
- Trees: An Index Scheme for Content-Based Retrieval of
Images in Multimedia Systems
Youping Niu, M. Tamer Özsu, Xiaobo Li
Laboratory for Database Systems Research

Department of Computing Science
University of Alberta
Edmonton, Alberta
Canada T6G 2H1

niu,ozsu,li @cs.ualberta.ca

Abstract An important feature to be considered in the
design of a Multimedia Database Systems (MMDBS) is
content-based retrieval of images. Spatial features repre-
sent the spatial relationships among objects in an image.
The salient objects (interesting objects) can be organized
in an object hierarchy, based on object-oriented concepts.
This paper proposes a new indexing scheme, called 2d-h
trees, for content-based retrieval of images. This scheme
organizes the representations of the spatial relationships
among objects in images and the hierarchical relationships
among objects efficiently for query optimization. Our per-
formance analysis indicates that the - -tree is an effi-
cient index scheme for content-based retrieval of images.

1 Introduction
Current hardware technology enables us to acquire, store, ma-
nipulate and transmit various types of data such as image, au-
dio, and video. This has stimulated a great deal of interest in
Multimedia Database Systems (MMDBS). An important fea-
ture to be considered in the design of a MMDBS is content-
based retrieval of images. The effectiveness of still image
retrieval in a MMDBS ultimately depends on image content
representations, the types of image queries allowed, and the
search and retrieval strategies. One important consideration in
selecting appropriate types of image content representations
is their computational efficiency in the search procedures in
order to meet the performance requirements of MMDBS ap-
plications.
Other than the traditional types of queries, such as query by

command, query by identifier, and range query, most MMDBS
applications allow queries by example. In this case, the query

This research has been supported by a grant from the Canadian Institute
for Telecommunication Research (CITR), a Federal Network of Centre of Ex-
cellence funded by the Government of Canada and by a Strategic Grant from
the Natural Science and Engineering Research Council (NSERC) of Canada.

image or its sketch is provided while the system must analyze
and extract the appropriate features. These features are then
compared with the image content representations stored in the
database to find matching images. Among all the existing im-
age features, texture, color, shape, and spatial features are of-
ten selected, because they have broad, intuitive applicability
[1].

The search and retrieval of images by content, using index-
ing methods, mainly relies on image content representations
(i.e., the representations of the chosen features) and similar-
ity measures used in comparing these features. This type of
querying is well understood [2]. Another important method
of search is based on the spatial relationships of objects in
these images. The spatial relationships, such as relative po-
sitioning, adjacency, overlap, and containment, enable users
to ask queries of the type “show all the images where a
is on the left of a .” Spatial querying is not as well
studied as feature-based querying. Furthermore, based on
object-oriented concepts, the interesting image components,
the salient objects, can be organized in an object hierarchy.
Coupled with searches on other features, powerful query sys-
tems can be developed that can allow queries of the type “show
all the images where a is in front of an .”

In this paper, we present a new indexing scheme for
content-based retrieval of images. The new indexing scheme,
which we call - trees, organizes the representations of the
spatial relationships among objects in images and the hierar-
chical relationships among objects efficiently for query opti-
mization. Our performance analysis indicates that the - -
tree is an efficient index scheme for content-based retrieval of
images.

The remainder of the paper is organized as follows. In Sec-
tion , we present the proposed indexing scheme. The perfor-
mance analysis of our indexing scheme is presented in Section
. Section presents our conclusions and future work.

1

2 The Proposed Indexing Scheme: -
Trees

For each image in the database, we first use edge detection,
combined with other detection techniques, to extract the con-
tours of objects. We then label (automatically or manually)
each salient object (interesting object) with a symbol which
can be used for indexing and querying. For example, in the im-
age in Figure 1, the following salient objects would be identi-
fied: house, tree, dog, plane and sun. Other objects such as the
grass (on the ground) and a bird (on the roof) may be ignored
since they are not so interesting for this image from indexing
and searching points of view. Then we use - string scheme
[3], which is the most commonly used data structure for spatial
reasoning and spatial similarity computing, to present the spa-
tial relationships among those salient objects. The - string
representation of the image in Figure 1 is:

,
where the symbol “ ” denotes the spatial relation “at the same
location as”, the symbol “ ” denotes the spatial relations “left
of/right of” and “below/above”, and the symbol “ ” denotes
the spatial relation “in the same set as”. These relationships
are specified in both and dimensions resulting in a two
dimensional string. Refer to [3] for more detailed discussion
about the - string representation.
Furthermore, all the salient objects identified (for all im-

ages in the database) are classified by using object-oriented
modelingmethod since some objects can be viewed as the con-
stituent objects for an object. This forms an is-part-of hierar-
chy. For example, the objects cat, dog, horse ..., can be viewed
as the objects (or subclasses) in (of) the class of Animal, while
the objects car, truck, van ..., as the objects (or subclasses) in
(of) the class of Vehicle.
The - trees consist of two indexing structures: one for

the organization of the hierarchical relationships among ob-
jects, and another one for the organization of the spatial repre-
sentations among objects in images.

2.1 The Indexing Structure for The Spatial
Representations

The - string has been an effective approach to represent the
spatial relationships among objects in images. The problem
of the approach, though, is that for a large database the costs
of the sequential subsequence matching is too high since the
- string specified for the query must match against all the
- strings (for all images) in the database sequentially by
using the subsequence matching algorithm [3]. To solve the
problem, we have developed a new indexing structure, called
the - - -tree, to organize - strings for query efficiency.
The - - -tree supports the following types of queries very
efficiently:

Figure 1: An Image.

1. Find all images containing at least one , two s, and
a . (-0 query)

2. Find all images containing a to the right of a .
(-1 query)

3. Find all images containing a immediately to the
right of a . (-2 query)

When a query is mainly interested in finding all the im-
ages containing specified symbols (objects) with some exclu-
sive spatial conditions, - subsequence matching should
be conducted. Given a key, for example, , - queries
treat images with relationships , and as satisfac-
tory. But it excludes images where from the answer set.
For a query “Find all images containing a and a as
long as the is not to the left of the ”, the image in
Figure 1 would be retrieved by the - query.
A - query is interested in finding all the images in

which the symbols in the pattern maintain alignments between
each other, but the “distance” between any two symbols is in-
significant and may be different than in the original pattern.
For example, “Find all images containing a to the right
of a ”. An image containing a plane to the right of tree,
but with a house between them, would be retrieved by a -
query.
A - subsequence matching is more precise than both
- and - subsequence matching. If a local substring
of matches a local substring of , then the local sub-

string of must match the local substring of for any
. Thus, the “distance” between objects is important.

For example, is not a - subsequence of
. Therefore, an image contain-

ing a plane to the right of tree but with a house between them
is not a resulting image of a - query: “Find all images
containing a immediately to the right of a ”.
Readers may refer to [3, 8] for more detailed discussion

about -0, -1 and -2 queries.
The - - -tree is a set grouping index whose non-leaf

nodes have a layout similar to the tree [9], while the leaf
node layout is different. Figure 2 shows the layout of a - - -
tree leaf node. The fields of “overflow page” and “next page”

2

overflow
page

next
page key1 key2

record
of key2

......record
of key1

no. of
records

Figure 2: Layout of the leaf node records of a - - -tree.

struct xy set
int id;
int **rank;
int r off;

;

struct Record
int x off;
int y off;
struct xy set *x set;
struct xy set *y set;

;

Table 1: Internal Structure of A Record

are pointers pointing to the overflow page and the next node
(sibling leaf node next to the current one), respectively. The
key value here is a form of , where and are symbols
in and .
The internal structure of a record is defined in Table 1,

where and are the offsets of the sets of
and , respectively. is the identifier for each - string
(image) and is the offset of . The is a set of
pairs of ranks for the two symbols in the key which are used to
distinguish different types of queries.
The search algorithm first traverses the tree using pairs of

consecutive symbols in the query - string as the keys to the
leaf node, where all their rank pairs reside. It then calculates
rank pairs to determine the results for different types (- ,

- , and -) of queries. The search algorithm returns
all the s of the resultant images. A more detailed presenta-
tion of the - - -tree is provided in [8].

2.2 The Indexing Structure for The Salient Ob-
ject Hierarchy

Depending on the image types, the salient objects are iden-
tified from the images by segmentation software or expert
identification, and represented in the vocabulary set . Ob-
jects in can be further classified by using object-oriented
modeling method. For example, for a vocabulary set

, it can be organized in the class hierarchy
shown in Figure 3.
Each object in a class can have any or all of the following

attributes (Table 2):
A number of indexing techniques have been proposed that

Object

Vehicle Animal

car van cat dog

Figure 3: A Class Hierarchy.

Class Object
char* name;
void* texture;
void* shape;
void* color;
list* ids; all the image ids

which contain the object
;

Table 2: An Abstract Object.

exploit the class hierarchies [4, 5, 6, 7]. The scope of an object-
oriented query can be restricted to a particular class (accessing
the shallow extent), for example, targeting at only, or ex-
panded to include some or all classes in the hierarchy rooted
in that class (accessing the deep extent), targeting at
and all its subclasses: and . Depending on the types of
features, such as texture, shape and color, we have developed
an indexing structure, -structure, to organize the hierarchical
relationships among objects. The basic idea behind the struc-
ture is to keep only one non-leaf level for all the classes with a
directory (Figure 4) in it, which are used to store the informa-
tion of the location of each individual class' leaf node pages.
In this way, we are able to speed up the associative search not
only for efficient retrieval of the instances from a single class,
but also for efficient retrieval of the instances from a class and
all its subclasses in the hierarchy. If the type of the indexing
attribute (feature) is a one-dimensional vector (integer or char-
acter), the -structure is similar to the CH-tree [4] (a direc-
tory is built in each leaf node of a like indexing structure).
However, if the type of the indexing attribute (feature) is an -
dimensional vector, directories need to be integrated into leaf
nodes of a -tree [10] like structure.

2.3 The - Scheme
The - scheme provides the functionalities to support the
search over both the - - -tree and the -structure. For ex-

3

Class1 offset1
Class2 offset2
......

key

Figure 4: Class Directory.

ample, if we use the -structure to index the salient object hi-
erarchy using the feature “color” as the key, and use the - -
-tree to index all the spatial relationships between two salient
objects, the query systems allow queries of the types:

1. show all the images where a is to the right of a
.

2. show all the images where a is to the right of any
.

For the first query, we use the -structure to access the shallow
extent to get all the images with a , and use the - -
-tree to get all the images where a is to the right of a .
The intersection of the resultant sets presents the final results.
For the second query, we do the same as we do for query 1

except we use the -structure to access the deep extent to get
all the images not only with a but with a
as well.
The query can be represented as a - string as well. For

example, the following two - strings can be used to search
the image in Figure 1:

, and
. In this way, we

can conduct queries on both shallow extent and deep extent in
the class hierarchy.
Before we present the search procedure, let's use some ex-

amples to show what - - trees would look like and how
it works. Suppose we have the following two - strings to
present two images:
,
,

and we also know the colors for the objects, say
,

,

The -structure index and the - - tree for the two images
are drawn in Figure 5 and 6, respectively.
Suppose a - query is

. We first use as the key to traverse the - -
tree and find the leaf node to hold the record with

as its key in Figure 6. Then we fetch all the s in . Next,
similarly we use as the key to fetch all the s in its

. The results should then be , and they are
. We then go to the -Structure to fetch all the

image s for , and . The result
is . The final result for the query is .

Vehicle

Animal

off1

off2
black

white
Vehicle off1

Animal off2

1 dog{2}

2
car{2}

van{1}
2

dog{1}

car{1, 2}1

cat{2}

Figure 5: An Indexing Example of -Structure.

Searching Procedure

For a given query, all its
corresponding - strings
without the features attached to
any symbols and without class names
in them (by replacing class names
with object names);

the - - tree searching
procedure for the above - strings;

the results into a set ;
the -structure searching procedure
each symbol which has a feature labeled

the -structure searching procedure;
the results into a set ;

= ;
;

Table 3: The Searching Procedure.

If a - query is
, we then have to replace the class name

with its all objects to generate corresponding query -
strings. They are:

Next we use the same procedure, as in the above example, to
get all the image s for each query - string. The final result
is .
The searching procedure is outlined in Table 3.

3 Performance Analysis
We implemented the - - -trees using the EXODUS [11]
storage manager . The experimental environment con-

4

car<car: x_set={2:{[1,2]}}
 y_set={2:{[2,3]}}
car<cat: x_set={1:{[1,2]}, 2:{[2,3]}}
 y_set={1:{[1,2]}}
car<dog: x_set={1:{[1,3]}, 2:{[1,2]}}
 y_set={1:{[1,2]}, 2:{[2,3]}}
car=dog: x_set={2:{[2,2]}}

y_set={2:{[3,3]}}
car<van; x_set={1:{[1,2]}}
 y_set={1:{[1,3]}}

cat<car: x_set={}
 y_set={2:{[1,2]}}
cat<dog: x_set={1:{[2,3]}}
 y_set={1:{[2,3]}, 2:{[1,3]}}
cat<van: x_set={}
 y_set={1:{[2,3]}}
cat=vam: x_set={1:{[2,2]}}
 y_set={}

dog=van: x_set={}
 y_set={1:{[3,3]}}

van<dog: x_set={1:{[2,3]}}
 y_set={}

car cat

Figure 6: An Indexing Example of - - Tree.

sisted of two Sun SPARCstation 5 in a client-server configu-
ration. The implementation was done in (). We
conducted a number of experiments to study the query effi-
ciency. Table 4 lists the parameters used in the cost analysis
and the values assigned to those parameters used in the exper-
imental evaluation. The default values for , and are set
to be 5000, 40 and 10, respectively. We generated the sym-
bols in all the experiments according to normal distribution.
This means that some of the symbols would appear in more
- strings than others to reflect the reality that some of the
objects do appear in more images than others. All the symbols
are randomly grouped in classes with a -level class hierar-
chy. For the -structure, we used hashing instead of tree
like structure to avoid unnecessary overheads since we only
used 30 different colors as the indexing keys. Due to the space
constraint, we would only report the query efficiency experi-
ments for the second type of queries above since they are more
general.
Table 5, 6, 7 show the results of effects of the database

size (i.e., number of images), the number of different sym-
bols and the - string length. It seems that the performance
is more sensitive to the - string length. The longer -
string length indicates that more salient objects are identified
for each image. This increases the length of the image ids'
list (Table 2) and the number of the elements in the and

(Table 1). This, in turn, increases the calculation costs
of the intersections.
We should point out that the - string scheme was pri-

marily designed for iconic indexing [3], not for exactly de-
picting the original images. From this perspective, for a given
image, if a - string of the image can provide sufficient dis-
crimination from other images in the database, it is consid-
ered “good”. In other words, given the fuzziness of multime-
dia queries, we are generally satisfied if the system generates
some false hits. For example, for the image in Figure 1, the
- string

is good enough, since it presents
the most important spatial relationships among objects in the
image, and provides sufficient information to discriminate the
image from other images. Notice that we ignored, in the -
string representation, some objects and their spatial relation-

Database Size type-0 type-1 type-2
2000 3.550 1.060 0.970
5000 4.100 1.130 1.120

Table 5: Effect of The Database Size (seconds)

ships with others in the image, such as the and the
on the wall of the house, the on the ground, and

the on the roof of the house, since they are not as impor-
tant as the others from indexing point of view. In general, if
the vocabulary size is , and the - string length is , then

- strings can be composed, which, in turn,
can represent different images. For example, if
a - string length is 5, the - string can discriminate itself
from -
strings. Therefore, the - string length doesn't need to be
very long when using - - -tree for indexing, if is not too
small (say less than 10).
The length of the query - string is also an important fac-

tor for the efficiency of the - - -tree, especially when it ac-
cesses the deep extent of the class hierarchy. In [8], we proved
that query - strings do not need to be long, and their short
forms (the first few symbols and their relationships) return the
results as good as their original ones do, but with much bet-
ter efficiency. Using the short form of a query - string also
yields less - strings when it access the deep extent of the hi-
erarchy and visits the -structure with less number of objects.
This enhances the efficiency of - - trees significantly for
the following reasons.

First, the basic requirement of indexing in the image
database is that it provides sufficient discrimination to prevent
the retrieval of a large fraction of the database, although it may
not produce only the exact match. Thus, partial queries are
common.
Second, the main distinction between pattern matching

and searching in the image database is that while exact pat-
tern matching is the main criterion in pattern recognition, in
database retrieval the objective is to help the user navigate
through a large number of images. In fact, the users may not
even be interested in the best match at all! They might use the
retrieved patterns to further modify the search specifications
(incremental queries). Thus, the constraints on pattern recog-
nition are somewhat relaxed in the database environment, and
efficiency in related to reducing the retrieval time, and robust-
ness in terms of not missing targets (allowing some false hits,
but no false dismissals) is a larger concern. Notice that “false
hits” are acceptable, since they can be discarded easily through
a post-processing step.
Finally, the possibility of false hits is very small if is

sufficiently large (say larger than 10), since the hits themselves
are small.

5

Parameters Meaning Values
number of images (- strings) in database 2000, 5000, 10000
number of different symbols in () 20, 40, 60, 200
maximum number of symbols in a - string 7, 10, 15
node size (page size) bytes
number of bytes for a node pointer 16 bytes
number of bytes for the key 20 bytes
number of bytes for the counter 4 bytes
number of bytes for the - string 4 bytes
number of bytes for specifying the offset 4 bytes

Table 4: Parameters and notation

Vocabulary Size type-0 type-1 type-2
20 4.750 1.800 1.700
40 4.100 1.130 1.120
60 4.020 1.110 1.110

Table 6: Effect of The Vocabulary Size (seconds)

Length type-0 type-1 type-2
7 2.750 0.880 0.760
10 4.100 1.130 1.120
15 9.020 3.720 2.110

Table 7: Effect of The - String Length (seconds)

4 Conclusions
Spatial features represent the spatial relationships among ob-
jects in an image, such as directional relationships, adja-
cency, overlap, and containment involving two or more ob-
jects. These are very important for content-based retrieval of
images in an image database. In this paper, we present a new
indexing scheme for content-based retrieval of images. The
scheme, which we call - trees, organizes the represen-
tations of the spatial relationships among objects in images
and the hierarchical relationships among objects efficiently for
query optimization. Our performance analysis indicates that
the - -tree is an efficient index scheme for content-based
retrieval of images.
It is preferable to conduct the experiments on real image

repositories. In the image database that is under development,
we have collected more than 10,000 images, and we will im-
plement the index scheme in the system to test its effectiveness
in the future.

References
[1] W. Niblack, R. Barber, W. Equitz, M. Flickner, E. Glas-

man, D. Petkovic and P. Yanker, The QBIC project:

Querying images by content using color, texture, and
shape, In Storage and Retrieval for Image and Video
Database, v(1908), 173-187, SPIE, 1993.

[2] C. Faloutsos, Searching Multimedia Databases by Con-
tent, Kluwer Publisher, 1996.

[3] S. K. Chang, Q. Y. Shi, and C. W. Yan, Iconic Indexing by
2 Strings, IEEE Trans. Pattern Analysis and Machine
Intelligence, 9(3), 413-428, 1987.

[4] W. Kim, K. C. Kim, A. Dale, Indexing techniques for
Object-Oriented Database, In Object-Oriented Concepts,
Databases, and Applications, Addison-Wesley, 371-394,
1989.

[5] C. C. Low, B. C. Ooi, and H. Lu, H-trees: A Dynamic
Associative Search Index for OODB, In Proc. of SIGMOD
134-143, 1992.

[6] B. Sreenath and S. Seshadri, The hcC-tree: An efficient
Index Structure For Object Oriented Databases, In Proc.
Intl. Conf. on Very Large Data Bases, 203-213, 1994.

[7] C. Kilger and G. Moerkotte, Indexing Multiple Sets, In
Proc. Intl. Conf. on Very Large Data Bases, 180-191,1994.

[8] Y. Niu, M. T. Özsu, and X. Li, - - -tree: An Index
Structure for Content-Based Retrieval of Images, submit-
ted to The Fifth ACM International Multimedia Confer-
ence, 1997.

[9] D. Comer, The Ubiquitous B-tree, ACM Computing Sur-
veys, 11(2), June 1979.

[10] N. Beckmann, H.P. Keiegel, R. Schneider, and B. Seeger,
The -tree: An Efficient and Robust Access Method for
Points and Rectangles, Proc. ACMSIGMOD int'l Conf. on
the Management of Data, 322-331, 1990.

[11] M. J. Carey, D. J. DeWitt, J. E. Richardson and E. J.
Shekita, Object and file management in the EXODUS
extensible database system. In Int'l Conf. on Very Large
Database, 91-100, 1986.

6

