ATyH [TT¢ [TTy |
.0 051 047 103] Lol 3.19 3.20 10 074] 076] 203 1.97
11| 0511 049 1.02] 101 321 3.19 1 08| 082 193] 1.95
T2 | 0511 0551 1.04] 0.99 3.16 3.13 T2 | 084 084 200] 201
13 | 0511 049 2.00]| 1.93 3.37 3.95 13 073] 070 400 401
14 [052] 057 3.03| 3.08 3.18 3.15 14 | 083] 074 587 6.12
15 053] 0561 157 074 352 3.36 15 | 0904] 098] 270 121
16 | 059] 065 1.61 088 353 3.67 16 | 098] 1.10] 2.69] 131
7 | 105 107 129 0.29 3.84 1.23 7 | 179 200 252] 054
18 | 0611 0661 2.76]| 175 3.44 341 18 || 099 1.06] 528| 3.97
19 | 0751 083 280 240 356 347 1o 117] 138 517 6.09
10| 157 1911 250 5.90 3.84 1.36 110 | 283 3.73 1 490 2237
T11 | 068] 0771 430 578 3.45 3.35 T11]| 1.05] 1.26 || 7.65| 31.62
112 | 085] 1.00| 4.01] 1031 3.44 350 T12 | 133] 1.78 | 7.37| 5952
113 | 2.00] 264 3.93] 38.17 3.95 1.08 113 375] 513 7.31 | 266.79
114]| 122 138 250 227 119 3.69 114 | 2051 259 || 458| 439
50 || 140] 1237 140 1.23 3.94 3.63 2.0 || 2.06 | 4278 || 267 | 246
51 || 3.00] 1432 241 233 3.83 355 91 || 539 | 4997 || 471] 467
350 | 139 1280 134 1.26 3.08 3.87 350 | 203 4341 241 244
31 1 251 1417 197 224 116 3.87 31 || 381 | 4637 | 3.00| 434
10 | 400 11410 516 253 9.36 513 10 [6551 191 1021 6.18
50 || N/A | 098] N/A | 204 NJ/A 107 50 || N/A | 174 || N/A | 4.23
6.0 || 4911 257 6.06] 370 12.67| 807 6.0 || 8.23 | 486 1253 | 7.39
70 || 641] 1819 6311 596 13.46] 13.04 70 || 9.65] 53.14 | 12.58 | 11.83
80 || 019 013 021 017 0.26 | 70.06 80 || 031 018 037] 030
81 022 011 024 o021 028 | 7277 81 1 040 020 044 039
90 [113] 048] 110 155 3.48 3.78 90 || 180 | 049 2.06] 3.99
100 168 113 2.26] 1.59 321 371 100 288 212 442| 3.6
1.0 | 1.6 — 279 6.2 379 1.67 1.0 285 — I 540 | 23.77
120 N/A| 087 | N/A| 1.69] N/A 3.05 120 N/A | 142 N/A | 3.1
3.0 009] 033 013 0.06 0.14 0.06 3.0 012] 1.00] 016 0.6
14.0 || 438 26.76 || 5.76 | 224 | 1054 | 4.30 4.0 | 6951 89.26 || 10.77 | 4.32
150 | N/A | 1114 | N/A | 051 N/A %) 150 || N/A | 3961 | N/A | 1.03

Al A2

26

Appendix 2: Sample Queries

In the following we give six versions of a query for the query Q1.0, current and historical for AT, TT
and TTL databases. The other queries follow a similar format. To save space, we only list current and
historical versions in a generic format.

Q1.0 Point Query

AT : What is the current salary of the employee with a ssno of 17
ATy : What is the salary history of the employee with a ssno of 17
TTq : What is the current salary of the employee with a ssno of 17
TTyg : What is the salary history of the employee with a ssno of 17
TTLo @ What is the current salary of the employee with a ssno of 17

TTLgy : What is the salary history of the employee with a ssno of 17

Q1.1 Point Query
Same as Q1.0, except the ssno of the employee 1s 250.

Q1.2 Point Query
Same as Q1.0, except the ssno of the employee 1s 500.

Q1.3 Point Query

C : What are the current salary and manager values of the employee with a ssno of 2507

H : What is the salary and manager history of the employee with a ssno of 2507

Q1.4 Point Query

C : What are the current salary, manager and skills values of the employee with a ssno of 2507
H : What is the salary, manager and skills history of the employee with a ssno of 2507

Q1.5 Range Query

C : What are the current salaries of employees whose names are less than E1447

H : What are the salary histories of employees whose names are less than E1447

Q1.6 Range Query

C : What are the current salaries of employees whose names are less than E1997

H : What are the salary histories of employees whose names are less than E1997

Q1.7 Range Query

C : What are the current salary values of employees?

H : What are the salary histories of employees?

Q1.8 Range Query

C : What are the current salaries and departments of employees whose names are less than £1447
H : What are the salary and department histories of employees whose names are less than E1447
Q1.9 Range Query

C What are the current salaries and departments of employees whose names are less than E1997
H : What are the salary and department histories of employees whose names are less than E1997

27

Q1.12

Q3.1

o Q

Range Query

What are the current salary and department values of employees?
What are the salary and department histories of employees?

Range Query

What are the current salaries, departments and skills of employees whose names are less
than E1447

What are the salary, department and skill histories of employees whose names are less than
E1447

Range Query

What are the current salaries, departments and skills of employees whose names are less
than E1997

What are the salary, department and skill histories of employees whose names are less than
E1997

Range Query

What are the current salary, department and skill values of employees?
What are the salary, department and skill histories of employees?

Point Query

What is the current department of the employee whose salary was 60K on 01/01/727
What is the current department of the employee whose salary was 60K at any time?

Range Query

What are the ssnos’ of employees currently making more than 60K?
What are the ssnos’ of employees who make more than 60K in their salary history?

Range Query

What are the skills of employees currently making more than 60K?
What are the skills of employees who make more than 60K in their salary history?

Range Query

What are the ssnos’ of employees currently making between 50K and 70K?

What are the ssnos’ of employees who make between 50K and 70K in their salary
history?

Range Query

What are the skills of employees currently making between 50K and 70K?

What are the skills of employees who make between 50K and 70K in their salary
history?

28

Q4 Join between two Atomic attributes

C . What 1s the current budget of project number 7, and what are the ssnos’ and current types
of work of the employees assigned to it?
H : What 1s the budget history of project number 7, and what are the ssnos’ and histories of the

types of work of the employees assigned to it?

Q5 Join between two Atomic attributes

H : What are the ssnos’ of employees who worked in project number 17

Q6 Join between two Atomic attributes

C What is the current type of work done by employees whose current salary is 60K?

H What is the history of type of work done by employees who made 60K at
any time?

Q7 Join between two Atomic attributes

C : What 1s the current type of work done by employees whose current salary is >
60K?

H : What 1s the history of type of work done by employees who made > 60K

at any time?

Q8.0 Join between two set-triplet attributes

C : What are the department and project numbers of the departments and projects whose current
budget is the same?
H : What are the department and project numbers of the departments and projects which have

the same budget values at the same time?

Q8.1 Join between two set-triplet attributes

C : What are the department numbers, managers and project numbers of the departments and projects whose
current budget is the same?
H : What are the department numbers, managers and project numbers of the departments and projects which

have the same budget values at the same time?

Q9 Join between two set-triplet attributes

C : What is the current budget of the departments for which the employee whose ssno is 123 is currently
working?

H : What is the budget history of the departments for which the employee whose ssno is 123 worked at
any time?

Q10 Selection on a set-triplet attribute and retrieval from another set-triplet attribute

C What are the current salaries of employees currently working in department number 77

H What were the salaries of employees when they were working in department number 77

29

Q11

Q15

Aggregation (1)

What is the current average salary of employees currently working in
each department?

What was the average salary of employees in each department?
Aggregation (2)

What are the number of projects each employee has been assigned to?

Aggregation (3)

Which department has currently the maximum budget?
Which department has the maximum budget?

Aggregation (4)

What was the current average rating of each employee for the projects he was
assigned to?

What was the average rating of each employee for the projects he was
assigned to?

Aggregation (5)

What was the highest salary earned by each employee?

30

