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Abstract. Several salient-object-based data models have been
proposed to model video data. However, none of them ad-
dresses the development of an index structure to efficiently
handle salient-object-based queries. There are several index-
ing schemes that have been proposed for spatiotemporal rela-
tionships among objects, and they are used to optimize times-
tamp and interval queries, which are rarely used in video
databases. Moreover, these index structures are designed with-
out consideration of the granularity levels of constraints on
salient objects and the characteristics of video data. In this
paper, we propose a multilevel index structure (MINDEX) to
efficiently handle the salient-object-based queries with dif-
ferent levels of constraints. We present experimental results
showing the performance of different methods of MINDEX
construction.
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1 Introduction

Content-based video retrieval has been used in many appli-
cation fields such as sports video analysis, surveillance video
monitoring systems, digital news libraries, etc. However, cur-
rent computer vision and image processing techniques can
only offer limited query ability on primitive audiovisual fea-
tures. The query techniques that have been used in image
databases, such as query-by-example [23], cannot be easily
applied to video retrieval because of the limited number of
video examples. Based on the characteristics of video data,
content-based video retrieval approaches can be classified into
the following three categories:

1. Visual-feature-based retrieval [20,32]: In this approach, a
video is recursively broken down into scenes, shots, and
frames. Key frames are extracted from the shots and the
scenes to summarize them, and visual features from the key
frames are used to index them. With indexed key frames,
this approach converts the video retrieval problem into the
retrieval of images from image databases.

2. Keywords or free-text-based retrieval [15,26]: In this ap-
proach, a content description (annotation) layer is put on
top of the video stream. Each descriptor can be associated
with a logical video sequence or physically segmented
shots or scenes. Content-based video retrieval is converted
into a search for the specified text in annotation data.

3. Salient-object-based retrieval [6, 11, 16, 19, 21]: In this
approach, salient objects are extracted from the videos
and the spatiotemporal relationships among them are de-
scribed to express events or concepts. The salient ob-
jects are the physical objects appearing in video data (e.g.
houses, cars, people) that are of interest in one or more
applications.

Visual-feature-based retrieval has the advantage that vi-
sual feature extraction and comparison can be automatically
performed, with very little interpretation required on visual
features. However, it is not realistic to expect users to be
knowledgable about low-level visual features. Most impor-
tantly, high-level semantic similarity may not correspond to
the similarity of low-level features. For example, sky and sea
have a similar visual component, “blue color”; however, they
express totally different concepts. Keyword or free-text-based
retrieval is directly related to the semantics of video content
and is easier for users to understand and use. It remains the
most popular approach in current video database systems such
as news video and documentary video databases. However,
this approach requires too much human effort to annotate
video data, and annotations are subjective. Furthermore, text
annotations cannot cover all aspects of video data content.
For example, it is very difficult to textually describe the mov-
ing trajectory of a salient object. Compared to these, salient-
object-based search is more intuitive and more suitable for
human understanding, especially for naive users. Users can
directly manipulate salient objects, their properties, and the
spatiotemporal relationships among them. They can also con-
struct queries to retrieve videos that contain events the user is
interested in. These events can be expressed through the spa-
tial or temporal relationships among the salient objects. For
example, an interleaving pattern of the temporal relationship
“before” between two cars can be used to express a car chase
event. Queries related to the spatiotemporal relationships of
salient objects can be classified into four types:
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1. Salient-object existence. In this type of query, the user is
only interested in the appearance of an object. For exam-
ple, given a movie database, a director may submit the
query “give me all the video shots in which actor a ap-
pears” in order to observe the acting skills of the actor.

2. Temporal relationships. These queries involve temporal
relationships among objects in videos. One possible appli-
cation for this type of query is to extract interesting shots
from movies and construct a trailer. For example, to use
the shot/reverse shot patterns [2] to construct a car chase
scene in a movie trailer, a video editor may first submit
two queries – “Give me all the video shots in which car a
appears before car b” and “Give me all the video shots in
which car b appears before car a”. After that, he/she can
choose the shots from two results and concatenate them
in an interleaving pattern to build a chase scene between
cars a and b.

3. Spatial relationships. In these queries, users express sim-
ple directional or topological relationships among salient
objects. These queries may be useful, for example, in sport
video analysis. Consider a coach who may want to analyze
Michael Jordan’s movements when he is under the back-
board in order to train his defense team. A query that he
may submit over a NBA video database is: “Give me all the
shots in which Michael Jordan has an under relationship
with the backboard.”

4. Spatiotemporal relationships. In these queries users are
concerned with the spatiotemporal relationships among
salient objects. This type of query is useful, for example,
in surveillance video systems. Consider the case where
one may want to retrieve all the shots in which suspect a
enters bank b by submitting a query “Give me all the shots
in which a enters b ”.

A major problem in video databases is to find an effec-
tive index that can optimize video query processing. In the
four types of queries listed above, the query constraints are
set on the spatial or temporal relationships among salient ob-
jects. Therefore, it may appear that well-developed spatiotem-
poral index structures, such as 3DR-tree [28], HR-tree [22],
RT-tree [31], and MVR-tree [27], may be used to improve
the query efficiency of salient-object-based queries. However,
these index structures are mainly designed to optimize times-
tamp and interval queries [31], which are common in spatio-
temporal databases but not in video databases. Timestamp
queries retrieve all objects that intersect with a value range
window at a specific time. Interval queries consider sequences
of timestamps.

These types of queries are rarely, if ever, used in video
databases because they require users to have a comprehensive
knowledge of the story line of a video. It is very difficult for
users to accurately specify the timestamp or time interval in
which the events that they are interested in occur, even though
they may be interested in finding the timestamps or intervals of
interesting events. In this paper, we focus on index structures
to improve efficiency of salient-object-based queries.

Two aspects need to be considered when we design an
index structure for video databases:

1. Characteristics of queries: Creating index structures with-
out knowing the characteristics of queries may result in
the maintenance of redundant information. For exam-

ple, if we create an independent index for each type of
salient-object-based query, the index on spatial relation-
ships also contains the information about object existence.
Salient-object-based queries allow users to set constraints
on salient objects at four different granularity levels cor-
responding to the four types of queries described above.
Different amounts of information are required for different
constraints.

2. Characteristics of video data: Characteristics of video data
may affect effectiveness and efficiency of an index struc-
ture. For example, in movies, it rarely happens that more
than four actors appear in the same frame. Therefore, an
index structure on spatial relationships that relate to more
than three objects will be less useful compared to an index
structure on pairwise spatial relationship since most of the
time video frames contain only two actors. Another inter-
esting characteristic of video data is due to the shot/reverse
shot techniques, which are often used by video editors
to construct dialog and action scenes [2]. Even in sports
videos, shot/reverse shots are often used to give the au-
dience different points of view. These techniques cause
similar spatial layouts of salient objects to appear in an
interleaving pattern.

In this paper, we propose a multilevel index structure,
called MINDEX, that is based on a video data model [8] to
improve the efficiency of salient-object-based queries; the pro-
posed index structure takes into account the above two points.
At the first level, an extendable hash is created to find the
ID of a salient object from its name. A B+-tree is set up at
the second level to index pairwise temporal relationships be-
tween two salient objects. Finally, at the third level, a perfect
hash is developed to index the spatial relationships among
salient objects that appear in each shot. To find the optimal
index methods for MINDEX, we also propose alternative ap-
proaches: signature files and inverted files as the second and
third level of MINDEX.

The rest of the paper is organized as follows. Section 2
presents some related works on index structures. The video
data model that forms the base of our index structure is intro-
duced in Sect. 3. Section 4 presents MINDEX. In Sect. 5 we
give experimental results on the performance comparison of
different methods of MINDEX construction. We conclude in
Sect. 6.

2 Related work

As mentioned earlier, there has not been much work on in-
dexing salient objects and their spatiotemporal relationships
in video data. Several related index structures are proposed
for spatiotemporal databases, image databases, and video
databases. We briefly review some of the index proposals in
this section.

The 3DR-tree [30] was originally proposed to speed up
the operations of multimedia object composition and synchro-
nization. It requires that indexed objects not change their loca-
tions over time. Three-dimensional minimum bounding boxes
(MBBs) are used to encapsulate objects over which a 3DR-tree
is constructed. With the 3DR-tree, an interval query can be ef-
ficiently answered by finding the intersection between the 3D
MBB of the query and the MBBs in the 3DR-tree. However,
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MBBs of moving objects that cover a large portion of the data
space may lead to high overlap and low discrimination ability
of the 3DR-tree.

RT-trees [31], HR-trees [22], and MVR-trees [27] have
been proposed to index spatiotemporal relationships. The
RT-tree is a spatiotemporal version of the R-tree; it indexes all
the spatiotemporal information in one R-tree, which makes it
unmanageable when the number of changing objects is large.
The MVR-tree can be considered a variation of the 3DR-tree
in that it combines the concepts of multiversion B tree [3] and
the 3DR-tree. An HR-tree can efficiently handle timestamp
queries since such a query can be converted into a search over
a static R-tree. However, for an interval query, all the trees
whose timestamps are located inside the interval have to be
searched. The aim of these index structures is to improve the
efficiency of the system in dealing with the timestamp and in-
terval queries. In order to answer queries that involve salient
objects, all the timestamped R-trees have to be searched in the
HR-tree or a large number of timestamp queries have to be
executed against the 3DR-tree.

Several approaches have been proposed to improve the
efficiency of spatial-relationship-based queries on image
databases [4, 12, 14, 17]. Basically, three index structures or
their variations exist: inverted file, hash table, and signature
file. Inverted files [14] index the appearance of objects in im-
ages by creating an index on the name of each object. Querying
multiple objects requires taking the intersection of the results
of multiple queries over each of the objects. Building a perfect
hash over pairwise spatial relationships has been proposed [4].
Again, querying over multiple pairs of spatial relationships re-
quires multiple queries. Furthermore, the perfect hash struc-
ture requires a priori knowledge of all the images. Finally,
various signature file structures have been proposed to repre-
sent 2D strings [5] in image databases. A two-level signature
file [17] creates an image signature based on spatial relation-
ships among the objects in an image and forms a block signa-
ture from all the objects of the images in the block. The block
here refers to a set of images. This technique is improved by a
multilevel signature file structure [18] that creates higher-level
signatures with larger size blocks.A two-signature-based mul-
tilevel signature file structure has also been proposed to handle
a wider set of queries over 2D strings [12].

In video databases, in addition to spatial relationships,
temporal relationships are important for describing the char-
acteristics of salient objects. A content-based video query lan-
guage (CVQL) is proposed in [16] that supports video retrieval
by specifying spatial and temporal relationships of content ob-
jects. The queries are processed in two phases: the elimination-
based processing phase and the query predicate evaluation
phase. The elimination phase is proposed to eliminate the
unqualified video without accessing the video data, and the
behavior-based function evaluation phase is introduced to ex-
amine video functions that are specified in query predicates
for retrieving query results. The behavior of salient objects is
classified into static, regular moving, and random moving. To
improve the efficiency of evaluating video functions, an index
structure named M-index is proposed to store the behaviors
of its content objects. For each type of behavior in a video, an
independent index structure is created (e.g., Hash, B+-tree, or
R+-tree). However, M-index only indexes the spatial position
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Fig. 1. Example of VHR-tree

information of salient objects, while the temporal relationships
among salient objects are not considered.

Döndeler et al. [11] propose a rule-based video database
system that supports salient-object-based spatiotemporal and
semantic queries. In their system, video clips are first seg-
mented into shots whenever the current set of relationships
among the salient objects is changed. The frame at which the
change occurs is selected as a key frame. The directional, topo-
logical, and 3D relations of salient objects in a shot are stored
as Prolog facts of a knowledge base. The comprehensive set of
inference rules of the system helps reduce the number of facts
to be stored. However, the system does not provide explicit
index structures to support salient object appearance or spa-
tiotemporal queries. It relies on the implicit indexes provided
by the implementation language SWI-prolog. Therefore, the
indexes in their system are implementation dependent.

In an earlier work [7], we proposed a two-level index struc-
ture for salient-object-based queries.A Salient Object Inverted
List acts as the first level of the index structure to index key
frames in which salient objects appear. A variation of HR-tree
(called VHR-tree) is used to index the spatial relationships
among the salient objects in key frames, which comprises the
second level of the index structure. VHR-trees are designed
with the consideration of shot/reverse shot patterns. Figure 1
shows how a VHR-tree handles the spatial patterns brought by
shot/reverse shots. At timestamp T1, all the salient objects that
appear at T0 disappear, and a new set of nine salient objects
appears, thus setting up a new R-tree at T1. At timestamp T2,
instead of only searching its immediate precedent R2 at T1 as
the HR-tree does, the VHR-tree checks the R-trees at T1 and
T0 and uses the unchanged part of the R-tree at T0. The same
construction procedure applies for timestamp T3.

However, the two-level index structure does not consider
the temporal relationships among the salient objects, and se-
quential scan has to be used to answer temporal and spatiotem-
poral queries.

3 Modeling video data

3.1 Overview of the video data model

We use a video data model [8] that captures the structural char-
acteristics of video data and the spatiotemporal relationships
among salient objects that appear in the video. The model ex-
tends the DISIMA model [24] by adding a video data layer.
Figure 2 shows an overview of the improved video data model
and its links to the DISIMA image data model.

The DISIMA model captures the semantics of image data
through salient objects, their shapes, and the spatial relation-
ships among them. It is composed of two main blocks (a block
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is defined as a group of semantically related entities), as shown
on the right-hand side of Fig. 2: the image block and the salient-
object block. The image block consists of two layers: the image
layer and the image representation layer. The DISIMA model
captures both specific information on every appearance of a
salient object in an image (by means of physical salient ob-
jects and properties) and the semantics of the salient object (by
means of logical salient objects). The DISIMA model supports
a wide range of queries, from semantic-based to feature-based
queries.

A video is often recursively decomposed into scenes and
shots. Shots are summarized by key frames. A frame is an im-
age with some specifics (time information, shot it is extracted
from, etc.) that can be represented as a special kind of image
(subclass of image). A new video block, as shown on the left-
hand side of Fig. 2, is introduced to capture the representation
and the recursive composition of videos. The lowest level in
the video block is the shot, and a shot is linked to its key
frames stored as images in the image block. The video block
has four layers: video, scene, shot, and video representation.
Because a video frame is treated as a special type of image, it
inherits all the attributes defined for image entities in addition
to a time-related attribute that models the temporal character-
istics. The relationship between key frames and shots sets up
the connection between a video block and a DISIMA image
block.

3.2 Components of the video data model

The definitions of components of the video data model are
given below.

Definition 1. A key frame is a video frame that is selected
from a shot to represent the salient contents of the shot. A key
frame KFi is defined as a six-tuple

< i, Ri, Ci, Di, SHi, LSi >
where

• i is the unique frame identifer;
• Ri is a set of representations of the raw frame (e.g., JPEG,

GIF);
• Ci is the content of a key frame KFi (Definition 3);
• Di is a set of descriptive alphanumeric data associated

with KFi;
• SHi is the shot (Definition 5) to which KFi belongs;
• LSi is the lifespan of the frame represented as a closed

time interval [Ts, Te] that specifies the portion of the shot
that KFi represents. Since LSi is within the shot, it must
satisfy LSi � SHi.Ii, where � is a “subinterval” op-
eration, defined as follows. Given two time intervals IA

and IB , IA � IB if and only if IB .Ts ≤ IA.Ts and
IA.Te ≤ IB .Te, where Ts and Te are the start and end
times of an interval.

In this data model, key frames are first selected through
the automatic processes (using any of the existing key frame
selection algorithms; e.g., [33]) and manual interpretation pro-
cesses are used to mark out the changes of salient objects. With
these two steps, a key frame is selected to represent a duration

within a shot in which the spatial relationships among salient
objects contained in that video frame hold.

We identify, as in DISIMA, two kinds of salient objects:
physical and logical.

Definition 2. A physical salient object is a part of a key frame
and is characterized by a position (i.e., a set of coordinates) in
the key frame space. A logical salient object is an abstraction
of a set of physical salient objects and is used to give semantics
to that set.

Based on the definitions of physical and logical salient
objects, we define the content of a key frame as follows:

Definition 3. Ci, the content of key frame KFi, is defined by
a triple

< Pi, s, T riplelist >
where

• Pi is the set of physical salient objects that appear in KFi

and P is the set of all physical salient objects (P = ∪iPi);
• s : Pi → L maps each physical salient object to a logi-

cal salient object, where L is the set of all logical salient
objects;

• Triplelist is a list of spatial triples (Definition 4) that is
used to represent the spatial relationships among objects
that appear in KFi.

Definition 4. A spatial triple is used to represent the spatial
relationship between two salient objects, denoted by

< Oi, Oj , SRij >
where

• Oi and Oj are the physical objects that appear in the key
frame;

• SRij is the spatial relation between Oi and Oj with Oi

as the reference object. The spatial relations consist of
eight directional relations (north, northwest, west, south-
west, south, southeast, east, northeast) and six topological
relations (equal, inside, cover, overlap, touch, disjoint).

Given n salient objects in a key frame, we need to store
n× (n−1)/2 pairwise spatial relations in order to capture all
the spatial relationships among the salient objects.

Definition 5. A shot is an unbroken sequence of frames
recorded from a single camera operation. A shot SHj is
defined as a five-tuple

< j, Ij , KFSj , SCj , Dj >
where

• j is the unique shot identifier;
• Ij is a time interval that shows the start and end time of

SHj ;
• SCj is the scene (Definition 6) to which SHj belongs.

Since SHj is within SCj , it satisfies: Ij � SCj .Ij ;
• KFSj is a sequence of key frames [KFj,1, . . . , KFj,m],

where m is the number of key frames in SHi. KFSj is
used to represent the content of a shot;

• Dj is as given in Definition 1.

Definition 6. A scene is a sequence of shots that are grouped
together to convey the concept or story. A scene SCk is



60 L. Chen et al.: MINDEX

instance

belongs tocategory (class)

inheritance

Image

Image
Representation

Image Block

represented_by

(corresponds_to)

(represented
_by)

Salient Object Block

DISIMA DATA MODEL

(contains)

Salient
Object

(logical)

Salient
Object

(physical)

Salient
Representation

VideoBlock

Video Representation

Video

Scene

(consist_of )

Shot

(consist_of )

(represented_ by)

Frame

(contains)

Fig. 2. Overview of the video data model and its links to the DISIMA data model

defined by a five-tuple

< k, Ik, SHSk, Vk, Dk >
where

• k is the unique scene identifer;
• Ik is a time interval that shows the start and end times of

the SCk;
• Vk is the video (Definition 7) to which SCk belongs. SCk

is a part of Vk; therefore, SCk satisfies Ik � Vk.Ik;
• SHSk is a sequence of shots [SHk,1, . . . , SHk,m], where

m is the number of shots in SCk. SHSk is used to con-
struct SCk;

• Dk is as given in Definition 1.

Definition 7. A video consists of a sequence of scenes. A
video Vn is defined by a five-tuple

< n, In, Rn, SCSn, Dn >
where

• n is the unique video identifer;
• In is a time interval that describes the start and end times

of the video Vn. In.Ts = 0 since all the videos start at time
0;

• SCSn is a sequence of scenes [SCn,1, . . . , SCn,m] that is
contained by Vn, where m is the number of scenes in Vn;

• Rn is a set of representations of Vn. We consider two main
representation models for videos: raster and CAI. Raster
representations are used for video presentation, browsing,
and navigation, while CAI (common appearance interval)
representations are used to express spatiotemporal rela-
tionships among salient objects and moving trajectories
of moving objects. The raster presentation may be one
of MPEG-1, MPEG-2, AVI, NTSC, etc. Shots and scenes
are not directly represented in the representation layer.

I1 I3I2

Fig. 3. CAIs of an example shot

Through time intervals that record durations of shots or
scenes and video identifiers that indicate the video to which
shots or scenes belong, portions of video representations
can be quickly located and used as the representation for
shots or scenes;

• Dn is as given in Definition 1.

3.3 Modeling temporal relationships within a shot

In our proposed video data model, the video shot is the small-
est querying unit. Therefore, efficient capture of the appear-
ance of salient objects and the temporal relationships among
them directly affects the performance of salient-object-based
queries.

The CAI model [6] captures the appearance and disap-
pearance of the salient objects. A video shot can be repre-
sented as a sequence of CAIs, each representing an interval
in which salient objects appear together. Figure 3 shows an
example shot extracted from the movie “Gone in 60 seconds”.
In this video, object O1 is Randall and object O2 is Sara,
CAI(O1) = I1, CAI(O2) = I2, and CAI(O1, O2) = I3.

For any two salient objects that appear in a video shot,
we define two types of temporal relationships between them:
appear together and appear before:
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Definition 8. Given two salient objects Oi and Oj that appear
in shot SHk, if there exists a time interval [Ts, Te] � SHk.Ik

such that both Oi and Oj appear in [Ts, Te], we say Oi and
Oj appear together in SHk, denoted by Oi � Oj .

Definition 9. Given two salient objects Oi and Oj that appear
in shot SHk, if Oi and Oj appear in two time intervals [T i

s , T
i
e ]

and [T j
s , T j

e ], respectively, and T i
e � T j

s , then Oi is said to
appear before Oj , denoted as Oi � Oj .

The temporal relationships appear together and ap-
pear before can be used to construct other temporal relation-
ships [1]. For example, O1 � O1 � O2 � O2 represents that
O1 overlaps O2.

Definition 10. Given a shot SHi with n salient ob-
jects O1, O2, . . . , On, the temporal string of SHi is
O1θO2θ . . . θOn (θ ∈ {�,�}). A temporal string repre-
sents the temporal relationships among salient objects that
appear in a shot.

For the sample shot in Fig. 3, a temporal string is: O1 �
O2 � O1 � O2. Since � is symmetric, another valid temporal
string of this shot is: O1 � O2 � O2 � O1. Note that non-
intuitive relationships such as O2 � O2 are acceptable since
they represent occurrences in different intervals (e.g., frames)
and the relationship is temporal.

4 MINDEX: a multilevel index structure

An analysis of the four types of salient-object-based queries
discussed earlier reveals the following:

(1) For salient-object existence queries, it is only necessary
to find all the shots in which the specified salient objects
appear without any regard to their temporal appearance
orders.

(2) For queries related to temporal relationships among salient
objects, in addition to checking the existence of the salient
objects, it is necessary to investigate the temporal relation-
ships among the salient objects.

(3) For spatial queries, all the shots should be retrieved in
which the specified salient objects appear, followed by
a filtering of the shots in which the specified salient ob-
jects have appear together temporal relationships. These
are kept as candidate shots over which the spatial relation-
ships among the salient objects are checked.

(4) For spatiotemporal queries, besides following the same
steps as (3), temporal relationships among the salient ob-
jects in the candidate shots are also checked.

Among these four different granularity levels of constraints on
salient objects, object existence queries help remove the shots
that do not contain the specified salient objects; these shots
also do not satisfy the other three types of queries. Similarly,
the temporal queries with appear together constraints can be
considered as filters to avoid unnecessary searches for spatial
and spatiotemporal queries because the shots in which the
salient objects do not appear together cannot satisfy any spatial
relationships. Therefore, we create an index that considers
different granularity levels of constraints on salient objects.
Figure 4 shows an overview of MINDEX. The first level is
a hash table on names of salient objects; a B+-tree is used to

index pairwise temporal relationships and acts as the second
level of the index structure. At the third level, a perfect hash
table is created to index all the spatial triples that are contained
in each shot. Figure 4 only shows one possible construction of
MINDEX; we also propose two other alternative approaches:
signature files and inverted files [7]. The construction using
signature files is presented in this paper, and details for inverted
files is described in [7].

4.1 First-level index structure: hash on names

It is more natural for users to query video databases using
names of salient objects instead of their IDs (e.g., “give me
all the shots in which Tom Cruise appears” is more intuitive
than “give me all the shots in which salient object 001 ap-
pears”). Furthermore, generally, users do not know salient ob-
ject IDs. Therefore, we create an extendable hash on the names
of salient objects as the first-level index structure. A hash is
selected because it offers O(1) access time on data files. We
assume that a name is assigned to a salient object when the
video is added to the video database. Among the many possi-
bilities, we select the shift-add-xor hash function [25] due to
its low collision rate. We use L = 5 and R = 2 in our index
structure as suggested in [25].

Since there exists the possibility that different name strings
have the same hash value, chained lists are used to handle
collisions (Fig. 4). Each data bucket of the hash table stores
the ID of a salient object and a pointer that points to the next
data bucket in the chain. Each salient object is stored in a
object record structure, which is defined as

struct object record{
int ID;

string name;
pointer rootnode;

}
where “rootnode” refers to a root node of a B+-tree that is
created as the second level of the index structure.

4.2 Second-level index

The second level of MINDEX is proposed to quickly fil-
ter out the false alarms in answering salient-object existence
queries and temporal relationship queries. We propose three
approaches, a B+-tree, a multilevel signature file filter, and
an inverted file. In the experiment section, we compare the
performance of these three access methods.

4.2.1 A B+-tree on pairwise temporal relationships

Spatial, temporal, and spatiotemporal relationship queries set
constraints on at least a pair of salient objects since there is
no spatial or temporal relationship for a single salient object.
Queries that involve more than two salient objects can be han-
dled by taking the intersection of a set of query results on pairs
of objects. Therefore, for each salient object Oi, we create a
B+-tree to index all pairwise temporal relationships between
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Fig. 5. Layout of the leaf node of the B+-tree

Oi and other salient objects. IDs of salient objects are used as
keys. Each nonleaf node contains q + 1 pointers and q entries
for keys. The structure of a leaf node is shown in Fig. 5. The
value of “key” is the ID of a salient object, which is an integer,
“overflow page” is a pointer to the overflow pages, and “next
page” points to the next leaf node. The internal structure of
“record of the key” is defined as follows:

struct record of the key{
int tempRel;

string linkedList;
}

where tempRel is used to store the temporal relationship; it
is a mapped integer value from a temporal relationship. The
IDs of shots in which the tempRel relationship hold are stored
in the linkedList.

4.2.2 A two-signature-based multilevel signature filter

Signature files have been widely used in information retrieval
[10,13,18]. Recently, they have been used in spatial-similarity-
based image retrieval [12,17,29]. The steps to construct sig-
natures for images are as follows:

1. For each salient object in an image, we transform it into a
binary code word using a hash function. The binary code
is m (signature width) bits wide and contains exactly w
(signature weight) 1s.

2. Each image signature is formed by superimposing (inclu-
sive OR) of all the binary codes of salient objects con-
tained in the image.

When querying the appearance of salient objects, the ob-
jects that are specified in the query are also transformed into bi-
nary codes and all the binary codes are superimposed together
to form a query signature. The query signature is checked
(ANDed) with each image signature. However, due to the
false drop probability Pf of signature files (the probability
that the signature is identified as containing the query signa-
ture, but the real record does not contain the query terms [13]),
the images that are pointed to by matched signatures need to
be further verified to remove false drops. With Pf , the num-
ber of images n, and the number of distinct salient objects s
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we can compute the optimal values of signature width m and
signature weight w [18].

The image signatures that are generated using only salient
objects are called salient-object-based signatures. We can
also use the same steps as above to generate spatial-relation-
based image signatures by coding the spatial relationship pair
of salient objects that appear in the images. El-Kwae and
Kabuka [12] integrate two signatures into a single index struc-

ture, called a two-signature-based multilevel signature filter
(2SMLSF), to index appearance of salient objects and spatial
relationships among objects in images.

In this paper, we use 2SMLSF to index the appearances
of salient objects and pairwise temporal relationships among
salient objects in video shots.

As shown in Fig. 6, a 2SMLSF file is a forest of b-ary
trees. Every nonleaf node has b child nodes. There are h lev-
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els in the 2SMLSF. Assume all the trees are complete b-ary
trees; the number of nodes in the structure is: n = bh. We
generate salient-object-based shot signatures by superimpos-
ing binary codes of salient objects that appear in the shots
and temporal-relation-based shot signatures from the tempo-
ral relation pairs in the shots. The temporal-relation-based shot
signatures are used as leaf nodes of the 2SMLSF; the remain-
ing nonleaf (block) signatures are only based on salient ob-
jects. We also propose a modified version of 2SMLSF called
2SMLSF+. Compared to 2SMLSF, we add one more level of
signatures to the 2SMLSF that are generated from salient ob-
jects. As shown in Fig. 7, in 2SMLSF+, the level 1 to h signa-
tures are generated from signatures of salient objects and level
h + 1 signatures (same as h level in 2SMLSF) are generated
from temporal relationships among the salient objects. Due to
one more level of filtering, 2SMLSF+ can remove more false
alarms when it is used to answer salient-object appearance
and temporal relationship queries. Our experimental results,
presented in Sect. 5, confirm this claim.

4.3 Third-level index: perfect hash
for spatial relationships

Both spatial and spatiotemporal queries relate to spatial rela-
tionships among salient objects; therefore, an index structure
on spatial relationships will be helpful to answer these queries.
In our video data model, a sequence of key frames is chosen
to represent a shot. The spatial relationships among the salient
objects in each key frame are described by a list of spatial
triples. Although the number of key frames that are selected
to represent a shot may not be large, scanning each key frame
to find the specified spatial relationship is still time consuming,
especially when there exists a large number of candidate shots.
We use a hash table as the third-level index structure to index
pairwise spatial relationships in each shot and adapt the tech-
nique described in [4] for this purpose. As depicted in Fig. 4,
key frames that contain the same spatial triple (Oi, Oj , SRij)
will be mapped to the same hash entry, and IDs of these key
frames are linked together. For each shot, since the number
of key frames and the spatial relationships among salient ob-
jects in each key frame are known, a minimum perfect hash
algorithm can be employed to reduce the storage and avoid
the conflicts. Fourteen integers are used to denote spatial re-
lationships (eight directional and six topological). The hash
address of a spatial triple (Oi, Oj , SRij) is

h(Oi, Oj , SRij) = SRij + associated value of Oi

+ associated value of Oj .

To assign the associated values to symbols of spatial tuples,
we use Cook and Oldehoeft’s algorithm [9], which is also used
in [4].

The third-level index structure is not created for each shot.
We define a shot as spatial indexable if there are at least two
salient objects that appear together in the shot. Shots in which
only one salient object appears or no salient objects appear to-
gether do not need indexes on spatial relationships since there
are no spatial relationships that can be derived from these
shots. However, creating a hash table for each spatial index-
able shot induces redundant information because shots/reverse

SH1
SH2 SH4SH3

Fig. 8. Example of shot/reverse shot pattern in a dialog scene

shots cause similar spatial layouts to appear in an interleav-
ing pattern. Figure 8 shows an example of this interleaving
pattern, which appears in a dialog scene between “Maximus”
and “Princess” in the movie “Gladiator”. In the four example
shots, SH1 has a spatial layout similar to that of SH3 as well
as to SH2 and SH4. Therefore, when we create a hash table
for an indexable shot SHi and (i > 1), two precedent shots
SHi−2 and SHi−1 are checked first. If SHi−2 or SHi−1 has
exactly the same spatial triples as those of SHi, we define the
corresponding hash table as sharable to SHi. Thus, instead
of creating a new hash table for SHi, the hash table pointer
of SHi is pointed to the sharable hash table, which removes
the possible redundant information from the index structure.
Figure 4 shows an example of SHj+2 and SHj sharing a hash
table.

We also implement two other alternative approaches to
third-level indexes: spatial-relation-based image signature
files and inverted files. The pairwise spatial relationships be-
tween two salient objects that exist in a key frame are hashed
into binary code words, and all the binary code words of the
key frame are superimposed to get the image signature of that
key frame. Since there are a limited number of key frames
for each shot, we store the image signatures sequentially. The
inverted files are used to index each distinct pairwise spatial
relationship of each shot.

4.4 Creation of the multilevel indexing structure

In general, given a set of n shots, three steps are needed to
create a MINDEX when we use a B+-tree as the second level
of MINDEX:

1. For all salient objects of each shot, use their names to find
their IDs in the hash (the first-level index) and update the
hash directory if these objects are new ones.

2. For all the temporal relationships in the shot, use IDs of
involved salient objects to update the corresponding B+-
tree (the second-level index structure).

3. For all the spatial relationships in the shot, create a new per-
fect hash table (the third-level index structure) for all the
spatial triples contained in the shot if there is no sharable
hash table in the two preceding shots.

In the first step, besides finding the IDs for salient objects,
we also need to create an ID for the new salient object and
insert it into the hash directory. We consider a salient object a
new one if NULL is returned after searching the data bucket
that is pointed to by the hash directory entry of the salient
object. Algorithm 1 presents the steps that are followed to
update the second-level index structure. The standard update
operation of B+-tree is used in the algorithm. When we use
signature files at the second and third levels of MINDEX, we
can use the first step that we use for creating MINDEX with
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B+-tree as the second level. The second and third steps are
described as follows:

Algorithm 1 The algorithm for updating second-level index
structure
Require: /*input: the IDs of all salient objects in a given shot SHi*/
Ensure: /*output: updated B+-tree of each object record*/
1: Compute all distinct pairwise temporal relationships between two

salient objects from temporal strings of SHi
2: For each temporal relationship TRij (appear together or

appear before) between two salient objects whose IDs are IDi

and IDj , respectively
3: Insert IDj and TRij into the B+-tree of the object record that is

identified by IDi

4: Insert IDi and TRij into the B+-tree of the object record that is
identified by IDj

Algorithm 2 The searching algorithm for salient-object exis-
tence queries using B+-trees
Require: /*input: the names of salient objects */
Ensure: /*output: the set of IDs of shots that the specified salient

objects appear*/
1: find IDs of all the salient objects specified in the queries through

the first level of MINDEX
2: the object records that stored specified salient objects are identi-

fied through IDs
3: select one B+-tree that pointed to one of the identified object

records
4: if only one object in the query then
5: insert all the IDs of shots stored in the leaf node of the B+-tree

into result set Reset
6: end if
7: search the B+-tree with the remaining object IDs and get the in-

tersection of all the searching result sets as the result set Reset
8: return the result set Rset

1. Determine the height h of 2SMLSF and 2SMLSF+ ac-
cording to the number of shots n, the maximum number
of distinct salient objects of each shot s, and the global
false drop probability pf . For each level, compute the sig-
nature width and weight.
• For each shot, compute all distinct pairwise tempo-

ral relationships between two salient objects from the
temporal string of that shot. For each pairwise tempo-
ral relationship, generate a signature to represent it and
superimpose all the signatures of pairwise temporal
relationships to construct the temporal-relation-based
shot signature as a leaf node of 2SMLSF or 2SMLSF+.
A pointer is used to link the leaf node and the logical
shot.

• For each shot, generate h−1 salient-object-based sig-
natures (h signatures for 2SMLSF+) that are based on
salient objects of the shot. For each level i, superim-
pose bh−i salient-object-based signatures to get block
signature at that level.

2. For each key frame in a shot, generate a signature for
each distinct pairwise spatial relationship and superimpose

all the signatures of spatial pairs to construct a spatial-
relation-based image signature for the key frame. Store
all the image signatures of the shot sequentially in a file.
This step is similar to the creation of 2SMLSF for image
databases [12].

4.5 Query processing using multilevel indexing structure

In this section, we discuss how the four types of queries are
executed using MINDEX. To answer object existence and pure
temporal relationship queries, only the first- and second-level
indexes are needed, while for queries involving spatial and
spatiotemporal relationships all three levels are used. We first
present the algorithms in answering different types of queries
when a B+-tree is used as the second level of MINDEX.

1. Salient-object existence queries: Algorithm 2 presents the
steps in answering salient-object existence queries.

2. Temporal relationship queries: Algorithm 2 can be used to
search results for temporal relationship queries; the only
additional work is to check the temporal relationship stored
at the leaf node of the B+-tree.

3. Spatial relationship queries: Algorithm 3 presents the
steps in answering spatial relationship queries.

Algorithm 3 The searching algorithm for spatial relationship
queries using B+-tree
Require: /*input: the names of salient objects and spatial relation-

ships among them*/
Ensure: /*output: the set of IDs of shots that contain salient objects

and specified spatial relationships*/
1: find IDs of all the salient objects specified in the queries through

the first level of MINDEX
2: the object records that stored specified salient objects are identi-

fied through IDs
3: select one B+-tree that pointed to one of the identified object

records
4: search the B+-tree with the remaining object IDs and get the in-

tersection of all the searching result sets as candidate set CanSet
5: for all each candidate shot in CanSet do
6: compute the hash address of the third-level index structure for

the spatial triple that is constructed from the object IDs and the
specified spatial relationships

7: load the corresponding hash table that is referred by the candi-
date shot

8: if the hash entry of the computed hash address is not empty
then

9: insert the ID of the candidate shot into Rset
10: end if
11: end for
12: return the result set Rset

4. Spatiotemporal relationship queries: Steps similar to Al-
gorithm 3 are followed to find the candidate shots that
contain the specified salient objects and spatial relation-
ships. The candidate shots are further checked to verify
whether the specified temporal relationships are satisfied
among the spatial relationships in the candidate shots.
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When we use signature files as the second and third levels
of MINDEX, the following algorithms are used to answer
different types of queries:
1. Salient-object existence queries: The steps in answering

salient-object existence using 2SMLSF is described in Al-
gorithm 4.

Algorithm 4 The searching algorithm for salient-object exis-
tence queries using 2SMLSF
Require: /*input: the names of salient objects */
Ensure: /*output: the set of IDs of shots that the specified salient

objects appear*/
1: find IDs of all the salient objects specified in the queries through

the first level of MINDEX
2: generate h− 1 salient-object-based shot signatures as query sig-

natures: S1
q , S2

q , . . . , Sh−1
q

3: check (AND operation) S1
q with root signatures of 2SMLSF

4: if the result equals to S1
q then

5: put the access pointer of the root into the candidate block set
CanBlkSet1

6: end if
7: level i← 2
8: while level i �= h do
9: if CanBlkSeti−1 is empty then
10: return NULL
11: end if
12: check (AND operation) Si

q with the block signature at level i,
which is pointed to by the access pointer in CanBlkSeti−1

13: if the result equals to Si
q then

14: put the access pointer of the block signature into the candidate
block set CanBlkSeti

15: end if
16: level i← i + 1
17: end while
18: if CanBlkSeth−1 is empty then
19: return NULL
20: else
21: check each shot pointed to by the access pointers in

CanBlkSeth−1

22: if the shot contains the IDs of salient objects specified in the
query then

23: insert the ID of the shot into the result set Reset
24: end if
25: end if
26: return Reset

2. Temporal relationship queries: Algorithm 5 presents the
steps in answering temporal relationship queries using
2SMLSF. Algorithms 4 and 5 can be applied to 2SMLSF+

by slightly modifying the searching level and generating
query signatures.

3. Spatial and spatiotemporal queries: Due to space con-
straints, the detailed algorithms are not given here, and we
briefly describe the steps as follows:
(a) Algorithm 5 is used to find the candidate shots that

contained specified query objects and temporal rela-
tions.

(b) Check the spatial-relation-based query signature with
each image signature of the candidate shots.

(c) If the result is equal to the spatial query signature, the
corresponding key frame will be checked to see if it

Algorithm 5 Searching algorithm for temporal relationship
queries using 2SMLSF
Require: /*input: the names of salient objects and temporal relation-

ships among them */
Ensure: /*output: the set of IDs of shots that contain specified

salient-object and temporal relations */
1: find IDs of all the salient objects specified in the queries through

the first level of MINDEX
2: generate h − 1 salient-object-based shot signatures S1

q , S2
q , . . . ,

Sh−1
q and one temporal-relation-based shot signatures Sh

q as
query signatures

3: check (AND operation) S1
q with root signatures of 2SMLSF

4: if the result equals S1
q then

5: put the access pointer of the root into the candidate block set
CanBlkSet1

6: end if
7: level i← 2
8: while level i �= h + 1 do
9: if CanBlkSeti−1 is empty then
10: return NULL
11: end if
12: check (AND operation) Si

q with the block signature at level i,
which is pointed to by the access pointers in CanBlkSeti−1

13: if the result equals Si
q then

14: put the access pointer of the block signature into the candidate
block set CanBlkListi

15: end if
16: level i← i + 1
17: end while
18: if CanBlkSeth is empty then
19: return NULL
20: else
21: check each shot pointed to by the access pointers in

CanBlkSeth

22: if the shot contains the IDs of salient objects and temporal
relationships specified in the query then

23: insert the ID of the shot into the result set Reset
24: end if
25: end if
26: return Reset

indeed contains the specified spatial relations. If this
is the case, insert the candidate shot into the result set.

(d) Return the result set.

5 Experiment results and discussion

We have run experiments to compare the performance of dif-
ferent methods of MINDEX construction in answering salient-
object-based queries. Due to the lack of sufficient annotated
video data, we generated synthetic data to test the performance
of MINDEX.

5.1 Experiment setup

In order to generate synthetic data that are similar to real movie
data, we investigated the appearance frequencies of salient ob-
jects in each key frame and the number of salient objects in
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Fig. 9. Appearance distribution of actors

each shot in three movies.1 As expected, the appearance fre-
quencies of the main actors are higher than those of supporting
actors and the number of actors that appear frequently is much
less than that of actors who appear only once or twice in the
whole movie. Figure 9 shows the number of appearances of
actors in the three movies. The horizontal axis denotes the
actor IDs; the lower IDs are given to the main actors. The
vertical axis indicates the number of shots in which an ac-
tor appears. This data distribution is very similar to the ZIPF
distribution [34]: Pi ∼ 1/ia, where Pi is the frequency of
occurrence of the i-th ranked event, i is the rank of the event
that is determined by the above frequency of occurrence, and
a is close to 1. Thus, a few events occur very often while many
others occur rarely.

We also found that there are at most five salient objects that
appear in one frame (not counting the crowd), and the number
of salient objects that appear in key frames also follows a
ZIPF-like distribution (Fig. 10).

According to the changes of spatial relationships among
the salient objects that appear in a shot, we manually selected
the key frames for each segmented shot of these movies. We
found that, for each shot, the number of selected key frames is
around 1 to 5. In these experiments, we assumed that all salient
objects are people and created synthesized names from a list
of the top 1000 given names with an appearance probability
of each name.2 We do not use randomly generated strings as

Fig. 10. Distribution of number of actors

1 1. “Gladiator”, 2000; 2. “Crouching Tiger Hidden Dragon”,
2000; 3. “Patch Adams”, 1998.

2 Obtained from http://www.ssa.gov/OACT/babynames/index.html.

names for the salient objects simply because it is not realis-
tic. Furthermore, since the hash value is computed based on
each character of a string, randomly generated strings do not
reflect the real data distribution of each character as it appears
in person names. A random number generator with a ZIPF
distribution was used to select object IDs that may appear in
each key frame. We used another random number generator
with a ZIPF data distribution to simulate the number of salient
objects that may appear in each key frame. Five data sets were
created with different numbers of shots and different num-
bers of salient objects. For each shot, 1 to 5 key frames are
randomly generated.

1. 4,096 shots with 41 salient objects;
2. 8,192 shots with 82 salient objects;
3. 16,384 shots with 164 salient objects;
4. 32,768 shots with 328 salient objects;
5. 131,072 shots with 1311 salient objects.

We generated the number of shots as the power of 2 in or-
der to satisfy the assumption of complete b-ary (b = 2) trees
of 2SMLSF and 2SMLSF+. We set the false drop probability
of signature files as 1/n, where n is the number of shots in
the data set. We randomly generated three types of queries:
salient object existence, temporal relationship, and spatial re-
lationship queries, with a uniform distribution and a ZIPF dis-
tribution, 100 queries for each type. Spatiotemporal relation-
ship queries were not tested. In order to answer spatiotemporal
relationship queries, MINDEX is used to find the candidate
shots that satisfy the specified spatial relationships first, and
then within those shots the temporal relationships among the
spatial relationships are checked. Therefore, we only need to
test spatial relationship queries. For object existence queries,
the randomly generated queries specify the appearances of 1–
5 salient objects. For temporal and spatial queries, the number
of objects that are specified is 2 to 5.All the results are averages
obtained from 100 query results.

The experiments were run on a Sun Blade 1000 worksta-
tion with 512 MB RAM under Solaris 2.8.

5.2 Query performance

The first experiment was designed to test the performance of
MINDEX with different construction on answering salient-
object existence queries. We use the following abbrevia-
tions for four types of MINDEX: B-M for using B+-tree in
MINDEX, S-M for using 2SMLSF, S+-M for using 2SMLSF+,
and I-M for using inverted file. We use two performance mea-
sures. One is the time spent on index retrieval and processing
time, called PINDEX . For queries that are related to more
than two salient objects, PINDEX includes the time spent
on finding the intersection of candidate sets for B+-tree and
inverted files. The other one is the total time spent on index re-
trieval and processing and retrieving the results and is called
TRESULT . For signature files, TRESULT includes the
time to remove the false drops. Table 1 presents the selectiv-
ity ratios of queries and shows that object existence queries
generated from a ZIPF (Z) distribution have much higher se-
lectivity ratios compared to those of queries from uniform (U)
distribution. We tested both types of queries. Figure 11 shows
the PINDEX and TRESULT values of four types of MIN-
DEX in answering salient-object existence queries generated
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Table 1. Selectivity ratios of two types of salient-object-based existence queries on five data sets

4096 8192 16384 32768 131072

No. obj. U Z U Z U Z U Z U Z

1 0.087 0.797 0.047 0.093 0.031 0.416 0.018 0.243 0.011 0.067

2 0.011 0.602 0 0.031 0.001 0.159 0 0.069 0 0.005

3 0 0.095 0 0 0 0.092 0 0.037 0 0.002

4 0 0.016 0 0 0 0.055 0 0.015 0 0.001

5 0 0.006 0 0 0 0.028 0 0.009 0 0
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Fig. 11. Comparison of four types of MINDEX on salient-object existence queries (Uniform)
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Fig. 12. Comparison of four types of MINDEX on salient-object existence queries (ZIPF)
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Fig. 13. Comparison of four types of MINDEX on temporal relationship queries (Uniform)
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Fig. 14. Comparison of four types of MINDEX on temporal relationship queries (ZIPF)

from a uniform distribution, and Fig. 12 shows the same for
a ZIPF distribution. The horizontal axis denotes the different
sizes of data sets. For each data set (e.g., data set 4096), the
results of queries on one to five salient objects are shown se-
quentially starting from the position of the label. The vertical
axis indicates the time spent on PINDEX or RRESULT
in milliseconds.

As shown in Fig. 11a, considering index processing time,
B-M outperforms the other three index structures. When the
selectivity ratio is low, B-M and I-M are always better than
S-M or S+M because of the false drops that are introduced
by signature files. Since B-M uses B+-trees to index pairs of
salient objects, it produces fewer candidate shots compared to
that of I-M, which creates an inverted list for each individual

object. As a consequence, B-M needs less time to find the in-
tersection from candidate sets. This has been shown in both
figures, especially in Fig. 12a in which I-M spent much more
time in finding the intersection of candidate sets. We also find
that the index processing time for S+-M is nearly the same as
that of S-M because signature files are binary words and the
time for loading and comparing one more level of signature
files is minimal, especially when we use multilevel filtering.
Considering the total time that is used to retrieve the answers
(Figs. 11b and 12b), B-M is also the best. However, the differ-
ence between B-M and I-M is very slight when the selectivity
ratio is higher since the time spent on index processing only
counts for a very small portion of total retrieval time. There is
another interesting fact that is shown in Figs. 11b and 12b: the
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difference between S+-M and S-M on TRESULT becomes
larger with the increasing of the size of the data set. This con-
firms that S+-M can remove more false drops than S-M; the
greater the size of the data set, the more false drops can be
removed by S+-M.

The second experiment was designed to test the query
performance of four different types of MINDEX on answer-
ing temporal-relationship-based queries. We present results of
queries from uniform and ZIPF distributions in Figs. 13 and 14,
respectively. As in Figs. 11 and 12, the horizontal axis denotes
the different sizes of data sets. For each data set, the results of
queries on two to five salient objects are shown sequentially.

Figures 13 and 14 show that B-M saves a significant
amount of time in PINDEX and TRESULT . Since B-M
encodes the pairwise temporal relationship into the key record
of B+-tree, the size of candidate sets that are obtained from B-
M is much smaller than those from I-M. Therefore, B-M saves
time on both index processing (finding the intersection set) and
retrieving results (removing false alarms). I-M only creates an
index on the appearance of salient objects. Further examina-
tion on the candidate shots is required to confirm the existence
of the query temporal relationships. The existence of false
drops for signature files again leads to the inefficiency in an-
swering temporal relationship queries. As shown in Figs. 13b
and 14b, S+-M again performs better than S-M in terms of
total retrieval time.

From the above two experiments, we conclude that B+-tree
on pairwise salient objects is the best index structure that acts
as the second level of MINDEX.As discussed in Sect. 4.5, spa-
tial relationship queries help to identify the candidate shots for
spatiotemporal queries. Therefore, the last experiment was de-
signed to check the performance of processing spatial queries
on different index structures for the third level of MINDEX.
In this experiment, we use B+-tree as the second level of MIN-
DEX, and three index structures are tested: perfect hash table
(HT), sequentially stored signature files (SSF), and inverted
files (IF). Compared to salient-object existence and pure tem-
poral queries, spatial queries incur extra reading costs in key
frames to obtain spatial information. Figure 15 shows the
TRESULT of retrieval key frames to answer spatial queries
on two salient objects generated from ZIPF distribution. The
reason we select queries on two salient objects is that they
have higher selectivity ratios. The results show that HT is the
best candidate for the third level of MINDEX.

6 Conclusions

Several approaches have been proposed in the literature for
salient-object-based queries on video databases. However,
most of them focus on modeling video data using salient ob-
jects, and sequential search is used to answer these queries.
However, when the size of a video database grows, it is quite
time consuming to answer queries using sequential scan. Very
few indexes have been proposed to quickly answer salient-
object-based queries, and these either create indexes only for
spatial relationships or rely on an implicit indexing mechanism
provided by the implementation languages. Querying video
databases on salient objects is quite different from query-
ing spatiotemporal databases. The two fundamental types of
queries in spatiotemporal databases, timestamp and interval
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Fig. 15. Performance of spatial relationship queries on two salient
objects

queries, are rarely used in salient-object-based video databases
since users normally do not have any knowledge about the
timestamps or intervals in which some specified event hap-
pens.What they are interested in is retrieving those timestamps
or intervals! Therefore, the index structures on spatiotemporal
databases cannot be directly applied to salient-object-based
video databases.

In this paper, we present a multilevel index structure (MIN-
DEX) for salient-object-based queries. The index structure
considers the different levels of constraints on salient ob-
jects that users may have when they pose queries to the video
database. An extendable hash table is created for quickly lo-
cating IDs of salient objects through their names, which act
as the first level of the index structure. Four candidate index
structures, B+-tree, two types of multilevel signature files, and
inverted files, are proposed for the second level of MINDEX.
Perfect hash tables, sequential stored signature files, and in-
verted files are selected as candidates for the third level. All
the index structures have been tested with various sizes of syn-
thetic data generated according to the data distribution of real
movies. Based on the experimental results, we conclude that
a B+-tree used to index pairwise temporal relationships be-
tween two salient objects is the best one for the second-level
index structure. The ideal index structure for the third level of
MINDEX is a perfect hash table that indexes all the pairwise
spatial relationships within a shot. The characteristic of video
data brought by shot/reverse shots is utilized to share hash ta-
bles of the third-level index, which avoids saving redundant
information.
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