
1

A Visual Query Facility for Multimedia Databases*

Ghada El-Medani, M. Tamer Özsu, Duane Szafron, Chiradeep Vittal
Laboratory for Database Systems Research

Department of Computing Science
University of Alberta
Edmonton, Alberta
Canada T6G 2H1

{ghada, ozsu, duane, vittal}@cs.ualberta.ca

Abstract

This paper presents a visual query facility prototype developed for News-
on-demand, a multimedia news application. The graphical user interface
provides three major facilities for users of this application: presentation,
navigation and querying of multimedia news documents. The main focus,
however, is querying of multimedia objects stored in the database.

1 . Introduction

One of the major reasons for the recent popularity of multimedia information systems is the
opportunities they provide for easier and more effective human-computer interaction (HCI).
The significance of multimedia systems lies in enhancing the communication between
computers and human users. They incorporate and integrate information from diverse
media sources, such as text, images, audio and video, presenting the users with various
channels for communication and information delivery. This increases system usability as
humans communicate more effectively through various channels [BD92].

The media sources, incorporated in multimedia documents, involve large data objects
with complex spatial and temporal relationships. This results in a large body of
information which comprise the multimedia database. For the user to easily and effectively
access and make use of this large information space, there is a need for an interactive user

*This research is supported by a grant from the Canadian Institute for Telecommunications
Research (CITR) which is one of the Networks of Centres of Excellence funded by the
Government of Canada.

2

interface to act as an intermediary between the database and the user. Thus, a considerable
portion of achieving the usability and effectiveness desired from multimedia lies in being
able to provide users with easy-to-use effective interfaces.

Multimedia systems involve a significant number of issues that span several fields of
computing science including networking, databases and human-computer interaction
[Ada93]. Our work aims at studying two aspects of the development of distributed,
interactive multimedia applications: the logical database modeling of multimedia objects and
the relationships between them, and a visual querying facility to allow users to access the
multimedia database through queries as well as a browsing facility. In this paper, we
concentrate on the visual user interface; the database design is reported elsewhere
[VÖSEM95].

Our target application is news-on-demand, which we describe further in the following
section. The client application environment includes our visual querying facility, the
synchronization routines [LG94], a quality-of-service negotiation component [VDB+93],
and the ObjectStore [LLOW91] database client. The clients are connected to a set of
servers over a broadband ATM network. The servers are responsible for the storage and
management of multimedia documents.

Many multimedia information systems provide a browsing-based user interface, but
have limited querying capabilities. Perhaps, the most popular interface of this type is
Mosaic for accessing the World Wide Web. Along the same lines, a model for hypertext-
based information retrieval is presented in [Luc90]. In [Wil91], a hypermedia system for
on-line technical documentation is described. It provides a browsing facility and supports
limited keyword search. There are many other hypermedia systems which provide
elaborate browsing facilities but they have limited querying capabilities [GT94, HKR+92,
Pla91] . The system described in [FS91] supports storage and retrieval, as well as
browsing of multimedia information. These functions are achieved through hyperlinks
between related information and a searching facility. Queries are handled using a functional
database query language (FQL*) which is extended to include elementary similarity
functions to allow for imprecise queries.

In contrast to these systems, our interest is mainly in querying capabilities. Eventually,
we would like to enable the user to pose queries such as "Show me all the news items on
the Israeli-Egyptian peace treaty in which President Sadat shakes hands with Prime
Minister Begin and in which President Carter comments on ...". We are a long-way away

3

from this goal which requires, among other things, content-based indexing of multimedia
objects. We have, as a first step, developed a visual query facility to access a multimedia
database for news-on-demand applications. The novel aspects of our approach are the
following:

• A combination of querying and browsing.

• Tight integration with a multimedia database.

• Use of a visual query interface to relieve users from typing complex database
queries.

• Separation of the logical document content from presentation formats.

The rest of the paper is organized as follows. Section 2 presents the news-on-demand
application. Section 3 discusses the characteristics and design requirements of multimedia
user interfaces, specifically addressing user requirements with respect to the news-on-
demand application. In Section 4, we discuss the system prototype, highlighting its
functionality, with an emphasis on querying capabilities. Section 5 talks about the link
between the visual query facility and the database. The conclusion and future work follows
in Section 6.

2 . The News-on-demand Application

2.1 Overview

News-on-demand is an application that provides its subscribers/users with access to
multimedia news documents that reside in a distributed database. Multimedia documents
are inserted into the database by news providers who are responsible for gathering news
and organizing it in multimedia documents. Examples of such organizations are television
networks, newspapers, magazines, and wire services. Once they are in the database, the
multimedia news documents are not updated. At different client sites, the subscribers
access the news database via a broadband network. The readers pay a cost for this service.
The cost includes the cost of the information content as well as the transmission and
retrieval costs. The users can affect the cost they must pay by specifying quality-of-service
parameters like the resolution of images and video.

In this context, a multimedia document is a structured collection of pieces of
information related to a particular subject [VÖSEM95]. The information units can include

4

any media type such as text, images, audio and video. They can also include combinations
of different media, such as video synchronized with audio and text captions. Documents
often have links to other information (whether complete documents or components of
documents). Examples of such links are more news coverage, background information,
and expert analysis.

The news-on-demand application suggests the following issues:

• There is a need for a common database document representation so that documents
and their standard components can be retrieved by regular queries. All news
providers must convert their documents to this common representation whenever
they insert documents into the database. Since many authoring systems may be
used by news providers, the document representation should follow some
recognized standards. We have chosen to follow the SGML/Hytime standards
[VÖSEM95].

• It may be necessary for subscribers to customize their system view due to personal
preferences and/or hardware constraints (e.g., absence of a graphics display).

• Subscribers must be made aware of the costs incurred for retrieval and
transmission of multimedia news documents. Cost information should be stored
in the database and made available to users through the quality-of-service
component.

2.2 User Requirements

In this subsection, we discuss the requirements imposed on multimedia user interface
design. We start with some general requirements and then focus on the requirements
emerging from the news-on-demand application.

Since multimedia systems have a lot of potential in delivering information to the users,
special attention should be given to the actual usability of these systems. A system's
usability is determined by how easily and effectively the users can use and communicate
with the system. Usability parameters for most systems include ease of use, efficiency,
ease of remembering and pleasantness [Nie90a]. Some general design requirements for
usable multimedia user interfaces are [Hay93]:

• Simplicity: A multimedia user interface should be simple to use. Overwhelming
the user with complex icons, too many choices and a multitude of color patterns

5

(the trend in some current multimedia interfaces) may distract the user from the
information being presented.

• Consistency: Providing a consistent design throughout the interface makes it easier
and more predictable for the user to follow. It reduces the overhead that the user
must make in trying to understand different parts of the interface. Again, this
allows the user to concentrate on the actual information being presented.

• Engagement: Engagement is determined by the degree to which the user can
participate, affect and control the actions of the system. "Multimedia should invite
the user to participate" [Hay93]. Interactive interfaces provide added value by
allowing the user to stimulate the system and get an immediate response.

• Depth: A multimedia interface should encourage users to explore the system to a
greater depth by making it easy to do so. However, it should not force the user to
understand the system to any greater depth than the user wishes to explore.

• Fun: Multimedia user interfaces should be fun. This will encourage more people
to use the system and each person to use the system in more ways. Note that the
goal is not to encourage people to waste time using the system. The goal is to
encourage them to use the system in novel but productive ways.

Although these general design requirements apply to all multimedia applications, there
are more specific requirements for the news-on-demand application. Users of news-on-
demand are expected to use the system to achieve several tasks related to the news. These
tasks include analysis of financial and political situations which can affect planning, regular
follow-up of news, and access to background and reference news material. The general
high-level functions required of the system can be summarized as follows:

• Browsing/Viewing information: Users should be able to view multimedia
documents by reading text, looking at images, playing video, listening to audio
and following links to related information.

• Searching for information: Users should be able to search the news using a variety
of criteria such as date, author, subject, location, and, most importantly, its
content. The system should provide a fast and easy way for searching and an
efficient mechanism for displaying search results and accessing their components.

6

• Customizing the system: Users should be able to define and modify system
settings. Settings should include: document layout, screen layout, window
specifications, quality of service parameters and others.

• Other functions: These include: allowing users to add their own annotations to
news documents, providing users with additional navigational aids such as maps
and subject indexes, and providing users with a history of the visited documents.

These requirements point to a customizable and easily extensible interface which
combines the browsing capability (found in most existing multimedia interfaces) with a
querying capability (lacking in many of the same interfaces). Furthermore, the querying
capability should be a visual one that merges seamlessly (is consistent) with the browsing
facility and satisfies the other general usability requirements of a multimedia user interface.

3. Our System Prototype

3.1 Basic Design Principles

We have examined the various requirements and design goals for multimedia user
interfaces in general and for the news-on-demand application in particular. According to
these requirements, we can categorize our design choices by three major points:

• Hypermedia

Hypertext/Hypermedia provides the user with a non-sequential means of freely
browsing information according to individual need. This is accomplished by
following links from one information unit to another [Nie91a]. Some of these
systems also provide navigational aids such as subject indexes, maps, history of
visited nodes, etc. to facilitate browsing.

Not all multimedia systems use hypermedia links [BD92, Hay93]. However, in
the news-on-demand application, documents often have links to other related data
such as background information, more news coverage, and expert analysis.
Therefore, a hypermedia interface is a good design choice as it provides the news
readers with an easy and efficient way of accessing and browsing related
information.

7

• Query Mechanism

A hypertext/hypermedia interface to a multimedia system may not be sufficient to
provide all of the accessing mechanisms the user needs to obtain information from
the database. In many applications, such as news-on-demand, users need to
search for specific information based on partial knowledge. This must be
accomplished more simply and quickly than is possible through the browsing
facilities of hypermedia. Moreover, as the information increases in quantity and
complexity, the browsing facility of hypermedia becomes more and more
inadequate. According to studies of the usability of hypertext systems, users have
often reported that they become disoriented while navigating through hypertext
systems and fail to reach points of interest. This phenomenon was reported even
when using the most popular commercial hypertext systems [Nie90b, Nie91]. For
the news-on-demand application, a querying facility that allow users to search and
retrieve information directly from the database is a good design choice. The user
interface should provide an easy way for performing queries and searches, and
examining the results. A typical querying scenario is for the user to first filter the
list of documents in the database to include only relevant articles. The user then
performs a search for documents and document components that are of interest for
specific topics and then browses this limited set. The design must support this
incremental process.

• Input Modalities

A “good” user interface should provide the user with appropriate interaction
modes, depending on the application and the types of input needed from the user.
We can categorize the modes of interaction into three major categories [BD92]:

• Direct manipulation of graphical objects on the screen.

• The use of natural language.

• The use of formal languages.

In case of the news-on-demand application, a graphical user interface, with direct
manipulation techniques, is sufficient to deal with user input. Typically, users
need to click on icons to follow links, choose options from menus and lists, type
text, etc. A natural language interface would be a great facility if provided with the
graphical interface. However, this is beyond the scope of our research. We have

8

eliminated the need for formal languages (in our case, a query language) by
designing the visual query interface to make the system more usable, especially by
novice users. Our design choice then is to use a visual query interface as a front-
end to the ObjectStore database management system’s query language.

3.2 Overview

The visual interface we have developed for the news-on-demand multimedia
information system provides a number of functions (Figure 1):

• Initiate a quality-of-service negotiation (QofS).

• Start a filtering operation in the database (Filter).

• Perform a search (Search).

• Display a list of visited documents (History).

• Retrieve and display a document (View).

Figure 1: Documents List

9

The search and filter operations result in a subset of the news articles to be displayed. A
user may conduct further searches on this subject. Any of the news articles may be opened
by clicking on the textual description of that document.

Once a document has been opened, the user can access related material by clicking on
an anchor to follow a link. The representation of anchors can be specified by the user
(underlines, boxes, icons, etc.). In many multimedia systems, a link can only have a
single destination. However, we take the more general approach of allowing multiple
destinations where each destination may be a whole multimedia document or a component
of a document. The user can navigate between documents by following or returning from
links. More importantly, the interface allows the user to perform a search from anywhere
within a document and to specify the scope of the search. This scope may be the current
document, the documents linked to the current document, or all documents in the database.

Another important feature of the interface is allowing the users to customize the
presentation. Customization ranges over a variety of system parameters, such as defining
the presentation of anchors within a document, attaching a font format (such as italics,
bold, reversed video, etc.) to an emphasized text, and defining different layouts for the
same document. Other examples of customization include immediate playing of a video
when the icon is clicked versus opening up a control panel (similar to a VCR) to allow
explicit activation of the video. The user can also define a default document filter, quality
of service parameters, etc. for system startup. All user preferences, for the system and
presentation issues, are stored in the database as style sheets and/or user profiles.

The visual query facility prototype is not intended to provide a complete user interface
that adequately covers all needed functionality. Instead, its main purpose is to provide
users with an easy and efficient way of accessing the multimedia news database. The
prototype provides most of the functionality highlighted in the user requirements.
Although the emphasis is on searching and filtering, an adequate browsing facility is also
provided.

3.3 The Querying Interface

Since our main emphasis in this paper is querying capabilities and their tight integration
with the database, we will discuss them in some detail. The full interface functionality is
presented elsewhere [EM95]. Three classes of querying capabilities are provided: filtering
documents, searching for documents, and searching from within a document

10

 Filtering Documents

The user can specify the scope of the documents displayed in the document list by using the
Filter option (Figure 2). Filtering is a search on document attributes. The result of the
filter is a set of documents whose attributes match the ones specified by the user. Filtering
of documents can be performed based on subject, country of publication, title, author, or
date. Other attributes may be added by storing them in the database. The settings of any
filter can be saved (in the user profile) as the default filter which is used during system
startup, but filters can also be applied to the document list at any time.

Figure 2: Filtering Documents

 Searching Documents

The user can search documents for specific information (apart from attributes) by choosing
the Search option in the document list dialog. The user then specifies the text to search for
(optionally using Boolean combinations of words), the media types as well as the
documents scope for the search (Figure 3). For images, audio and video, a keyword
search is performed (as indicated before, we have not yet developed content-based indexing

11

and access techniques for these media types). The document scope to be searched can be
all the documents in the database, only the documents currently displayed in the list, or
only the selected document. The search facility allows the user to query the database and
locate specific information directly as needed. This provides an easier and more efficient
way of accessing data than using the navigation facility where exploration can be very time-
consuming.

Figure 3: Searching Documents

The search facility returns a list of objects which match the query (Figure 4). The
objects can be text paragraphs, video clips, images, audio streams or even complete
documents. The types of objects returned are specified by the user during the search (it
corresponds to the media types checked). For example, if the user selects only video and
images as the media types to be searched, the query will only return video and image
objects which match the query, but not the associated text or audio. The user can go back
and narrow or widen the types of objects returned by re-marking the media types.

Since the search results list consists only of text summaries of objects, there is no need
to fetch these objects from the database server. This significantly reduces communication
costs since multimedia objects can be very large and expensive to transmit. It is only when

12

the user selects a search result object to view that the object is actually transferred to the
client (Figure 5).

Figure 4: Search Results

Figure 5: Document view

13

 Searching within a Document

The user can also perform a search from within a document by selecting the Search option
in a Document View (Figure 5). The Document Search Dialog (Figure 6) is similar to the
search dialog that is used to search a document list (Figure 3) except that the search scope
options are different. The scope of the search can be the current document only, the
documents directly linked to the current document or all the documents in the system. The
user can also specify the media types to be searched. The search results are displayed in
the same kind of dialog window as that is used to display the results of searching from a
document list (Figure 4).

Figure 6: Searching within a Document

4. Linking with the Database

A unique feature of the visual query facility is its tight coupling with the multimedia
database. Each time a search is performed or a document component is to be viewed, a
database query is issued to the underlying ObjectStore database [OHMS92]. The visual
query facility, running on a client machine, issues ObjectStore queries which fetch the
required objects from the server. The ObjectStore client then returns the matching objects

14

to the interface. It is the responsibility of the visual query interface to manipulate these
objects depending on the tasks to be performed.

4.1 Presentation Control

We define a multimedia document as a structured collection of objects. A document
contains three types of information: the data content, the logical structure and the
presentation structure. The data content consists of mono-media objects: text strings,
audio streams, video clips and images. The logical structure determines the organization of
the different components in relation to one another. The presentation structure is
concerned with the layout of the document on the user's display. For example, the content
of a book is its text string. Its logical structure is its chapters, sections, paragraphs and so
on. Its presentation structure includes font types and sizes, page layouts, etc. The content,
logical and presentation structures are stored separately in the database. Separating content
from logical structure has many advantages related to the efficiency of transferring objects
from the database server to the database client [VÖSEM95]. Separating presentation
structure from logical structure allows users to customize their presentations based on
hardware and personal preferences. As mentioned earlier, customization spans a variety of
system parameters such as defining the presentation of anchors within a document,
defining different layouts for the same document and attaching a font style (such as italics,
bold, reversed video, etc.) to emphasized text. All these presentation specifications are
stored as style sheets in the database. A style sheet maps logical element types to their
specified display settings. To represent style sheets in the database, an SGML DTD
(Document Type Definition) for a style sheet must be defined [VÖSEM95]. An example of
a simple style sheet, which specifies that a headline element (in a news article) should be
written using the Times font, would be:

<rule>
 <source>hdline</source>
 <spec><attr>font</attr><value>Times</value></spec>
</rule>

A more sophisticated example of a style sheet is:

<rule>
 <source>listitem</source>
 <spec>bullets<value>square</value></spec>
 <spec>indent<value> 7 </value></spec>
 <spec>font<value>courier bold</value></spec>
</rule>

15

This specifies that a list item has square bullets marking the item, is indented by 7 spaces,
and that the font is courier bold.

As it currently stands, the implementation of style sheets provides sophisticated
handling of textual data, but relatively simple handling of continuous media (video and
audio). When displaying a document or document component, the visual interface uses the
style sheets to determine display settings (font and layout information) associated with that
document or component. Note that neither the content of a document nor its logical
structure can be updated in the database. However, style sheets provide a user interface
customization mechanism since they allow the presentation structure to be updated in the
database.

Furthermore, we can define certain presentational specifications, that are user
dependent, but document independent. Such information can be stored in user profiles.
These include window size, control panels for various displays, default document filters,
etc. User profiles are also stored in the database and can be updated.

4.2 Translating Visual Queries to Database Queries

Visual queries are translated to ObjectStore queries [Obj94]. We will now give a
simple example of the translation process.

Assume that the user wishes to filter the initial document list that appears in the
Document List window (Figure 1) to include only documents dealing with education in
Canada. The user presses the Filter button and the Filter window (Figure 2) is displayed.
After the user fills in the Subject and Country fields, the Ok button is pressed. The
visual query interface translates this information into an ObjectStore query as follows.

Assume that the class of multimedia documents is called article and is defined as
follows in C++ (note that we only include a sample of the class attributes here):

class article {
public:
 char * title;
 char * country;
 char * date;
 char * source;
 char * subject;

}

16

The following ObjectStore query will be produced by the visual query interface and will
return a collection of all the articles dealing with education in Canada:

os_database *news_database;
os_Set<article *> *all_articles;

os_Set<article *>& matching_articles =
all_articles->query ("article *",

"this->subject == 'Education' &&
this->country == 'Canada'", news_database);

ObjectStore queries are always over a single top-level collection, i.e., a collection not
embedded in another object. A query returns a subset of the queried collection
(os_Collection::query()), a single object (single element query;
os_Collection::query_pick()), or a Boolean (existential query;
os_Collection::exists()). Queries can be nested [OHMS92]. The query
constraint (the condition satisfying the query) must use data members or function calls
involving a comparison operator [Obj94]. These specifications required by ObjectStore
must be taken into account in translating all user actions to equivalent queries; for example,
when a document object is fetched for viewing.

5 Conclusions and Future Work

In this paper, we describe a visual query facility that allows users to access a distributed
multimedia database. This facility provides two major classes of capabilities: querying and
browsing. Querying capabilities are necessary to allow users to directly and efficiently
retrieve information from the database. Browsing capabilities allow users to easily explore
and obtain information that is directly related to query results. Our visual interface
combines these capabilities by concentrating on two areas of technology: query
mechanisms and hypertext/hypermedia systems.

The identifying and novel features of our work are:

• Close integration with a multimedia database.

• Provision of a strong querying facility without losing the flexibility of browsing
information in a hypermedia fashion.

• A visual query interface so that users need not type complicated ObjectStore
queries.

• Flexibility to define the scope of searches and the type(s) of media obtained.

17

• User customizable style sheets and user profiles that separate the presentation
structure of a document from its content and logical structure.

The testbed environment for the system consists of client machines which are IBM
RS6000/360's with 64 Mbytes of memory and equipped with video cards. The server
machines are RS6000/360's with 128 Mbytes of memory. The servers and clients are
connected via a Newbridge ATM switch. The logical database design is modeled using a
commercial Object-Oriented database management system, ObjectStore [LLOW91]. The
visual query facility (and graphical user interface) is currently implemented in Smalltalk-80
[GR85]. When complete, it will be re-implemented in xlC, which is IBM's C++ compiler
for AIX environments, and integrated with the database on the RS6000's.

In the long run, we are interested in development of query languages, access
primitives, and visual query facilities that allow for sophisticated querying of multimedia
databases. Our interest extends to content-based querying and retrieval of all media types:
text, video, audio, and images.

References

[Ada93] J.A. Adam. Interactive multimedia: Special report. IEEE Spectrum, pages
22-39, March 1993.

[BD92] M.M. Blattner and R.B. Dannenberg, editors. Multimedia Interface Design.
New York, NY: ACM Press, 1992.

[EM95] G. El-Medani. Design and implementation of a hypertext user interface for a
multimedia kernel. Master's thesis, University of Alberta, Department of
Computing Science, 1995.

[FS91] H.P. Frei and P.Schauble. Designing a hypermedia information system. In
DEXA 91. Database and Expert Systems Applications, pages 449-454,
Berlin, Germany: Springer-Verlag, Wein, 1991.

[GR85] A. Goldberg and D. Robson. Smalltalk-80: The Language and its
Implementation. Addison Wesley, 1985.

[GT94] K. Grønbæk and R.H. Trigg. Design issues for a dexter-based hypermedia
system. Communications of the ACM, 37(2):40-49, February 1994.

[Hay93] R. Haykin. Demystifying Multimedia. Apple Computer, Inc., 1993.

18

[HKR+92] B.J. Haan, P. Kahn, V.A. Riley, J.H. Coombs, and N.K. Meyrowitz. IRIS
hypermedia services. Communications of the ACM, 35(1):36-51, January
1992.

[LG94] L. Li and N. Georganas. MPEG-2 coded- and uncoded-stream
synchronization control for real-time multimedia transmission and
presentation over B-ISDN. In ACM Multimedia 94. Proceedings of Second
ACM International Conference on Multimedia, pages 239--246, San
Francisco, CA, USA, October 15-20 1994.

[LLOW91] C. Lamb, G. Landis, J. Orenstein, and D. Weinreb. The ObjectStore
database system. Communications of the ACM, 34(10):50-63, October
1991.

[Luc90] D. Lucarella. A model for hypertext based information retrieval. In
Hypertext: Concepts, Systems and Applications. Proceedings of the
European Conference on Hypertext, pages 81-94, INRIA, France, Nov.
1990.

[Nie90a] J. Nielsen. Hypertext & Hypermedia. San Diego, CA: Academic Press,
Inc., 1990.

[Nie90b] J. Nielsen. The art of navigating through hypertext. Communications of the
ACM, 33(3):296-310, March 1990.

[Nie91] J. Nielsen. Usability considerations in introducing hypertext. In H. Brown,
editor, Hypermedia/Hypertext And Object-Oriented Databases, pages 3--17.
Chapman & Hall, 1991.

[Obj94] Object Design, Inc., Burlington, MA, USA. ObjectStore User Guide for
OS/2 and AIX/xlC Systems, January 1994.

[OHMS92] J. Orenstein, S. Haradhvala, B. Margulies, and D. Sakahara. Query
processing in the ObjectStore database system. In Proceedings of the 1992
ACM SIGMOD International Conference on Management of Data., pages
403-412, San Diego, CA, USA, June 2-5 1992.

[Pla91] C. Plaisant. An overview of Hyperties, its user interface and data model. In
H. Brown, editor, Hypermedia/Hypertext And Object-Oriented Databases,
pages 17-31. Chapman & Hall, 1991.

19

[VBD+93] A. Vogel, G.V. Bochmann, R. Dssouli, J. Gecsei, A. Hafid, and
B.Kerheve. On QoS negotiation in distributed multimedia applications.
Internal report, Université de Montrèal, Canada, 1993.

[VÖSEM95] C. Vittal, M.T. Özsu, D. Szafron, and G. El-Medani. Object-oriented
modeling of multimedia documents for a news-on-demand application.
submitted to ACM Int. Conference on Management of Data, May 1995.

[Wil91] I. Williams. Hypermedia for multi-user technical documentation. In H.
Brown, editor, Hypermedia/Hypertext And Object-Oriented Databases,
pages 17-31. Chapman & Hall, 1991.

