VisualMOQL: A Visual Query

Language for Image Databases

Vincent Oria, Bing Xu and M. Tamer Ozsu
Department of Computing Science, University of Alberta
FEdmonton, Alberta, Canada T6G 2H1

{oria, bing, ozsu} @cs.ualberta.ca

Abstract
Since most multimedia database systems are built on top of object or object-
relational database systems, they inherit the underlying query facilities. The
approach we present in this paper is in two steps. The first step is to design
a multimedia query language that will be used as an internal language. The
second step is to define an equivalent visual query language and a translator
to translate a visual query into a query in the internal query language.

Keywords
Image database system, multimedia database system, visual query language

1 INTRODUCTION

A common solution to satisfy the diversity of multimedia data users is to
provide visual techniques to retrieve multimedia data. The query is depicted
by visual representations of domains of interest. This technique of expressing
queries is known as wisual language, iconic language or graphical language
[ACS90]. In general, the expressive power of visual query languages are low
since they are directed at naive users; they are often not based on a textual
query language.

One way to extend the capabilities of visual languages is to base them on
powerful multimedia query languages, which themselves may be extensions
of object or object-relational query languages. This provides a visual query
language that enables easy querying of multimedia databases while benefit-
ing from the query facilities provided by the database management system
(DBMS). We have defined a multimedia query language MOQL (Multime-
dia Object Query Language) [LOSO97] that extends OQL (Object Query
Language) [CBB*97]. In this paper, we present VisualMOQL a visual query
language for the image component of MOQL defined for the DISIMA (Dis-
tributed and Interoperable Tmage Management System) project [OOL*97].
The DISIMA prototype is implemented on top of the ObjectStore [LLOW91]

DBMS. The remainder of this paper is organized as follows: Section 2 intro-
duces the DISIMA model used as a base in the Visual MOQL implementation,
Section 3 gives an overview of the MOQL language, Section 4 presents Vi-
sual MOQL, and Section 5 states the conclusion.

2 THE DISIMA MODEL

The DISIMA model, is composed of two main blocks: the image block and
the salient object block. We define a block as a group of semantically related
entities.

2.1 The image block

The image block is made up of two layers: the image layer and the image repre-
sentation layer. We distinguish an image from its representations to maintain
an independence between them, referred to as representation independence.
At the image layer, the user defines an image type classification similar to
hierarchies in object type systems. This layer allows the user to define func-
tional relationships between images. These images can be classified according
to specific criteria.

2.2 The salient object block

DISTMA views the content of an image as a set of salient objects (i.e., inter-
esting entities in the image) with certain spatial relationships to each other.
The salient object block is designed to handle salient object organization. For
a given application, salient objects are identified and defined. The definition
of salient objects can lead to a type lattice. DISIMA distinguishes two kinds
of salient objects: physical and logical salient objects. A logical salient object
is an abstraction of a salient object that is relevant to some application. For
example, an object may be created as an instance of type Politician to rep-
resent President Clinton. The object “Clinton” is created and exists even if
there is yet no image in the database in which President Clinton appears.
This is called a logical salient object; it maintains the generic information that
might be stored about this object of interest (e.g., name, position, spouse).

3 MOQL: A MULTIMEDIA EXTENSION OF OQL

OQL allows users to query objects by using their names as entry points into
a database. As an embedded language, OQL allows applications to query
objects that are supported by the native programming language. The basic

statement of OQL is:
select [distinct] projection_attributes
from query [[as] identifier] {, query [[as] identifier] }
[where query] [group by partition_attributes] [having query]
[order by sort_criterion {, sort_criterion}]

Most of the extensions introduced to OQL are in the where clause in the form
of four new predicate expressions: spatial_expression, temporal_expression, con-
tains_predicate and similarity_predicate. The spatial_expression is a spatial ex-
tension which includes spatial objects, spatial functions, and spatial predi-
cates. The temporal_expression deals with temporal objects, functions, and
predicates. The contains_predicate is defined as:
contains_predicate ::= media_object contains salientObject

where, media_object represents an instance of a particular medium type, e.g.,
an image or video object, while salientObject is an object within the me-
dia_object that is deemed interesting (salient) to the application (e.g., a per-
son, a car or a house in an image). The similarity predicate checks if two
media_objects are similar with respect to some metric.

4 VISUALMOQL: THE DISIMA VISUAL QUERY LANGUAGE

The VisualMOQL window consists of a number of components to design a
query. The startup window consists of the following components:

® A chooser to select the image classes. Images stored in the database are
categorized into user-defined classes. By doing this, the system allows the
user to select a subset of the database to search over. The root image class
is set as default.

® A salient object class browser which allows the user to choose the objects
that he wants. All salient objects and their associated attribute values are
identified during the database population time. These objects are organized
into a salient object hierarchy with the root salient object class set as the
default root in the displayed hierarchy.

® A horizontal slider to specify the maximum number of images that will be
returned as the result of the query. This is a quality of service parameter
used by the query result presentation interface and not translated into
MOQL.

® A horizontal slider to specify the similarity threshold between the query
image and the target images stored in the database. It is also used for color
comparison.

® A working canvas where the user can construct or modify simple queries.

® A query canvas where the user can construct compound queries based on
simple queries using AND, OR and NOT operators.

The user specifies a query by choosing the image class he wants to query and
the salient objects he wants to see in the images. Several levels of refinement
are offered depending on the type of query and also on the level of precision
the user wants the result of the query to have.

4.1 Working canvas

The working canvas is where the user constructs or modifies simple queries.
The user can choose either the cognition-based facilities (query by example),
referred to as query by sample image, or construct the simple query using
the semantic and textual approach, referred to as query by drawing. For the
query by drawing approach, the user selects a salient object class in the salient
object class browser. The user then draws a rectangle to represent that object
on the canvas. This rectangle 1s used only for determining the spatial rela-
tionships between objects. The user can also define the color, shape, texture,
and other attribute values of any objects on the canvas by using a dialog box.
VisualMOQL allows the user compare textual attributes. Since the variables
used to refer to objects in the MOQL translation are shown on the object
icons, they can be used to express join operators.

Topological relationships will be deduced for any intersecting objects au-
tomatically. Directional relationships have to be defined explicitly through a
dialog box. The users specifies which axes (x-axis and/or y-axis) matter. The
centroids of the rectangles representing salient objects are used to calculate
the directional relationships.

4.2 Query canvas

The query canvas is the space for the user to construct compound image
queries. Each simple query 1s represented by a square box on the query canvas.
Compound queries are constructed by combining simple queries or smaller
compound queries using AND, OR and NOT operators. A simple query in
the query canvas can be modified and revalidated at any stage by using the
‘edit” button. This moves the simple query to the working canvas. In order
to query over image properties like name of the photographer or the time the
image was taken, a dialog box is provided to let user to enter such information.

Finally, the user presses the query button to submit the query. Before trans-
lating the visual query constructed by the user, the system will check the query
canvas to make sure there are no dangling queries. After this, it will translate
the VisualMOQL query into MOQL and display the resulting string before
submitting 1t to the query processor. Figure 1 shows a MOQL query express-
ing the query Q: “Find images with Bill Clinton dressed in black next to Jean

insert Helation || Delete kelation

Figure 1 VisualMOQL for Query Q.

—

Figure 2 Translated MOQL for Query Q.

Chretien or images with Hillary Clinton sitting next to Jean Chretien”. The
dialog boxes used for textual attributes and color are not shown. The query
is based on a schema corresponding to a news application. The generated
MOQL query is given in Figure 2.

5 CONCLUSION

We argue that powerful query languages significantly help simplify multimedia
database access. These languages must provide constructs for querying, based
on the structure of multimedia data.

In this paper, we have presented VisualMOQL, a visual query language

that implements the image features of MOQL. VisualMOQL combines sev-
eral approaches: cognition-based (query by example), semantic-based (query
image semantics) and textual-based (specify and compare attribute values)
approaches. A query specified using VisualMOQL is translated into MOQL
before execution. As a visual language, VisualMOQL is easy to use but pro-
vides the same query facilities as MOQL at the image level.

6 ACKNOWLEDGEMENTS

This research is supported by a strategic grant from the National Science and
Engineering Research Council (NSERC) of Canada.

REFERENCES

[ACS90] M. Angelacio, T. Catarci, and G. Santucci. QBD a graphical
query language with recursion. IEEFE Transactions on Software
Engineering, 16(10):1150—1163, 1990.

[CBB*97] R. G. G. Cattell, D. Barry, D. Bartels, M. Berler, J. Eastman,
S. Gamerman, D. Jordan, A. Springer, H. Strickland, and
D. Wade, editors. The Object Database Standard: ODMG 2.0.
Morgan Kaufmann, San Francisco, CA, 1997.

[LLOW91] C. Lamb, G. Landis, J. Orenstein, and D. Weinreb. The Object-
Store database system. Communications of ACM, 34(10):19—

) 20, 1991.)

[LOSO97] J. Z. Li, M. T. Ozsu, D. Szafron, and V. Oria. MOQL: A multi-
media object query language. In Proceedings of the 3rd Inter-
national Workshop on Multimedia Information Systems, pages

) 19—28, Como, Italy, September 1997.

[OOL+97] V. Oria, M. T. Ozsu, X. Li, L. Liu, J. Li, Y. Niu, and P. J. Iglin-
ski. Modeling images for content-based queries: The DISIMA
approach. In Proceedings of 2nd International Conference of
Visual Information Systems, pages 239—346, San Diego, Cali-
fornia, December 1997.

® Vincent Oria got his Ph.D in Computing Science from the Ecole Nationale
Supérieure des Télécommunications, Paris. He is currently a Reasearch
Associate at the University of Alberta.

® Bing Xu is finishing his M.Sc, Computing Science at the University of
Alberta.

® M. Tamer Ozsu is a Professor of Computing Science at the University of
Alberta where he leads research groups in distributed object management
and multimedia data management.

