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���

Vincent Oria
���

Raymond Ng
�

Abstract

We propose multi-precision similarity matching
where the image is divided into a number of sub-
blocks, each with its associated color histogram.
We present experimental results showing that the
spatial distribution information recorded by multi-
precision color histograms helps to make sim-
ilarity matching more precise. We also show
that sub-image queries are much better supported
with multi-precision color histograms. To mini-
mize the overhead, we employ a filtering scheme
based on the 3-dimensional average color vectors.
We provide a formal result proving that filtering
with multi-precision color histograms is complete.
Finally, we develop a novel extendible hashing
structure for indexing the average color vectors.
We give experimental results showing that the
proposed structure significantly outperforms the
SR-tree.

1 Introduction

Content-based access to and querying of image repositories
is of significant interest to the database and image process-
ing communities. Most studies have focused on image re-
trieval based on such perceptual properties as color, texture
and shape. The problem, in this context, is to find the im-
ages that are “similar” to a query image with respect to one
of these properties; hence the term similarity matching.
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In this paper, our focus is on color similarity matching.
The research on color similarity matching has primarily
been restricted to color histograms for the entire images.
While a histogram is capable of summarizing the color dis-
tribution of an image, it is incapable of capturing the spa-
tial distribution of the color values. As a simple example,
consider two images, one of which has one color in its top
half and a second color in its lower half, while the sec-
ond reverses the placement of the two colors. These two
images have exactly the same color histogram, and can-
not be distinguished from one another. Furthermore, sub-
image queries, where the user only specifies a (small) part
of the image he/she remembers or cares about, cannot be
supported. To address these two weaknesses, we study in
this paper multi-precision similarity matching. The idea is
to divide the image into a number of sub-blocks, each of
which has an associated color histogram. These are used
for more precise color similarity comparisons.

A second issue that we study in this paper is the devel-
opment of a hashing structure to facilitate searching over
high-dimensional spaces, which is a characteristic of sim-
ilarity matching. Even when only one feature, e.g., color,
is considered, high-dimensionality is evident. To facilitate
color similarity matching, in their seminal work, Swain
and Ballard propose histogram intersection for color his-
togram matching [18]. Stricker and Orengo propose cumu-
lative color histogram indexing [17]. If color histograms
are to be indexed directly, the indexing structure would be
very high-dimensional (e.g., 64- or 256-dimensions). To
avoid the “dimensionality curse”, the standard solution is
to conduct dimensionality reduction. One way is to apply
principal component analysis or singular value decompo-
sition (e.g., [19, 11]). Alternatively, a 3-dimensional av-
erage color vector can be used as a filter [2]. The idea is
to filter the database using average color comparisons first,
and then to apply full color histogram comparisons to the
significantly smaller set of images returned by the filter-
ing step. We propose an extendible hashing structure for
searching in high-dimensional spaces.

We demonstrate how the extendible hashing structure
can be used to improve the performance of multi-precision
similarity matching. Consequently, this paper makes the
following contributions. We present experimental results
showing that the spatial distribution information recorded



by multi-precision color histograms helps to make similar-
ity matching more precise. We also show that sub-image
queries are much better supported with multi-precision
color histograms. To improve the efficiency of this added
functionality, we employ a filtering scheme based on the
3-dimensional average color vectors, similar to [2], but
applied to multi-precision color histograms. We provide
a formal result proving that filtering with multi-precision
color histograms is complete. We further develop an ex-
tendible hashing structure to improve the effectiveness and
efficiency of filtering. We give experimental results show-
ing that the proposed structure significantly outperforms
the popular SR-tree [5]. Multi-precision filtering, and the
hash structure supporting it, have been incorporated into an
image DBMS. This provides a demonstration of the feasi-
bility of the approach.

2 Background

The fundamental elements of histogram-based image re-
trieval include the selection of the color space, the color
space quantization, and the histogram distance metric.
There is no general agreement as to the most suitable color
space for color histogram-based image retrieval. This is
a result of the fact that color perception is highly subjec-
tive [21]. Therefore, a variety of color spaces are used in
practice such as RGB, HIS, or L*u*v*. Multi-precision fil-
tering proposed in this paper is insensitive to the choice of
color space, but in our current hash design, we use the RGB
model. The technique can be extended to other models, but
additional work is required. We indicate what is needed in
future sections.

As noted above, there are different ways of dealing with
the dimensionality curse. We adopt the method proposed in
[2, 3]. In this method, a 3-dimensional compact represen-
tation of color histograms—average colors— is proposed
as a cheaper way to simulate full � -dimensional histogram
comparisons. The idea is to filter the database using aver-
age color comparisons first, and then apply full color his-
togram comparisons to the significantly smaller set of im-
ages which are retrieved at the filtering step.

A color histogram is a discrete function
�������	��
 � � ,

where
���

is the 
 -th color value and � � is the number of
pixels in the image with that color. In order to compare
color histograms of images with different sizes, color his-
tograms are often normalized as � ��� � ��
����� where � is
the total number of pixels in the image. Given that each bin
of a color histogram represents a three-dimensional color
value, the average color of a color histogram is defined to
be the weighted average color corresponding to the nor-
malized color histogram. Specifically, let � 
�� ��������������� �! 
be a "$# � matrix whose % -th column is the color
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Figure 1: The three-level multi-scale representation
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While the average color comparisons are not as accu-

rate as one between full � -dimensional histograms, they
are much faster. Moreover, the images retrieved by aver-
age color comparisons are guaranteed to include all images
that should be retrieved by color histogram comparisons,
as proven in [3]. Accordingly, for any range query of the
form @.S &0TVUXWZY

( @
�
S &[TVU � 1<;�2 ��
\J /)] J ), it is possible to

use @!5�7�9 WGY�^�_ ` � to retrieve images quickly and without
misses. Here

` �
is the minimum eigenvalue of the general-

ized eigenvalue problem
M] MJF
F`aMI MJ

in which ] 
Z� b.&dc  
is a similarity matrix and

M] is defined in terms of ] . @.S &0TVU
is then applied only to the filtered set of images.

3 Multi-Precision Querying
3.1 Multi-Precision Similarity Filtering

Besides extracting color histograms from entire images, an
image can also be segmented into several blocks, each of
which has an associated color histogram. Figure 1 shows a
3-level multi-scale representation in which the entire image
is divided into four blocks, and each block is recursively di-
vided into four. A color histogram is computed for each of
the blocks at each level. These color histograms together
form multi-scale color histograms of an image. At the end
of this section, we show how this simple, fixed grid seg-
mentation can be generalized.

With multi-scale color histograms, image similarity
queries based on color histograms can be done at several
levels of precision. In a three-level decomposition, which is
what we employ in the experiments reported in this paper,
two images can be similar at three precision levels: At the
first level, the color histogram of the entire image is com-
pared using 1 color histogram comparison; at the second
level, the color histograms corresponding to the 4 blocks
(
�e of the entire image) are compared requiring 4 color his-

togram comparisons; at the third level, the color histograms
corresponding to the 16 blocks (

��gf of the entire images) are
compared resulting in 16 color histogram comparisons.

At the first level, the image distance h � is defined as the
distance between color histograms of entire images. At a
higher level i , hCj is defined as the average of the color his-
togram distances computed for all the blocks. At the third
level, for instance, hCk 


��lfnm �gf&po)� @ & , where @ & is the color
histogram distance computed for the % -th image block. This
image distance metric takes the image color composition
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Figure 2: Sub-image querying: (a) Example, (b) 8x8 grid

into account, and also captures the spatial distribution of
color in an image. Thus, the distance metrics at the higher
precision levels provide better discrimination power.

If images are similar at a higher level, they must be sim-
ilar at the lower levels too. For this reason, the color his-
togram distance must be formulated in such a way that the
image distance at the lower level is no larger than the dis-
tance at the higher level, i.e., h � W h �?W h k .
Theorem 1 In a � -level multi-scale color histogram, if hXj
denotes the distance between two images at level i , then
h j � � W h j W h j � � (

� W i W � ).
Obviously, the distance metrics defined at higher preci-

sion levels are computationally more expensive than those
defined at lower levels. Fortunately, since h � W h � W h k ,
efficient multi-scale search strategies with the use of lower
level distances as filters can be explored. As suggested in
[9], filtering schemes are depth-first: Matching is first done
at level 1 and then at level 2 and so on, without skipping
any intermediate levels. Thus, when the second precision
level query of the form h � W Y is processed, the following
filter is applied: @ 5�7�9 WRY�^ _ `>� ( @ 587�9 and

`>�
are described

above), h �:W Y , h � WRY . When third precision level query
is processed, h k WRY is added to the filter.
3.2 Sub-image Similarity Queries

Multi-scale color histograms can be used to support sub-
image queries. The third level of decomposition superim-
poses a 4-by-4 grid on an image (see Figure 1, 3rd level).
Users can specify the part of image in which they are in-
terested by choosing any of the grid cells. For example,
the user may want to find all the images that have a white
building along the right-hand border like the one shown in
Figure 2(a); the remaining part of the image is “don’t care”
for the user1. Without multi-precision color histograms,
this sub-image query can only be answered based on the
histograms of the entire images. This strategy gives poor
results, particularly when the size of the sub-image query
is small relative to the entire image.

With multi-precision color histograms, however, a sub-
image query can be readily answered. The appropriate grid
cells can be chosen, as long as the resulting shape is a
rectangle. The selected rectangle is composed of prede-
fined image quadrants, each of which is uniquely identi-
fied by a number as in the quadtree as shown in Figure

1To assist in better exposing the idea, we show 4 levels rather than 3,
which is what we use in our experiments.

2(b). The color histogram of the selected portion can be
computed based on the precomputed multi-scale color his-
tograms. For this example, the color histogram can be
computed from the two third-level color histograms and the
four fourth-level color histograms. Assuming that the color
histograms are normalized, the computation formula is:

� 
 3
" �

����� 3
" �

����� 3
3 �
� �Ck e � � k f�� �
	��

� � f�
 � (1)

where � � � , � ��� , ����� , � f�
 are color histograms of the cor-
responding numbered parts.

So far, we have assumed a fixed grid superimposed on
the image. The results can be generalized. The fixed grid
can have overlapping blocks [16]. Equation (1) can cer-
tainly be generalized to a grid of overlapping blocks. If the
query sub-image is not aligned with the fixed grid (e.g.,
the white building given in Figure 2(a) where the query
sub-image is strictly contained in but smaller than the four
smallest grid cells along the right-hand border) the padding
technique of [9] would be applicable to solve the problem.
Based on a linear constraint optimization framework, this
technique can pad extra pixels to the smaller query sub-
image histogram in such a way that the estimated color
histogram distance is minimized. The results given in [9]
show that sub-image querying with padding still provides
much better quality than if the sub-image query is answered
based on histograms of the entire images.

4 Hashing Algorithm
As indicated above, multi-precision filtering is a depth-first
process. The first operation in this process is important as
it is performed on the largest set of images. We develop a
hashing structure to perform this operation efficiently.

There are a number of proposals for indexing multi-
dimensional data. These can be categorized into two
classes: hierarchical (tree-based) methods (e.g., R*-tree
[1], SS-tree [20], and SR-tree [5]), and non-hierarchical
(hashing-based) methods (e.g., grid file [12]).

In addition to the above mentioned structures, differ-
ent multidimensional hash strategies have been proposed
mainly as extensions of the linear hashing to avoid keep-
ing large directory information. These include multidimen-
sional linear dynamic hashing [14], which does not sup-
port range queries, MOLPHE (Multidimensional Order-
Preserving Linear Hashing with Partial Expansions) [6]
that works fairly well for uniformly distributed data, but
fails for non-uniform data distribution because of the hash-
ing function used, quantile hashing [7, 8], which addresses
this problem by uniformly distributing the original data
during a division, and z-ordering [4] that proposes a bet-
ter ordering method using the z-order.
4.1 Extendible Hash Structure

The traditional extendible hashing is capable of expanding
and contracting hash address space as needed. However,
because it can only handle one dimensional data, it is not
suitable for multi-dimensional similarity search. We de-
sign a new � -dimensional hash structure for this purpose.



In the following, we only concentrate on its application
to 3-dimensional color space. To focus on this particular
instantiation that, the hash structure will be referred to as
three-dimensional extendible hash (3DEH).

This structure is suitable for any color model defined in
an Euclidean coordinate system. In this paper, we use the
RGB model, but the structure can be extended to work with
the L*u*v* model; that will be the topic of follow-up work.

Extendible hashing literature conflicts in how the direc-
tory growth is accommodated. Some add a bit at the least
significant bit position and others add the bit at the most
significant bit position. We add the bit at the most signif-
icant position (as described, for example, in [15]). One
advantage of our approach is that new space is added at the
end of the directory table, eliminating the need to reorga-
nize the table after expansion (i.e., none of the keys in the
original

� �
key space need to be re-assigned to the newly

created directory entries). Given an address � in the origi-
nal

� �
key space, the corresponding overflow bucket can be

computed as � � �
where

�
is the beginning address of the

new space. In the case when the new key space is contigu-
ous to the original one,

� 
 � �
(since the key space doubles

at every expansion). Second, in regular hashing, the ob-
jective is equality search. Therefore two keys that hash to
the same bucket are considered conflicts that result from a
non-perfect hash function. In our case, the objective is sim-
ilarity matches, not equality. Thus, two keys that hash to
the same bucket are considered similar, not an anomaly. A
second objective of adding a most significant bit is to facil-
itate putting similar images into the same bucket. Finally,
we introduce a mask track to keep track of the split direc-
tion in the buckets, since they can split along any of the
three dimensions (colors). This is important, because the
splitting dimension can change from bucket to bucket. The
mask track controls the growth of the directory by map-
ping three dimensions into one. Thus, the 3DEH directory
grows slower than the grid file.
4.2 Initial Setup and Simple Insertion

The hash directory of the three-dimensional extendible
hashing has three initial depths ( @ � , @ � , @!k ), one for each
of the R, G, B color components; it also has a growth
depth @�� , which is 0 at the beginning and increases with
the address space. The number of bits of a hash ad-
dress is

� @ � � @ � � @ k � @ � � , so the hash directory has
������� � �
	 � �
� � �
�
�

entries. The bucket in 3DEH has three lo-
cal depths (�

�
, �
�
, �Dk ), which means that all records in the

bucket have common �
�
, �
�
, � k leading bits of the R, G, B

values, respectively. At the beginning, the local depths of
buckets are the same as the initial depths of the directory.
The directory entry either points to a bucket or holds a null
value if no data records are hashed to this entry.

The initial hash directory has
������� � �
	 � �
���

entries since
@�� is zero at the beginning. The

� @ � � @ � � @ k � -bit hash
address is computed by taking the leading @ � , @ � , @!k bits
from the R, G, B values, respectively, and then concatenat-
ing them. We call this

� @ � � @ � � @ k � -bit address initial hash
address. Figure 3 shows an initial hash directory whose ini-
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Figure 3: Initial hash directory of the three-dimensional
extendible hashing

tial depths are (1, 1, 1). Insertion of a value into bucket A
(hash address 010), for example, is a simple insertion that
proceeds as in regular hash structures.

The initial depths of the hash directory can be chosen
according to the applications. If green colors are dominant
and red colors barely appear in an application, for example,
we may extract 1 bit from R, 3 bits from G, 2 bits from B,
resulting in an initial hash directory of size

��� � � k � � � 
����
.

4.3 Insertion with Split and Directory Doubling

When a bucket overflows in 3DEH, like traditional ex-
tendible hashing, the hash address space increases and the
bucket splits. Unlike traditional extendible hashing, in
which a bucket can be split along only one dimension, a
bucket in 3DEH can be split along any of the R, G, B di-
mensions. We split the bucket along the dimension with the
highest variance so that the records can distribute as evenly
as possible in the two resulting buckets. Suppose, in Figure
3, that bucket ] , whose hash address is 010, overflows and
R dimension has the highest variance — then the bucket is
split along R dimension by putting all the records whose R
values’ second leading bit is 1 to a new bucket h . Since
there is no more space in the hash directory to accommo-
date the new bucket, the address space is doubled, and now
the hash address becomes a 4-bit binary number.

Since the bucket can be split along any one of the three
dimensions, we need to record the dimension along which
it is split. A data structure named mask track is main-
tained to keep track of the splitting history of the bucket.
For example, we record the fact that only the bucket with
the initial hash address 010 has split along R dimension
in the mask track shown in Figure 4. Every entry in the
mask track is zero, except that the 010 entry is 100. Note
that space used for this purpose can be optimized by us-
ing fewer bits to record this information (e.g., 2 bits for 3
dimensions).

Now, further suppose that bucket h in Figure 4 over-
flows and the highest variant dimension within this bucket
is B dimension—so that bucket h is split along B dimen-
sion by moving all the records whose B values start with
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Figure 4: First expansion of the hash directory

10000


10001

10010


null

null

null


11000


Local Depths (2, 1, 2)
E
11010


11001
 null

null


Local Depths (1, 1, 1)

C


Initial Depths (1, 1, 1)

Disk Block


000


001


010


011


101


111


100


110


000


000


100


000


000


000


000


000


mask track


level 1
Growth Depth 2


Hash Directory


00000


00001

00010


null

Local Depths (2, 1, 1)


A


Local Depths (1, 1, 1)
B


level 2

000


000


000


000


000


000


000


000


000


000


001


000


000


000


000


000


0000


0001


0010


0011


0101


0111


1000


1001


1010


1011


1100


1101


1110


1111


0100


0110


null


01000


01001


01010


null


D

Local Depths (2, 1, 2)


00111


01111
 null


10111
 null


null


00110


Figure 5: Second expansion of the hash directory

01 to a new bucket
�

. The hash address space is doubled
again. The bucket

�
is pointed by the entry 11010. The 5-

bit hash address of color (01111100, 10101000, 00011001)
is 01010, which is computed by putting the second leading
bit (0) of B value in front of its previous 4-bit hash address
1010. The second level of mask track is created and the
value 001 is stored in entry 1010, which means the bucket
whose hash address is 1010 is split along B dimension. Fig-
ure 5 illustrates this situation.

4.4 Insertion with Split but without Directory Dou-
bling

Suppose now that the bucket � in Figure 5 overflows and
is split along G dimension. A new bucket � is allocated,
and all the records whose G values start with 11 are moved
from bucket � to � . This time we do not expand the ad-
dress space. Instead, we simply let the 01110 entry, which
previously held a null value, point to bucket � . The con-
tents of entry 110 of the first level mask track are changed
from 000 to 010 to record the splitting. If bucket � over-
flows again, and is split along R dimension this time, a new
bucket � is allocated and pointed by the directory entry
10110. The 0110 entry of the second level mask track is
changed from 000 to 100 (see Figure 6).
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Figure 6: Third expansion of the hash directory

4.5 General Case for Insertion

In general, when a bucket overflows and needs to be split,
its local depths are compared to the directory depths. If�
�
� �

�
� �

� k ��
 � @ � � @ � � @ k � @ � � , then there is no
address space to hold the new bucket, the directory must
be doubled and @ � is increased by 1. Otherwise, the ad-
dress space remains unchanged. The original bucket has
the same hash address 
 as it had before; the hash address
of the new bucket is

� ��� � � � 	 � � � � � 
 . The bucket is split
along the highest variant dimension. Suppose the R dimen-
sion has the the highest variance. The bucket is split by
moving all records whose R values’

�
�
��� 3 � -th leading bit

is 1 to the new bucket. The local depths of the two split
buckets are now

�
�
� � 3 ; � � ; �Dk � . The 
 -th entry of the�

�
� �

�
� �

�+k BQ@ � BQ@ � BQ@ k � 3 � -th level mask track is
updated to indicate the splitting.

With the above hash structure, a given color can be
mapped to its hash address as follows:

1. Extract @ � , @ � , @ k leading bits from R, G, B values,
respectively. Concatenate these bits to form an initial
address.

2. Refer to the entry corresponding to the initial address
in the first level of the mask track. If the bucket has
not been split, go to Step 4; otherwise compute the
new address as described above.

3. Keep looking up the next level of mask track with the
new address until the mask indicates that the bucket
represented by this address has not been split.

4. Put appropriate number of zeros at the front of the ob-
tained address to make it a

� @ � � @ � � @ k � @ � � -bit
hash address.

4.6 Deletion

Deletion in 3DEH is similar to traditional extensible hash-
ing; buddy buckets are merged to collapse the directory.
The mask track entries are re-set to 000 when this oc-
curs. To avoid merged buckets from being split again soon,
a merge-threshold [12] is used. The merge-threshold is
the percent-occupancy, which the resulting bucket should



not exceed when two buckets are merged. If the percent-
occupancy of resulting bucket is above the threshold, merg-
ing shouldn’t occur.
4.7 Analysis

Hash support for multi-dimensional querying introduces a
new data structure: the mask track. During query process-
ing, it is necessary to navigate through the multiple levels
of the mask track, similar to tree navigation. The additional
cost of maintaining and searching the mask track needs to
be considered.

The size of the mask track is bound by
� �

, which is the
size of the directory. Furthermore, each directory entry is
only 2 bits. Thus, for example, 1,000,000 directory en-
tries (which corresponds to much larger database due to
bucketing) require only 2Mbits. With the mask track small
enough to be kept in memory even for very large databases,
it is guaranteed that at most 2 I/O’s are needed for equality
searches.
4.8 Range Search Algorithm

Similarity matching, which is more common in image
DBMSs than exact matching, may require range searching
for which traditional hash structures are not suitable. Given
an example color value

��b ; � ; ��� and a distance threshold
Y
,

a range query finds all the color values that fall into the
search region, which is a sphere whose center is

��b ; � ; ���
and radius is

Y
.

In 3DEH, each bucket pointed at by the initial hash di-
rectory represents a region corresponding to one of the par-
titions. During the growth of the hash directory, the buck-
ets may have been split. The regions represented by the
split buckets are further partitions of the original bucket re-
gion. The range query algorithm will first locate all the
buckets whose regions overlap the search region, and then
examine the contents of the buckets. Since the shape of
the bucket region is a rectangular solid, and it is easier to
decide whether two rectangular solids overlap, a minimum
bounding cube of the sphere, instead of the sphere itself, is
used during the procedure of locating the buckets.

The first step of this algorithm is to compute the set
of initial hash addresses of the partitions which over-
lap the cube. For example, given a color value (R, G,
B) represented by binary numbers (01111100, 10101000,
00011001) and a distance threshold 12 (1100 in binary),
the minimum bounding cube of the search region is
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Take R, as an example. Since its color value is
01111100, its range is calculated as

��� 3 3�3 3�3 ��� ���G� 3 3 ��� �
which gives the interval [01110000, 10001000]. G and B
ranges are calculated similarly. So, for the hash directory
whose initial depths are (1, 1, 1) as shown in Figure 3, the
set of computed initial hash addresses is � 010, 110 � , ob-
tained as follows. Since the initial depths are (1,1,1), the R
range of [01110000,10001000] is reduced to [0,1], essen-
tially just taking the first bit of the two ends of the range.

G (Green)

(a)

R (Red)

B (Blue)

G (Green)

R (Red)

B (Blue)

(b)

Figure 7: Further partitioning of initial partitions

Similarly, the G range is reduced to [1,1] and the B range is
reduced to [0,0]. The “cross-product” of the three reduced
ranges gives the set � 010, 110 � .

The mask track is looked up level-by-level to find out
how these initial partitions are further partitioned. For ex-
ample, the first level mask track in Figure 6 indicates that
the 010 bucket has been split along the R dimension, re-
sulting in two split buckets 0010 and 1010. Only the 1010
bucket still overlaps the minimum bounding cube; the 0010
bucket is outside the cube. This situation is shown in Fig-
ure 7(a). The lower cube is split into two halves. Only
the upper half (lighter shading) still overlaps the minimum
bounding cube.

When we look up entry 110 in the first level mask track,
we know that this bucket has been split along G dimen-
sion. Only bucket 0110 still overlaps the cube. The upper
cube is also cut in two halves, and only the lighter shaded
half overlaps the minimum bounding cube. So the set of
addresses which are still in consideration becomes � 1010,
0110 � , where the 010 is replaced by 1010 and 110 is re-
placed by 0110 (again note the addition of bits at the most
significant position). The addresses 0010 and 1110 are dis-
carded, because the regions represented by them are outside
the bounding cube.

The second level mask track tells us that 1010 bucket has
been split along B dimension, and 0110 bucket along R di-
mension. The regions represented by the addresses 11010
and 10110 are outside the bounding cube, so now the ad-
dress set becomes � 01010, 00110 � . The lightest shaded
rectangular solids (Figure 7(b)) are divided into two halves,
and the darkest parts of these still overlap the minimum
bounding cube.

In general, when a bucket overlapping the bounding
cube is split, there are two possibilities: either only one
split bucket overlaps the cube, or both of them do. Only the
buckets overlapping the cube need to be further checked.

The algorithm continues looking up the next level mask
track until all the addresses in the set are final; that is,
the corresponding buckets do not split. The address set� 01010, 00110 � is final, for instance. Then a further check
is performed on the relative position between the bucket
and the sphere. There are three possibilities: If the bucket
is contained in the sphere, all the color values in this bucket
are returned as query results; if the bucket intersects with
the sphere, the color values in this bucket need to be ex-



amined one-by-one, and those qualified color values are re-
turned; if the bucket is outside the sphere, it is discarded.
5 Experiment Results and Discussion
5.1 Experiment Setup

As stated earlier, we use RGB color model in the experi-
ments. All possible

��� � k color values in RGB color model
are grouped into 64 values, i.e., each dimension is quan-
tized into 4 equal length intervals, which results 64-bin
color histograms. Average colors are then computed from
color histograms [3]. The number of entries in the initial
hash directory is set to 64, requiring an initial hash address
has 6 bits, with 2 bits from each of the R, G, B.

We take 6601 images from a published photo collection
CD ROM. These images fall into six categories, includ-
ing 919 animal, 1087 people, 1161 plant, 1510 scenic, 963
structure, and 961 transportation images. We compute a
color histogram and an average color for each of the im-
ages. The average colors (three-dimensional points) con-
stitute our experiment dataset.

Since the real images come from six different categories,
we ran experiments to determine if there were significant
differences, among classes, in the distribution of average
colors over the 64 partitions. We determined that most of
the average colors are in one partition [10]. Because of the
similarity, there was no point in differentiating images into
six categories, and we considered them in one large dataset.

In order to test the scalability of the hash structure, we
need much larger datasets than the 6601 images. Synthetic
data were generated for this purpose. To simulate the real
data distribution more accurately, we also examined the
distribution of the three color components which make up
the average color values. The synthetic data are generated
in two steps. First R, G, B values are generated separately
according to the distributions that were obtained from the
analysis of the 6601 real images. Then these R, G, B values
are combined randomly to make up color values on the con-
dition that the color values are distributed in the 64 color
partitions in the same way as the real images.

The experiments are run on six datasets with the sizes
of 5,000, 10,000, 50,000, 100,000, 500,000, 1,000,000 for
the experiments. The 5,000-size dataset contains only real
data. All the other datasets are combinations of 6601 data
points (average color values) computed from the real im-
ages, and synthetic data. To save space, we only show the
graphs for the 5,000 and 1,000,000 datasets. Dataset of
10,000 is similar to 5,000 and datasets larger than 10,000
are similar to 1,000,000 in all the experiments.

We implement the hashing algorithm in C++. The SR-
tree code is provided by its authors. The disk block size
is set to 4096. A hash bucket or a SR-tree leave node can
hold maximum 511 data points. The fan-out of SR-tree
is 88. The experiments were run on a SunUltraSparc 10
workstation under Solaris.

5.2 Query Performance

We run range queries on the hash structure and the SR-
tree to compare their query performance. 500 query points

are randomly generated with the same data distribution as
the dataset. Queries are run for nine range thresholds:
4, 9, 13, 18, 22, 27, 31, 35, 40, 44, which are approxi-
mately 1% - 10% (in 1% increments) of the maximum dis-
tance between two color values. (The maximum distance is_ "�� �����

� 
���� 3 � ��� ��� � .) There is an obvious relationship
between the distance threshold and the number of returned
images: larger thresholds return larger sets of images at the
end of the filter phase. We ran experiments with thresholds
up to 44, because these return a sufficiently large set. For
example, for a dataset size of 1,000,000 images, this value
gives a result set of 100,000 images. It is obvious that this
is already a large number of images as a result of filtering.
We run 500 queries for each of the range thresholds and
each of the datasets, and then compute average from the
obtained 500 values.
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Figure 8: I/O performance of Hash and SR-tree

Figure 8 presents the experiment results about I/O per-
formance. The hash structure outperforms the SR-tree for
all the distance threshold ranges we consider, except for
small datasets (5000 and 10000). The reason for the be-
havior in the case of small datasets is related to the way
these two index structures divide the color space: SR-tree
divides the space into overlapping partitions, while hash
divides it into non-overlapping, but finer, partitions. This
requires more reads when searching the SR-tree, because,
if the search region intersects with the overlapping region
of two disk blocks, then both of these disk blocks have to



be read. On the other hand, the finer partitioning of the
hash structure results in a larger number of buckets than
the number of leaves in the SR-tree For smaller thresh-
olds, a finer partition does not affect performance much,
because the region that needs to be searched is small. In this
case overlapping becomes the dominant factor. For larger
thresholds, overlapping does not matter anymore, because
even if the partitions were not overlapped, the search re-
gion is large enough to include them. This effect could be
observed for large datasets as well, but only at very high
distance thresholds.

Figure 9 presents the total time comparisons of the two
structures. The difference between the total time and the
I/O time depicted in Figure 8 depicts the CPU cost of man-
aging the data structures to facilitate multi-precision and
sub-image querying.
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Figure 9: Total Time Comparison of Hash and SR-tree

As the above results indicate, for meaningful distance
threshold ranges and for large datasets, 3DEH is an or-
der of magnitude faster than SR-trees. The superior per-
formance is due both to the I/O behavior described above
and to the superior CPU performance of the hash. The rea-
son for the better CPU performance is related to the search
algorithms, which, of course, are based on the index struc-
tures. For 3DEH, the initial partition of the space is pre-
determined, so the initial hash addresses of the buckets that
overlap the search region can be computed, i.e., no search
operations are needed here. For the SR-tree, the root node

must be searched first to decide which child node overlaps
the search region, and then the child nodes are searched in
turn. Searching the nodes is time-consuming, because the
fan-out of the SR-tree is fairly large.

Another reason why 3DEH outperforms the SR-tree is
how the two structures compare the bucket/node region to
the search region. For 3DEH, the search starts from the
candidate buckets obtained by computation, whcih may
have been split during the growth of the hash structure.
Region comparisons are needed to determine whether the
split buckets overlap the search region. Only the dimension
along which the bucket has been split is compared because
the original bucket overlaps the search region, which re-
sults in only two possibilities: either both of the split buck-
ets overlap the search region, or only one of them does. For
the SR-tree, in order to determine whether the node region
overlaps the search region, comparisons must be done for
all the three dimensions since there are no hints about the
relative position between the node region and the search
region.
5.3 Space Utilization

We are interested in two scenarios: the continuously grow-
ing database (repeated insertions) and the steady-state
database (a more balanced number of insertions and dele-
tions).

Figure 10 presents the experimental results for the grow-
ing database case. We measure average bucket occupancy
every 2000 insertions. The average bucket occupancy
shows a steady state behavior with small fluctuations of
around 66 percent when the number of inserted points is
sufficiently large (larger than 100,000). The directory en-
try utilization is poor because the data distribution in our
dataset is very skewed (recall that most of the average col-
ors fall into one partition), causing the directory size to dou-
ble when the dataset size grows.

For the experiments with steady-state dataset, the hash
structure is first initialized with 500,000 points, then
250,000 randomly generated points are inserted into and
250,000 random points are deleted from it. Insertions and
deletions are randomly interleaved. The experiments are
conducted with different merge-thresholds (the percent-
occupancy which the resulting bucket should not exceed
when two buckets are merged): 100%, 90%, 70% and 50%.
Figure 11 shows the experimental results. The average
bucket occupancy changes minimally, which indicates that
the space partitioning remains optimum during the dele-
tions and insertions.

In the experiments, we also measure the number of splits
and merges happening during the insertions and deletions.
Comparing the two graphs in Figure 11, we can see that set-
ting the merge-threshold at 90% saves many merge opera-
tions without degrading space utilization too much. The re-
sults for 70% and 50% merge-threshold is the same as 90%
because the insertions and deletions interleave so evenly
that the bucket occupancy doesn’t change much: actually
90% merge-threshold already results in no merges. It is
important to note that space occupancy reduces by only 2
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Figure 10: Space utilization of a continuously growing
dataset

Query vs right Query vs left
Level 1 0.0110 0.0138
Level 2 0.0373 0.0767
Level 3 0.0815 0.0819

Table 1: Improvements with multi-precision filtering

after 500,000 insertion and deletion operations.
5.4 Quality and Overhead

In Section 3.1, we showed, by way of Theorem 1, that
multi-precision filtering is correct. Multi-precision filter-
ing also improves the quality of color similarity match. In
order to test this claim and to quantify the improvement,
we ran an experiment. From the set of 1510 scenery im-
ages we chose one image and generated from this two im-
ages that show the left and right sides of the scene. These
images, which we call “left image” and “right image”, are
similar to the original image at level 1, but not at higher
levels. The left and right images were added to the original
1510 images in the dataset (to control the result set sizes
of the match queries). We then used the original image as
the query image to search the entire dataset. The results
are given in Table 1, in terms of the distances between the
query image and the two added images. The table shows
that multi-precision histograms do what they are designed
for — namely, the higher the level of precision used, the
stronger is the discrimination power.

One question that arises is whether doing multi-level fil-
tering helps in the number of color histogram similarity
comparisons. When executing a third precision level query,
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Figure 11: Space utilization of a steady-state dataset

is there an advantage to follow step-by-step filtering, or can
one go directly to third level, or perform filtering at the first
level and then jump directly to filtering at the third level?
We have run experiments with randomly picked query im-
ages to justify our claim that step-by-step filtering is use-
ful. We ran these images against the data set described in
Section 5.1 where we compared the cost of searching us-
ing only level 3, using level 1 and level 3, and using all
three levels. The results, which we omit due to space lim-
itations, uniformly show that multi-level filtering using all
three levels reduces the total number of color histogram
comparisons.

A second question that arises, however, is the overhead
that is incurred to obtain this precision. In order to test the
overhead of multi-precision search, we conducted timing
experiments using the same set-up. These results show that
the overhead of multi-precision filtering is very acceptable.
For large thresholds (e.g., 0.2), multi-precision matching
is about 3.5 times slower than full-image matching. How-
ever, for large thresholds, the precision is relatively low.
Specifically, for the threshold of 0.2, the first level returns
36 images out of 1500, whereas the third level returns only
3 images. For large datasets, users may wish to set the
distance threshold significantly smaller, resulting in lower
threshold. For example, for a distance threshold of 0.08,
multi-precision matching takes about twice as long as full-
image matching.

These results also show the power of the hash structure
that supports multi-precision filtering. Without filtering,
multi-precision matching at level 3 should have taken 16
times as long, since it would require the comparison of 16



color histograms instead of one. Filtering has a significant
effect in reducing the overhead.

6 Conclusions and Future Work

In this paper, we propose multi-precision similarity match-
ing to improve the quality of color similarity searchers and
an � -dimensional extensible hash to support searching in
high-dimensional spaces. Multi-precision color matching
divides the image into a number of sub-blocks, each with
its own associated color histogram that is used as the basis
of finer granularity matching. The technique is supported
by a particular instantiation of a novel � -dimensional ex-
tensible hash using 3 dimensions (called 3DEH). The hash
structure indexes image average colors, and facilitates the
filtering process. Experiments indicate that 3DEH at least
an order of magnitude faster than SR-tree in total time. The
space utilization of the structure is also satisfactory.

The proposed multi-precision search technique and the
multi-dimensional hash structure have been incorporated
into DISIMA [13], a research prototype image DBMS.
Space limitations do not allow us to describe the imple-
mentation details, which will be described in subsequent
papers.

There are a number of issues that we will investigate
further. We will improve the hash structure in two ways.
First, we will develop reinsertion algorithms to keep space
division optimal. Second, we will work to improve the di-
rectory occupancy, which the experiments show as rather
low.

With respect to multi-precision similarity search, there
are two important areas to investigate. The first is the re-
laxation of the fixed grid. The second important avenue of
investigation is the extension to the L*u*v* color model.
The fundamental difficulty is that the visible color space in
L*u*v* is conic, not rectangular as is the case in the RGB
model. This requires more care in the division of the color
space into cubes. It should be noted that the only part of the
technique that needs to change is this part; the rest would
remain unchanged. If this subdivision is done in a simi-
lar manner to what is described in this paper, then some
of the space that is covered by the index structure does not
have colors in it. This introduces more skew into the data
distribution. However, our experiments have already taken
skewed data distribution into consideration and the tech-
nique performs well in these situations. We will investigate
techniques that do not introduce such skew in future work.
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