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1 Introduction

The integration of database management (DB) and artificial intelligence (AI) technologies leading
to the development of knowledge base management systems (KBMS) has been frequently discussed.
The potential benefits of such an integration are significant. However, examples of successful AT/DB
integration are not very common. The difficulty of finding a suitable integration architecture is
one of the problems. Another problem is the unsuitability of the current database models and
techniques for this integration.

The current commercial state-of-the-art in database technology is settling on the relational
model as the fundamental data structuring and organization formalism, and SQL as the primary
data access language. The current technology and commercial products have been developed with
the primary purpose of supporting data processing applications. These applications typically ma-
nipulate collections of relatively simple data whose interrelationships can be modeled in a relatively
straightforward manner. Additionally, the access to data can be supported by well-defined primitive
operators.

The data and information that is manipulated by knowledge base systems are more complex,
with complex relationships among them. Furthermore, as the development of languages such as
Datalog [CGT89] demonstrate, their manipulation requires operators more complex and powerful
than relational calculus and algebra. Object-orientation is expected to play a role in the develop-
ment of KBMSs both as a system structuring paradigm and as a data management system.

Even though there have been a number of early efforts [Fis87, LRV88, MSOP&6, SS90, SZ90],
there is no commonly accepted object data model formalization. Each model differs in its formalism,
support for features such as object identity [KC86], encapsulation of state and behavior [SBR5],
type inheritance [CW85] and typed collections.

The features that an object-oriented database management system (OODBMS) should pro-
vide is a matter of some controversy (see, for example, [ABDT89] and [SRL190]). However, to
be successful, OODBMSs should at least provide the functionality of relational systems. These
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functions include a declarative query language, transactions, view management and so on. Our
work, and this chapter, concentrate on one of these issues: the design of query languages, their
formalization, and their processing in OODBMSs. We recognize that it may be too early for an
exhaustive discussion of these issues. Work on query models and query processing in OODBMSs is
quite recent and there are undoubtedly many other relevant issues that have yet to be uncovered.
We, therefore, restrict our discussion to those issues that have been addressed in our own research
[S090c, $090d, SO91]. We also rely heavily on [YO91] which provides a framework for evaluating
query models, specifically object algebras.
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Figure 1: Query processing methodology

We extend the relational query processing methodology [JK84, GV89] as depicted in Figure 1.
The steps of the methodology are as follows. Queries are expressed in a declarative language
which requires no user knowledge of object implementations, access paths or processing strategies.
The calculus expression is first reduced to a normalized form by eliminating duplicates, applying
identities and rewriting. The normalized expression is then converted to an equivalent object
algebra expression. This form of the query is a nested expression which can be viewed as a tree whose
nodes are algebra operators and whose leaves represent the extents of types in the database or user
defined collections of objects. The algebra expression is next checked for type consistency to insure
that predicates and methods are not applied to objects which do not support the requested function.
This is not as simple as type checking in general programming languages since intermediate results,
which are sets of objects, may be composed of heterogeneous types. The next step in query
processing is the application of equivalence preserving rewrite rules to the type consistent algebra
expression. Lastly, an execution plan which takes into account object implementations is generated
from the optimized algebra expression.

The above methodology forms the framework of this chapter. Our presentation in this chapter
follows two parallel tracks. We discuss the fundamental design and modeling issues, and also
demonstrate how these issues can be addressed by referring to previous work [8(390(:, s090d, Str9i]
as an example. We first take a detour in the next section to discuss the nature of knowledge base
systems and the role of object-orientation in the design of KBMSs. In Section 3 we address object-
oriented data model issues and how they relate to query models. In Section 4, we discuss specifics
of query model issues including the definition of a calculus and an algebra. In this chapter we
distinguish between a data model and a query model. This separation is useful in OODBMSs with
their rich data structuring and type systems. A data model, in this context, defines the logical
structuring of the objects while the query model concerns the procedural and declarative access
primitives, their safety, equivalence, completeness, and so on. Type checking and type inference
rules are covered in Section 5. We also define the typechecking rules for our object algebra in this
section. Optimization of algebraic expressions, covering query rewrite rules is the topic of Section 6.
Section 7 addresses the final step of the methodology including object manager design issues and
the generation of execution plans by mapping algebraic expressions to object manager operations.
Our work on this subject [8(391] does not address full optimization of object-oriented queries, but



only the generation of alternative execution plans. Given a cost function that can be used to
compute the cost of each plan, the optimal plan among the alternatives can be chosen. This is an
area that we have not yet fully studied. This and other related and important problems that we
have not addressed in our work are briefly reviewed in Section 8. Finally, in Section 9, we provide
some concluding remarks on the suitability of the methodology and the remaining open problems.
We assume the reader has some familiarity with object-oriented concepts and terminology.

2 Knowledge Base Systems

In this section we discuss the nature of knowledge base systems and then cover some arguments in
favor of using the object-oriented paradigm to organize KBMSs.

2.1 Nature of Knowledge Base Systems

What is a knowledge base and how does it differ from a database or an expert system? This
question is the subject of considerable debate within the research community without much of a
consensus. In fact, there are many instances in Al and database literature where “knowledge base
system” is used synonymously with “expert system.” It is not our intention to engage in a detailed
discussion of the nature of knowledge base systems in this section. There have been a number of
attempts to address specifically this issue (e.g., [Fro86, UlI88, Wie84, Wie86]). In [02s89] we give
the following working definition which we will adopt here as well. A knowledge base is a structured
collection of

o data representing facts about some aspects of a domain of discourse that is being modeled
(sometimes called the extensional database or fact base), and

o knowledge that represents a higher level of interpretation and understanding of that domain
of discourse (sometimes called the intensional database or rule base).

Thus, a knowledge base can be considered as the composition of the intensional and the exten-
sional databases. A knowledge base management system can be defined as a tool which provides

o facilities for managing the intensional database as well as the extensional database,
e a language facility that enables access to the knowledge base, and

e mechanisms for the application of the knowledge to the data in order to respond to queries
that require reasoning about the facts.

The language facility assists in accessing the database in the traditional sense as well as enabling
the issuing of queries that require some reasoning on the factual data. The results that are returned
are basically new knowledge about the application domain.

Let us consider an example from the office information systems domain, specifically a hypertext
system. We will be using this example throughout this chapter. The hypertext system stores,
among other things, information about documents, their authors, etc. In such a system the assertion
“Document X is authored by Joe Smith and is about cruise missiles” is a fact which can be stored
in a traditional database. The DBMS can then answer queries of the form “Who is the author
of document X7” or “List all the documents about cruise missiles?” However, the statement
“Documents about cruise missiles are considered top secret” is considered knowledge and is difficult
to store and manage in a traditional database. For example, the DBMS would not be able to easily



handle the query “Is document X top secret?” Responding to this query goes beyond mere retrieval
of stored facts and requires reasoning capabilities’.

A knowledge base would store the fact “Document X is authored by Joe Smith and is about
cruise missiles” in its extensional database and the knowledge “Documents about cruise missiles
are considered top secret” in its intensional database. Then the query “Is document X top secret?”
can be processed by the KBMS using its reasoning capabilities to produce the answer “Yes.” The
clear separation of the intensional and the extensional databases is, of course, the more difficult
problem. We avoid that discussion in this chapter and, instead, refer the reader to [Wie86, Fro86].

2.2 Object-Oriented KBMS Organization

The architecture of a KBMS that provides the features mentioned above has been discussed for
some time. There have been attempts at coupling expert systems with a traditional DBMS. In such
designs, the extensional database is maintained by a traditional DBMS [AWR&6]. The expert system
issues calls to the DBMS to access this data. Such an approach, which is sometimes called loose
coupling [SH88] is depicted in Figure 2. There is an important problem with this approach. Only
the fact base (extensional database) is managed by means of a DBMS; the knowledge is implicit
and embedded in the expert system code. Thus, the management of knowledge follows a pattern
which is identical to the management of data in traditional file processing: the knowledge storage
and processing is embedded in the application code rather than being abstracted out. Explicit
storing of knowledge as well as data and its management by a generalized tool (Figure 3) brings
the advantages of data management to the Al application that is developed on top of a KBMS.

A tighter integration between the intensional and extensional databases and the reasoning
capability leads to knowledge representation independence [Bro89] and provides a first order differ-
entiation betwen KBMSs and expert systems:

1. A KBMS can reason about the stored facts to produce an answer to posed queries; that is
where its functionality ends. However, an expert system can take this response and use it to
solve a problem.

Consider the hypertext example. When the KBMS responds to the query “Is document X
top secret?” by a “Yes” answer, it has successfully completed its task. An expert system,
on the other hand, takes that response and uses it to reach a decision and take some action
(such as deciding on a security and access control action). To demonstrate this point, consider
the more complicated knowledge base query “Can Officer X read document Y?” The expert
system uses the reasoning capability of the KBMS to determine the security level of document
Y and the security clearance of Sergeant X. It has domain specific knowledge to link X’s
security clearance with Y’s security level to determine the outcome.

2. As a follow-up of the above point, an expert system is application specific. It knows how to
use a set of facts and knowledge (inference rules) in order to reach a solution of a problem.
A KBMS, on the other hand, is quite general, even in its application of inference rules. It
simply stores, manages and provides access to a set of facts and applies inference rules to
produce knowledge without any reference to the use of this knowledge in a given problem
domain. In fact, a KBMS may manage facts and knowledge for a number of expert systems.
In both of these cases inference rules that are stored in the intensional database may come
from one application domain (e.g., medical diagnosis), however, the KBMS does not know

We assume that the knowledge is associated with a class of documents. Traditional database systems can model
this situation (inefficiently) by associating the secrecy knowledge with individual documents.
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Figure 2: Loose Coupling Between Expert Systems and DBMS

the semantics of these rules in that domain and, therefore, does not know how to use them
in solving a domain specific problem.

Viewed in this fashion, the KBMS constitutes the technological base for expert systems just as
the DBMS forms the technological base for data processing applications.

What is the role of object-orientation in this general framework? One way to answer this
question is to point out that frame-based [Min75] Al applications — for which there are many
examples — embody a number of features of object-oriented systems. Along the same lines, one
can cite the many object-oriented Al programming languages such as Flavors [Moo86], Common-
Loops [BKK*86], and CLOS [Moo89]. However this is repeating the obvious without clarifying the
role of the object-oriented technology in AT applications. Curiously, it is not easy to find compelling
and constructive arguments in favor of object-oriented technology as a structuring paradigm in the
AT literature. The systems built using object-oriented tools and languages exist, but the concep-
tual generalizations regarding the conditions under which the technology should be used and how
it should be used are harder to find.

An argument in favor of object-oriented technology can be made in terms of the nature of the
intensional database that is managed by a KBMS. In the previous section we indicated that Al
applications deal with complex data with complex relationships. Keeping with the terminology
introduced in this section, the reference is to the representation of knowledge in the intensional
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Figure 3: Knowledge Base Approach

database. These features of the intensional database structure, namely “complex and widely-
varying data types” [Man89a] and the complex interrelationships among these data types appear
particularly suitable for the application of object-oriented technology. As quoted in [Man89a], the
following discussion from [FeuR9] justifies these claims:

“The criterion is ‘where is the important information?’ Is it in numbers and values, or
are the relationships between the things in your database what you care about? Is it
the structure or is it the data? If the important information is in the data, then you
can use a relational database, but if the knowledge that you care about is how things
are structured and how they are related, then you probably want an OODB ... If you
just want an accounting of planes and ships and how much they cost, you can use a
relational database. But if you want to know how parts and subassemblies relate to
each other in an airplane or a ship, then you should use an OODB ... The place to
start is where they are needed the most, where structure and modeling design are the



driving force.”

Along the same lines, Sheu et al [SKY89] indicate that the “framework of object-oriented
knowledge base is significantly different from most [non-object-oriented] knowledge base frameworks
... 1in the following aspects:

1. Since it [i.e., object-oriented knowledge base] deals with objects explicitly, more semantics
can be associated to different entities.

2. It treats procedures as first-class entities, and therefore our knowledge about procedures can
be included and used.”

We should note that the inferencing function of a KBMS may be satisfied and enhanced by the
inclusion of active objects in the model [DBMS8]. Active objects observe events in the system and
react to them by triggering certain actions. The events that are to be monitored, the conditions
that have to be fulfilled, and the actins that are executed in response are typically defined in the
form of event-condition-action (ECA) rules.

In addition to its potential use as a representation formalism for the intensional database,
object-oriented technology can be used as an architectural paradigm for organizing the KBMS
itself. The intensional and extensional databases may have different representation, access, and
performance requirements. The object-oriented technology is an appealing candidate to deal with
this heterogeneity because it allows the encapsulation of the two databases and their management
routines

while, at the same time, providing a more uniform interface to the outside world by means of the
abstraction capabilities. Manola suggests that the next generation knowledge-based information
systems will involve “integration of heterogeneous information sources, including heterogeneous
distributed databases, knowledge-based systems (such as expert systems) involving heterogeneous
knowledge representations, and conventional programs and their associated processors.” [Man89b].
The object-oriented technology can be a suitable vehicle for this “integration” and for the uniform
management of “heterogeneity.”

Assuming that the case for the object-oriented technology in knowledge base systems is success-
fully made, we can now concentrate on the design issues in providing a declarative query facility
for object-oriented database systems.

3 Object Data Model Issues

The power and flexibility of object-oriented systems introduce considerable complexity into their
models. Even the feasibility of defining an “object data model” in the same sense as the relational
model is questioned [Mai89]. A comprehensive discussion and treatment of all these issues is beyond
our scope, which is restricted to those data model issues that relate directly to the definition of
query languages and their processing.

3.1 Model Design Considerations

The following aspects of the data model have a direct bearing on the query model and the capa-
bilities that need to be included in a query processor. These issues are not entirely independent of
each other. We illustrate how one design decision can affect others.



Nature of an “object”. There are different definitions of an “object”. Some object data models
consider objects simply as complex data structures [BK86, LRV88, Osb88], somewhat similar to
the nested relation models that permit relation-valued attributes. This approach is common to
those models that are developed to deal with complex object structures as they exist, for example,
in engineering applications. Other object data models consider objects to be instances of abstract
data types (ADTs) [ACOS85, SZ90], which encapsulate the representation of the objects together
with a set of public methods that can be used to access them. In this case, the type is a template
for its instances.

The variation in the level of encapsulation enforced by data models affects query models in the
following sense. The query model must fully describe the visible components of objects which can
be accessed by query primitives. For example, if objects are tuple-valued as in [BKKS88], then query
expressions can directly access tuple fields by name. Furthermore, the allowable query primitives
are dependent upon this decision. In principle, maintaining the data abstraction paradigm would
require querying the database based on object behaviors, not their structure. Complete encapsula-
tion, therefore, would require that the comparison operators in the query language be based only
on identity (“are two objects the same?”) not on structure. There are query models that provide
a relaxed form of encapsulation by enabling some sort of structure-dependent equality check.

Relationship between objects and types. Two types of relationships have been defined
between types and objects [MZO89, MB90]: conforms-to (¢T') and has-type (hT). Maier et
al. [MZO89] define them structurally (i.e., based on the structure of objects) while Manola and
Buchmann [MB90] define the concepts behaviorally (i.e., according to the behavior of objects as
defined by their methods). An object that conforms-to a type indicates that the object follows
the (structural or behavioral) specification of that type. The conforms-to relation binds the object
structure or behavior from below: the object minimally has the same structure or behavior as the
type it conforms to, but may have additional structure or behavior.

The stronger relation has-type specifies that an object is explicitly declared to be an instance of
a specific type. The set of instances of a type ¢; is called its extent which we will denote by ext(;).
For an object o and type ¢

ohTt —= oclt

Without loss of generality, let us assume the existence of one object 0 and two types ¢; and i,.
Let us further assume that there has to be at least one has-type relationship defined for all objects.
The following relationships exist between o and t; and t5:

1. o AT t; and o =T 1y
2. 0 ~cT ty and o AT ty
3. o KT t1 and o T t5
4. o cT t1 and o AT 14

5. 0 hT t; and o AT t,

The first two cases are straightforward; they simply indicate that o has been declared to be
in the extent of one type and has no relation to the other. The third and fourth cases indicate
that objects can conform to more than one type, but are explicitly declared to to be in the extent
of only one type. In most object data models, for these two cases to occur, there has to be a



relationship between types t; and t,. Similar to those between an object and a type, there are
two kinds of relationships between types. Type t; is said to specialize type ty if the structure
(or the behavior) of #3 is included in the structure (or behavior) of ¢;. The stronger relationship
between t1 and t, is subtype. Type t1 is said to be a subtype of type i, if ¢1 is explicitly declared
to specialize t3 (i.e., it is explicitly declared that the structure (or behavior) of 3 is included in the
structure (or behavior) of #1). tg, in this case, is called the supertype of ¢1. Subtyping establishes
an “IS-A” relationship between #; and t9: “ty is a t3.” Thus, o AT t1 == o RT ty. Since,
o hT'ty = ol ty,it is the case that o AT t; = o ¢TI t;. Therefore, cases (3) and (4) follow
from subtype/supertype relationships between t; and ?3. The subtype/supertype relationships
between types form a hierarchy (or a semilattice, if types are allowed to have multiple supertypes)
such that a parent type in the lattice is a supertype of all its children types.

In most object data models, the fifth kind of relationship can occur only if there is a sub-
type/supertype relationship between ¢; and ¢y (in either direction). In other words, an object o
which has-type t1 also has-type to if t1 is a subtype of 3. In these models, each object is explicitly
declared to have one and only one type and the other has-type relationships are those that are
derived from the type semilattice. Such models are said to enforce strong typing.

The relevance of these relationships, especially that of subtyping, to query processing is the
following. Since ¢y subtype t =— [o kT t; = o hT t3] and since the has-type relationship
defines that an object is in the extent of a type, there is a relationship between the extents of #;
and ?y (ext(t1) and ext(t), respectively). Specifically, ext(t1) C ext(ty) (Figure 4). Therefore,
the net effect of a query that asks for instances of t5 is usually to retrieve instances of ¢; as well.
This can be extended to multiple levels of subtype/supertype semilattice. Thus, the query result
consists of the union of all objects that are instances of all types in the subtree of the type lattice
rooted at the type at which the query is posed. We call this the deep extent of a type in [8(390(:]
and denote it ext*(¢;).

to
subtype \\\\fxtent
51
\\ g

Figure 4: Subtyping Relationship

As we will discuss in the next section, there are other semantics that can be associated with the
fifth kind of relationship; what we have discussed above is the more restricted and straightforward
semantics. Even with this restriction, there are design alternatives that may be introduced. Some



object data models permit variant objects that may deviate from the template defined by the type
in some manner. Others, called prototypical object models, “clone” objects from other existing
objects rather than using a type definition as the template for object creation. These models
facilitate the definition of one-of-a-kind objects that act as their own type specifications.

In systems that allow variant and prototypical objects (e.g., [Lie86, US87, MB90]), it is no
longer possible to specify the full behavior of each object based on its type and this influences
the kinds of optimizations that can be performed. Furthermore, the definition of the “schema”
when prototypical and variant objects are supported needs to be clearly worked out. When variant
objects are allowed in the data model, the type is no longer a template for its instances as we
claimed before; it is only a minimal template. Therefore, it only defines the minimal behavior of
the objects that are in the extent of that type. This is important for the following reason. If the
schema defines only the minimal behavior, and a query “takes as input a schema (and a database)
and generates as output another schema (and another database)” [BK90], how can the additional
behavior specified by variant and prototypical objects be queried?

Single versus multiple types. As indicated above, the interpretation of the fifth type of rela-
tionship with respect to subtyping is the more restricted semantics that can be attached to it. An
alternative semantics may be that objects are indeed allowed to enter into has-type relationships
with types that have no subtype/supertype relationship with each other. In this case the object
has the structure or behavior (depending upon whether the model is structural or behavioral) of
two types. Consider an example of two types, Employee and Student. In this schema, a Teaching
Associate can be represented as having a has-type relationship with both the Employee and the
Student types(Figure 5(a)).

This example can be modeled in systems that enforce the more restricted semantics of the multi-
ple has-type relationships by making use of the type semilattice. To model a Teaching Associate as
both an employee and a student, a TeachingAssociate type can be created with two supertypes:
Employee and Student (Figure 5(b)).

The more relaxed semantics of multiple has-type relationships may be considered a more flexible
and, in some sense, more natural representation of the real world, but it is also more difficult to
handle in a query model. The difference between a data model that allows objects to belong to
multiple types and one which “simulates” the same effect by creating subtypes is subtle. In the
latter, there is a new type in the type lattice which becomes part of the schema; in the former, no
such type definition exists in the schema. If we assume the existence of a system-defined MyType
function that maps an object to its type(s), in the example that we are considering, the result of
applying this function to an object which represents a Teaching Associate would be different in the
two cases. MyType would return {Employee, Student} if objects can belong to multiple types,
but its result would be {TeachingAssociate} if explicit subtypes are created.

This semantics of multiple has-type relationships creates problems for query processing. As a
direct consequence of the definition of has-type, a Teaching Associate which is defined to have both
the type Employee and the type Student would be in the extent of both of these types. In the more
restricted interpretation involving TeachingAssociate as a subtype of Employee and Student, on
the other hand, it would be in the extent of TeachingAssociate and in the deep extent of Employee
and Student. Those queries which ask for instances of Student (or of Employee) would retrieve the
same set of instances in both cases. However, a query that asks, for example, for Teaching Associates
who are in the computer science department would be easier and more efficient to process if the
TeachingAssociate type existed. In this case, the query involves simple selection over the extent
of TeachingAssociate (Figure 5b). In the other case (Figure 5a), however, it is necessary to do
selection over the extents of both Employee and Student and then take an intersection of the two
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Figure 5: Alternative Representations of Multiple has-type Relationship

sets. This is assuming that it is only possible to serve as Teaching Associate in the department
where one is a student. If this is not the case, the evaluation of the query requires some sort of
“join” between, or an intersection of, the extents of the two types followed by a selection. In either
case, the evaluation is expensive.

There are some data models that allow objects to have has-type relationships to multiple types
[MZ089, MB90]. The definitions of these models do not make it clear which semantics they associate
with this relationship, however. For example, TEDM [MZO89] states that ¢, subtype ty if for any
object 0, 0 hT t; = o hT ty%. However, there is nothing in the model specification which would
force the implication o AT t{ = o hT 13 to hold. Therefore, it is possible in TEDM for an object
to be related to two types t; and t3 which do not have subtype/supertype relationship with each
other. Thus, the issues that we raise above with respect to query processing hold for TEDM and
for FROOM [MB90] which accepts the behavioral versions of TEDM’s definitions.

Classes versus collections. In the previous section we referred to the extents of types. In some
object data models the concept of a type and its extent is not separated. These models typically
refer to a class as both a type definition and as the collection of all objects that are instances of
that type. Other data models separate the concepts of a type and a class as an extent of that type.
Our discussion in the previous sections assume the latter.

Both of these, however, make use of the class concept as the only aggregation of instances of the
associated type. A further distinction can be made between these and other models in which there
is no explicit notion of a class. In these models, objects are grouped into arbitrary collections.

As far as object creation is concerned, the difference is the following. In models with the class

?Note that TEDM defines subtyping in terms of the has-type relationship. Our definitions in the previous section
are in the opposite direction: subtyping implies has-type relationship between extents. Both ways of writing it is
correct. Combining the two would allow a stronger definition of subtyping by replacing “if” with “if and only if”.
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concept, an object automatically becomes a member of the class that represents the extent of the
associated type when it is created. In those that utilize user-defined collections as aggregations of
objects, the user is expected to explicitly specify the membership of the object in one or more of
the collections.

From the perspective of query models, the difference is with respect to the targets of queries. In
class-based models, the queries are posed on classes. In models based on user-defined collections,
queries are specified on any one (or more) of the collections. Consider the hypertext example
and assume the existence of a Document type. In the first case, there is a Document class over
which queries are defined. Thus, a query which asks for authors of documents that satisfy a
selection predicate will retrieve all documents that satisfy that predicate. In the second case,
however, no Document class exists. Maybe there are explicit collections such as SecretDocuments,
TopSecretDocuments, OpenDocuments and the query either has to be defined over one of them
(resulting in the retrieval of only the documents in that collection) or the user has to explicitly
specify the query on all three collections and union the results. Note that this distinction is
important in the context of defining what the schema is and, therefore, what the target of a query
is.

It has been pointed out that object data models that employ “class as the extent of type”
approach make it easier to conceptualize a query [Kim89]. Furthermore, it is possible in these
models to exploit the subtype/supertype relationship [YO91] through deep extents. In other words,
there is a clear semantics of retrieving objects that are in the deep extent of a type in these models
whereas this cannot be said for collection-based models.

Recently, the value of combining both approaches rather than viewing them as alternatives has
been recognized. Beeri [Bee90] has proposed a model which defines classes as extents of types with
automatic membership semantics and collections as user-defined subsets of classes. In his model, a
collection has to be a subset of one class, resulting in homogeneous collections. In [P©91], we adopt
the same approach and separate classes (as extents of types) from user-defined collections while
supporting both concepts. In contrast to Beeri, however, we permit heterogeneous collections to
facilitate uniform treatment of results of queries which may target multiple classes (or collections).

Mechanism for sharing. One of the strengths of object-oriented models is that they provide
mechanisms for sharing among objects. Two types of sharing are possible: sharing of implemen-
tation and sharing of behavior. Behavioral sharing is what we called subtype/supertype rela-
tionship above. It is important to differentiate this from implementation sharing. As noted by
Nierstrasz [Nie89], “many of the ‘problems’ with inheritance arise from the discrepancy between
these two notions.” He goes further and associates subtyping with types, and inheritance with
classes. This follows from the model that he describes where a type is defined as an abstract spec-
ification of the behavior of objects of that type, and a class as a specification of the template for
the implementation of these objects (in addition to serving as a collection of all the objects of that
type). This association may be valid especially in models that support “classes as the extent of
type” approach, however it is not the critical point. The important aspect is to note that the rela-
tionship between type definitions and the relationship between implementations can be (and, some
claim, should be) separated. More traditional object-oriented languages such as Smalltalk [GR83]
bundle these two concepts.

There have been two proposals for implementing sharing, one based on inheritance (e.g.,
Smalltalk) and the other based on delegation [Lie86]. In inheritance, the sharing is based on a
semilattice of types or classes (assuming Nierstrasz’s model where classes specify implementation
templates). Thus, type #; of Figure 4 which is a child of type #; in the hierarchy, inherits behav-
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ior from #,%. In delegation, sharing is achieved by an object explicitly delegating its behavior or
implementation to another object. By and large, the choice of the sharing mechanism has been
tied to the choice of the type system. Those models which allow variant and prototypical objects
typically implement delegation as the sharing mechanism, while those that enforce strong typing
implement inheritance. There has been some recognition that the two mechanisms are similar
[SLUR9, Ste’7], but the semantics of an object data model that permits prototypical and variant
objects, but implements inheritance as the sharing mechanism is likely to be quite complicated.
The specification of inheritance between types and the inheritance between instances of those types
(which are different due to the existence of variant objects) and the link between the two is bound
to be quite complex. These complications affect query processing directly since the optimization of
queries in an object-oriented system can and should take advantage of the semantics of sharing.

Uniformity of the model. Is everything in the system an object? Some data models (e.g.,
OODAPLEX [Dayg89], FUGUE [HZ88], FROOM [MB90]) treat as objects types, methods, and
anything else that can be defined in the system. Such models bring uniformity to the treatment of
objects. This is in contrast to other models where concepts such as methods and types are treated
as meta-information separate from objects.

Uniformity in the object data model affects the query formalism in various ways. First, the
notion of a “schema” as a source of supplemental meta-information, separate from the database
being queried, is replaced by the concept of taking the schema and including it as part of the
database itself. In addition to collapsing the potential hierarchy of meta, meta-meta, etc. infor-
mation into a single level, self-describing system, this provides greater flexibility by allowing the
same efficient techniques specified in the query formalism to be used on what was previously con-
sidered meta-information. An advantage of this approach is that one may now apply the query
formalism to the schema data in order to extract semantic information on the objects being queried
and manipulation of the schema through the query formalism may be possible as well. A second
affect of uniformity on the query formalism refers to the way in which method objects are handled.
If methods are indeed objects, then the query model should have the ability to cope with them.
(i.e. invoke them, access their bodies, etc.). As observed in [MB90], such capabilities require query
language facilities for invoking methods, passing parameters to methods and dealing with returned
results.

A final consideration of uniformity deals with that of the query formalism itself. In order to
have a truely “uniform” system, shouldn’t the query model become part of the object space as
well? If this were the case, then one could envision even greater querying power and flexibility by
allowing queries on the query model itself. This may be useful, for example, in asking the database
questions on how a certain query would be, or was, processed. This could, in a sense, serve as an
explanation facility for the system.

The introduction of uniformity to the data model increases the power and flexibilty of the query
formalism, but at the cost of additional complexity in its specification and formalisation. In some
sense, all of the discussions of the previous sections have to be revisited if complete uniformity of
the model is assumed.

3.2 A Sample Object Data Model

In this section we describe the object data model that forms the basis of our investigation into
query processing in object-oriented databases. We only summarize the model here and refer to

*The counterpart holds for classes with respect to implementation sharing.
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Figure 6: Composition of method applications.

[8(390(:] for a full and formal definition. The identifying characteristics of our data model are the
following. Objects are viewed as instances of abstract data types which can only be manipulated
via functions defined by the type. Types are organized in an inheritance hierarchy which allows
multiple inheritance. Each object has a unique, time invariant identity which is independent of its
state. Relations on object identities such as equality and set inclusion provide the basis for query
primitives which qualify query operators. All other relations among objects are implemented by
the ADT interfaces. We briefly highlight these properties below.

3.2.1 Classes and Methods

In our model, we do not make a distinction between a class and a type. Therefore, a class defines
both a type interface via methods and stands for all the objects which are instances of the type.
Methods are named functions whose arguments and result are objects. Each method has a signature
of the form Cy X ... X C), — Cresur where Cq ... C,, specify the class of the argument objects and
Clresurr specifies the class of the result object. All classes in the database form a class lattice where
the root node represents the most general class of objects and any individual class may have multiple
parents. Subclasses inherit behavior from their parents and may define additional methods. Thus,
the class lattice provides inclusion polymorphism [CW85] which allows an object of class C to
be used in any context specifying a superclass of C' [SZ90]. This is similar to the conformance
relationship of Emerald [BHJ*87] and the subtype relationship in the functional language Ponder
[Fails].

3.2.2 Object Behavior

Objects encapsulate a state and a behavior. Methods, defined on the class which an object is an
instance of, define the object’s behavior. Behavior is revealed by applying a method to an object.
The result of a method application is another object. The dot notation <oy ...0,>.m1.mg - -m,, is
used to denote method application and method composition. Assuming methods m; and m,, take
three arguments each, and method ms takes 2 arguments, then Figure 6 illustrates the processing
denoted by this operation. Method mq is applied to objects <01, 09,03> resulting in object rq,
method mg is applied to objects <ry, 04> returning object r9, and so on until the final result object
T, is obtained by applying method m,, to objects <r,,_1,0,_1,0,>. Note that the dot notation
denotes function application and composition, not the traditional record field selection (attribute
selection) as in [BKKS88, Car84, MS86]. <o;...0,>.mlist will be used when the list of method
names is unimportant.
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3.2.3 Object State

An object’s state is captured by its value which is distinct from its identity [KC86, SB85]. Object
values are either an atomic value provided by the database system (int, string, uninterpreted byte
sequence [CDRS86]), a set value which is a collection of object identifiers, or a structural value.
Structural values are visible only to class implementors and can encompass attributes (tuples),
discriminated unions, etc. as in [ACO85]. Any aspects of structural values which are required by
users of a class should be revealed by the implementor via a method (ultimately delivering either
an atomic or set value).

3.3 Example Database

The hypertext application is selected as an example because it belongs to an application domain
(office information systems) that is claimed to potentially benefit from the object-oriented database
technology. Specifically, a hypertext system requires persistent data, has a large number of data
types and many types of ad hoc queries can be posed. The basic underlying concept is a simple
one. Windows on the screen are associated with units of information stored in a database [Con87].
Information units are related to one another via links. Links are typed in the sense that some may
be used to specify the structural composition of a document (structural links), some may point to
related information which supports the primary theme (referential links), and some may point to
comments made by reviewers (note links). Users of the hypertext system browse through documents
by traversing links and examining nodes of interest. This approach is a powerful communications
tool as documents do not need to be structured linearly and users can sidetrack to follow related
trails of information in whatever order they desire.

Information units are referred to as nodes and can encompass text, graphics, computer generated
sound, and even executable programs. The example will be restricted to textual nodes. A document
is a set of nodes connected by links with one node designated as the root node. Figure 7 depicts
a hypertext system with structural links shown as solid lines and referential links shown as dotted
lines. The nodes labeled A and B are root nodes. Documents can have any structure desired. Here
the documents rooted at A and B are linear and hierarchical respectively. In general, there are no
restrictions on links thereby allowing nodes to be a part of multiple documents, as in the case of C,
or to exist outside of a document as in the case of nodes D, E and F. The forest of links associated
with a document or group of documents is called a web.

The hypertext database can be browsed in three ways. One method is to follow links and to
open windows on nodes to examine their contents®. Another method is to graphically display the
web associated with a document and selectively examine nodes of interest. Third, the database
can be queried to identify nodes meeting some criteria. Nodes are qualified using selection criteria
appropriate to the node type. For example, textual nodes may be selected based upon a keyword
search while graphics nodes are selected based upon pattern recognition. The query mechanism
can also be used to filter the nodes and links presented to the user when viewing the web of a
document. Schatz and Caplinger [SC88] note that as a hypertext system grows, its web becomes
less connected. This is due to the existence of documents which do not reference one another. In
this situation, link following and web display as methods for finding related units of information
are of limited usefulness. As a result, the ad hoc query capabilities become more important as the
hypertext system grows in size.

The design of the user interface contributes greatly to the usefulness of a hypertext system.
The ease and speed with which links can be followed and windows opened on information units can

*Most systems implement link following and window invocation as a single mouse command.

15



Figure 7: A web of hypertext nodes.
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Figure 8: Classification graph for a hypertext system.

make the difference between a system which augments concurrent thought processes and one which
merely stores large amounts of related data. Although implementations such as KMS [AMY88],
Notecards [Hal88] and Intermedia [Con87] each have a unique user interface, a common, low level
architecture can be identified. Campbell and Goodman [CG88] call this common set of features the
Hypertext Abstract Machine (HAM) and show how several well known systems can be implemented
on the standardized hypertext subsystem. The example implements a subset of the HAM using
the object-oriented database model presented in this chapter.

The class lattice for the hypertext database is given in Figure 8. The classes Boolean, String,
Set, and Number should be considered as being predefined by the database management system
while all other classes are defined by the hypertext database implementor. The signatures of
methods defined by each class are given in Table 1. The classes Node, Link, and Document closely
reflect the logical hypertext structure described earlier. However, some implementation details are
significant. Since a node may belong to several documents concurrently, the links emanating from
it belong to several documents as well. The method links : Node x Doc — Set returns the set of
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Table 1: Method signatures for classes of the hypertext database.

| Name | Method Signatures |
Root
Boolean (Bool) negate:  Bool — Bool
TextObject (TO) contains:  TO X Str — Bool
creator: TO — Person
keywords: TO — Set
edit: TO — TO
String (Str) contains:  Str X Str — Bool
concat: Str X Str — Str
within:  Str x Str X Num — Bool
Set size:  Set — Num
add:  Set X Root — Set
DisplayObject (DO) display: DO — DO
isColor: DO — Bool
Number (Num) add:  Num X Num — Num
greater:  Num X Num — Bool
Person age: Person — Num
expertise:  Person — Set
mother:  Person — Person
father:  Person — Person
children: Person X Person — Set
Window
Link creator:  Link — Person
from: Link — Node
to:  Link — Node
part_of:  Link — Doc
Node Links:  Node X Doc — Set
Document (Doc) author:  Doc — Person
co-authors: Doc — Set
title:  Doc — Str
keywords: Doc — Set
rootnode: Doc — Node
ReflLink
NoteLink
StructLink
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links emanating from a node for a given document.

Links identify their source and destination node by means of the methods from and to. Unlike
the HAM which tags links with an attribute, we have chosen to separate link types by defining the
subclasses StructLink, RefLink and NotelLink. This provides the opportunity to a-priori restrict the
scope of a query by defining it to range over the appropriate subclass of Link. Linkis a specialization
of the graphical object class Line.

Documents and nodes both require a display ability and thus are a subclass of Window. Node
additionally inherits its text handling behavior from TextObject which defines methods such as
contains for testing substring containment and edit. Although a document is a collection of nodes,
it would be incorrect to implement Document as a specialization of Node. Instead, instances of
Document have a structural value which captures the document structure but is hidden from users.
Access to this structure is provided by methods on the Document class thereby preserving the ADT
abstraction.

4 Query Model Issues

There are a large number of issues to consider in designing query models, many of which are still
under investigation. In the first part of this section we concentrate on three key trade-offs of
OODB query facilities: (1) formal vs ad hoc query languages, (2) predicates based upon structure
vs behavior, and (3) object preserving vs object-generating operations. We also discuss a number of
other query model design issues. A more detailed discussion of object algebra design considerations
can be found in [YO91]. In the second part of this section we present calculus and algebra definitions
for the data model presented in Section 3.2.

4.1 Design Alternatives

Formal versus ad hoc query languages. Formal query languages [Osb88, SZ90, 8(390(:] have
several properties not found in ad hoc query languages [Fis87, MSOP86] making them more suitable
for formal analysis. Most importantly, their semantics are well defined which simplifies formal proofs
about their properties. Common types of formal query languages are a calculus or an algebra. A
calculus allows queries to be specified declaratively without any concern for processing details.
Queries expressed in an algebra are procedural in nature but can be optimized. Algebras provide
a sound foundation for rule-based transformation systems [Fre87, GD87, HFLP8&9] which allow
experimentation with various optimization strategies. A large body of work exists on algebras for
other data models (see, for example, [AB84, JS82]). Defining OODB query requirements formally
in terms of an algebra facilitates comparisons with these other models.

An important aspect of formal query languages is whether or not they support a calculus
definition (in the sense of the relational calculus). If declarative languages are to be provided at
the user interface, there is a need to define a formal object calculus. We have defined such a calculus
in [8(390(:], but calculus definitions are typically lacking in object-oriented query research.

Definition of a calculus raises a number of interesting issues. The notion of completeness (in the
same sense as relational completeness) has to be worked out, since it influences the set of algebraic
operators. Completeness requires the calculus and the algebra to be equivalent. Safety of calculus
expressions is also an issue that needs to be worked out. Safe expressions guarantee that queries
retrieve a finite set of objects in finite amount of time [OWS&9]. Finally, efficient algorithms need
to be developed to translate safe calculus expressions to algebraic ones. The work reported in
[8(390(:] defines a “restricted” calculus (therefore is only partially complete) and gives a translation
algorithm to an object algebra.
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Predicates based upon structure versus behavior. As discussed in the previous section,
some object models implement complex objects whose internal structure is visible while others
view objects as instances of abstract data types. Access to objects which are instances of an ADT
is through a public interface. This interface defines the behavior of the object. Although the two
views of objects appear incompatible, the ADT approach can effectively model complex objects by
including get and put methods for each of the components of the internal structure [Zdo86]. Thus,
a query language which supports predicates based on object behavior is more general while still
allowing knowledge of object representations to be introduced in a later stage of query processing.

Object preserving versus object creating operations. A distinction can be made between
object preserving and object creating query operations [SS90]. Object preserving query languages
[ASL89, ACO85, MSOPS6] return objects which exist in the original database. Object creating
languages [Kim89, LRV88, Osb88, SZ90, Dav90, DDI1] answer queries by creating new objects
from components of other objects. The new objects have a unique identity and some criteria
is used to appropriately establish their supertype/subtype properties. In one sense this violates
the integrity afforded by objects with identity as objects with no apparent relation to each other
can be combined and presented as a new object which presumes to encapsulate some well defined
behavior. But the requirement for combining objects into new relationships does exist; either for
output purposes or for further processing as in knowledge bases where knowledge is acquired by
forming new relationships among existing facts.

Notice that any object-oriented query language must have a complete object preserving query
facility independent of whether it additionally creates new objects. The ability to retrieve any
object in the database utilizing relationships defined by the inheritance lattice or defined by ADT
operations on objects is a fundamental requirement. The addition of object creating operations
increases the power of the language, but also raises a number of issues such as the type of the
created objects and the operations that they support.

Closed versus open algebras. One of the strengths of the relational algebra is that it is closed
so that the output of one operation can become an input to the next. Extension of this concept to
object algebras is considered “highly desirable” [BK90]. Closure is somewhat more complicated in
OODBMSs, however. The simplifying factor in relational systems is that the operand(s) as well as
the result of any algebraic operation are relations. Thus, all operators have one type of input and
generate one type of output: relation. In object-oriented systems, the schema consists of many
types. Thus, the closure property has to be redefined to handle the multiplicity of types. A closed
object algebra consists of operators each of which operates on set(s) of objects belonging to one
or more types in the type system and outputs a set of objects belonging to one or more existing
types in the type system. As observed in [BK90], most object-oriented languages are “able to map
structured objects into other structured objects. However, the objects returned do not necessarily
belong to any of the existing [types].”

Note that the existence of object creating algebra operators, by definition, complicates closure.
The provision of heterogeneous collections as outputs of queries is also difficult to reconcile with
closure. The issues relate to the determination of the type of objects in the collection which we
address in Section 5.

Object algebra operator set. Few object algebras have been defined formally thus far [M D86,
Osb88, S7Z90, SO90c]. There is no agreement on the set of operators or their semantics. As we
indicated before, disagreements exist on whether object creating operators should be included,
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what the proper level of encapsulation should be and so on. It has been suggested that object
algebras should extend relational algebra [YO91], requiring the definition of project and Cartesian
product operators. However, these operators, by definition, deal with components of objects,
thereby violating strict encapsulation. As we indicated above, there is probably a need to include
these operators in the language, but their exact relationship to encapsulation needs to be worked
out.

4.2 An Example Query Model

Since the fundamental objective of our research was the query processing methodology and tech-
niques, we defined a formal calculus and algebra which are presented in the following sections. The
finiteness and safety arguments for the object calculus and algorithms for calculus-to-algebra trans-
lation are given in [8(390(:]. As discussed in the next section, our query primitives are restricted
comparisons based on object behavior. This is fundamentally due to the strict encapsulation en-
forced by the data model and its treatment of objects as instances of abstract data types. The
same considerations have caused us to restrict the algebra to object preserving operations. The
justification for this choice is twofold. First, any OODB query language must have a complete
object preserving query facility independent of whether it additionaly creates new objects. The
ability to retrieve any object in the database utilizing relationships defined by the type inheritance
graph or defined by ADT operations on objects is a fundamental requirement. Second, as discussed
above, the issues that are raised by the definition of object creating operations were not the focus
of our research and we are not clear how to consistently deal with these problems at this point.

4.2.1 Query Primitives

In principle, maintaining the data abstraction paradigm would require querying the database based
on object behaviors, not their values. However, the real world is both behavior and value based, thus
the query language for a database modeling the real world must allow specification and comparison

of values. We define four comparison operators which can be used in queries: ==, €, =, and =
whose semantics are shown in Tables 2 and 3. The == operator tests for object identity equality;
i.e., 0; == 0; evaluates to true when o; and o; denote the same object. The € and =, operators

apply to set valued objects and denote set value inclusion and set value equality respectively. As
shown in the tables, one of the operands can denote a value if required. The last operator, =,
can only be used to test the value of an atomic object. In order to maintain data abstraction, no
primitives are provided for querying structural values. Any aspect of structural values which are
required by users of an object should be made available via methods by the class implementor.

Table 2: Semantics of 0;00; as a function of the object value type.
0;00;

0| o == = [ € [ =n
atomic T/F T/F undefined | undefined
atomic [ structural || T/F | undefined | undefined | undefined

set T/F | undefined T/F undefined
atomic T/F | undefined | undefined | undefined
structural | structural || T/F | undefined | undefined | undefined

set T/F | undefined T/F undefined

atomic T/F | undefined | undefined | undefined

set structural || T/F | undefined | undefined | undefined
set T/F | undefined T/F T/F
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Table 3: Semantics of aflo; as a function of the object value type.

abo;
a o == | = [ € 1 =q
atomic undefined T/F undefined | undefined
valy structural || undefined | undefined | undefined | undefined
set undefined | undefined T/F undefined
atomic undefined | undefined | undefined | undefined
{valy,...,val,} [ structural || undefined | undefined | undefined | undefined
set undefined | undefined | undefined T/F

Atoms are the building blocks of calculus expressions and predicates for qualifying algebra
operators. They represent the primitive query operations of the data model and return a boolean
result. The legal atoms are as follows:

e 0,00; where:

— 0; and o; are object variables or denote an operation of the form <oy ...0,>.mlist where
01 ...0, are object variables.

— 0 is one of the operators ==, € or =y,.
e afo; where:

— 0; is an object variable or denotes an operation of the form <oy ...0,>.mlist where
01 ...0, are object variables.

— a is the textual representation of an atomic value or a set of atomic values.

— 0 is one of the operators =, € or =,.

Example 4.1 Let p,q and r be object variables. Then the following are examples of legal atoms
and their semantics:

1. (p == ¢q) — Are the objects denoted by p and ¢ the same object?

2. (p €<q,r>.mlist) — Is the identifier of p contained in the set value of the object obtained by
applying the methods in mlist to the objects <q, r>?

3. (<p,q>.mlist = r) — Is the set value of the object obtained by applying the methods in
mlist to the objects <p, ¢> pairwise equal to the set value of the object denoted by r?

4. (“59” = p) — Is the atomic value of the object denoted by p “59”7

5. (“59” € p) — Does the set value of the object denoted by p include an identifier for the object
whose atomic value is “59”7

6. ({“597,“61"} = <p,q,r>.mlist) — Does the set value of the object obtained by applying
the methods in mlist to the objects <p, q,r> contain only two identifiers for objects whose
atomic values are “59” and “6177 <&
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4.2.2 An Object Calculus

The format of the object calculus definition is similar to the tuple relational calculus definition
provided in [Ull82]. A query in the object calculus is of the form {o | (o)}, where o is an object
variable denoting some objects in the database and 4 is a formula built from atoms. The result of
the query is the set of objects o which satisfy the predicate formed by (o). We introduce a third
atom, specific only to calculus expressions, in addition to those defined in the previous section.

Range Atom: C(o0) or C*(0) where C' is the name of a class and o is an object variable ranging
over the instances of class C. C(o) refers to the objects in the extent of C, i.e., ext(C),
whereas C*(0) refers to the objects in the deep extent of C, i.e., ext*(C).

Formulas depend on the notion of free and bound variables. A variable is said to be bound in a
formula if it has been previously introduced using a quantifier such as 3 or V. If the variable has
not been introduced using a quantifier it is free in the formula. Formulas are defined as follows:

1. Every atom is a formula. All object variables in the atom are free in the formula.

2. If ¢y and @9 are formulas, then 1 A 1bg, 11 V 1P9 and —1tp1 are formulas. Object variables are
free or bound in 1 A g, 11 V 109 and —1py as they are free or bound in v or ¥ depending
on where they occur.

3. If ¢ is a formula, then (J0)(2)) is a formula. Free occurrences of o in ¢ are bound to (Jo) in

(30)(¥)-

4. If 1 is a formula, then (Vo)(7) is a formula. Free occurrences of o in ¢ are bound to (Vo) in

(Vo)(¢).

5. Formulas may be enclosed in parenthesis. In the absence of parenthesis, the decreasing order
of precedence is €, =, =, ==, 3, ¥, 7, A and Vv, in that order.

A query is an object calculus expression of the form {o | 1¥»(0)} where o is the only free variable

in .

Example 4.2 Using the database of Figure 8, the following sample queries can be formulated as
object calculus expressions.

1. Author of the document titled “Principles of Distributed Databases”:

{o | 3Fp(Doc(p)Ao==<p>.author
A “Principles of Distributed Databases” =<p>.title) }

2. Nodes belonging to the document titled “Principles of Distributed Databases”:

{ o | 3Fp(Doc(p) A “Principles of Distributed Databases” =<p>.title
A Aq(Link™(q) A p ==<g>.part_of
A (0 ==<g>.from V o ==<g>.10))) }

3. Documents coauthored by a person’s father:

{o | 3Fp(Doc(o) A p==<o0>.author
A 3q(q €<o>.coauthors A q ==<p>.father)) }
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4. Authors who only write things that include boating among their topics:

{o | Vp(Doc(p) A o==<p>.author A “Boating” €<p>.keywords) } <

At this point it is appropriate to comment on the choice of atoms for the object calculus as some
of them seem quite restrictive as compared to the tuple relational calculus. For example, the tuple
relational calculus allows the operator 8 to be one of =, <, <, > or > whereas the object calculus
restricts 6 to =, ==, =y, or €. The object calculus allows a value based equality comparison of
atomic objects only, not of complex objects.

Some researchers have proposed shallow and deep equality operators which can be applied to
objects of any class [GR83, KC86, LRV88]. Two objects are said to be shallow-equal if their values
are identical. Two objects are said to be deep-equal if (1) they are atomic objects and their values
are equal, or (2) they are set objects and their elements are pairwise deep-equal, or (3) they are
tuple objects and the values they take on the same attributes are deep-equal.

The object calculus defined here avoids these operators for two reasons. First, a value based
comparison of complex objects, such as o; = 0;, where o; and o; are complex objects, violates the
principle of abstract data types whose instances are solely defined by their behavior. In order to
completely support encapsulation, one can not allow query expressions whose results are dependent
on equivalence of structure as opposed to equivalence of behavior. Second, the model should
allow various objects of the same class to be implemented differently to take advantage of their
environment. For example, different representations may be used when objects are in main memory
versus when they are stored on secondary storage. Furthermore, if distribution and heterogeneity
are considered, then objects may be represented differently on different machines. Therefore, the
notion of an equivalence test which depends on representation is inappropriate.

A similar argument can be made for prohibiting the use of comparison operators other than =
on atomic objects. User knowledge of the values in a domain does not necessarily imply knowledge
about their ordering. As an example, consider the case of a Ceasar cipher where all letters are shifted
by n characters. With n = 5, the encoded form of ‘hello world’ would be ‘czggj rjmgy’. A database
might contain the class CipherAlphabet whose value domain is the letters of the alphabet and whose
total ordering is <wv,...,2,a,...,u>. Obviously the < relation on members of CipherAlphabet is
not the same as the < relation on the standard alphabet even though the value domains are
identical. For this reason, all value comparison operations other than = must be implemented by
a method in a class in accordance with the total ordering the class defines.

4.2.3 An Object Algebra

Operands and results in the object algebra are sets of objects. Thus the algebra maintains the
closure property where the result of a query can be used as the input to another. Some of the
operators accept more than two operands. Let ® be an operator in the algebra. The notation
P O (Q1...Qk) will be used for algebra expressions where P and @; denote sets of objects which
are arguments to the operator ©. In the case where k = 1 we will use P © ) and where k£ = 0 we
will use P O () without loss of generality.

Some of the algebra operators are qualified by a predicate. Such operators will be written
P Op (Q1...Qk) where F'is a formula consisting of one or more atoms connected by A, V, or
- using parenthesis as required. Atoms reference lower case, single letter variables which range
over objects in the input set named with the corresponding upper case letter. For example, the
object variables p, ¢; and ¢z in the predicate of P ©p(, 4, 4,) (@1, Q2) range over the sets of objects
denoted by P, Q1 and Q2 respectively.

The algebra defines five operators.
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Union (denoted PUQ): The union is the set of objects which are in P or @ or both. An equivalent
expression for union is { o | P(0) vV Q(0) }.

Difference (denoted P — @): The difference is the set of objects which are in P and not in Q.
An equivalent expression for difference is { o | P(0) A =Q(0) }. The intersection operator,

PN @, can be derived by P — (P — Q).

Select (denoted P op (Q1...Qk)): Select returns the objects denoted by p for each vector
<Py qr> € P X QX ... X Qr which satisfies the predicate F. An equivalent expres-
sion for select is { p | P(p) AQ1(q1) A ... A Qrlqr) N F(p,q1y- -5 qx) }-

Multiple operands permit explicit joins as described in [Kim89]. An explicit join is a join
between arbitrary classes which support (a sequence of) method applications resulting in
comparable objects.

Example 4.3 Find all documents about cars by persons over 50 years of age. Let d range
over Doc and p range over Person, then

Doc o “car” €<d> keywords A <P€7‘80n> <&

p==<d>.author A
“50"=x A “True’=<p,r>.age.greater

The result of this expression is a set of Document objects, not sets of < Document, Person >
objects. This is due to the ‘object preserving’ nature of the algebra which does not support
creation of new objects. In this sense then, the select is most like the traditional semi-join
operator. As a result, the selection P or (Q1...Q}) always returns a subset of P.

Generate (denoted Q1 7% (Q2...Qg)): F is a predicate with the condition that it must contain
one or more generating atoms for the target variable ¢ and ¢ does not range over any of
the argument sets. The operation returns the objects denoted by ¢ in F for each vector
<1y, Q> € Q1 X ... X Qf which satisfies the predicate F'. An equivalent expression for

generate is {t| Q1 (q1) A ... AQr(Qr) A F (t,q1,....qx)) }.

Two common uses of the generate operator are to collect results of method applications or to
iterate over the content of set valued objects.

Example 4.4 Return all co-authors of the document ‘My Cat is Object-Oriented’ [Kin&9].
Let t be the target variable and d range over Doc, then

Doc +¢
[ t€ELd> . co_authors

“MyCat..”=<d>.title A ] < > <

Map (denoted Q1 —miist (Q2...Qk)): Let mlist be alist of method names of the form mq - - - m,.
Map applies the sequence of methods in mlist to each object g1 € @1 using objectsin (Q3...Q%)
as parameters to the methods in mlist. This returns the set of objects resulting from each
sequence application. If no method in mlist requires any parameters, then (Qy...Qy) is
the empty sequence ( ). Map is a special case of the generate operator whose equivalent is
{tQ1(q1) A oo A Qulqr) Nt ==<qu,...,q>.mlist }. This form of the generate operation
warrants its own definition as it occurs frequently and supports several useful optimizations.
Map is similar to the image operator of [SZ90], except that it is not restricted to unary
methods.
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4.3 Calculus-Algebra Translation

An algorithm for translating a restricted set of object calculus expressions to their object algebra
counterparts is fully described in [Sé90b]. The algorithm is applicable to resricted queries, i.e.,
those with no occurrences of the universal quantifier V. This family of queries is similar in power
to the select-project-join class of queries in the relational model.

The translation algorithm first rewrites the calculus expression to its prenex disjunctive normal
form. Next, the atoms in each conjunct are placed in a candidate list and ranked by whether they
restrict the query’s target variable, generate the target variable or represent a range atom. The
conjunct is then reconstructed as a nested expression by choosing atoms from the candidate list
and combining them with atoms referencing common variables and empty expressions representing
variables which are unbound in the partially completed conjunct. The process is recursively re-
peated for each empty expression until the candidate list is exhausted. Each nested subexpression
is then mapped to its corresponding algebra expression using a simple pattern matching template.

Several legal orderings of the candidate list may be possible with the result that a family
of equivalent algebra expressions is to be obtained. The translation algorithm does not insure
optimality of the resulting algebra expressions which still require type checking and logical rewriting.
These topics are covered in the following sections.

5 Typechecking of Algebra Expressions

Database query languages have traditionally had only minimal type checking requirements. In
the relational model, for example, type checking insures that relation schemes are compatible and
that only appropriate comparison operations are performed on tuple fields. The limited number of
primitive domains supported by the model (e.g., integer, string, boolean) makes this a straightfor-
ward task. OODB query languages introduce complexity into this process as query results may be
non-homogeneous sets of objects, i.e., all objects in the query result are not the same type.

Since in closed algebras the result of one query is used as the input to another, there is a need to
insure that methods referenced in the predicate of the second query are defined on all objects in the
result of the first. Some algebras impose type restrictions such as union compatibility [S7.90, 7Z.do88]
on the algebra operators to insure the type consistency of the result. Union compatibility states that
members of the sets being operated on must be instances of types which are in a subtype relationship
with one another. The type of the result is considered to be the most general supertype of the
types involved in the operation.

Another problem, termed impedance mismatch [MSOP86], occurs when an application pro-
gramming language must interface with a database query language. The two languages often have
(partially) incompatible data types, e.g., union types in C and relations in SQL. A common re-
quirement, independent of any particular language, is that a program variable be iteratively bound
to each element in the set of objects returned by a query, e.g., portals [SR86] and cursors [Ast76].
It should be possible to insure that this binding is type consistent in order to detect improper use
of data. This problem becomes more complex when the query results are not homogeneous.

The fundamental question is the following: If the result of a query is a set of objects which
may not be homogeneous, what can be said about the types that each member of the query result
supports? This is an important question because the intermediate results of a query can be an
input to subsequent operators. Therefore, it becomes essential to determine what the minimally
common behavior is of the set of objects in the intermediate result to identify which methods can
safely be applied to them.
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Figure 9: A type lattice fragment.

Example 5.1 Consider the fragment of a type lattice in Figure 9 where types are labeled t;.
Assume we wish to take the union of the instances of types tg and tg. The issue is to determine
the behavior of the objects in ext(tg) U ext(tg). The following can be said about the behavior of
these object:

1. Some objects have the behavior of ¢35 (immediate supertype of tg),
2. Some objects have the behavior of ¢5 (immediate supertype of tg),
3. All objects have the behavior of ¢4 (immediate supertype of both ts and tg).

Therefore, it is safe to apply the methods defined on ¢4 to the objects in ext(ts) U ext(ty). <

The above example demonstrates the need to build a type system to determine the behavior of
intermediate query results. The example is simple, but more complicated cases do come up.

5.1 Type Checking Issues

Type checking algebra versus calculus expressions. The type checking system can operate
either on calculus expressions or on algebra expressions. The advantage of typechecking calculus
expressions is that inconsistencies can be detected early without the query processor doing a sig-
nificant amount of work in translating a query from its calculus to algebra format. Furthermore,
type checking can be integrated with integrity enforcement, which is usually performed up front.
However, this requires type checking rules to be defined for general calculus expressions which is
not trivial. Typechecking algebra expressions is simpler because it can be reduced to defining type
rules for each algebra operator.

It is probably advantageous to apply a combination of calculus versus algebra type checking in
a practical query system. It should be possible to define simple type checking rules for the calculus
expression to eliminate those which are incorrect. More sophisticated type checking of intermediate
query results may be performed on algebraic expressions.

Static versus dynamic type checking. Static type checking applies the type consistency rules
at compile time. It has the advantage of identifying errors early and without the potentially
harmful results which could occur at run time. However, it also hampers dynamic binding of
objects, which is a commonly stated advantage of object-oriented languages. The discussion of
static versus dynamic typing in object-oriented languages is an on-going one and query processors
will probably be required to accommodate both by doing as much static type checking as possible
while providing the means for dynamic binding of variables to objects.

26



o~
w

Y
e

ewwmmmmmm;‘> S

wwwwwww S hT e T CT —_— Subtype

Figure 10: Role of conformance

Basis for type checking. Example 5.1 demonstrates a case where the determination of the
behavior of objects in a collection is made on the basis of the type semilattice (i.e., the subtype
relationship). This is probably the most common approach. However, it is possible to perform
type checking by also making use of the conforms-to relationship. In this case it may be possible
to more “tightly” determine the behavior of objects.

Consider, for example, the case depicted in Figure 10 where the following hold:

1. o1 hT tz
2. 03 hT t3

3. o1 cT t3

o

. 1o subtype ty

(S

. t3 subtype t1 and t3 subtype t4

In this case, if we only depend on the subtype relationship, the common behavior of objects
{01,029} is defined by type t;. However, if the conformance relationship is also used, it can be
determined that the common behavior of {01, 02} is defined by type t3. This is preferable since t3
specializes t1 and, therefore, has behavior which is more specific than #;.

We should note that most systems that implement some sort of type checking (e.g. Emerald
[BHJ*87]) define conformance relationships between objects and types. However, their definition of
conformance is not as general as the one discussed here and is restricted by the subtype/supertype
relationship.
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5.2 Type checking in the Example Data Model

The type system that we have designed defines a set of type checking rules based on type confor-
mance and a type checking methodology based on static type checking of algebra operators. Type
conformance in our case is restricted by the subtype/supertype relationship as we discuss below.
The typing rules are defined for each algebra operator and for various types of query predicates
that are allowed in the model.

We define conformance as a set of types. A set of objects O has conformance {ty,...,%,},
denoted by O:{ty,...,t,}, when each object o € O conforms to every type t; € {t1,...,1,}.

Example 5.2 Again consider the example in Figure 9. We can now define the behavior of objects
in (ext(ts) Uext(tg)) in terms of the conformance relationship:

1. Some objects conform to ¢3 (immediate supertype of tg),
2. Some objects conform to ¢5 (immediate supertype of tg),
3. All objects conform to ?4 (immediate supertype of both 5 and tg).

Intuitively then, we may say that the type of (ext(fs)U ext(tg)) is t4 since this is the only type
that all objects in the union conform to. This case is somewhat trivial as all objects in the query
result conform to just one class. Referring again to Figure 9, assume we wish to take the union
of the instances of types t19 and #1;. In this case the following can be said about the objects in
(6$t(t10) U 6$t(t11)).

1. Some objects conform to {ts,%4,%2} (immediate supertypes of #1¢),
2. Some objects conform to {ts,%, 77} (immediate supertypes of t11),
3. All objects conform to {t;,%2} (not necessarily immediate supertypes).

The last statement holds because an object conforms to the type it is an instance of, and via
inheritance, any of its supertypes. &

We also define a conformance inclusion relationship on two sets of types Cy and Cy as C1 C Cy
iff Vt; € Cy,3t; € C1 | t; < t;. In other words, Cy C Cy, if for every type in Cy there is a conforming
type in Cq. Note that C'; may contain types which do not conform to any type in C5 under this
definition.

The notion of finding the set of types to which all members of a second set of types conforms
to is central to determining the type consistency of operations on sets of objects. However, we do
not always want to know all the types which are conformed to as this set would contain redundant
information. In Example 5.2 the conformance of (ext(t10) U ext(t11)) was determined to be {t1,5}.
Including parents of t; and t5 in the conformance would add no new type information since ¢; and
t define at least, if not more than, the behavior of their parents, i.e., t; and t, are specializations of
their parent types. Similarly, placing more general types in the conformance, for example parents
of t; and ¢ but not t; or t5 themselves, introduces a loss of type information.

Loss of type information is undesirable when type checking a query. Consider again the type
lattice fragment of Figure 9. Assume all objects in a query result conform to both #19 and #1; but
the conformance was nonetheless specified as {t;,%2}. This would correspond to the case where
types more general than necessary are placed into the conformance. It is possible that the query in
question was just a subquery and that further operations are to be performed on its result. Some
of the object algebra operators are qualified by predicates. One form of predicate involves applying
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a method to each member in the query set. If the method referenced in the query is defined on #14
but not on ty, the query will fail during type checking when in fact each member of the query set
does support that method. Thus we have the requirement that the conformance of a set of objects
used in type checking include only the most specific types which satisfy the conformance definition.

The conformance of a set of objects O, O:{ty,...,t,}, is defined to be the most specific confor-
mance when there does not exist a subtype s < ¢; such that all elements of O conform to s. The
function M SC(ty,...,t,) is defined to return the most specific conformance of the types t1,...,%,.

Example 5.3 Referring to Figure 9:

{t10}
{t1, 12}
{t2} ©

MSC(ty0)
MSC(tlo, tll)
MSC(ty0,16)

The need will arise during type checking to determine the inverse M SC relationship. Letting s
and ¢ refer to subtypes and types respectively, the function M SC~! is defined as

MSC™ (ty, ..o ity) = {81,000y 86 | MSC(51,...,88) = {t1,..., 1.} }

In other words, the inverse function M SC~! returns the most general set of subtypes all of whom
conform to tq,...,1,.

Example 5.4 Referring to Figure 9:

MSC™(ty) = {t:}
MSC™Y(t1,t2) = {tio,t11}
MSC™(ts,t7) = {ti} ©

The full set of type conformance rules that form the foundation of this type checking method-
ology is given in [SO90d]. The rules determine the conformance of an expression from the confor-
mance(s) of its subexpressions. A type checking algorithm is correct if it computes types that are
derivable by these rules. An expression is considered type inconsistent if the rules can not be used
to derive a type (conformance) for all variables in the expression.

6 Algebraic Optimization

The next step in the query processing methodology depicted in Figure 1 is the “optimization” of
the type consistent algebra expressions. This is accomplished by means of equivalence-preserving
transformation rules. The fundamental design issue is to make sure that a complete set of trans-
formation rules have been captured for the object algebra and that they are efficiently used by a
query processor.

The overall goal of algebraic “optimization” is to reduce the cost of evaluating a query by
replacing its algebraic expression with one which may have better performance characteristics. Haas
et. al. [HFLP89] make the distinction between two rule based query transformation techniques,
“query rewrite” and “plan optimization”. Query rewrite is a high level process where general
purpose heuristics drive the application of transformation rules. Plan optimization is a lower level
process which transforms a query into the most cost effective access plan based on a specific cost
model and knowledge of access paths and database statistics. In this section we discuss rules that
are intended for use during query rewrite. In the next section we address issues related to plan
optimization.

29



We demonstrate the idea of algebraic optimization using rewriting rules by discussing the full
set of rules that have been specified for the object algebra that was presented before. The proofs
of these rules are presented in [Str91]. The rules are grouped into algebraic and semantic ones.
Algebraic rules create equivalent expressions based upon pattern matching and textual substitution.
Semantic rules are similar, but they are additionally dependent on the semantics of the database
schema as defined by the class definitions and inheritance lattice.

Rules will be written as Fy < F5 which specifies that expression Fp is equivalent to expres-
sion Fy. As in [Fre87] we also use restricted rules of the form Fj & Fy. Restricted rules are
applicable only when the condition ¢ is true. Conditions are a conjunction of functions which de-
termine properties of argument sets, predicates and variables used in a rule. We define the function
ref(F,(v1,...,v,)) to be true when vy,...,v, are the only variables referenced in the predicate F.
The function gen(F,v) tests whether the predicate F' contains a generating atom for the variable
v. Similarly, res(F,v) is true when predicate F restricts values of v. For example, gen(F),t) is true
when F' = (t €<q1, gz>.mlist) and false when F = (¢ = <t, ¢1>.mlist).

We use the following notation for select/generate sets:

Pop (Qr...Qk) iff res(F,p)
Q17 (Q2...Qp) iff gen(F,p)

In other words, the set definition for select and generate operations can only be distinguished by
the properties of predicate F. If F' is defined as restricting values of p, then the operation is a
select. If I is defined as generating values for p, then the operation is a generate. O

An arbitrary expression in a list of expressions is referenced using the notation (Fy ... E;... E,)
where ‘... denotes zero or more occurrences of some F;. For example, the rule

Pop (. ..Qp...Qy..) & Pop(...Qy...Qu...) (1)

indicates that the result of a select operation is independent of the ordering of the arguments
between ‘(" and ‘)’. The set being restricted must appear before the select operator o, thus there
is no rule to change the position of P. This is not the case for generate operations as the target
variable does not correspond to one of the input sets. The next two rules state that the outcome
of a generate is independent of the operand ordering.

Qu ¥ (.Qy..) & Quk(..Qs..) (2)
Qe Y5 (. Qy. Qo) & Quvk (.. Q... Qy..) (3)

We introduced the map operator as a special case of generate. This can be captured by the
conditional rule:

Q1 (Q2-..Qr) & Q1 st (Q2...Qk) (4)

where condition ¢ insures that F' = (t ==<qq, ..., g>.mlist).
We introduce the abbreviations @ set, Rset and Sset toreplace Q1 ...Qk, Ri...R;and S1...5,,
respectively. For example:

P op {Qset, Rset, Sset) & Pop(Qy...Qp, Ri...R;,S1...5,) (5)

where condition ¢ is ref(F, (p, ¢1, -y Qs T1y -« -» 71, 15+ - -5 Sm)). As before, a lower case letter repre-
sents an object variable which ranges over the set denoted by the corresponding upper case letter,
(i.e., ¢ € Q;,1r; € Ry and s; € SZ').
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6.1 Object Algebra Identities

Since the operands and the results of algebra operators are sets of objects, where set membership
is determined by object identity, the typical set-theoretic identities of typical set-theoretic algebra
operators (union, intersection and difference) apply. Among others, these identities include the
associativity of union and intersection, and the distribution of union, intersection and difference
operators over each other.

Additionally, the following rules specify other identities in the object algebra, i.e., there are no
conditions associated with them.

P op, (Rset)) of, 1 (Qset) (6)
Rset)) — (7)
Rset))U (Q or (Rset)) (8)
)N (9)

10)

11)

(P op (Qset)) op, (Rset (
: E
(P op (Rset)) N (Q o (Rset))
(
(

{ )
(P—Q) op (Rset)
(PUQ) op (Rset)
(PNQ)or <Rset§

)

PN

(PUQ) —mlist <R5€t P st < €t>)U(Q —mlist <Rset>) (
(PUQ) v (Rset P yp (Rset)) U (Q v (Rset)) (

Rule 6 captures commutativity of select. Rules 7-9 show that difference, union and intersection
commute with select. Rule 10 specifies that union commutes with map and the last rule indicates
that union distributes over generate. These rules are not as general as they appear since the leading
argument of a select or map operation can not be swapped with one of the trailing arguments. The
following rules capture the commutativity of union in a trailing argument.

I R R

Pop(Q1.. (QxUQ ). Q)

<:> (Pop (Q1 . Qp)) U (Pop(Q1...Qy...Qk)) (12)
Poyp Q1. ( UQ ) Q)

& (Pyp (@1 Q. Qr) U (PyF (Q1-..Qy... Q1)) (13)
P —mlist <Q1 (Ql’ U Qy) .. Qk>

& (P —=pist (Q1--.Qsp. .. Qr))U(P —pist (Q1-..Qy...Qk)) (14)

Example 6.1 Consider the query “Return the root nodes of all documents which are either about
cats or about dogs”. Let

d  range over the class Document

Fy  be the atom (“cats” e<d>.keyWords)
F;  be the atom (“dogs” €<d>.keyWords)
n  range over Node objects

Then we can use the following object algebra expression to implement the query

((Doc gy () U (Doc ar, ())) —rostNode ()

and apply rule 10 to get

((Doc oy (1)) = rotNode () U ((Doc 0r, (1)) —rooiode ()

The transformation is shown graphically on the right hand side of Figure 11. &
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Figure 11: Transformations of examples 6.1 and 6.2.

6.2 Select Transformation Rules

Select supports several transformations, some of them conditional:
(P op, (Qset)) o, (Rset) < (P op, (Qset)) N (P op, (Rset)) (
P opam) (Qset, Rset) & (P op, (Qset))N (P op, (Rset)) (
P opvm) (Qset, Rset)y & (P op, {Qset)) U (P op, (Rset)) (

—_ = =
-~ O Ot
— N

where:

c: ref(Fy,(p,qr-..qr)) A res(Fi,p) A ref(Fo,(p,71...711)) A res(Fy,p)

Rule 15 is an identity which utilizes the fact that selection merely restricts its input and returns
a subset of its first argument. The first selection, P o (Qset), returns a subset of P (call it P’).
The second selection can then be reduced to P’ op, (Rset) which is merely a smaller subset of P.
The same final subset of P can be obtained by applying predicates Fy and F5, separately and taking
the intersection of the results.

Rules 16 and 17 recognize that subformulas Fy and F, each reference only a subset of the
arguments. Operand sizes are minimized by breaking Fy and Fj into separate select operations and
intersecting (Fy A F3) or taking the union (Fy V F3) of the results.

Example 6.2 The union subquery ((Doc o, ( ))U (Doc op, {))) of Example 6.1 matches the
right hand side of rule 17. Substituting Doc for P and ( ) for Qset and Rset we can apply rule 17
right to left resulting in

((Doc oy ())U(Doc or, () & Doc orvr, ()

This transformation is shown graphically on the left hand side of Figure 11. <

Noting the similarities in rules 15 and 16 allows us to derive a new rule for conjunctive predicates:
P o(p ) (Q@set, Rset) & (P op (Qset)) op, (Rset) (18)

where:

c: ref(Fy,(p,qr-..qr)) A res(Fi,p) A ref(Fo,(p,71...711)) A res(Fy,p)
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A slightly different version of the conjunctive predicate rule for select is:

P (g ) (@set, R, Sset) 2 Pop (Qset, (R op, {Sset))) (19)
& Pop (Qset, (R f, (Sset))) (20)
where:

cp:oref(Fy, (poqr o qe,r)) A ref(Fo, (7,81...54,)) A res(Fy, )
ey ref(Fy, (pyqr . qe,t)) A ref(Fy, (E,7,81...5,)) A gen(Fy,t)

Here, Fy and F; have only one variable in common, and it is not the variable being restricted by
the select. In the first rule, the common variable is r which is restricted by F,. Since F; does not
reference sy ...s,, and F; does not reference p, ¢ ...qg, the restriction on R can be pushed down
into a separate select operation. The second rule is similar, however we denote by ¢ the common
variable shared by Fy and F; to reflect that it is the target variable generated by F5. In this case
F3 is pushed down into a separate generate operation.

Example 6.3 Consider the query “Find all documents written by the child of a computer scientist
and a doctor”. Let

d  range over the class Document

p1 range over the class Person

py range over the class Person

¢ range over Person objects which are children
a; be the atom (¢ ==<d>.author)

ay be the atom (“computers” €<py>.expertise)
as be the atom (“medicine” €<py>.expertise)
as be the atom (¢ €<py, p2>.children)

The following object algebra expression can be used to represent the query
Doc 04, naynasnay) (Person, Person)

This expression satisfies the conditions of rule 20 when we substitute aq for Fy, (a3 A asz A aq) for
Fy, Doc for P, { } for Qset, Person for R and Person for Sset. Applying rule 20 with these
substitutions gives

Doc 0, naynasnay) (PeTson, Person) <« Doc o4, ((Person ¥(y, naynaq) (Person)))

This transformation is shown graphically on the left hand side of Figure 12. <

A special case of rule 20 occurs when the select predicate contains a generating atom for the
set being restricted (Figure 13).

P 0(r AR,y (Qset, R, Sset) & (pop (Qset))N (R Vg, (Sset)) (21)

where:

c: ref(Fy,(p,qr-..qr)) A res(Fy,p) A ref(Fy, (p,7,81...8,)) A gen(Fy,p)

The left hand side of this rule indicates that elements of P are restricted by the predicate (Fy A F3).
However, if F} restricts p while F, generates p, then we really have two sources of values for p: the
argument set P, and the generating atom in F5. Since the result of the operation must satisfy the
restriction of P by F} as well as the generation of p by F,, we can break Fy and F5 into separate
operations and take the intersection of the result.
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Figure 13: Graphical representation of rule 20.

6.3 Generate Transformation Rules

Conjunctive predicates give rise to several transformation rules for generate operations:

P VfFlAFQ) (Qset, Rset) & (P op (Qset)) Vi, (Rset) (22)
B (P ap, (Qsel)) 1, (Rsel) (23)
& (P yp, (Qset)) op, (Rset) (24)

where:

ey :oref(Fy, (poqr.oqe)) A —gen(Fi,p) A ref(Fy, (p,t,r...71)) A gen(Fy,t)
ey ref(Fy, (pyu,qre..qr)) A gen(Fr,u) A ref(Fy, (u,t,rq...7)) A gen(Fy,t)
ezt ref(Fy, (pyqr- - qe,t)) A gen(Fi,t) A ref(Fy,(ry...r,t) A res(Fy,t)

The conditions for rule 22 insure that Fj restricts p, which is the common variable between the
two conjuncts of the predicate. Fj is subsequently broken out into a separate select operation.
In rule 23, u is the common variable and is generated by F} which can also be broken out into a
separate generate operation. In rule 24, ¢ is the common variable between the two conjuncts of the
predicate. Fy generates values for ¢ while F, merely restricts ¢ which allows the conjuncts to be
broken out into separate generate and select operations.

Example 6.4 Consider the subquery Person v; r,.nq, {Person) of Example 6.3 where

ay = “computers” €<pi>.expertise
az =  “medicine” €<py>.expertise
ay = ¢ E€<py,pa>.children
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which returns the children which have a doctor and computer scientist as parents. The subquery
satisfies the conditions of rule 22 when we substitute ay for Fi, as A a4 for Fy, Person for P, ¢ for
t, { } for Qset and Person for Sset resulting in the transformation

Person v; pgona, (Person) & (Person 04, () Vona, (Person)

Ideally we would like to apply this rule again to break out atom as which restricts the variable p
ranging over the class Person. Noting that the ordering of argument sets does not affect the result
of a generate operation, we can apply rule 2 to give

(Person o4, (1)) YasAa (Person) < Person YasAas ((Person o4, ()))
Now we can apply rule 22 again to break out atom ag as follows.
Person vy, p,, ((Person 04, (1)) & (Person g, ())7s, ((Person o4, ()))

The result of these steps is shown on the right hand side of Figure 12. <

A special case of the generate operation can occur when the predicate generates values for the
target variable (which does not range over an argument set) and also for a variable which does
range over an argument set.

P VfFlAFQ) (@set, R, Sset)y & ((P g (@set)) N R) yp, (Sset) (25)
where:
c: ref(Fy,(p,7ryque..qr)) A gen(Fi,7) A ref(Fo,(r,t,81...54)) A gen(Fy,t)

The condition states that F} generates values for r while F; generates values for the target variable
t. Similar to rule 21, we now have two sources of values for r; the argument set R and the generating
atom in Fj. Since the final values of » must exist in R and be generated by Fj, we can break Fj
out into its own generate operation and intersect the result with R prior to generating values for ¢.

6.4 Semantic Transformations

Semantic transformation rules take advantage of the semantics of the object-oriented data model.
The database schema, as defined by class definitions and the inheritance lattice, captures many
relationships which can be used to simplify object algebra expressions. For example, let ¢; and ¢
represent classes, C; represent the set of objects in the extent of class ¢;, ext(¢;), and C¥ represent
the deep extent of ¢;, ext*(¢;). We can show that the expression C1 N Cy = ¢ when ¢1 # ¢z by
noting that the data model restricts each object to membership in a single class.

We define two relationships on classes (not class extents) to assist in categorizing the special
cases where simplifications are possible. The case where ¢4 is a subclass of ¢y is denoted by ¢; < ¢s.
We also use ¢ 7 ¢z to denote that ¢; and ¢z have subclasses in common, i.e., ext*(¢q) N ext*(c2) # ¢.
Conversely, ¢ ¥/ ¢ implies that there exists a class ¢; which has both ¢; and ¢9 as superclasses.
These two relationships can be used to derive the special cases of the binary object algebra operators
shown in Table 4.

Other semantic rules rely on type consistency to determine their applicability. Consider the
following rules (Figure 14).

(Pop(Qset))NR & (P op (Qset)) N (R op (Qset)) (26)
& PN (R op (Qset)) (27)

where:
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Table 4: Special cases of the binary operators.

| Rule | Condition |

CinCy =9 €1 # Co

Ci—Cy =0, 1 F €3

ClﬂCz*:Cl CleQ

cinCs5=2¢ c1 Y2

CluCz*:Cz* CleQ

01—05201 ClgléCQ/\ClﬁCQ

CT—CQ ICT (4] WCQ

Cf N C; = Qb (4] WCQ

CiNCs=UC [, 2ahgahave

CI*UCQ*:CQ* CleQ

Cf—cg ICT (4] WCQ

N N N N N
OF R OF g P OF!
P Qset P Qset R Qset R Qset

(a) (b) ()

Figure 14: A semantic transformation rule

c: F' is identical to F' except each occurrence of p is replaced by r.

By definition, intersection returns only those objects which are present in both input sets.
From a pure set theory perspective, any restriction which removes objects from one input set only,
automatically excludes those objects from the result of the intersection. In addition, the restriction
could be applied equally well to the other input set instead and generate the same result. This is
because intersection is not dependent on operand ordering and “doesn’t care” which input set is
missing the excluded objects. By a similar argument, the restriction could be applied to both input
sets without affecting the result.

Referring to Figure 14, the restriction in (a) is given by the select operation P op (Qset); i.e.,
the input set P is being restricted by predicate F. Let us first examine the transformation from
(a) to (b).

The expression depicted in (a) is considered a type consistent expression if the methods in
predicate F' are defined on all types represented by the objects in P. Note that P (R) may be a
heterogeneous set of objects if it represents the result of a subquery as opposed to the extent of
some class. The transformation from (a) to (b) is valid only if the expression in (b) is a legal. This
means the subquery R op (@set) in (b) must be type consistent, i.e., the methods in predicate
F' are defined on all types represented by the objects in R. According to condition ¢ on the
transformation rule though, the methods in F’ are identical to those in F. Thus, the validity of
the transformation from (a) to (b), and by similar argument from (c) to (b), is dependent on both
the database and the nature of the subqueries which produce P and R.

Once these transformations are shown to be valid, we can conclude that the equivalence of
expressions (a) and (c) is valid by the characteristics of intersection discussed previously. If the
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restriction can legally be applied to both input sets, then intersection only requires that it be
applied to one of them.

7 Execution Plan Generation

In this section we address the issues that arise in the last step of the methodology depicted in
Figure 1. This step involves the generation of alternative execution plans for the algebra expression
that is obtained after the application of the rewrite rules. This step is commonly called the access
path selection in relational DBMSs and concerns the choice and implementation of the most efficient
algorithms for executing individual algebra operators and their combinations. In OODBMSs, the
issue is more complicated due to the difference in the abstraction levels of behaviorally defined
objects and their storage. Therefore, we separate the issues of execution plan generation, which
is the mapping of object algebra expressions to some object manager interface expressions, and
access plan selection, which involves the selection of the optimum execution plan and the efficient
implementation of the object manager interface operations. In one sense, this is similar to query
processing in distributed databases systems [©V91] which involves both global plan generation and
local optimization. In this section, we are mainly concerned with execution plan generation.

There are two primary concerns in generating execution plans. The first is to decompose
the object algebra operators union (U), difference (—), select (op), map (—mist) and generate
(7%) (especially those with complex predicates) into a sequence of simpler operations which more
accurately reflect the interface provided by a real object-based system. In other words, we are
defining a lower level of abstraction than that provided by the data model and object algebra
thus far, and treat access plan generation as the mapping of object algebra expressions to the new
abstraction interface. This lower level is the object management interface. The second concern is
that we still wish to maintain the data abstraction provided by behaviorally defined objects and
do not want to make assumptions about how objects are stored and implemented.

7.1 Object Manager Design Issues

In the case of the relational data model [Cod70], there is a close correspondence between algebra
operations and the low level primitives of the physical system [SAC*79]. The mapping between
relations and files, and tuples and records may have contributed to this strong correspondence.
However, there is no analogous, intuitive correspondence between object algebra operators and
physical system primitives. Thus any discussion of execution plan generation must first define the
low level object manipulation primitives which will be the building blocks of execution plans. We
call this low level object manipulation interface the Object Manager (OM) interface.

Object managers have received attention lately in the context of distributed systems [BHJL86,
DLA8S, MG&9, VKC86], programming environments [Dec86, Kae’86, VBD89] and databases [CDRS86,
CMB84, EE87, HZ87, KBCT88]. These object managers are typically oriented towards “one-at-a-
time” object execution and differ in terms of their support for data abstraction, concurrency and
object distribution.

Encapsulation of objects, which hides their implementation details, and the optimization of
queries against these objects pose a challenging design problem which can simply be stated as fol-
lows: “At what point in query processing should the query optimizer access information regarding
the storage of objects?” We differentiate between two types of object storage information: repre-
sentation information, which specifies the data structures used to represent objects themselves, and
physical storage information regarding the clustering of objects, indexes defined on them, etc. If
object storage is under the control of an object manager, the design question can be posed in terms
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of the level of OM interface. Physical optimization of query executions requires storage informa-
tion, arguing for a high-level OM interface that is accessed early in the optimization process. Many
systems that are typically called “complex object systems” choose this approach. Encapsulation,
on the other hand, hides storage details and, therefore, argues for a low-level OM interface that is
accessed late in the process.

7.1.1 OM Design Principles

Since our data model treats objects as instances of abstract data types, encapsulation is a fairly
important consideration. Furthermore, in our work, we are interested in investigating how far
we could go with query processing without accessing the physical storage information. Therefore,
we have elected to define a fairly low-level OM interface that is accessed late in the optimization
process. Furthermore, the OM interface does not reveal any physical organization information. In
other words, we are defining a lower level of abstraction than that provided by the data model and
object algebra.

Object algebra expressions which are the input to the execution plan generation process have
several important characteristics:

1. They can be represented as a graph whose nodes are object algebra operators and whose edges
represent streams (sets) of objects. Thus intermediate results do not have any structure. In
fact, the intermediate results can be thought of as streams of individual object identifiers.

2. Some algebra operators (o, 7vk) are qualified by a predicate. Predicates are formed as a con-
junction of atoms, each of which may reference several variables. The variable corresponding
to the result of the algebra operation is called the target variable.

3. A variable name appearing in multiple atoms of a predicate implies a ‘join’ of some kind; i.e.,
objects denoted by the variable must satisfy several conditions concurrently.

The last point, namely implied ‘joins’ between object variables within a predicate, is the driving

factor behind our query execution and execution plan generation strategy. Consider the predicate
F for the select operation P o (O, R,S,T)

F = o==(<p,q¢,r>m1) AN (q€L) N (q==<s5>m3) (28)

where p is the target variable and O, P, R, S, T are inputs to the operation. All values for ¢ are
generated by the atoms in the predicate. The result of this select operation can be defined as

{o|F(o,p,q,7,s,t) is true for <o,p,r,s,t>€ OXPxRxSxT } (29)

Table 5 identifies which variables are referenced in each atom (numbered left to right) and reflects
the dependencies between the variables. It should be clear from the table that an object denoted by

olplg|r|s|t
al | x| x|x|x (0 ==<p,q,r>.m1)
a2 X x| (get)
a3 X X (¢ ==<s>.m2)

Table 5: Dependencies between variables in a predicate.

¢ must satisfy all atoms concurrently. However, if we are to respect the data abstraction afforded
by objects, then it is not possible for the query processor to directly evaluate all three atoms
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concurrently as required. Instead, it is more likely that we call upon another agent which can
perform individual operations on objects that correspond to the individual atoms. This would then
require the ability to keep track of the combinations of variables in O X Px R xS XT which satisfy
F. This intuition leads to the following design decisions.

1. The low level operators used to generate an execution plan for an algebra level operator will
consume and generate streams (sets) of tuples of object identifiers. We introduce the notation
[a,b,c,- -] to denote a stream of tuples of object identifiers of the form {<a,b,¢c,--->}. For
convenience we will call this an oid-stream in the remainder of the document. This way
relationships among variables and the atoms they satisfy can be maintained over a sequence
of operations.

2. The object manager interface performs low level operations comparable to individual atoms
in a predicate.
7.1.2 OM Interface Specification

The object manager interface specifies a calling sequence and semantics for performing operations
on oid-streams. Four operation types are defined:

1L OMy([i1], 2], [0]) — stream union

2 OMyp ([11], [22], [0]) — stream difference
3 OM.,u([t1],-..,[tn], [0], meth, pred) — atom evaluation

4 OMw([i1]s .-, [in], [0]) — stream reduction

where [i,] and [o] denote input and output oid-streams respectively. The semantics of the OM calls
are described next.

(1) Stream Union: This operator generates the union of the two input oid-streams. Streams [i1]
and [i3] must reference the same variable names though not necessarily in the same order.
The operation is analogous to the relational union operator. The output oid-stream contains
those tuples which are present in [i1] or [i3] projected onto the variables identified by the
output specifier [o].

(2) Stream Difference: This operator generates the difference of the two input oid-streams.
Streams [i1] and [i3] must reference the same variable names though not necessarily in the
same order. The operation is analogous to the relational difference operator. The output
oid-stream contains those tuples which are in [i1] but not in [i3] projected onto the variables
identified by the output specifier [o].

(3) Atom Evaluation: This operator applies the (optional) method given by meth to each mem-
ber of [i1] X ... X [i,] creating the intermediate oid-stream [i1] X ... X [i,] X [res] where res
is the result of the method application for each #1,...,7, combination. Next, the predicate
pred is applied to the intermediate oid-stream and the result is projected onto those variables
given in the output stream identifier [o]. More specifically:

e [i1],...,[i,] denote a set of oid-streams which represent the input to the object manager
call. A variable name may appear in only one input stream.

¢ [0] denotes the oid-stream which will be returned as output of the object manager call.
A variable name may appear only once in the output stream. Variables referenced in
the oid-stream [o] are a subset of those in the input streams or the special identifier res.
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e methis an optional method application specifier of the form <a,b, ¢, - - >.mname, where
a,b,c,--- correspond either to variables in the input streams or are the textual represen-
tation of an atomic value. The special identifier res denotes the result of the method
application and can be referenced in the output stream and predicate.

e pred is an optional predicate on objects in the input streams and/or result of the meth
field. The full set of permissible predicates is given in Table 6. Variables in the predicate
correspond either to variables in the input streams, the special identifier res or are the
textual representation of an atomic value (denoted by const in the table).

Table 6: Predicates allowed in OM,,,; calls.
0; == 0;
0; € 0;

0, = 95

const = o

const € o

0 € const

const =, 0

An OM.,,; call must have either a method or a predicate specified, and can have both if
required. If specified, the method is always applied before the predicate is evaluated. The
special identifier res denotes the result of the method application and can be referenced in
the output stream or predicate only if a method is specified.

The input streams may contain variables which are not referenced in the output stream, the
method or the predicate. In this case the respective oids in the input streams are ignored.
Variables referenced in the input streams and output stream but not in the method or pred-
icate are carried through without modification. In this case, the unreferenced oid in each
input tuple which satisfies the predicate after the optional method has been applied is copied
unchanged to the corresponding output tuple. There is no relationship or restrictions on the
ordering of variables in the input streams and output stream.

Example 7.1 Consider the atom evaluation operation
OM.,u([a,b],[c], [res, c], <c,a>.m,b € Tes)

The semantics of this operation are given by the following algorithm.

for (each tuple ¢t : <a,b,c¢> € [a,b] X [¢]) begin — iterate over cross product
let res be the object returned by <t.c,t.a>.m° — method application
if (¢.b € res) then — set value inclusion

add the tuple <res,t.c> to the output stream
end <

®We use the notation t.c to denote component ¢ of tuple .
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Figure 15: Mapping object algebra expression trees to object manager operation trees.

(4) Stream Reduction: This operator combines and reduces the number of input streams by
performing an equijoin on those variables which are common to all input streams. This
requires that all input streams have at least one variable name in common. The semantics of
the operation is best described using an example.

Example 7.2 Consider the stream reduction
OM([a,b,c],[b,d,c],[e,c,b],[a,b,e])

The variables common to all input streams are b and ¢. We can rewrite the operation as
OMu([a, b1, c1], [b2, d, c3], [€, ¢3, b3], [a, b, €])

in order to differentiate the different sources for variables b and ¢. The input streams are first
combined by taking their cross product which results in the oid-stream [a, by, ¢1, by, d, co, €, 3, b3].
The final result stream is of the form [a, b, €] and contains only those tuples from the previous
intermediate result where (by = by = b3) A (¢l = ¢2=¢3). &

7.2 Plan Generation

Execution plan generation can be thought of as creating a mapping from object algebra expression
trees to trees of object manager operations. A query is initially represented as a tree of object
algebra operators as shown in Figure 15(a). Edges in the figure have been annotated with oid-
stream labels to indicate that a set of objects can be considered a stream of individual objects as
well. For example, the set of objects denoted by P can be thought of as the stream of objects
[p] where p € P. One unique feature of object algebra expression trees is that all edges represent
streams of single objects, never streams of multiple objects. This is due to the closed nature of the
algebra which insures that the output of any operation can be used as input to another.

The graph in Figure 15(b) represents an execution plan corresponding to the algebra tree on the
left. An ezecution plan graph is a graph whose nodes are OM operators and whose edges are oid-
streams. It is evaluated from the leaves to the root. The subtrees within dotted boxes are sequences
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g OMﬁvdl([r3]7 [Q7]7 [7‘68], <T3, q7>.My4, (b)

m3 [(]7] OMevdl([TQ]v [Q5]7 [(]6]7 [T3]7 <ra,qs,{e>.M3,73 == 7‘68)

7\

ma [95] [g6] OM . oui([71], [43]s [ga4], [2), <71, g3, qa>ma, 79 == res)
7
mq (93] [q4] OMeval([QI]v [q2], [T1], <q1, @2>mq, 71 == 7‘68)
[q1] [q2]

Figure 16: Execution plan generation for the object algebra map operator.

of object manager operations corresponding to individual algebra operators of the original query.
Edges which do not cross subtree boundaries may represent streams of tuples of objects (e.g., [p, ¢]
and [s,0]). In addition, streams may be used as input to multiple object manager operations within
a subtree, e.g., [¢].

The following sections shows how the mapping to object manager operators is performed for
each of the object algebra operators (U, —, op, —must and vk).

7.2.1 Union and Difference Operations

The union and difference operators map directly to their object manager counterparts. Inputs and
output of these two algebra operations are always unary streams of objects even though OM, and
OM; accept streams of tuples of object identifiers.

7.2.2 Map Operation

Reviewing briefly, the map operator Q1 ;. m, (@2,...,Qk) denotes the sequence of method
applications <¢q,...,qx>.my...m, where <g,...,qx> are drawn from Q1 X ... X Q. Since the
object manager interface can only apply one method per call, the method sequence must be de-
composed into individual method applications. Determining which ¢; are a parameter for a given
m; has been treated previously in [SO90d] and is not repeated here. Figure 16 depicts how the
map operation Q1 —my mymams  (@2,@3,Q1,Q5,Qs, Q7) is represented as a sequence of OM
operations. The full algorithm to perform this transformation is given in [$090a] and is omitted
here due to space limitations.

7.2.3 Select and Generate

The select and generate operators introduce complexity into execution plan generation due to their
use of predicates. At first it may appear that the two should be treated separately as the select
operator returns a subset of an input set while the generate operator generates objects from those
in the input sets. But from the perspective of low level execution plan creation, they are quite
similar. Consider again the selection predicate of Equation 28. FEven though the operation is a
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selection, the predicate generates values for ¢. There is no inherent difference in complexity between
predicates for selections and those for generate operations. The only real distinction between the
two is that the target variable of a generate operation does not correspond to one of the input sets.
The first requirement in creating select and generate execution plans is to rewrite the predicate
such that each atom corresponds to just a single object manager call. Several substitutions are
given in [8(390&] which insure that there is a one-to-one mapping between atoms in the predicate
and object manager calls.

We outline a simple algorithm for mapping select and generate algebra operators to execution
plan graphs. The algorithm takes three inputs: (1) a set of atoms corresponding to a simplified
predicate, (2) a set of variable names identifying inputs to the object algebra operation, and (3) the
name of the target variable. Output is an execution plan graph. The algorithm uses a hypergraph
[Ber73] representation of the predicate. The hypergraph contains one node for each unique variable
name referenced in the atoms of the predicate and is initialized with an edge for each atom of the
predicate which covers all nodes corresponding to variables referenced in the atom. (Note that
edges in a hypergraph define subsets of its nodes.) The nodes are marked as either red or green.
A green node indicates that values for this variable exist, either because the variable ranges over
one of the input sets or because an object manager call has generated values for it. A red marking
indicates that values do not exist, i.e., the variable may not be used yet. The node markings
are initialized to reflect the variables which represent inputs to the object algebra operation. The
algorithm proceeds by successively placing into the execution plan graph OM,,,; operations for
atoms (hypergraph edges) until all atoms have been placed. An atom is eligible for placement in
the execution plan graph if all the nodes in its corresponding edge are green, or only one node is
red but it represents a variable whose values are generated by the atom. The complete algorithm
is given in [SO90a].

Example 7.3 We apply the algorithm described above to produce an execution plan graph for
the select operation whose predicate was given in (28). Figure 17 shows the initialized hypergraph
with an edge for each atom in the predicate. Note that the node for ¢ is red while all others are
green indicating ¢ does not range over an input set. Initially, both atoms 2 and a3 are eligible for
placement because all but one node in their respective hypergraph edges are green and each atom
generates values for the single red node. Atom a1 is ineligible at this point as it does not generate
values for the red node. Let us assume atom a3 is chosen at random leading to placement of its
corresponding object manager call (labeled as a3 in Figure 17) in the execution plan graph. After
placing a3, ¢ is colored green since values now exist for it and the edge for atom a3 is removed from
the hypergraph. At this point, both remaining atoms are eligible for placement and we assume
atom al is randomly chosen. The output oid-stream of the corresponding OM call is [p, ¢] because
(1) atom al overlaps with a2 on ¢, and (2) p is the target variable and needs to be retained for the
final result. The algorithm terminates after placing the remaining atom, a2. <.

The algorithm outlined in this section is quite limited in that it can only generate execution
plans which are a linear sequences of OM,,,; operations. Specifically:

e only one execution plan is generated,

e the ordering of multiple eligible OM operations is determined by random choice and does not
allow a cost-based analysis of different orderings,

e object manager operations are never performed in parallel, and

e OMy is not used to reduce intermediate oid-streams.
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Figure 17: Hypergraph representation of a predicate and corresponding execution plan graph.

Ideally we would like to generate a family of execution plans from which a best plan can be cho-
sen based on some cost criteria. An algorithm for accomplishing this is described in [8(391]. The
algorithm uses processing templates which are extensions of join templates [RR82]. A processing
template represents a family of logically equivalent execution plans. They are used as an interme-
diate formalism in mapping object algebra query trees to execution plan graphs.

8 Other Query Optimization Issues

There are a number of issues related to the approach that we have taken and related to the scope
of our investigation that we would briefly like to touch upon. These issues involve the selection of
the “optimum” execution plan and the optimization of the method executions.

8.1 Choosing the “Optimum” Plan

As mentioned above, the execution plan generation algorithm enumerates a processing template
which identifies a family of logically equivalent query execution plans. FEach connected subtree of
edges in the processing template which includes all initial nodes and the final node is a valid plan.
But which is the best plan?

Section 7.1.2 defined an object manager interface, but our research does not address its im-
plementation. An implementation design would be highly dependent on the object representation,
the technique used to bind method code to objects, and other system parameters. Thus, although
we do not propose a specific cost function, we assume that the object manager is capable of using
oid-stream statistics to derive a cost for calls to its interface.

Appropriate oid-stream statistics might be stream cardinality and information about the classes
represented in the stream. For a given call, the object manager could derive a processing cost and
statistics for the resulting output oid-stream. A processing template could then be annotated with
cost information as follows.

Initially only leaf nodes (which are stream nodes) of the processing template would have stream
statistics associated with them. If the leaf nodes correspond to the leaf nodes of the original object
algebra query, then they represent the extent or deep extent of classes in the database and their
statistics are readily available. Otherwise the leaf nodes represent the output of a previous subtree
of object manager calls and the output oid-stream statistics of the appropriate subtree are attached.
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Working from leaf to root in the processing template, the object manager cost function is used
to assign a processing cost to each operator node as well as a set of stream statistics for the stream
node the operator feeds into. All operator nodes and stream nodes in the processing template can
be annotated with cost and statistical information in this fashion. The total cost of any specific
execution plan within the processing template is the sum of the operator costs which are included
in the execution plan’s subgraph. If time information is included in the cost function, then when
operator nodes execute in parallel, only the longest running operator should be included in the
sum.

Note that cost information can not be used to prune the search space of the processing template
generation algorithm. The search space of the algorithm is defined by the number of stream nodes
present in the processing template at the start of each pass. This value can only be affected by the
criteria used to define the “interesting permutations” which cause new operator and stream nodes
to be created.

8.2 Optimization of method executions

Our research concentrates primarily on the optimization of query primitives. Ideally, query op-
timization should be possible for queries which utilize user defined methods. But this is highly
dependent on the language used to define those methods. In the worst case, the only optimizations
possible are those provided by the compiler of the method implementation language. Examples of
such optimizations are inline subroutine expansion, removal of loop invariants, and efficient pipeline
and register usage.

One approach assumes that behavioral abstraction is maintained at the logical level, while a
structural object-oriented system exists at the lowest implementation level [GMS88]. Objects and
classes involved in a query are requested to reveal structural information by the query processor.
Revealed expressions which still contain encapsulated behavior are recursively requested to reveal
their equivalent (sequence of ) structural expressions. When the revealing process bottoms out, the
structural manipulation primitives are optimized by an extended relational query optimizer.

Another approach would be to use a purely functional language for user defined methods.
Expressions in such languages can be recursively decomposed to sequences of primitive data ma-
nipulation operations. These decomposed sequences can then be optimized using the techniques
described earlier.

Clearly, optimization of user defined methods is closely tied to the ability to reason about
expressions in the method implementation language and is a significant area for future research.

8.3 Dynamic Schema Modification

One issue that typically complicates query processing is dynamic schema modification. The schema
in an object-oriented database system varies according to the data model design decision discussed
before. In our model which treats objects as instances of a single abstract data type whose ex-
tension is captured in one class, the schema consists of the class (type) lattice. However, different
interpretations are possible as we discussed in earlier sections.

In our previous work and throughout this chapter, we assumed that the schema does not change
during the execution of a query. In other words, once the query processor receives a query, the
schema does not change until a response is retrieved. This may not be realistic, especially if the
data model uniformly treats everything as an object. Thus, query processing has to co-exist with
changes to the schema.
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Dynamic schema modification has been studied within the context of object-oriented database
systems. A comparative summary of this work is given in [NR89] which classsifies the types of
shchema changes as follows:

e “changing class definitiions, i.e., instance variables or methods,
e modifying the class lattice by changing the relationships between classes, and

e adding or deleting classes in the lattice.”

The interaction of these changes with query processing is a topic for future work.

8.4 Physical Optimization

This section is largely taken from Chapter 15 of [©V91]. Object storage and access is the respon-
sibility of the object manager. In addition to providing a suitable interface for the generation of
execution plans (as we discussed above), the object manager performs two other functions: physical
clustering of objects, and localization of objects. In general, the object manager is also respon-
sible for transaction management, but that’s beyond the scope of our current discussion. Object
clustering is the grouping of objects in the same memory extent, according to common properties,
for example, the same value of an attribute or subobjects of the same object. By minimizing the
number of memory extents to examine, fast access to clustered objects can be provided. Object
localization gives the location of an object based on its identifier or content (e.g., an attribute
value). It exploits object clustering information, possibly augmented with some form of indexing.
The object manager, based on the clustering and localization of objects, has to provide efficient
algorithms for implementing the interface operations.

As indicated before, relational databases can be used as object managers, but they are only
efficient at managing simple objects. The problem is made significantly more difficult in object-
oriented databases due to large atomic objects and complex objects. Large atomic objects are
quite frequent in new database applications. For instance, a digitized image in an image database
can require a few megabytes of storage. The object manager should be able to deliver only useful
portions of a large atomic object to the application program or ADT operation that needs it.
Complex objects may also be large because objects can be nested within each other using set and
tuple constructors to an arbitrary degree. The typical example, from CAD applications, is a VLSI
chip object that consists of several sections (e.g., 10), each consisting of many cells (e.g., 100), each
containing more than 1000 transistors. Although the number of atomic objects of a VLSI chip
(cells) is small (e.g., 100 bytes), the complex object may require several megabytes of storage. The
object manager must be able to access an object and its subobjects rapidly if the entire complex
object is needed. It must also provide efficient access to collections of subobjects without having
to read the large complex object. The management of complex objects is also made difficult by
object sharing, which permits each subobject to have more than one parent.

Storage techniques for relational databases may well be extended to support complex objects.
The philosophy of this approach is to retain as much of the relational model and its underlying
technology as possible. It applied initially to System R for CAD application support [LP83] and
more recently to POSTGRES [SR86], an extension of INGRES. With the relational model, complex
objects are decomposed into tuples (the subobjects). By treating tuple identifiers (TID) as attribute
values, the object manager can maintain the links between the subobjects composing an object.
An atomic object can be stored as a tuple (TID, atomic value). The nesting of a tuple ¢; within a
tuple ¢, is represented by storing the identifier of ¢; as an attribute of ¢,. The nesting of a set of
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tuples {#1,%3,...,t,} within a tuple ¢, can be represented by a binary relation containing the pairs
(TID of t,, TID of ¢;), with ¢ =1, ..., n.

This storage approach brings out the benefits of the relational model. The access to subobjects
stored in the same relation can be efficient if the clustering is appropriate. Furthermore, traditional
indexing on attribute values is possible. Object query processing may be simplified with this
approach. The conceptual query is first mapped into a relational query, which is expressed on
the stored relations by replacing path expressions with the corresponding joins. The relational
query can then be optimized using any relational query optimization technique. However, the
disadvantage of this approach is that access to an entire complex object requires joins on tuple
identifiers. Furthermore this approach is not sufficiently general since object identity is restricted
to tuples and atomic objects. Therefore, sharing of set objects at the conceptual level is difficult
to map at the physical level. Furthermore, whether or not all object-oriented query primitives may
be mapped to relational ones efficiently is a question.

The alternative approach is to develop special complex object storage techniques. These must
provide the capability of storing a complex object with its subobjects in the same memory extent.
The early hierarchical and network database systems partially provided this capability. In CODA-
SYL, restrictions are that a complex object must fit in a page and that records can only be shared
using their physical identifiers (called database pointers). These techniques have recently been
generalized to support nested relations and object-based models [KFC88]. Special attention has
also been paid to the storage of atomic objects of arbitrary size. In EXODUS [CDRS86], an atomic
object is a long byte sequence, which can be accessed in parts through a byte index. The storage
of arbitrarily complex objects is more involved because of object sharing. The main difficulty of
complex object storage with sharing is when the parent containing a shared object is deleted. In
this case, the shared subobject must be relocated with another parent, which can be an expensive
operation. A simpler solution would be to use the relational storage approach whenever objects
are shared. Another difficulty with this approach is indexing in order to access entire objects or
subobjects, since objects may be nested within other objects. A solution is to have path indexes
[MS86] that associate attribute values with paths to the objects.

With complex object storage, complex objects may be mapped more directly at the physical
level so that an object and its subobjects may be clustered in the same memory extent. In this
case the conceptual query is mapped into a query expressed on the stored objects in the algebra
for complex objects. The query processing algorithm could be similar to the exhaustive search
approach by commuting all joins of stored objects, and for each one, selecting the best access
method to the stored object. The only difference here is in the choice of the best access method
in the complex object. Since the access to a complex object may involve path expressions and
predicates on nested objects, the availability of path indexes is critical for efficiency.

9 Conclusions

In this chapter we discussed the issues that need to be considered in the development of query
models and in the implementation of query processors in object-oriented database systems. The
framework for the presentation is a query processing methodology that is depicted in Figure 1. One
point that is evident from the foregoing discussion is the necessity for significantly more research
in the development of query models and languages for object-oriented database systems. The ideas
in this chapter are only preliminary points that arise from our work in this area. More work on
query models and processing techniques is needed before a more definitive statement can be made.

Since we relied heavily on the methodology of Figure 1, it is important to comment on its
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feasibility. The fundamental criticism has to be the linearity of processing. The methodology gives
the impression that the steps can be followed one after the other to arrive at an execution plan
which is “optimal.” This certainly is not true. The transformation step will generate a number of
different algebra trees and the plan generation step will produce more than one execution plan for
each of these trees. It is important to note that a strategy has to be followed which cycles back and
forth between the logical algebra optimization phase and the access plan generation phase. This
would allow interleaving transformations which change the shape of the query with the introduction
of access plan subtrees possibly resulting in more efficient plans.

One important area is to investigate how extensions to the data model can be integrated
throughout the entire query processing methodology. For instance, our work has omitted recursive
queries which are particularly important in knowledge base systems. Primitive operations to sup-
port recursion as well as others such as shallow and deep equality [KC86], additional predefined
value types other than atomic, set or structural (e.g., tuple values [AGOP88]) or parametric types
(e.g. Set[t] [S790]) would significantly enhance the usefulness of the model. Fach addition to the
basic data model must be propagated through the methodology of Figure 1. This means it must
be incorporated into the calculus and algebra, type inference rules need to be developed, logical
equivalences must be proven and the object manager interface must be extended. Performing this
exercise for several extensions would provide insight into the tradeoffs between maintaining the
proposed query processing methodology and completeness of the data model.

Improving the query languages is another important topic. The object calculus, while expressive,
is not user friendly. Design of a user query language, perhaps an object SQL [Lyn88, Ont89], would
enhance usability and uncover many programming language integration issues. The object algebra
can be extended in two respects. The first is to provide support for object creating operations. This
raises many philosophical as well as technical issues. For example, what is the class of an object
created by such an operation and what methods are defined on it? Should such objects, and their
new class, persist after execution of the query? The second extension to the object algebra involves
support for universal quantification. This could be achieved by allowing quantification in predicates
or by defining the algebra to operate on tuples of objects and providing a division operator similar
to that of the relational algebra. Both approaches may affect the scope of transformations possible
during logical optimization and the generation of access plans.

Designing an object manager implementation is another important area of research. Such a
design must address many related issues such as object representation, physical partitioning of log-
ical entities such as classes and their extents, object buffering, indexes, and how and when method
code is bound to objects. The design also is affected by the underlying hardware architecture, e.g.,
uni-processor or multi-processor, and the available operating system services.
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