
Modeling Shapes in an Image Database System
Vincent Oria, M. Tamer Özsu, Lin Irene Cheng, Paul J. Iglinski and Yuri Leontiev

Department of Computing Science
University of Alberta

Edmonton, Alberta, Canada T6G 2H1
oria, ozsu, lin, iglinski, yuri @cs.ualberta.ca

Abstract

Due to the complex modeling requirement of data handled by image and spatial databases, they are most often built on top of
object-oriented or object-relational databases. In the DISIMA image database, an image is composed of salient objects and
a salient object has a shape which is a geometric object. The object-oriented modeling of shapes potentially conflicts with
the mathematical definitions of geometric objects. Mathematically, a triangle and a rectangle are polygons and a square is a
special kind of rectangle. Accordingly, a class Triangle should be a subclass of the class Polygon. In the same way, a class
Square should be a subclass of Rectangle which, in turn, should be defined as a subclass of Polygon. But from the point of view
of data representation, this leads to a conflict: A polygon minimally requires a list of n consecutive points for its description,
whereas a rectangle can be defined by just three points and a square by just two points, if we take advantage of their symmetry.
This paper proposes an object-oriented modeling of shapes that accords with their mathematical definitions, optimizes their
data representations, and lends power for shape similarity queries.

1 Introduction
In most spatial databases only a few geometric shapes are represented. The commonly found shapes are

points, lines, and polygons. This was sufficient because the first applications of spatial databases were geographic
information systems with just points, lines, and polygons. But some other applications, like graphic design, may
need precise descriptions of circle, ellipse and other basic geometric shapes.

Due to the type of data handled by spatial databases, they are most often built on top of object-oriented
or object-relational databases. Hence, the spatial model should follow object-oriented modeling principles. The
modeling of the representational data structures, however, conflicts with the natural hierarchy of geometric objects.
Mathematically, a triangle and a rectangle are polygons, and a square is a special kind of rectangle. Following the
mathematical definition, the class Triangle should be a subclass of the class Polygon. In the same way, the class
Square should be a subclass of Rectangle which, in turn, should be a subclass of Polygon. Herein lies the conflict.
From the point of view of data structures, a polygon, in general, is minimally described by a list of consecutive
points. A rectangle, on the other hand, can be defined by just three points, and a square by just two points, taking
advantage of their inherent symmetry. Thus, less data, rather than more, is sometimes sufficient for the more
derived types.

(a) (b) (c)

Figure 1: Shape similarity.

The problem has already been addressed in [SLY95] with an elegant solution when subclass and superclass
attributes are linearly related (i.e. an object of a subclass is a constrained version of an object from its superclass).
This is the case for classes Square and Rectangle. But the attributes in Rectangle are not linearly related to the
attributes in Polygon since a polygon is represented by a list of point. The IUE (Image Understanding Environment)
[Env99] is currently building class hierarchies for image applications. The IUE work is praiseworthy in the sense
that it includes a great variety of shapes but the class hierarchy is built using the abstract and concrete class model

This research is supported by a strategic grant from the Natural Science and Engineering Research Council (NSERC) of Canada.



[LRG93]. This model keeps the (abstract) hierarchy logically correct but concrete Square is totally disconnected
from concrete Rectangle, for example. As a result, there is no concrete class hierarchy and the code in concrete
classes is not reused.

This paper describes the design and the implementation of geometric shapes in the DISIMA (DIStributed
Image database MAnagement system) [OÖL 97] project following the model presented in [LOS98]. The model
proposes a total separation between interface, implementation, and representation by providing implementation
types that are used to describe the internal representation of data. We use the term interface type to refer to
real-world entities and their programmatic interface. The term implementation type refers to the internal data
representation; class or concrete type refers to the creation of instances and extent maintenance. Thus, an interface
type defines a programmatic interface, while an implementation type defines an internal data representation. A
class (concrete type), which is capable of producing new instances, is multiply derived from an interface type and
an implementation type. The entire group of objects of a particular interface type, including its subtypes is known
as the extent of the interface type and is managed by its class (concrete type). We refer to this as deep extent and
introduce shallow extent to refer only to those objects created directly from the given type without considering its
subtypes.

Interface type and implementation type hierarchies are totally independent. Usually, there is one-to-one cor-
respondence between interface types, implementation types, and classes. However, it is possible to use the same
implementation type for classes of unrelated types. This occurs when two unrelated interface types use the same or
related internal representations. It is also possible to implement an interface type using more than one implemen-
tation type. Therefore, objects of the same interface type can have different internal representations. For example,
within the same application, some points can be created using Cartesian coordinates while others are represented
using polar coordinates. Each type of point will belong to a different concrete type and share the same interface
type.

DISIMA, implemented in C++ on top of a commercial object-oriented DBMS, ObjectStore, allows image
content-based queries at different levels. A user can ask “show me all the pictures containing objects of polygonal
shape”. The answer to this query will be incomplete if it does not contain the images with triangles, rectangles
or squares. The hierarchical modeling of shapes is more interesting for queries like “show me all the pictures
containing an object with a shape similar to a given one”. The given target shape might be a rectangle, while
the most similar shapes might be among the squares or polygons. In the example given in Figure 1, shape (c), a
seven-sided polygon, is close to the shape of the target rectangle (a); an image containing (c) should be returned
as a result of “show me all the pictures containing an object with a shape similar to shape (a)” DISIMA’s shape
similarity retrieval algorithms can be combined with other retrieval mechanisms based on color, texture, and spatial
relationships [Del99].

The remainder of this paper is organized as follows: Section 2 gives an overview of DISIMA and presents
how we solved the shape modeling problem. Section 3 describes how shape similarity is handled in DISIMA, and
Section 4 provides a conclusion.

2 Modeling Geometric Objects in DISIMA
This section describes the DISIMA model and the design and the implementation of geometric shapes in

DISIMA. In the DISIMA model, an image is composed of physical salient objects, which are, in part, geometric
objects (without any semantics) in a space (defined by the image’s co-ordinate system). In addition to shape, a
physical salient object has color and texture properties. A physical salient object gets its meaning (semantics) from
a logical salient object (LSO) with which it is associated.

2.1 The DISIMA Model: An Overview

The DISIMA model provides an efficient representation of images and related data to support a wide range of
queries. The DISIMA model, as depicted in Figure 2, is composed of two main blocks: the image block and the
salient object block. We define a block as a group of semantically related entities.

The image block is made up of two layers: the image layer and the image representation layer. We distin-
guish an image from its representations to maintain an independence between them, referred to as representation
independence.



(represented_by)
(represented_by)

(correspond_to)

inheritance

other relationships

belongs tocategory (class)

instance

Salient Object
(logical)

Salient Object
(physical)

Image

Image 
Representation

(contains)

Image Block Salient Object Block

Salient Object
Representation

Figure 2: The DISIMA Model Overview.

At the image layer, the user defines an image type classification. Figure 3(b) depicts a partial type hierarchy
for an application that involves medical images, electronic commerce catalogs, and news images. These first level
image types are derived from the type Image, the root image type provided by DISIMA. The type NewsImage is
specialized by three types: EnvironmentalImage, PersonImage, and MiscImage.

(a) Salient Object Hierarchy (b) Image Hierarchy

Image

MedicalImage Catalog NewsImage

PersonImage
EnvironmentalImage

Person

Salient_object

Athlete

Other

Head
Torso

Limb Politician
OtherPerson

HumanBody

MiscImage

Figure 3: An Example of an Image Hierarchy.

The salient object block is designed to handle salient object organization. A simple example of a salient object
hierarchy, corresponding to the image hierarchy defined in Figure 3(b), is given in Figure 3(a).

DISIMA distinguishes two kinds of salient objects: physical and logical salient objects. A logical salient
object is an abstraction of a salient object that is relevant to some application. For example, an object may be
created as an instance of type Politician to represent President Clinton. The object “Clinton” is created and exists
even if there is yet no image in the database in which President Clinton appears. This is called a logical salient
object; it maintains the image independent generic information that might be stored about this object of interest
(e.g., name, office, spouse). Particular manifestations of this object (called physical salient objects) may appear in
specific images. There is a set of information (data and relationships) linked to the fact that “Clinton appears in an
image”. The data can be the colors of his clothes, his localization, or his shape in this image.

2.2 Geometric Shape Modeling

The geometric objects we are interested in are point, segment, polyline, ellipse, circle, polygon, triangle, and
square. We give their mathematical definitions below.

A point is defined by its and coordinates on the X-Y plane.



A polyline is defined by consecutive and unique points; the consecutive pairs of these points describe
the end points of non-intersecting lines.

A segment is a polyline with = 2.

An ellipse is defined by two points, the foci, and a “diameter”, the sum of the distances from any point on
the ellipse to the two foci.

A circle is an ellipse with the two foci equal.

A polygon is defined by consecutive and unique points; the consecutive pairs of these points describe
the end points of non-intersecting lines; the first and point describe the end points of the non-
intersecting line to close the shape.

A triangle is a polygon with = 3.

A rectangle is a polygon with = 4, and each segment is clockwise from the previous one.

A square is a rectangle with all four segments of the same length.

Following the mathematical definitions given above, the desired design of a shape hierarchy is given in
Figure 4. A shape (Geometric Object) can be Composite or Atomic. A composite shape is comprised of more
than one atomic shape. Atomic shapes are further divided into three categories: Point, 2-dimensional (2D) and
1-dimensional (1D) shapes. A shape which has an area, e.g., a polygon, is classified under 2D. A 1D shape has
length but not area. Due to the special characteristics of the point shape, it is not classified under 2D or 1D. In
the proposed design, two class groups are defined under 2D: the Polygon and Ellipse groups. The Polyline group
is defined under 1D. The Atomic class can be extended to incorporate more shapes, such as curve or arc, if required.

Point

Polyline Polygon

Circle Rectangle

Square

TriangleSegment

Geometry_Object

Composite Atomic

2D1D

Ellipse

Figure 4: The Desired Geometric Object Hierarchy.

In the classical object-oriented approach, a subclass is more specific and specialized than its superclass. In
other words, the subclass is defined by adding more data members or functions. From the point of view of data
representation, Ellipse should be a subclass of Circle because a circle can be defined by its center and its diameter,
while an ellipse requires more data: two points (the foci) and a total distance to the foci. However, from a
geometrical point of view, Circle should be a subclass of Ellipse because a circle is defined by imposing an
additional restriction on an ellipse; that is, the two foci have to be equal. A similar argument applies to the
Rectangle and Square classes.

The problem can be solved using a model that completely separates interface, implementation, and represen-
tation by providing implementation types that are used to describe the internal representation of data.



2.3 The Type System: Implementing the Shape Hierarchy

We use three different kinds of C++ classes to simulate the notions of interface type, concrete type and
implementation type defined in our model. The interface types, whose names are not prefixed, declare the interface
visible to the user; these types are usually abstract with pure virtual functions. An exception is the concrete
interface type Composite. Some of the classes in this interface type hierarchy, e.g., Atomic, 1D, and 2D, are termed
abstract type, since only their subtypes have a create method. The I -prefixed classes are the implementation
types; they contain the actual data members. The C -prefixed classes represent concrete types; each of these
concrete classes is publicly derived from its interface type and privately derived from its implementation type. Each
concrete type provides the implementation of virtual methods in the interface type using the data structures of the
implementation type. The interface types contain static factory methods for creating instances of the appropriate
concrete types; the new operator is not used directly. Thus, when the create method for Square is invoked, the
object created is actually a C Square, but it is handled by the user as type Square.

Every interface type (except the abstract interface types) has a static method shallowExtent that returns the
extent of the associated concrete type(s). A static method deepExtent returns the extents of the associated con-
crete type and the concrete types associated to the descendant types. For example, the method shallowExtent in
Polygon returns a set of C Polygon objects whereas deepExtent will return the extents of C Polygon, C Triangle,
C Rectangle, and C Square.

I_Point I_PointSequence

I_Ellipse

I_Circle I_Square

I_Rectangle

Figure 5: The Implementation Type Hierarchy

The implementation types are organized into a hierarchy as shown in Figure 5 with two roots, I Point and
I PointSequence. The implementation class I PointSequence contains one data member, a list of points (a list
knows its size). This defines the implementation type for the types Polygon, Triangle, Polyline, and Segment.
The implementation class I Point has two subclasses, I Square and I Circle. I Rectangle inherits from I Square
whereas I Ellipse inherits from I Circle.

Figure 6 shows the final design of the geometric object class hierarchy. All the concrete types are associated
with an implementation type and an interface type. Abstract interface types do not have any shallow-extent; they
are not associated to any concrete type.

3 Shape Similarity
TheGeometric Object class supports three types of similarity match: full-group, class and sub-group, depend-

ing on the similarity threshold specified in the query. The ellipse group includes the Ellipse and Circle classes, and
the polyline group includes the Polyline and Segment classes. The Polygon, Rectangle, Square and Triangle classes
belong to the polygon group. The shape similarity algorithm we used is the turning angle algorithm [ACH 91]
because it is orientation invariant. Basically, the algorithm takes a polygon containing edges and vertices. It
starts from any point on the boundary and traverses the edge counter-clockwise until a vertex is encountered. The
first turning angle is the external angle formed by the first edge and an extension of the second edge. A total of
turning angles is recorded after traversing all the edges. Since the external angles of a polygon add up to , the
sum of the turning angles should also be . With the perimeter normalized to ‘1’, a step-like graph is obtained
by plotting the cumulative angle on the vertical axis, and the distance traversed on the horizontal axis. The similar-
ity is defined by a metric on the graphs. Each type class in the Polygon subtree provides a behavior, vertices, that
returns the list of points comprising the vertices of a given object. Each shape is placed in its most specific class.
In the following, we give some examples of shape similarity queries:



Geometry_Object

CompositeAtomic

Point 1D2D

C_Point PolylineEllipse Polygon

SegmentC_Polyline

C_Segment

Circle

C_Ellipse

Rectangle Triangle C_Polygon

C_Circle SquareC_Rectangle C_Triangle

C_Square

I_PointSequence

I_Point

I_Circle I_Square

I_Ellipse I_Rectangle

interface type
abstract 

implementation typeinterface type class (concrete type)

Figure 6: The Final Geometric Object Hierarchy

Similarity without a given shape
SELECT image
FROM image m, lso o
WHERE m contains o
AND o.shape similar rectangle similarity 0.5;

In the example given above, the query is understood as “find all images containing salient objects with a
rectangular shape”. When a shape is not given in a shape similarity query, the query is processed without
any similarity metric. For the example, the query processor will select images for which at least one salient
object has a shape of interface type Rectangle. The question is which extent to use (shallow or deep extent)?
This decision is made with regard to the similarity threshold in the query. If the similarity threshold is set to
1, the query is processed using the shallow extent (class match) otherwise the deep extent is used (sub-group
match).

Similarity with a given shape
SELECT image
FROM image m, lso o
WHERE m contains o
AND o.shape similar rectangle ((1,2),(10,2),(10,7))
similarity 0.5;

The above query expresses “find all images containing salient objects with a a shape 50% similar to the
rectangle ((1,2),(10,2),(10,7))”. If we let denote the threshold, the rectangle ((1,2),(10,2),(10,7)), a set
of shapes, PSO a set of physical salient objects , and a set of images, then the solution of the similarity
query is where is a distance
function using the shape similarity algorithm. The problem here is to find the minimal extent that contains
all the shapes satisfying the conditions. For example, if we are trying to match a given rectangle within a
similarity threshold of 0.9, should we begin our search with the deep extent of all polygons or simply confine
our search to the extent of all rectangles? Are we willing at higher thresholds, to miss matching polygons
like Figure 1(c) when we match against a similar rectangle? Of course the lower is, the wider both the
solution and the shape search space will be. In the current implementation, full-group match is applied when



the similarity threshold in the search condition is less than 1. Class match is applied when the similarity
threshold equals 1 (exact match).

4 Conclusion
We have presented the outline of an object-oriented type system design for modeling geometric shapes within

the context of our distributed image database management system, DISIMA. The model provides a generalizable
solution to the conflict between data representation and class specialization in a hierarchical type system with code
reusability at the interface level as well as the data representation level. More specialized shapes, like a circle,
require less representation data than a more general shape like an ellipse. Unlike the work conducted by the IUE
group, our concern is not to provide a large variety of shape definition but to provide a general way of defining
geometric objects with data representation and code resusability. A cost trade-off is additional virtual function
resolution at runtime.

The definition of the geometric objects is based on a model that clearly separates interface, implementation,
and representation. In this model a interface types refer to real-world entities and their programmatic interfaces,
implementation types refer to the internal data representations, and classes involve the creation of instances and
extent maintenance. Interface type and implementation type hierarchies are totally independent. Each of these
notions is then represented by a C++ class. The data representation requirements determine the implementation
type hierarchy. For example I Rectangle inherits from I Squarewhich in turn is a subclass of I Point. The interface
type hierarchy defines the programming interface and follows the natural mathematical hierarchy: Square is a
Rectangle which in turn is a Polygon. A concrete class like C Rectangle inherits from both I Rectangle and
Rectangle. None of the previous solutions provides code reusability at both the interface and the representation
levels.

We also show how this type system can be leveraged in executing different forms of shape similarity queries.
A turning angle algorithm can be used with a metric for matching shapes of different types in the polygon group
against a similarity threshold, regardless of the number of vertices they contain. Future work could extend this
to the ellipse group by approximating those shapes with polygons. Further experiments are planned to explore
restricting shape similarity queries to class match searches when thresholds are less than 1.

One direction of our current research involves the development of indexing techniques for optimizing simi-
larity matching.

References
[ACH 91] E. M. Arkin, L. P. Chew, D. P. Huttenlocher, K. Kedem, and J. S. B. Mitchell. An efficiently com-

putable metric for comparing polygonal shapes. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 13(3), March 1991.

[Del99] A. Del Bimbo. Visual Information Retrieval. Morgan Kaufmann Publishers, 1999.

[Env99] Image Understanding Environment. The IUE class hierarchy. http://www.aai.com/AAI/IUE/IUE.html,
1999.

[LOS98] Y. Leontiev, M. T. Özsu, and D. Szafron. On separation between interface, implementation and repre-
sentation in object DBMSs. In Proceedings of Technology of Object-Oriented Languages and Systems
26th International Conference (TOOLS USA98), pages 155—167, Santa Barbara, August 1998.

[LRG93] L. Lavazza, A. Raybould, and J. A. Grosberg. Comments on considering ”class” harmful. Communi-
cation of the ACM, 36(1):663—685, 1993.

[OÖL 97] V. Oria, M. T. Özsu, X. Li, L. Liu, J. Li, Y. Niu, and P. J. Iglinski. Modeling images for content-based
queries: The DISIMA approach. In Proceedings of 2nd InternationalConference of Visual Information
Systems, pages 339—346, San Diego, California, December 1997.

[SLY95] W. Sun, Y. Ling, and C. T. Yu. Supporting inheritance using subclass assertions. Information Systems,
20(8):663—685, 1995.


