
On Separation between Interface, Implementation, and
Representation in Object DBMSs

Yuri Leontiev, M. Tamer Özsu, Duane Szafron
Laboratory for Database Systems Research

Department of Computing Science
University of Alberta

Edmonton, Alberta, Canada T6G 2E1
yuri,ozsu,duane @cs.ualberta.ca

Abstract

In this paper we present a model that supports a clean separation between the concepts of in-
terface, implementation, and representation. We present several problems that are difficult to solve
in the absence of such separation and describe how the proposed model can be used to provide a
solution. We also describe the principles that can be used to implement the proposed model in an
existing object-oriented database management system.

In the past two decades, object-oriented technology has been extensively used in design and
development of database management systems. This technology has been introduced to meet the
challenging requirements posed by current applications.

One of the major advantages of object-oriented software technology is its strong support for
code reuse. While code reuse is important in application programs, it is even more important
in database programming. Data stored in many databases far outlives the application programs
originally written to process it. Therefore, incremental application development is the only strategy
that helps to avoid huge reinvestments in the development of new applications.

Object-oriented technology supports code reuse via the concept of inheritance, where a subclass
(subtype) automatically reuses the code written for its superclasses (supertypes). Major object-
oriented design strategies associate classes (types) with real-world concept descriptions, thus pro-
viding support for concept-oriented modeling.

Surprisingly enough, this design principle limits code reuse since in current object-oriented
database programming languages and systems, a class (type) describes not only the concept it
denotes, but also the interface, implementation (code), and representation (data format) of its in-
stances. Therefore, it is impossible to use the same implementation or representation for two unre-
lated concepts without repeating the code related to it.

0Copyright 1998 IEEE. Published in the Proceedings of TOOLS-26’98, August 3-7, 1998 in Santa Barbara, Califor-
nia. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works, must be obtained from the IEEE. Contact: Manager, Copyrights and
Permissions / IEEE Service Center / 445 Hoes Lane / P.O. Box 1331 / Piscataway, NJ 08855-1331, USA. Telephone: +
Intl. 908-562-3966.

1 INTRODUCTION 2

The problem described above stems from the fact that the concepts of subtyping and subclassing
are unified in most of the current database systems (as discussed in Section 2). A clean separation
of these concepts allows for much better code reuse, as will be shown in Section 5.

Some of the important problems that can be addressed with the help of the mechanism proposed
in this paper include extensibility, incremental data evolution, and foreign data integration.

1.1 Extensibility

Modern database systems often provide support for schema extension and manipulation. The
ability of a programmer or database administrator to introduce new classes (types) into an exist-
ing schema becomes increasingly more important as new application areas arise. For example,
CAD/CAM applications generally require the addition of a new class (type) into the schema once
a new component is introduced into the design process. Medical applications also require schema
changes as new diagnostic equipment and new, non-standard methods of treatment become avail-
able.

While schema evolution capabilities are present in most current database systems, both tradi-
tional and object-oriented, there is one “forbidden” section of the schema that severely restricts
possible extensions. This section consists of the so-called primitive classes (types). It usually in-
cludes boolean, numeric, character, and string types. Dates and certain multimedia data types are
sometimes included in this section as well. Purely object-oriented systems (such as GemStone
[5]) usually allow the programmer to define new methods for the primitive types, but disallow the
addition of new primitive types. Hybrid systems (such as ObjectStore [16]) support the addition
of new primitive types (sometimes termed as value types), but severely limit the addition of any
user-defined methods that work on them, and disallow user-defined placement of the newly de-
fined primitive types in the type (class) hierarchy. Traditional database systems completely seal the
primitive types from any kind of extension or modification.

These restrictions have an obvious justification: representation of primitive types as well as their
operations are internally optimized, and schema changes that might affect the correctness of such
optimizations are disallowed. However, the ability of a database management system designer to
foresee all types that need heavy optimization is questionable. For example, just a decade ago
addition of an audio or an image type into the primitive type system would not even be considered,
while nowadays such additions seem to be almost inevitable. There are two major reasons. First,
operations on audio and video data need to be heavily optimized. Second, the audio and video
formats (representations) are specified by standards which are not under the control of the database
designer. The specifics of a particular application might also require an optimization of some non-
primitive types. For example, a scientific application might need to optimize matrix or complex
number types, so a special representation is necessary.

It is therefore desirable for a database system to allow the addition of new primitive, heavily
optimized types and to support the optimization of types that already exist in the system. Such a
task can be achieved by the introduction of low-level primitives that will be discussed in Section 5.

1.2 Incremental data evolution

One of the major effects of schema evolution on the database is the necessity to perform data
evolution. For example, changing the attribute “Name” of a Person class to three attributes (“First-
Name”, “SecondName”, and “MiddleName”) requires changing all instances of this class in the
database. The straightforward approach to this problem is to find all instances of the changed class

2 RELATED WORK 3

and change them right after the schema change is made. However, this approach suffers from two
major drawbacks: first, it is very inefficient and makes the database virtually inaccessible while the
change is being made. Second, the programs that were written for the old schema will not work for
the new one. On the other hand, incremental data evolution (or lazy data evolution), only changes
objects when they are requested by an application. This approach eliminates the first of these draw-
backs, but still suffers from the second one. The reason for this is the fact that an old application
might create new objects in the old form [13]. Thus, a mechanism that allows coexistence of old and
new data is required to overcome this drawback. Such a mechanism will be described in Section 5.

1.3 Foreign data integration

One of the hot topics in today’s database systems research is that of interoperability [25], [14].
Since enormous amounts of data are currently stored in traditional databases and plain files, the abil-
ity of new database systems (including object-oriented ones) to use such “foreign” data is extremely
important. However, support for such interaction is quite limited in current database systems. An
indirect confirmation of this fact can be seen in the number of frameworks proposed to achieve
this task (e.g. [20], [6], [4], and many others). These frameworks are not a part of any database
system but rather they are built on top of such systems. Most of the proposed frameworks are
object-oriented or object-based, which supports the opinion that an object-oriented database system
can have built-in facilities for interoperability.

While the interoperability problem is not the topic of this paper, the mechanisms described here
can be used to support foreign data integration in object-oriented databases. We believe this to
be an important step towards the development of truly interoperable and extensible object-oriented
database management systems.

1.4 Organization of the paper

The paper is organized as follows: Section 2 reviews current database systems and programming
languages from the point of view of the separation between interface, implementation, and repre-
sentation. In Section 3 a model that provides such separation is proposed and an example of its
use is presented. Section 4 provides a description of dispatch principles in the presented model.
Then Section 5 shows how the model proposed in the paper can solve the problems discussed in the
current section. Section 6 describes a method that can be used to shield an ordinary user from most
of the conceptual complexities of the proposed model and outlines a way that the model can be
implemented in a sufficiently powerful database management system such as ObjectStore. Finally,
Section 7 concludes the paper and outlines the directions for future research.

Before we introduce the main concepts of the proposed model, we will discuss the issues related
to the separation between the notions of interface, implementation, and representation in current
database systems and object-oriented programming languages. We start with the controversy sur-
rounding the meaning of the notions of type and class, which are considered to be central to object-
oriented systems. Both type and class are used by different researchers to refer to one or more of
the following notions:

1. A real-world concept (CONCEPT)

2 RELATED WORK 4

2. Programmatic interface (INTERFACE)
3. Implementation of the programmatic interface (IMPLEMENTATION)
4. Internal machine representation (REPRESENTATION)
5. A factory for creation of instances (FACTORY)
6. The maintainer of the extent (the set of all instances) (EXTENT)
For example, in GemStone [5], class refers to all of the above notions. In ObjectStore [16], type

refers to the notions (INTERFACE) and (REPRESENTATION), while class refers to the notions
(CONCEPT), (IMPLEMENTATION) and (FACTORY). Alternately, the type of an object of a par-
ticular class is implicitly defined by that class, so it may also be argued that class in ObjectStore
actually refers to all notions except (EXTENT). In [17], type refers to the notions (INTER-
FACE) and (REPRESENTATION), while class is a special kind of type that refers to the notions
(CONCEPT) through (EXTENT). In Iris [10], type refers to the notions (CONCEPT), (REPRE-
SENTATION), (FACTORY), and (EXTENT); the (INTERFACE) and (IMPLEMENTATION) are
defined with respect to the type but are not a part of the type. In VODAK [1] (which is built on
top of ObjectStore but has a different data model), type refers to the notions (INTERFACE), (IM-
PLEMENTATION), and (REPRESENTATION), while class refers to the notions (CONCEPT) and
(FACTORY). Type in VODAK has two components: the interface, referring to the notion (INTER-
FACE), and the implementation, referring to the notion (IMPLEMENTATION). Both parts of the
VODAK type can define the representation. In relational database systems, type refers to the notions
(INTERFACE) and (REPRESENTATION).

The above analysis shows that none of these systems (except for VODAK) distinguishes between
the notions (INTERFACE), (IMPLEMENTATION), and (REPRESENTATION), i.e., between the
programmatic interface, its implementation, and the internal representation. The separation in VO-
DAK is only partial, since both components of the VODAK type do not exist independently of the
type they belong to. The database model AQUA [19] completely separates the notions (INTER-
FACE) and (REPRESENTATION); however, the issues related to the notion of (IMPLEMENTA-
TION) and to dispatch are not fully developed.

Surprisingly, there seems to be much more consensus on the meaning of the derived terms subtyp-
ing and subclassing ([15], [24]). Subtyping usually refers to the relationship between the interfaces
(INTERFACE), while subclassing refers to the relationship between representations (REPRESEN-
TATION) and implementations of the interface (IMPLEMENTATION). While these two relation-
ships are often unified, there are languages that distinguish between them (e.g. [7], [8], [21], [23],
[3], [2], [9], and [11]).

Some object-oriented programming languages do provide much cleaner separation between in-
terface and implementation. Languages Cecil [7] and its ancestor BeCecil [8] provide a clean
separation between these two notions, as well as between the notions of subtyping and subclass-
ing. However, no separation between representation and implementation is provided. Emerald
[21] also distinguishes between types (interfaces) and classes (implementations), but does not sup-
port implementation inheritance (subclassing). Sather [23] distinguishes between interface and
implementation inheritance, but does not completely separate interface (type) from implementation
(class). Lagoona [11] completely separates object interface (called a category) from representation
(type). However, implementation (a set of methods) is tied to the representation (type). Inheritance
in Lagoona works differently for all of these three concepts: interfaces (categories) support multi-
ple inheritance, representations (types) support single inheritance, and implementations (methods)
can not be inherited. Theta [9] is another language that cleanly separates interface (type) from

3 THE MODEL 5

implementation (class), but ties together implementation and representation. Other languages that
provide partial separation between interface and implementation include TM [3] and Galileo [2].

In the next section, we will describe a model that completely separates interface, implementa-
tion, and representation by providing implementation types that are used to describe the internal
representation of data and implementation functions that operate on them.

In the model we propose, the separation between interface, implementation, and representation
is total. We will use the term type to refer to the notions (CONCEPT) and (INTERFACE), the term
implementation type to refer to the notion (REPRESENTATION), and the term class to refer to the
notions (FACTORY) and (EXTENT). The notions of (EXTENT) and issues related to extent main-
tenance are marginal in traditional programming languages; however, they are crucial for databases
and persistent programming. The notion (IMPLEMENTATION) is supported by behavior – func-
tion – implementation function bindings to be discussed later. Thus, a type (denoted by the prefix
T) defines a programmatic interface, while an implementation type (denoted by a prefix IT) de-
fines an internal representation. When a type meets an implementation type, a class (denoted by the
prefix C) capable of producing new instances is created. Type and implementation type hierarchies
are totally independent. Usually, there is one-to-one correspondence between types T X, implemen-
tation types IT X, and classes C X. However, it is possible to use the same implementation type for
classes of unrelated types. This occurs when two unrelated types use the same or related internal
representations. It is also possible to implement a type using more than one implementation type.
Therefore, objects of the same type can have different internal representations.

Example 3.1 Let us assume that we are dealing with the banking system of a bank called Mega-
Bank that has two types of accounts: chequing and savings. It is possible to draw a cheque on a
chequing account, while drawing a cheque on a savings account will result in a substantial service
charge. An account stores the balance (and possibly some other information, such as owner and
account number). It is also possible to have a term deposit in MegaBank. For a term deposit, the
system stores the same information as for an account with the addition of the term length. We will
also assume that MegaBank has a partner bank MiniBank and can handle its accounts by interac-
tion with the banking system of MiniBank. In order to model this situation, we will define types
T Account, its subtypes T ChequingAccount and T SavingsAccount, and an unrelated
type T TermDeposit. We will also define implementation types IT Account and its imple-
mentation subtype IT TermDeposit to handle MegaBank’s accounts, and an implementation
type IT PartnerAccount to handle MiniBank’s accounts. Note that while IT TermDeposit
defines only one field (attribute), data of this implementation type will have at least two fields (at-
tributes) since at least one field is inherited from IT Account. Type definitions for this example
are shown in Figure 1, and implementation type and class definitions in Figure 2. Note that the type
and implementation type hierarchies here are independent of each other; any type can combine with
any implementation type to produce a class.

The actions in our model are performed by behaviors (messages; denoted by the prefix B) ap-
plied (sent) to objects. When a behavior is applied, it is dispatched to an appropriate function
(denoted by the prefix F). The dispatch is done according to the behavior-to-function bindings1.
For instance, in the above example the behavior B balance is bound to the function F balance on

1The particulars of the dispatch mechanism will be discussed in Section 4.

3 THE MODEL 6

Figure 1. Type definitions for the banking system example

3 THE MODEL 7

the type T Account. An ordinary (high-level) function consists of behavior applications (e.g.
an anonymous function bound to the behavior B withdraw on the type T Account). High-level
functions are independent of implementation types of their arguments as they are concerned with
types (interfaces) only. From the software engineering perspective for code maintenance purposes
it is best to make as few functions as possible dependent on the actual implementation (i.e. im-
plementation type). However, when the actual data representation must be accessed by a function,
then that function must be bound to an implementation function defined on the implementation type
describing the data representation to be accessed. For example, the function F balance is bound
to an anonymous field-access implementation function on the implementation type IT Account.
The same function is bound to a low-level implementation function on the implementation type
IT PartnerAccount. The implementation functions are written in a lower-level language that
is capable of accessing data, thus providing support for low-level optimization and interoperability.

In our model, types define behaviors. Functions are bound to behaviors on types, and sub-
types inherit behaviors and bindings from their supertypes. In the above example, the behavior
B balance is defined on the type T Account and it is also bound to the function F balance on that
type. This behavior along with its binding is inherited by the types T ChequingAccount and
T SavingsAccount and is used in the code of the functions bound to the behavior
B drawCheque on these types.

Types together with behaviors and high-level functions provide a traditional object-oriented
framework that supports inheritance, overriding, and dynamic binding. For example, the behavior
B drawCheque originally defined on the type T Account is implemented differently for chequing
and savings accounts. Thus, our model is an extension of the traditional object-oriented models
rather than a substitute for them. As will be shown in Section 6, this allows us to provide an or-
dinary user with a familiar framework while giving the database administrator all the power of the
presented model.

Figure 2. Implementation type and class definitions for the banking system example

Implementation types define functions and bind implementation functions to them. Functions
and implementation function bindings are inherited by implementation subtypes of a particular
implementation type. The structure of the internal data representation is also inherited between im-
plementation types, so that an implementation type always has at least the fields that are defined by

3 THE MODEL 8

its implementation supertypes. For example, the implementation type IT TermDeposit inherits
the function F balance and the field it accesses from the implementation type IT Account. The
data of the implementation type IT TermDeposit have the same fields as the data of the imple-
mentation type IT Account plus the field that stores the term length. The latter is accessed by an
anonymous field access implementation function bound to the function F term.

The implementation type IT PartnerAccount illustrates additional capabilities of imple-
mentation types. The implementation of the function F balance by this implementation type is
designed to access the remote MiniBank system. The code is written in a lower-level language
(in this case, a dialect of C++). It uses the field remoteNumber that contains “foreign” data.
This field can not be directly accessed by the high-level code. Note that while the implementa-
tion and representation of the implementation types IT Account and IT PartnerAccount
are fundamentally different, they are both used to implement the interface defined by the types
T ChequingAccountand T SavingsAccount. The same high-level code transparently deals
with both ordinary and remote accounts.

The banking system example illustrates the need for the total separation of type and imple-
mentation type hierarchies. The interface defined by the type T ChequingAccount has two
unrelated implementations: the one defined by the implementation type IT Account and the
one defined by the implementation type IT PartnerAccount, yet the high-level code is trans-
parently reused for both of them. At the same time, unrelated interfaces defined by the types
T ChequingAccount and T TermDeposit are implemented by related implementation types
IT Account and IT TermDeposit that allows the latter to transparently reuse the field defi-
nitions of the implementation type IT Account. It would not be possible to achieve the degree
of code reuse illustrated by this example if the type and implementation type hierarchies were not
totally independent of each other.

A class can use any type T X and any implementation type IT X. The only restriction here is the
requirement that if the type T X defines or inherits a behavior B alpha, then there exists one and
only one most specific binding of B alpha to a function F alpha, and there exists one and only one
most specific binding of F alpha to an implementation function IF alpha on the implementation
type IT X (see Section 4 for the definition of the most specific binding). In other words, when a
class is created, the system makes sure that the dispatch of every behavior defined on, or inherited
by its type, is unambiguous and yields an implementation function.

To sum up, the model we are proposing consists of:
1. The set of types T with a partial order (subtyping). A type T X can define a set of be-

haviors (). It can also bind behaviors to functions
()2.

2. The set of implementation types IT with a partial order (implementation subtyping). An
implementation type IT X can define a set of functions
(). It can also bind functions to implementation
functions (). An implementation type can
also define additional data structures3.

3. The set of classes C. Each class C X has an associated type
and an associated implementation type .

4. The set of behaviors B.
2An example of a behavior that is defined on a type but is not bound on it is the behavior B drawCheque defined on

the type T Account.
3For example, the field remoteNumber in the implementation type IT PartnerAccount.

4 DISPATCH 9

5. The set of functions F. A function may or may not have high-level code.
6. The set of implementation functions IF. An implementation function either has low-level

code or it is a field access/storage implementation function.
7. The set of objects O. Each object belongs to a single class ().

The consistency condition that must be satisfied is:
For each class C X C, for each behavior B alpha defined on the type

or one of its supertypes, the cardinality of the set
(defined in Section 4) is 1, and the only element of this set, function

F alpha, satisfies the following: Either the set
has cardinality 1, or it has cardinality 0 and the function

F alpha has high-level code.
This consistency condition ensures that any behavior applicable to an object can be unambigu-

ously dispatched on the class of that object.
In this section, we have presented a model in which a clean separation between interface, imple-

mentation, and representation is achieved. In the next section, we will discuss the principles behind
behavior (message) dispatch in the proposed model.

There are currently two major dispatch techniques: the traditional, receiver-only dispatch (single
dispatch) and a newer, more complicated but also more powerful, multiple dispatch that chooses the
function (method) according to the types of all message arguments. In this paper, we will consider
single dispatch only. The treatment of multiple dispatch in the proposed model can be found in [18].

In fact, the space of design decisions here is much wider than single-versus-multiple dispatch.
Since type and implementation type hierarchies are completely independent, it is possible, for ex-
ample, to provide multiple dispatch on types while providing only single dispatch on implemen-
tation types. The same is true of other design decisions related to the construction of the type
hierarchy and inheritance, such as single-versus-multiple subtyping or the methods for conflict res-
olution (disambiguating ambiguous behavior (function) bindings).

Figure 3. Algorithm for finding most specific bindings

Theoretically, in the proposed model, the function is chosen according to the behavior being
applied and the receiver type, and the implementation function is then chosen according to the
function and the receiver’s implementation type (two-phase dispatch). However, since both type
and implementation type are known by a class, it is possible to implement this theoretical model by
a single-phase dispatch. We will discuss this issue further in Section 6.

4 DISPATCH 10

T_1
B_alpha -> F_1

B_alpha -> {F_1}

T_2
B_alpha -> F_2

B_alpha -> {F_2}

T_3

B_alpha -> {F_1}

T_4

B_alpha -> {F_2}

T_5
B_alpha -> F_3

B_alpha -> {F_3}

T_6
B_alpha -> F_4

B_alpha -> {F_4}

T_7

B_alpha -> {F_2, F_4}

T_8
B_alpha -> F_5

B_alpha -> {F_5}

Figure 4. Inheritance example

Since it is possible that there is more than one binding
of a particular behavior inherited or defined by a partic-
ular type, it is important to know which binding prevails.
The same situation occurs for function-to-implementation
function bindings. The process used to pick a binding de-
fines the semantics of interface and implementation inher-
itance respectively.

That is, the behavior-to-function bindings are defined
and inherited along the type hierarchy, while function-to-
implementation function bindings are defined and inher-
ited along the implementation type hierarchy. The mech-
anisms used in these two cases are identical, therefore we
will only describe the type inheritance mechanism.

Let us consider a particular type T X and a particular
behavior B alpha. The set of the most specific bindings
is then determined by the algorithm depicted in the Fig-
ure 3. This is the set of bindings that are not overridden
in the inheritance hierarchy. If it is empty, the behavior
B alpha is inapplicable to the receiver of type T X (mes-
sage not understood). If the set has a cardinality of 1, the
only function in the set is chosen. If the set has a cardi-
nality which is greater than 1, the behavior application is
ambiguous.

An example of behavior-to-function binding inheri-
tance is depicted in Figure 4. Each type is represented by a box divided into three parts: the
upper part shows the name of the type, the middle part shows explicit bindings for that type, and
the lower part depicts the set of the most specific bindings derived by the algorithm. All bindings
are given for a single behavior B alpha. Note that the type T 7 has two most specific bindings and
thus cannot be used to define any class since otherwise the consistency constraint would be violated.
However, its subtype T 8 can be used to define a class as it has a single most specific binding for
the behavior B alpha.

Thus, the consistency condition described in the previous section ensures that a legal behavior
application can always be dispatched unambiguously. The same algorithm is used when a function
is dispatched on the implementation type of its receiver to yield an implementation function.

If a function F alpha is written in a high-level language (e.g. the function attached to the behavior
B drawCheque on the type T ChequingAccount in Figure 1), such a function is applicable to
objects irrespective of their implementation types. This is treated as an association between the
function F alpha and an anonymous implementation function IF anonymous on the implementation
type IT , which is the supertype of all implementation types in the system. Such a treatment
allows us to use the dispatch model already presented with no modifications. It also corresponds to
the intuition that a high-level function does not care about the implementation types of its receiver
and other arguments.

5 DISCUSSION 11

In this section, we will describe how the model introduced in this paper can help to solve the
problems described in Section 1.

We will start with the problem of code reuse. The model proposed in this article cleanly sep-
arates interface from implementation and representation. Since only types are used to specify
variables in high-level (function) code, such code is reusable without modifications for all im-
plementation types. In other words, the high-level code is totally independent of underlying ma-
chine representation. For instance, the code written for the type T Account and its subtypes
T ChequingAccount and T SavingsAccount in Example 3.1 works for both ordinary and
remote accounts.

The ability to keep high-level code intact when the underlying implementation type hierarchy
changes also helps to provide a very high degree of extensibility. For example, it is possible to
provide a highly optimized version of complex numbers by introducing a new implementation type
and a class that provides optimized implementation functions for all operations on the complex
numbers. The application design can thus proceed in two stages: first, a prototyping stage, when
all the necessary types are defined and implemented by the default mechanism (which will provide
capabilities for fast prototyping, like the one used in Smalltalk [12]). After the prototype is tested
and its performance is measured, new implementation types for the types that need optimization
are developed and integrated into the system. It is important to note that at this stage the (high-
level) code that was developed in the first stage is kept intact, significantly reducing the possibility
of introducing new bugs during optimization. This approach can also be used to introduce new
“primitive” types into the system, such as multimedia types that might not have been provided as
“primitive” by the system kernel. These new primitive types will have exactly the same status as
the kernel ones.

The transparent introduction of new implementation types for the types that already exist in
the system can also be used to support incremental data evolution. As has been argued in Sec-
tion 1, coexistence of old and new data has to be supported if we want to continue using old code
during and after incremental data evolution. This can be achieved by introducing the “new” im-
plementation type describing the new data structure, while keeping the “old” implementation type
in the system. This way, both old and new high-level code will be able to use old as well as
new objects since the dispatch mechanism will choose the correct implementation function (old
or new) every time a behavior is applied to a particular object. For example, if the banks Mega-
Bank and MiniBank from Example 3.1 merge, the objects representing remote accounts (classes
C PartnerChequingAccount and C PartnerSavingsAccount) will be gradually transformed to
the objects representing ordinary accounts (classes C ChequingAccount and C SavingsAccount,
respectively). Both representations can coexist as long as the implementation of the remote (Mini-
Bank) system access is changed to access the local system.

A similar method can be employed to provide transparent foreign data integration. An exam-
ple of such integration can be seen in the definitions of remote account implementation types
and classes in the MegaBank system example (Section 3). High-level code written for account
types does not depend on the fact that some accounts are remote ones and the data related to
them have to be obtained via interaction with a remote system. In fact, it is possible that the im-
plementation type IT PartnerAccount as well as the classes C PartnerSavingsAccount and
C PartnerChequingAccount are introduced at the time when MegaBank establishes partnership
with MiniBank rather than at the time the database is created. The introduction of the above entities
does not affect the code written for account types; it is still valid and works the same way as before.

6 IMPLEMENTATION NOTES 12

In this section, we have outlined the ways in which the proposed model can help in solving the
problems described in Section 1. In the next section we will consider the method of shielding an
ordinary user from the internal complexity of the proposed model. We will also show how the
proposed model can be implemented in an existing object-oriented database management system.

The implementation type mechanism is designed primarily for low-level tasks. Thus, it is possi-
ble to shield an ordinary user from the complexities related to the existence of two independent type
systems. The user will only be able to deal with types, classes, behaviors, and functions written in
high-level code. A special keyword has to be provided to allow the user to specify a function as
“stored”. Then, the default system mechanism will create appropriate implementation types as slot
lists, where the number of slots is equal to the number of user-defined stored functions for the given
class. From the user perspective, the behavior of the system will resemble that of the Smalltalk
run-time environment.

On the other hand, a database administrator will be able to use all the capabilities of the user-
defined implementation type mechanism. The changes made by the system administrator to the
implementation of types will be transparent to the ordinary users, since high-level code (the only
code the users are allowed to write) is independent of the underlying implementation type system.
The same is true of the type system the user sees and deals with.

While the ability to cleanly separate interface from implementation and representation at the
language level has many advantages, the model presented in this paper can also be implemented in
any sufficiently powerful language or database system. The features that are required are:

1. Support for multiple inheritance
2. The ability to support low-level optimized user code

The C++ language [22] and the ObjectStore DBMS [16] satisfy these requirements. The following
is a description of design principles that can be used to gain many of the advantages of the proposed
model in ObjectStore.

We map types, implementation types, and classes to C++ classes, behaviors to C++ method dec-
larations, implementation functions to C++ method definitions, and functions to protected meth-
ods. More precisely, types map to abstract C++ classes with no attributes. Behavior-to-high-level
function bindings on types correspond to non-abstract method definitions on these classes. Imple-
mentation types correspond to abstract C++ classes that can define attributes and protected methods
that correspond to function-to-implementation function bindings. C++ subclassing between C++
classes corresponding to types (implementation types) represents subtyping (implementation sub-
typing). The C++ classes that represent classes in our model have no attributes and no methods of
their own, they just inherit from both the C++ class representing their type and the C++ class repre-
senting their implementation type. The code in C++ classes corresponding to types is independent
of the implementation type hierarchy with many of the advantages described in this paper.

Having described principles that can be used to implement the proposed model in an existing
database system, we now turn to the question of the price we have to pay for the additional func-
tionality provided by our model. First, a price is paid due to the conceptual complexity of the model.
However, this complexity can be shielded from an ordinary user, as described above. Second, the
proposed model may have a negative impact on the performance of the dispatch mechanism. How-
ever, this impact will only be felt in systems that utilize a run-time lookup dispatch strategy. Systems

7 CONCLUSIONS 13

that do not allow run-time schema modifications and use table-based dispatch, such as ObjectStore,
BeCecil, and many others, will not suffer from any negative impact4. On the other hand, if run-time
schema modifications are allowed and run-time lookup is used, the straightforward approach to the
implementation of dispatch in the proposed model can decrease performance by a factor of 2 (in-
stead of dispatching on a type, we now have to dispatch on a type and then on the implementation
type). The more the original dispatch process is optimized, the less it will suffer from the negative
impact of the new model. Therefore we feel that the increased functionality of the model outweighs
the potential impact on performance.

In this paper we have described several problems related to various aspects of data representa-
tion in current object-oriented database systems. Following the analysis of existing systems and
languages, we have presented a model that supports a clean separation between interface, imple-
mentation, and representation. We have also described the principles of behavior (message) dis-
patch in the proposed model.

We have also shown how such a model can be used to solve the problems described in Section 1.
Finally, we have presented a mechanism that can be used to shield an ordinary user from the in-
ternal complexity of the model along with a method to implement the proposed model on top of
a sufficiently powerful database management system such as ObjectStore and a discussion of the
performance impact of the proposed model.

We believe that the additional functionality provided by the proposed model can have a signifi-
cant impact on the development of interoperable, extensible, and reusable object-oriented DBMSs.
The improved support for code reuse, extensibility, and foreign data integration provided by the
model will help in the design and implementation of such systems. At the same time, the part of
the model visible to an ordinary user will provide him with a familiar object-oriented framework.

The future research directions include static consistency checking of behavior and function def-
initions, addition of parametric types (implementation types) to the model, and extension of the
machine representation definitions.

[1] VODAK V4.0 User Manual, April 1995. GMD Technical Report No. 910.
[2] Antonio Albano, Luca Cardelli, and Renzo Orsini. Galileo: A strongly-typed, interactive conceptual language.

ACM Transactions on Database Systems, 10(2):230–260, June 1985.
[3] René Bal, Herman Balsters, Rolf A. De By, Alexander Bosschaart, Jan Folkstra, Maurice Van Keulen, Jacek

Skowronek, and Bart Termorshuizen. The TM Manual, December 1993. Version 2.0 revision C.
[4] A. Bouguettaya, M. Papazoglou, and R. King. On building a hyperdistributed database. Information Systems,

20(7):557–577, November 1995.
[5] Robert Bretl, David Maier, Allen Otis, Jason Penney, Bruce Schuchardt, Jacob Stein, E. Harold Williams, and

Monty Williams. The GemStone data management system. In Won Kim and Frederick H. Lochovsky, editors,
Object-Oriented Concepts, Databases and Applications, chapter 12. Addison-Wesley, 1989.

[6] W. C. Burkett and Y. W. Yang. The STEP integration information architecture. Engineering with Computers,
11(3):136–144, 1995.

[7] Craig Chambers and Gary T. Leavens. Typechecking and modules for multimethods. ACM Transactions on Pro-
gramming Languages and Systems, 17(6):805–843, November 1995.

4The proposed implementation in ObjectStore described above has the same dispatch performance as any other ap-
plication written in ObjectStore, i.e., the dispatch performance is not affected.

REFERENCES 14

[8] Craig Chambers and Gary T. Leavens. BeCecil, A core object-oriented language with block structure and multi-
methods: Semantics and typing. In FOOL 4, The Fourth International Workshop on Foundations of Object-Oriented
Languages, Paris, France, January 1997.

[9] M. Day, R. Gruber, B. Liskov, and A. C. Myers. Subtypes vs where clauses: Constraining parametric polymor-
phism. SIGPLAN Notices, 30(10):156–168, October 1995.

[10] D. Fishman. Overview of the Iris DBMS. In Won Kim and Frederick H. Lochovsky, editors, Object-Oriented
Concepts, Databases and Applications, pages 219–250. Addison-Wesley, 1989.

[11] Michael Franz. The programming language Lagoona — A fresh look at object-orientation. Software — Concepts
and Tools, 18:14–26, 1997.

[12] A. Goldberg and D. Robson. ST-80, The Language. Addison-Wesley, 1989.
[13] Urs Hölzle. Integrating independently-developed components in object-oriented languages. In Proceedings of

ECOOP’93, 1993.
[14] Dimitri Konstantas. Object oriented interoperability. In Proceedings of the Seventh European Conference on Object

Oriented Programming (ECOOP’93), July 1993.
[15] W. R. LaLonde and J. Pugh. Subclassing subtyping is-a. Journal of Object-Oriented Programming, 3(5):57–

62, January 1991.
[16] C. Lamb, G. Landis, J. Orenstein, and D. Weinreb. The ObjectStore database management system. Communications

of the ACM, 34(10):50–63, October 1991.
[17] C. Lécluse, P. Richard, and F. Vélez. , an object-oriented data model. In François Banchilon, Claude Delobel,

and Paris Kanellakis, editors, Building an Object-Oriented Database System: The Story of , 1992.
[18] Yuri Leontiev, M. Tamer Özsu, and Duane Szafron. On separation between interface, implementation, and repre-

sentation in object DBMSs. Technical Report TR 98-02, Department of Computing Science, University of Alberta,
January 1998.

[19] Theodore W. Leung, Gail Mitchell, Bharathi Subramanian, Bennet Vance, Scott L. Vanderberg, and Stanley B.
Zdonik. The AQUA data model and algebra. Technical Report CS-93-09, Brown University, 1993.

[20] L. Liu and C. Pu. An adaptive object oriented approach to integration and access of heterogeneous information
sources. Distributed and Parallel Databases, 5(2):167–205, April 1997.

[21] Rajendra K. Raj, Ewan Tempero, Henry M. Levy, Andrew P. Black, Norman C. Hutchinson, and Eric Jul. Emerald:
A general-purpose programming language. Software Practice and Experience, 21(1):91–118, January 1991.

[22] B. Stroustrup. The C++ Programming Language. Addison-Wesley, 1991.
[23] Clemens Szypersky, Stephen Omohundro, and Stephan Murer. Engineerig a programming language: The type and

class system of Sather. Technical Report TR-93-064, The International Computer Science Institute, November
1993.

[24] Antero Taivalsaari. On the notion of inheritance. ACM Computing Surveys, 28(3):439–479, September 1996.
[25] P. Wegner. Interoperability. ACM Computing Surveys, 28(1):285–287, March 1996.

