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Abstract

Declarative access mechanisms  for structured
document collections and for semi-structured data
are becoming increasingly important. In this article,
using a rule-based approach for query optimization
and applying it to such queries, we deploy knowledge
on the Document Type Definition (DTD) to formulate
transformation rules for query-algebra terms. Specifi-
cally, we look at rules that save navigation along paths
by cutting off these paths or by replacing them with
access operations to indices, i.e., materialized views
on paths. We show for both cases that we correctly
apply and completely exploit knowledge on the DTD,
and we briefly discuss performance results.

1 Introduction

With the growing number of WWW documents,
WWW query languages are gaining importance.
Many researchers currently investigate such lan-
guages, e.g., [2, 15]. The kind of documents they ex-
amine are structured documents, i.e., XML [20] and
SGMTL [13] documents as well as HTMT documents.
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XML as well as SGML make explicit the internal logi-
cal structure of documents and append arbitrary meta
information with such logical document elements. In
the context of this work, it i1s important that SGML
documents must have a type, and their logical struc-
ture must conform to the definition of the respective
document type, leading to a high degree of consistency
of the document collection. WWW query languages
allow querying the document collection based on the
logical structure of documents and on hyperlinks be-
tween documents. In this article, we look at queries
on the document structure and the retrieval of doc-
ument elements. The objective of this article is to
examine the degree to which knowledge on the Doc-
ument Type Definition (DTD) is useful for query op-
timization. While in [2] the authors discuss rewriting
techniques for new non-conventional query algebra op-
erators, our techniques use the standard operator set.
In [2], another optimization technique is the use of full-
text index structures. We combine the use of indices
with the exploitation of DTD information.

1.1 Motivating Examples

Example 1: The Shakespeare plays, together with a
DTD for these documents, are available via WWW as
SGMT documents [17]. Using this DTD, we can for-
mulate and evaluate queries such as “Select all plays
where Cordelia appears as a speaker in a scene.”.
From the DTD, we can conclude that speakers’ ap-
pearances are always within a scene and, consequently,
we can reformulate the query to “Select all plays where
Cordelia appears as a speaker.”. Consider another
query “Select all acts within a prologue where Cordelia
appears as a speaker.”. However, the DTD does not



allow for acts to be contained in the prologue, and we
can infer that the query result is empty without look-
ing at the database state at all. While the Shakespeare
DTD used here is rather simple, more application-
specific DTDs tend to have a much richer and more
convoluted structure where such optimization oppor-
tunities are more prevalent.

Optimization techniques where the optimizer
makes use of the DTD to simplify query terms, as in
the above example, are advantageous in the context
of federations of structured document databases. We
have experimented with an architecture where a query
against a global DTD is transformed to queries against
local DTDs [12]. The outcome of this transformation
tend to be very complex queries that heavily rely on
the above simplifications.

Example 2: For structured document collections,
sophisticated (graphical) user interfaces are available.
Using these, one can easily obtain an overview of the
documents in the collection, i.e., a clickable list of
metadata values. As an example, the system environ-
ment for the MultiMedia Forum, an interactive online
journal published at GMD-IPSI [18], displays the sur-
names of all authors. Clicking on a surname returns
the respective documents. Displaying that informa-
tion amounts to evaluation of the query “Select all
elements of type SURNAME that are contained in one
of type AUTHOR.”. Using knowledge from the MMF-
DTD, we can infer that this query is equivalent to the
query “Select all elements of type SURNAME that are
contained in one of type AUTHORS.” If the database
contains an instance of the so-called structure index
for the pair (SURNAME, AUTHORS) (cf. Section 4), we
can evaluate the query with a simple database access
instead of a scan.

1.2 Scope

Our work reported in this article is based on the
PAT algebra for structured documents. This algebra
provides querying operators for structured documents,
e.g., selections based on textual content, attributes
and document structure. We have extended the orig-
inal algebra described in [16] with additional oper-
ators to specify the existance of hyperlinks between
target documents [4] so that it has the characteristics
of a Web query language. Looking at the individual
operators of the PAT algebra, we examine their role
for DTD-based query optimization. It turns out that
some PAT operators require special attention. These
operators reflect that two element types of a particular
DTD have contains/contained relationships.

The objective of this work is to use knowledge on

the DTD for query optimization in order to identify
more efficient evaluation strategies for queries posed
against SGML repositories. The DTD can be seen as
a set of integrity constraints that explicitely specify
the arrangement of logical elements within documents
or as a specification of a schema for the document
database. We identify relevant relationships between
element types and show how these relations can be
derived from the DTD and improve query evaluation
time. We define the notions of 1) exclusivity, 2) obliga-
tion, and 3) entrance location to start the navigation
between two elements of given types. With the first
two notions, one does not have to navigate from one el-
ement to another to check for its existence since from
the DTD is known that the target element must be
there. If for two element types neither obligation nor
exclusivity holds true, identifying a third element type
as entrance location to start the navigation can as well
improve query evaluation. Finally, the use of structure
indices between two element types (i.e., materialized
views on paths) in combination with the above no-
tions can also avoid scanning the document base and
improve query evaluation time.

Pursuing a rule-based approach to query optimiza-
tion, we formulate rules as input for the query op-
timizer that reflect the notions sketched above, and
prove the correctness of these rules.

Finally, we report on implementation experiences.
We indicate which of the investigated ideas are in fact
advantageous for query optimization.

1.8 Further Related Work

In addition to the work on Web query languages,
work on query optimization based on database in-
tegrity constraints is also relevant [14, 9]. With re-
gard to rule-based query optimization, one can dis-
tinguish between application-independent transforma-
tion rules and application-specific ones. The latter
can be further classified into approaches where rules
contain hardcoded application-specific knowledge and
those where the application-specific knowledge is ex-
tracted from the database schema in the course of op-
timization. We pursue the second alternative.

We are aware of only one other study that deals
with the use of knowledge on the Document Type
Definition to build application-specific optimization
rules. In [6], Consens and Milo replace a query-
algebra operator with a cheaper one whenever the
DTD allows it. They consider a restricted set of
DTDs and do not look at different grammar con-
structors. The optimization in [6] makes use of a
special cost model, and the results are not directly



transferable to our application scenario. In contrast,
the contribution of our paper i1s independent of any
cost model. Another issue is that Consens and Milo
make use of the PAT index structures [10]. While
most queries can be evaluated in an efficient way,
the size of the PAT index depends on the size of
the document collection, whereas the size of our
index structure depends (roughly) on the number of
relevant elements. In other words, the PAT index
covers the whole document, but our index can be
configured to contain only the important structures.
With an index that covers everything, updates are
more difficult to implement.

The remainder of this article has the following
structure: In the following section, we briefly describe
the relevant notions of structured documents and
declarative access to collections of such documents
in our database application framework. Section 3
contains a description of our approach to DTD-based
query optimization, together with correctness and
completeness proofs. Section 4 extends this work
by considering indices in combination with DTD
knowledge. Section 5 contains further optimization
measures. Section 6 summarizes our implementation
experiences, and Section 7 concludes the paper.

2 Structured Documents and Declara-

tive Access Mechanisms
SGML. The Standard Generalized Markup Lan-
guage (SGML) is an 1SO standard for document de-
scription. An SGML document is portable because
its logical structure is described using a markup-based
notation, as opposed to its layout structure. SGML al-
lows the definition of arbitrary markup languages for
documents of different types. A Document Type Defi-
nition (DTD ) specifies such a markup language. From
another perspective, the DTD specifies the valid types
of document elements and their logical order within
documents.

Figure 1 is a fragment of the MMF Document
Type Definition [18]. Figure 2 is a fragment of an
SGML document that conforms to this DTD. In this
fragment, the SURNAME element with textual content
‘Busse’ s directly contained in an element of type
NAME, and indirectly contained in elements of type
AUTHOR and AUTHORS. Conversely, we say that these
elements directly or indirectly contain the SURNAME el-
ement.

By definition, a path in a document is a list of el-
ements such that the successor of an element in the
list is the element’s father in the hierarchical struc-

<!'ELEMENT AUTHORS
<!'ELEMENT AUTHOR (NAME) >

<'ATTLIST AUTHOR FUNCTION (AUTHOR |
CAMERA | COMPOSER | EDITOR | PHOTOGR |
PRODUCER | REGISS | OTHERS ) '"AUTHOR'">
<!-- AUTHOR isg the default value —->

(AUTHOR*) >

<'ELEMENT EDITORS

<'ELEMENT EDITOR

<'ELEMENT NAME

ADDITION?)>

<VELEMENT (SURNAME | FIRSTNAME | ADDITION)
(#PCDATA)>

(EDITOR*)>
(NAME) >
( (SURNAME ,FIRSTNAME?) ,

Figure 1: Fragment of sample DTD (Document
Type ‘MultiMedia Forum’)

<AUTHORS><AUTHOR><NAME><SURNAME>Busse</SURNAME>
<FIRSTNAME>Ralf</FIRSTNAME></NAME></AUTHOR>
<AUTHOR><NAME><SURNAME>Huck</SURNAME><FIRSTNAME>
Gerald</FIRSTNAME></NAME></AUTHOR></AUTHORS>

Figure 2: Fragment of sample SGML document

ture described by the DTD. E.g., (SURNAME, NAME,
AUTHOR) 1s a path from the sample document in Fig-
ure 2. Such a path implies that the content model of
element type NAME contains the element type SURNAME,
while the content model of the element type AUTHOR
contains the element type NAME. The content model of
an element type may be defined like follows:

Definition 2.1 (Content Model) A content model
15 a term of the following structure:

¢ -> <element-type name> ci,cC2 | ciles |
ciker | ei7 | x| crt | (o)
where <element-type name> means that the content
1s an element of the type identified by element-type
name. cy* stands for an arbitrary number (including
zero) of occurrences of ¢1. €17 means an optional oc-
currence of c1; c1|cq an occurrence of ¢1 or one of cs.
c1,¢o indicates an occurrence of ¢y followed by one of
cy. Finally, ci1+ is short for (cq, ci1%), and c1&cq 18
short for ((c1, ¢9) | (ca, ¢1)). Using SGML ter-
minology, the comma is the sequence connector (SEQ)
or a SEQ-node if the term is seen as a tree; ‘|’ is
the OR-connector (OR) or an OR-node; ‘?’ is the
optional occurrence indicator; *’ is the optional-and-
repeatable occurrence indicator.

Moreover, elements may have attributes, such as at-
tribute FUNCTION for elements of type AUTHOR in Fig-
ure 1. Line ‘<!ATTLIST AUTHOR FUNCTION (AUTHOR



| CAMERA ...) ...> introduces this attribute. At-
tributes are of minor importance in this article.

Querying Structured Documents. We use the
PAT algebra [16] to query document collections. This
alegbra is particularly designed to query structured
documents and 1t is independent of any underlying
data model. Moreover, it is user-friendly and expres-
sive. With our variant of the PAT algebra, the follow-
ing grammar generates query terms:
E — <element-type name> E; UNION Eo |
E, INTERSECT E, | CONTENT_SELECT (E, r) |
ATTR_SELECT (E, A, r) | E; INCLUDS E,
E; INCL-IN E, | (E1) EMPTY

The term <element-type name> stands for the
set. of all elements of the respective type. UNION,
INTERSECT, and DIFF are set operators with the usual
semantics. CONTENT SELECT takes a set of elements
and returns those whose textual content contains reg-
ular expression r. ATTR_SELECT takes a set of elements
and returns those where attribute A contains regular
expression r. INCLUDS and INCL-IN take two sets of
elements E; and E5 and return the set of elements
Fy, INCL-IN By =
{e1 € Ey | Jes € Fy s.t. ey is contained in es}
F INCLUDS F, =
{es € F5 | Jeq € Fy s.t. ey contains e}

We say that E; is the internal element type, whereas
Es is the external element type. EMPTY stands for the
empty set.

HyperStorM’s Structured Document
Database. To store and query structured doc-
uments, we have built a database application
framework, the HyperStorM Structured Document
Database [4], on top of the object-oriented DBMS
VODAK [19]. From the user perspective, each
document element corresponds to a database object,
i.e., the user perceives a document in the database as
tree-like structure. However, for performance reasons,
multiple document elements may be stored in one
physical database object.

Furthermore, the database application offers in-
dices for frequently asked document elements. This
includes attribute indices which store attribute values
of document elements. Furthermore, content indices
can be created which store the textual content of doc-
ument elements of a particular type. For instance, a
content index for the element type SURNAME stores the
textual data of each corresponding element. Finally,
the database application offers the structure indexz.
For instance, a structure index of element type AUTHOR

for the path (SURNAME, AUTHOR) stores all SURNAME el-
ements from which a path (in upward direction) to an
AUTHOR elements exists. The structure indexr is useful
for evaluating queries with the INCLUDS or INCL-IN
operator, and we will review it in Section 4.

Query Processing. PAT expressions posed against
HyperStorM’s Structured Document Database, are
mapped into VQL queries. VQL is VODAK’s OQL-
like query language [5]. After their mapping to VQL,
PAT expressions are processed like follows:

1. Parsing of VQL statement,

2. semantic check of query based on data model and
database schema,

3. transformation of VQL query statement to query
algebra expression

4. generation of alternative algebra expressions
equivalent to the one generated in Step 3 using
a set of transformation rules,

5. given the algebra expressions generated in Step 4,
identifying the most cost-efficient one, based on a
cost model, and

6. query evaluation.

This approach to query processing is similar to the
ones described in [7] and [8]. The rules introduced
in this article are transformation rules that are used
in Step 4 of the above enumeration. Given a list of
transformation rules, we use the Volcano Optimizer
Generator [11] to generate a query optimizer. Rules
may have a condition part that specifies under which
conditions the optimizer may apply these rule. We
will introduce our optimizations as rules in PAT
notation rather than at the Volcano level [1]. This
is because PAT expressions are much easier to read,
and the PAT level better reflects the optimizations
we are aiming at.

3 Using Knowledge on the DTD for
Query Optimization

In this article, we use knowledge on the DTD
to identify more efficient evaluation strategies for
queries posed against SGML repositories. In this
section, we define the notions of exclusivity, obligation
and entrance locations between element types. We
then introduce the concept of element-type graph
and indicate the relation to exclusivity and entrance
locations. Finally, we describe operations on the DTD



that allow to identify all cases of obligation.

3.1 Exclusivity, Obligation, and Entrance
Location

Exclusivity. Examination of the DTD reveals that
some types are shared among others. For example,
element type NAME in Figure 1 is contained in element
type AUTHOR and in EDITOR. But the types that are
not shared, i.e., exclusively contained in others, bear
potential for query optimization.

Definition 3.1 (Exclusivity) Element type ET; is
exclusively contained in element type E'T; if each path
(ej,...,ex) with e; being an element of type ET; and
er being the document root contains an element of type
ET;. Conversely, element type ET; exclusively con-
tains E'T; of the condition holds.

Ezeclusivity serves as a condition for the following
transformation rule:

Rule 3.1 (B, INCL-IN F,) <= (E;)
e: (Fy is exclusively contained in Fy)

If the condition ¢ holds, an element e; of the in-
ternal type Fi must be contained in an element es of
the external type Fs. Consequently, we can replace
expression “F; INCL-IN F,” with “F{” as it yields
the same result. Since the queries “Fy INCL-IN F5”
and “Fy INCLUDS F/4” are not equivalent, exclusivity is
not appropriate to optimize queries such as the second
one.

Obligation. Whereas exclusivity reflects “the per-
” the external
element type is the starting point with obligation.

spective of the internal element type

Definition 3.2 (obligatorily contains/contained)
FElement type ET; obligatorily contains element type
ET; if each element of type ET; has to contain n
any document one element of type ET;. Conversely,
we say that KT} is obligatorily contained in E'T;.

The following transformation rule makes use of this
definition.

Rule 3.2 (F, INCLUDS F,) <= (F;)
e: (ETy obligatorily contains ETy)

Analogous to the previous situation, we cannot use
obligation to transform “Fy INCL-IN F,” to “F;”.

Entrance Locations. If two element types are not
related by exclusivity and obligation, it may be worth-
while to check whether a third element type, called
entrance location, exists before we start the naviga-
tion between the document elements.

Definition 3.3 (Entrance Location) FElement
type A 1s an entrance location for element types B
and C if in any document all paths from an element
b of type B to element c of type C' contain an element
a of type A.

Note that an entrance location for types B and C is
not identical with an entrance location for € and B.
The notion entrance location 1s used in the following
rule.

Rule 3.3 (B, INCL-IN F,) <= (E, INCL-IN (FE;
INCL-IN F))
c: (Fs is entrance location for By and Fs)

We define entrance locations for two reasons. The
first one is that it is advantageous to begin navigation
at instances of F3 instead of | or F5 if the document
base contains a much smaller number of instances
of F3, as compared to Fy or F5. But this situation
occurs only in a few special cases. The second reason
is that entrance locations may be advantageous in
combination with structure indices. We will deal with
such optimizations in Section 4.

3.2 Identifying all Cases of Exclusivity
and Entrance Locations

We can visualize some of the relationships induced
by a Document Type Definition by means of an
element-type graph. Figure 3 contains the element-
type graph for the fragment of the sample DTD in
Figure 1. The following definitions introduce the se-
mantics of nodes and edges.

Definition 3.4 (Element-Type Graph) An
element-type graph for DTD D is a directed graph
G = (V,K). Its vertices are the names of the element
types from D. An edge (ET;,ET;) in K indicates
that E'T; occurs in the content model of ET;. RT € V
18 the root element-type of D.

Definition 3.5 (directly contained/contains)
FElement type ET; is directly contained in element-
type ET; if there exists an edge (ET;, ET;) in G.
Conversely, ET; directly contains ET; if the edge
erists.



AUTHORS EDITORS
AUTHOR EDITOR
NAME
SURNAME  FIRSTNAME  ADDITION
PCDATA

Figure 3: Element-Type Graph for Sample DTD

Definition 3.6 (contained/contains) The
contained-in  relationship  (contains  relationship)
between element types is the transitive closure of
the directly-contained-in relationship (the directly-
contains relationship).

An element-type graph depicts the contained-in re-
lationships of a DTD. For example, one can see that el-
ement types SURNAME and FIRSTNAME are contained in
element type AUTHOR. Furthermore, one can infer that
element type SURNAME has content model (#PCDATA)
from the fact that it does not contain any other ele-
ment type.

Theorem 1 FElement type A is entrance location for
B and C iff the element-type graph does not contain a
path from B to C without vertex A.

Proof. Suppose there is a path (B, Ey, Fa, ..., F,
C) from B to C' that does not contain vertex A. Tn
this case, we can construct a document with a path
from b to ¢ that does not contain a@. The content of ¢ is
chosen so that it contains an element ey of type Fy, the
content of e i1s chosen so that it contains an element
ex_1 of type Fj_1 etc. In the opposite direction, let A
be an element type that is not an entrance location for
B and (| i.e., there are elements b and ¢, and the path
between them does not contain an a. If an element e;
of type F; is directly contained in another one of type
F;, there is an edge from F; to F; in the element-type

graph. [

Corollary 1 An element type B is exclusively con-
tained in element type A iff the element-type graph
does not contain a path from B to the root-element
type without vertexr A.

Proof. Follows immediately from Theorem 1 if one
takes the root element type as C'. [

3.3 Identifying all Cases of Obligation

To identify all cases of obligation, a deeper look at
the occurence indicators (¥, 7,4+) in the content mod-
els is indispensible. Otherwise, we cannot distinguish
whether an element requires or just optionally con-
tains a subelement.

Definition 3.7 (Reduced Version of a DTD)

Let D be a DTD. By taking all content models and
removing all subtrees whose root has an optional oc-
currence indicator () or an optional-and-repeatable

occurrence indicator (*), we obtain a reduced DTD
D'

Lemma 1 The obligation relations of a DTD and its
reduced version are identical.

Proof. The proof is by contradiction: Let element
type B obligatorily contain element type A in D, but
not in D’. If there is a document d of type D’ with
an element b that does not contain an a, this is a
contradiction, since the subtree of d with root b also
conforms to D. [

Lemma 2 A reduced version of a content model can
be normalized, i.e., transformed to another equivalent
content model for which the following holds:

e the root is an O R-node,

e the children of the root are SEQ-nodes,

e the children of SEQ-nodes are leaves, i.e., ele-
ment types.

Proof. In the following, we define normalization
steps. A sequence of these steps that transform a start
tree into a result tree, i.e., a content model into an-
other one, returns the normalized DTD. Three cases
have to be considered. Figures 4, 5, and 6 reflect these
cases with start trees on the left and target trees on
the right. The transformation in Figure 6 requires fur-
ther explanation: Consider an arbitrary list of nodes
containing exactly one child of each OR-node. The
order of the O R-nodes in the start tree implies the or-
dering in that list. Then there exists a SEQ-node in
the target tree whose content is that list. Note that
T; ; occurs once in the start tree, but various times in
the target tree.

It 1s obvious that the depth of a content tree is
always reduced by a finite sequence of steps. Hence,
the normalization process terminates. Furthermore,
it is easy to conceive that the application of one of
these steps does not alter the content represented by
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a content tree and does lead to normal form as defined
above. [
In the context of this article, normalization is im-
portant. Consider the following definition of an ele-
ment type A, in particular its content model:
<VELEMENT A (¢, (B | (B, D))) | (E, B))>
Each subtree of an OR connector is not obligatory,
when seen in isolation. But careful examination of the
content model yields that B is obligatorily contained
in A. Furthermore, to identify all cases of obligation,
it is not sufficient to look at individual content models
in isolation. Let the following fragment of a DTD be
given.
<!ELEMENT A (C | D)>
<!ELEMENT C (B)>
<!ELEMENT D (B)>
As A does not obligatorily contain C, one might be
tempted to conclude that A likewise does not obliga-
torily contain B. But this is not the case.

Definition 3.8 (Extended Content Model) Let
A, B be element types of DTD D. The content model
of A extended for B is the result of the following
algorithm:

Let c¢yq be the content model of A,
WHILE (ca contains non-terminal element types
different from B)

Let o be the occurrence of such an element
type and let C' be the element type;
replace o in ¢y with the content model of C;
5

RETURN cy;

Theorem 2 FElement type A obligatorily contains el-
ement type B iff each SEQ-node in the content model
of A that is first normalized and then extended for B
contains an occurrence of B.

Proof.

<" (Correctness)
Given elements a and b of types A and B, respectively,
extending the content model of A for B eliminates
elements between a and b, but does not affect the fact
that b is contained in a. Correctness follows from this
observation and Lemmas 1 and 2.

=" (Completeness)
Suppose that a SEQ-node in the content model of A
extended for B does not contain an occurrence of B.
Then we can construct a document fragment with an
a that does not contain a b. [



4 Combining DTD Knowledge and the
Structure Index

With the optimizations from Section 3, i.e.,
Rules 3.1 to 3.2, we avoid navigating along paths if
we assume an object-oriented representation of struc-
tured documents. For query evaluation one still has to
access the documents in the database. In this section
we show that the combination of knowledge on the
Document Type Definition and index structures has
further potential for query optimization. The struc-
ture index is a materialized view on certain paths in
the database. It accelerates the evaluation of queries
that select elements (or database objects) contained
in certain other elements. In this section, we dis-
cuss techniques that use DTD knowledge to transform
queries so that the query processor can make use of
structure indices for evaluation. These techniques find
subpaths of the paths starting from the selected ob-
jects for which a structure index exists.

For illustrative purposes, consider the fragment of
the MMF DTD in Figure 1. In the MMF DTD, ele-
ment type SURNAME is exclusively contained in NAME.
Element type NAME is shared among element types
EDITOR and AUTHOR. In turn, other element types may
exclusively contain these types, e.g., AUTHORS exclu-
sively contains AUTHOR.

A structure index is a list of elements of a cer-
tain type that are contained in elements of another
type. Assume that there i1s a structure index for
(SURNAME, AUTHOR). Tt allows to quickly answer the
query “SURNAME INCL-IN AUTHOR”. To continue the
above example, with this index we can infer from
the DTD that these SURNAME-elements are exactly the
ones contained in an AUTHORS-element, and another
structure index for (SURNAME, AUTHORS) would be un-
necessary. We are interested in identifying all cases
where such overlappings of index structures occur. In
more detail, we want to know the circumstances un-
der which terms (A INCL-IN B) and (A INCL-IN (C
INCL-IN D)) are equivalent. To continue the above
example, A and C correspond to SURNAME, B to AUTHORS
and D to AUTHOR. Replacing ‘(A INCL-IN B)’ with
‘(A INCL-IN (C INCL-IN D))’ is of interest if there
is a (C, D)-structure index. Then the second term is
cheaper to evaluate because the path from elements of
type A to the ones of C is shorter than to the ones of
type B, and because in the database there may be less
elements of type C within one of type D than elements
of type B. If A and C are identical, we expect a perfor-
mance gain by orders of magnitude, because one does
not have to access the documents in the database at
all, but can evaluate the query using only the structure

Figure 7: Ilustration of Proof of Theorem 3

index.
The first rule that exploits the structure index is as
follows:

Rule 4.1
(A INCL-IN B) <= (A INCL-IN (C INCL-IN D))
c: A s exclusively contained in C (a)

and B is exclusively contained in D (b)
and B is entrance location for C and D (c)

Theorem 3 The query algebra terms on both sides of
Rule 4.1 are equivalent, given that conditions (a), (b),
(¢) hold.

Proof. The situation is depicted in Figure 7. Sup-
pose the right expression would not return an element
a of type A that is returned by the left expression.
Because of (a), there is an element ¢ of type C' that
contains a. Since a 1s not in the result of the right ex-
pression, expression (€ INCL-IN D) does not identify
¢. In other words, ¢ is not contained in an element
of type D. From this, we can conclude that a is not
contained in an element of type D. Namely, suppose
there would be an element d of type D that would con-
tain a. Then ¢, which contains a, would be contained
in d or it would contain d. The first alternative is
not feasible, as just explained. But ¢ cannot contain
d because then B could not be an entrance location
for C'and D. On the other hand, a is contained in an
element b of type B, and b is contained in an element
of type D, according to (b). In the opposite direction,
let @ be in the result of the right expression, but not
the left one. In other words, a is not contained in an
element of type B. But due to (a) @ is contained in ¢
of type C', which is contained in an element d of type
D. But according to (c), there is an element b of type
B between ¢ and d.

The transformation specified by Rule 4.1 requires
conditions (a), (b) and (c). However, this does not
mean that the query optimizer should always trans-
form the left term to the right one whenever (a), (b)
and (c) are fulfilled. Rather, the transformation is



advantageous only if a (C, D)-structure index exists.
With our implementation, the condition part of the
transformation rule checks this.

In the above example that illustrates Rule 4.1 there
is a structure index for (SURNAME, AUTHOR). Tt is also
conceivable that there is a (NAME, AUTHOR)-structure
index, and the query is SURNAME INCL-IN AUTHORS.
In this case, we can also use the structure index for
query evaluation. Rule 4.2 in the sequence reflects
this case. Finally we can modify the examples so that
AUTHORS is the external element type of the structure
index instead of AUTHOR, and AUTHOR is the external
element type of the query instead of AUTHORS. We re-
frain from explicitly writing down the rules for these
cases due to lack of space.

Rule 4.2
(C INCL-IN B) <= (C INCLUDS (A INCL-IN D))
c: C obligatorily contains A (a)

and B is exclusively contained in D (b)
B is entrance location for C and D (c)

Theorem 4 The query algebra terms on both sides of
Rule 4.2 are equivalent, given that conditions (a), (b),
(¢) hold.

Proof. Assume that ¢ is in the result of the right
term, but not the left one, meaning that there is no b
containing ¢. Because of (a), there is a ¢ containing a,
and because of expression (A INCL-IN D) in the right
term query a is contained in d. Because of (c) there
is a b between ¢ and d. Tn the opposite direction, (a)
implies that ¢ contains a. In consequence, because of
the right query, there 1s no d that contains ¢. But
there is a b that contains ¢, and because of (b) there
is a d that contains b. [

5 Other Optimizations Based on the
Document Type Definition

The objective of the optimizations described in Sec-
tions 3 and 4 has been the transformation of query al-
gebra expressions so that transformation yields a su-
perior query evaluation strategy. The optimizations
described in this section eliminate subexpressions of
query-algebra expressions that cannot have a solution.
In many cases, it depends on the Document Type Defi-
nition whether or not a subexpression has a non-empty
solution. For instance, the result of A INCL-IN B is
empty if A or B are not element types of the respective
DTD D or B does not contain A with regard to D. The
respective rule 1s as follows:

Rule 5.1 (X INCL-IN V) == EMTPY
c: (all instances of X are of type A, all instances of Y
are of type B and A is not contained in B)

We can formulate rules to eliminate non-resolvable
subexpressions such as Rule 5.1 for most PAT alge-
bra operators, except INTERSECT. With regard to this
operator, whether or not X INTERSECT Y is always
empty does not depend on the DTD but on whether
X and Y may contain elements of the same type. This
can be checked without information from the DTD.

The EMPTY-operator is not used to formulate
queries, but to have an expression to which the query
optimizer can map query algebra terms that always
return the empty set. In general, algebra expressions
that contain an EMPTY-operator are themselves empty,
except for the case when the UNION-operator is the
root. Rules such as the following ones reflect this:

Rule 5.2 (X INCL-IN EMPTY) — EMTPY
Rule 5.3 (EMPTY INCL-IN Y) —= EMTPY

These rules do not use DTD knowledge, they
rather supplement rules that use DTD knowledge.

6 Classification of the Approaches by
their Impact on Query Evaluation
Time

In this section, we briefly report on experiences
gained with our system by classifying our different ap-

proaches according to their impact on query evalua-
tion time.

Improvements by orders of magnitude. With
optimization based on structure indices, as de-
scribed in Section 4, there is an improvement by
orders of magnitude if the query can be evaluated
using access operations to index structures only.
The techniques described in Section 5 also yield
such an improvement: the duration of query
evaluation is independent of the database size,
as expected. In our test, optimization lasts
approximately one second to avoid evaluation
times of approximately half a second for each
document in the database.

Fair improvements. Obligation and exclusivity to
eliminate the INCL-IN operator or INCLUDS oper-
ator in queries of kind A INCL-IN Bor A INCLUDS
B yield a performance improvement of approxi-
mately 2 to 3. The improvement is fairly inde-
pendent of the number of documents. Transfor-
mations that introduce the structure index, but
do not completely eliminate access operations to
the database improve performance by a similar
factor. This improvement does not only result



from the selectivity of the index, but may also be
due to the fact that one does not have to navigate
upwards from the internal elements of the index.

Not relevant as optimization technique. With
regard to entrance locations, we have not en-
countered any case where an entrance location
has significantly less instances than the other
element types, which is a prerequisite for this
optimization to work. Note that the notion of
entrance location itself is not irrelevant, as it is
used in connection with the structure index.

7 Summary and Future Issues

In this article, we have presented rules for optimiza-
tion of queries on structured documents that make use
of knowledge on the Document Type Definition. Most
of these rules work in conjunction with the query-
algebra operators INCL-IN or INCLUDS. This is in line
with the fact that the contains/contained relationship
is the universal structuring mechanism in structured
documents, be it for raw data or for metadata, compa-
rable to object references in OODBMSs. In Sections 3
to b, respectively, the optimizations have been as fol-
lows:

e Cutting off redundant paths. In the context of
structured documents, there are two path direc-
tions: the path of the external element and the
path of the internal element. In the first case, op-
timization is for the INCLUDS operator and goes
along with the notion of obligation, whereas in the
second case optimization for the INCL-IN opera-
tor makes use of exclusivity.

e Identifying equivalent paths for which a structure
index exists. A structure index has some similari-
ties with path index structures in OODBMSs [3],
but can also be seen as a materialized view on
paths in structured documents. The respective
transformation rules are only useful if a structure
index indeed exists. In this context, we make use
of the notion of entrance locations, which we have
originally introduced to extend the search space
for query evaluation alternatives.

e Eliminating query subexpressions for which a so-
lution does not exist, according to the DTD.

We show that the chosen characteristics of docu-
ment types can be completely identified using infor-
mation from the Document Type Definition. To be
able to conclude this, we introduce techniques to nor-
malize and simplify the DTD without losing relevant

information. In the case of exclusivity and entrance lo-
cations, we extract only the relevant information from
the DTD by introducing notions such as element-type
graphs.

In the future, we intend to build another opti-
mizer that operates at the PAT level in order to
directly compare the alternative approaches to query
optimization, to find out about the advantages of
a two-phase approach to query optimization and to
investigate how to integrate the two optimization
components.
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