A Framework for Multimedia Database Systems *

Vincent Oria, Paul J. Iglinski and M. Tamer Ozsu
Department of Computing Science
University of Alberta
Edmonton, Alberta, Canada T6G 2H1

Abstract

This paper discusses a general framework for multimedia DBMSs. We use our
two ongoing multimedia projects (a SGML/HyTime DBMS and an image DBMS) as
examples to support the general framework. Although multimedia data (text, sound,
image, video and animation) are different in terms of their processing, similarities
exist in the ways to handle these data. They all are big with complex structures
and semantics. The semantics have to be extracted, stored, and indexed to allow
content-based queries.

Résumé

Cet article s’inspire des 2 projets multimédia en cours dans notre laboratoire pour
définir une architecture générale de SGBD multimédia. Le traitement des données
multimédia (texte, son, image, video, animation) differe d’un type & un autre. Pour-
tant, des similitudes existent entre ces données du point de vue de leur gestion dans
une base de données. Elles sont toutes de grandes tailles avec des structures complexes
et une sémantique riche. Pour supporter des requétes sur le contenu, la semantique
des données multimédia doit etre extraite organisée, stockée et indexée.

Key Words: Multimedia database, SGML/HyTime document, Image database

1 Introduction

Multimedia is used for non-classic data such as formatted text, images, video, animation,
and sound. The growing use of multimedia information systems has increased the need for
efficient management of these types of data. The database research group of the University
of Alberta is currently working on two multimedia projects. The first multimedia project
[(318"’97]7 is an object-oriented multimedia database management system that can store
and manage SGML/HyTime compliant multimedia documents. The system is capable of
storing, within one database, different types of documents by accommodating multiple
Document Type Definitions (DTDs). The second project, DISIMA (Distributed and In-
teroperable Image Management System) [OOL"’Q?], aims at building an image database
system enabling content-based querying. Our current challenge is to merge the two pro-
totypes for a full multimedia DBMS.

*This research is supported by a strategic grant from the Natural Science and Engineering Research

Council (NSERC) of Canada.

A common aspect of all these data is the fact that they are big with complex structures
and semantics. Processing is different from one type of multimedia data to another,
and they need different input and output devices. The term multimedia is used for an
application if it is able to handle at least one of these data. Applications combining
several types of multimedia data are in fact a combination of several applications. However,
similarities exist in the management of these various multimedia data. A common problem
for all multimedia data is how to understand them? Raw multimedia data are a list of
bytes that has to be preprocessed to identify the component objects (Figure 1). These
objects can be someone’s voice in a sound track, a person in an image or in a video, or
a subject in a document. These objects can then be used for content-based queries. The
objects are obtained by a manual and/or an automatic interpretation of the multimedia
data. The objects have some temporal and spatial relationships that must be taken into
account in the modeling, the querying and the presentation.

Multimedia Preprocessor Recognized
Data Components
0OO0O/O-R DBMS
Multimedia DBMS
i
i
i
i
1
Multimedia Data i
i
Preprocessing DBMS Processing

Figure 1: A Multimedia DBMS Framework

Some structured data often accompany the multimedia data. For an image, these
structured data can be the photographer, the date, and the place. For a document, one
would like to know the authors, the title, the publisher, etc. The raw multimedia data
and all the related data have to be integrated and managed in the same database. The
size and the complexity of multimedia data require special treatment in storage, querying,
presentation, and transmission. Object or object-relational DBMS provide reliable support
but a multimedia layer has to be added to fulfill all the requirements. Our prototypes are
implemented on top of the commercial Object DBMS ObjectStore [LLOW91].

The solutions provided in the two projects are used to support the framework depicted
in Figure 1. The remainder of this paper is organized as follows: Section 2 discusses the
solutions used for the SGML/HyTime multimedia project, Section 3 presents the solutions
for the DISIMA project, and Section 4 states our conclusion.

2 The SGML/HyTime DBMS Experience

The multimedia DBMS we developed is fully compliant with SGML, together with a
subset of HyTime used primarily for the specification of hyperlinks and the synchronization
requirements of continuous media components. The system, which is built on top of
ObjectStore, consists of a kernel type system and a suite of document management tools.
Text and images are stored in and managed directly by the DBMS; continuous media are
stored on a continuous media file server (CMFS) and managed indirectly by the DBMS
via meta-data that it maintains (Figure 2).

One set of document management tools provides the support for analyzing and incor-
porating new document type definitions (DTDs) into the system. This is accomplished
by the DTD Parser that first validates a new DTD and then passes a parse tree to the
Type Generator. The Type Generator uses the parse tree to automatically generate C4++
code that extends the kernel type system with new types defining the new elements in the
DTD. DTD elements can be specified in a manner that allows common element types to be
consistently shared across multiple DTDs in the system. Compatibility of shared elements
is automatically enforced. The new code is automatically compiled, built into libraries,
and linked into applications that are in turn invoked to initialize selected databases with
the new DTD and its associated schema.

The second tool set, for document entry, is concurrently built by the Type Genera-
tor during DTD incorporation. This process similarly involves C+4 code generation to
extend a kernel meta-type system. Singleton instances of the generated meta-types are
instantiated in the target databases to enable the creation of object instances that repre-
sent element components of documents being entered into a database. Thus, code for a
DTD-specific Instance Generator is generated by the Type Generator, incorporated into
a DTD-specific library, and linked to an enhanced SGML parser to create a document
entry application. This parser application is then able to process document instances
by retrieving the appropriate DTD from the database. If the document is valid, it then
passes a parse tree to the Instance Generator, which in turn retrieves the required meta-
type instances from the database to create the new element objects from the parse tree
data. Related tools provide for document removal or the removal of entire DTDs together
with their associated documents. A simple document versioning system is currently being
implemented.

2.1 The Type Systems

In an object-oriented DBMS, the design of the type system is comparable to schema design
in a relational DBMS. Consequently, a very large proportion of the system design effort
is directed toward type system design. The process of developing our SGML/HyTime
DBMS can be divided into two distinct phases. In the first phase we designed and built
a system for a single news-on-demand application which utilized a single Document Type
Definition suitable for multimedia news. Under this approach we were able to defer dealing
with many of the complexities of general SGMIL documents. Rather, we could focus
instead on the underlying problems of representing different media types in the context of
a single document structure. Moreover, this simplification of the design issues in the first
phase facilitated co-ordination and integration work with our research partners in other

laboratories across Canada who designed and implemented the QoS (Quality of Service)
negotiation, synchronization, and continuous media file server components of the total
system. In the second phase, we built upon our experience and generalized the database
component to handle documents conforming to any SGML Document Type Definition.

2.1.1 Atomic Type System

During the design of Phase 1, we recognized the inherent distinction between types that
could represent objects of different monomedia, irrespective of document structure, and
types that could represent objects corresponding to the elements defined in the news-on-
demand DTD. Capitalizing on this distinction, we developed a type system for representing
the various monomedia that we considered essential for any multimedia application: text,
images, audio, video, and synchronized text. These type definitions were totally indepen-
dent of any SGML features, which came to be modeled by an element type system. They
could be utilized equally well by any other multimedia document system as by an SGML-
based system. Their defining characteristics were shaped largely by quality of service and
storage considerations. The types representing non-continuous media, text and images,
contained data members for storing the media data directly in the object itself. Such
media objects were self-contained directly in the database. On the other hand, continuous
media objects did not directly maintain the media data directly in the object. Instead,
they contained meta-data and a universal object identifier which located the actual media
data on a CMFS. The CMFS had the capability of delivering the data at the required rate
in a synchronized manner with other media objects. Whether or not the monomedia data
is stored directly in the database, the design of these types and their storage structures is

critical for good performance.
\
DBMS

DTD
DTDs Parser
SGML Inst: o
Marked-i nstance
Do&?neﬁfs%ﬁ W
|
I—= 1w
| Queries/Responses
O O O
|
|
|

Users
DBMS Processing

Database

SGML/HyTime

Processing

Figure 2: SGML/HyTime Processing environment

We call the type system for the monomedia types our atomic type system. It is de-
signed as a rooted type system built upon the base supertype Atomic. Where possible,
shared methods and data members are factored out into intermediate abstract types. This
type system also utilizes some helper types, e.g., for representing QoS parameters, which
are not rooted on Atomic. One very important and practical consequence of this mod-
ularization was the independence it provided our research partners in their development
work. The work on the CMFS, QoS negotiation, and synchronization was largely confined

to manipulating the atomic types. Co-ordination of our work on the element type system
with modifications made by the other research groups on the atomic types was therefore
facilitated by focusing our discussions on the interface between the two systems. Atomic
type system details can be found in [Sch96, (318"’97].

Atomic

Monomedia DataStream Variant

/;zL\ AN

AudioMefia STextMedia NCMType CMType
AtomicCompound

, , ﬂ Text A \
VideoMedia ImageMedia

AtomicText AtomicVideo AtomicAudio

TextMedia
Atomiclmage AtomicSText

Figure 3: Atomic Type System

2.1.2 Element Type System

The element type system provides a uniform representation of the elements in the DTD
and their hierarchical relationships. Each logical element in a DTD is represented by a
concrete type in the element type system.

Design Decisions. During the design of the element type system in Phase 1, a num-
ber of fundamental design decisions were made which influenced the subsequent system
developments. One such decision relates to the “shape” of the element type system. As a
grammar, SGML is fairly flat, though it allows for a constrained composition of elements.
This characteristic of SGML argues for defining a collection of element types unrelated
by inheritance. However, such an approach does not take advantage of object-oriented
modeling techniques, especially behavioral reuse. So rather than implementing a flat type
system or a small set of highly generalized types to represent all elements, we settled on
a highly structured type system rooted on the common base Element with higher level
abstract types reused through inheritance and concrete leaf types to represent individual
elements. This has the advantage of directly mapping the logical document structure to
the type system in an effective way.

A second key decision concerned the storage system adopted for document text. For
efficiency reasons, all the text of a document in Phase 1 was stored together as one text
string in an AtomicText object [OEMV95]. Each textual component (e.g., paragraph,
emphasis, etc.) had an annotation associated with it that indicated the start and end
index of the object’s text in the text string. Such annotations are not only useful for
elements that contain textual data (#PCDATA in SGML) but also for other elements
that have to be located within the text string to display them properly (e.g., figure, link).
This text storage model avoids fragmentation of the document text into numerous objects
and facilitates text retrieval and text searching.

While this model proved ideal for news-on-demand documents, its shortcomings be-
come more apparent for DTDs having typically lengthy documents. Under this text storage
model, the modification of text in a stored document requires modification of all annota-
tions that follow or span (i.e., as a parent element) the changed text. Thus, a small change
near the front of a long document requires annotation updates for nearly all the elements
as well as (potentially) a string copy of the entire document text. Lengthy documents,
such as books, would benefit by segmentation of the text into chapters or sections.

To address this problem in Phase 2, where any DTD can be incorporated into the
system, the text storage model has been augmented by means of a composite atomic type,
AtomicCompoundText, and a text segmentation facility that responds to the use of a “text-
seg” attribute for selected elements in the DTD. This allows the DTD writer to specify
which elements are to be maintained as separate text segments. The attribute can be
given a default token value that can be over-ridden by the document author. Thus, while
the DTD writer bears the initial responsibility for determining the desired granularity of
text segmentation, the document author can over-ride the default specified in the DTD
by specifying an alternative value for the “text-seg” attribute in the particular element’s
tag.

Generalization of the type system from a single news-on-demand DTD to multiple,
arbitrarily complex DTDs entailed significant type system redesign as well as a dispropor-
tionate amount of work on the document processing side of the model. We extended the
set of abstract classes in the Phase 1 element type system to form a kernel element type
system from which an element from any DTD could be directly derived. These derived
concrete element types were to be generated automatically in a DTD processing operation.
Document entry processing was also much more complex. The document processing side of
our DBMS model for the news-on-demand application simply consisted of a one-off parser
that recognized conforming documents and appropriately called instantiation functions to
populate a database. The current system requires a full SGML parser linked to generated
code that is capable of instantiating element instances according to the parsed data.

The element type system can be further subdivided into three subsystems: the standard
SGML types, HyTime types, and MM types (Figure 4). The standard SGML types are
typically textual elements with annotations. HyTime types usually involve links and
synchronization. MM types are used for monomedia components that can be represented
in the atomic types. Details of these subsystems are in [Sch96, (318"’97].

HyTime
Elements

Figure 4: Element Type System

Element

Atomic
Type
System

Standard
Elements

2.1.3 Meta-Types

In Phase 1 of the system there was no need for the implementation of meta-types for
the purpose of instantiating document elements. It was enough for the news-on-demand
document parser to directly “new” the appropriate element instances. This was hard-coded
in the parser. With the arbitrary DTDs in Phase 2, an additional level of indirection was
required. This indirection was achieved through meta-types.

The meta-type system is not directly a part of the element type system, but rather
it shadows the element types with a roughly parallel type hierarchy, especially at the
leaf nodes. For every concrete element type that is generated in the system, there is
a corresponding meta-type. Like the built-in element types, which function as abstract
supertypes for the concrete DTD-specific element types, a directed acyclic graph (a multi-
ple inheritance hierarchy) of built-in meta-types provides the supertypes for the concrete
meta-types that are generated by the Type Generator.

These meta-types perform two important tasks:

1. They store meta-information about the elements in the DTD, such as the element
names, their attributes, and the supertypes from which the corresponding element
types are derived. This information is necessary for instantiating the appropriate
element instances and setting their attributes.

2. They define virtual create functions to instantiate persistent objects representing
document element instances. These are referred to as instantiation methods. Single
instances of these meta-types are created as persistent objects in a database destined
for document instances conforming to a particular DTD.

2.2 DTD and Document Processing

As indicated, there was no need for any DTD processing with the single DTD in Phase 1.
A simple initialization program could be run to initialize a database with the application
schema and the object extents that were needed for news-on-demand documents. More-
over, the actual document processing needed to instantiate documents in the database was
a simple one-off TCL parser and some instantiation procedures.

2.2.1 DTD Processing for Multiple Document Types

A DTD can be thought of as the definition of the syntax of a class of documents. In terms
of the DBMS, it provides the schema for that class of documents.

In order to support a wide variety of applications with a multimedia DBMS for SGML
documents, we concluded that it was essential to be able to create new types from any
DTD introduced into the system. In other words, the system must be able to analyze new
DTDs and automatically generate the types that correspond to the elements they define.
Moreover, these types must become part of a database schema. In addition, the DTD
must be an object in the database so that users can run queries like “Find all DTDs in
which a ’paragraph’ element is defined.”

The components that have been implemented to support multiple DTDs are depicted
in the upper left of Figure 2. A DTD Parser parses each DTD according to the SGML
grammar defined for DTDs. While parsing the DTD, a data structure (parse tree) is

built consisting of nodes representing each valid SGML element defined in the DTD. Each
DTD element node contains information about the element, such as its name, attribute
list and content model. If the DTD is valid, the parse tree is used by a Type Generator to
automatically generate C4++ code that defines a new ObjectStore type for each element
in the DTD. Additionally, code is generated to define a meta-type for each new element
type. Moreover, initialization code is generated and executed to instantiate extents for
the new element objects and to create single instances of each meta-type in the specified
database. A DTD object is also created in the database. This object contains the DTD
name, a string representation of the DTD, and a list of the meta-type objects that can be
used to create actual element instances when documents are inserted into the database.

One of the issues that had to be addressed with multiple DTDs is how to share ele-
ment types with common features across DTDs. There is, however, no easy solution to
this problem since it leads to the well-known semantic heterogeneity problem, studied ex-
tensively within the multidatabase community. Even when elements have the same names
and structure, there is no way of ensuring that they are semantically equivalent.

Nevertheless, we have achieved a degree of type re-use in two ways. First, the design
of the kernel type systems provides reusability. The atomic types, such as AtomicImage,
AtomicAudio, and AtomicVideo, are used by any DTD that identifies those MM ele-
ments. More ubiquitously, AtomicCompoundText and AtomicText are used to store the
textual component of all documents. In the element and meta-type systems, the kernel
types encapsulate much code that is shared by the derived generated types. The sec-
ond approach to reusability places the onus upon the DTD writer. We have provided a
mechanism for the DTD writer to specify which elements in a DTD are to be treated as
reusable across all the DTDs in the system. The writer identifies the semantic equivalence
of elements across DTDs, provides them with the same names, and specifies a “reusable”
attribute in the elements’ definitions.

The system automatically manages such reusable element types. If the element named
is not in the system it will be added, provided none of its child elements conflicts with
an existing reusable element. All elements descendant from a reusable element’s content
model are implicitly marked as reusable. When a reusable type is added to the system,
code is generated for it and its meta-type. This code is appended to a shared library of
reusable types that gets linked into all the database applications that may need it.

After the Type Generator has produced the C++ code for the new DTD, the code
is automatically compiled, built into shared libraries, and linked into applications for
initializing databases and inserting documents into those databases. The DTD Manager
then stores the DTD in the specified database as an enhanced DTD object that can be
used for parsing documents and for other purposes. It also adds the new types to the
database schema and creates meta-type instances for the DTD.

2.2.2 Document Processing for Multiple Document Types

Effective document processing is an area often overlooked in multimedia DBMS projects.
Creating tools to validate and automatically insert documents is generally considered to
be outside the scope of database work. To address this need, a significant portion of our
efforts has been directed toward automatic document insertion.

The general architecture for this integrated component is depicted in the lower left of

Figure 2. The SGML Parser accepts an SGMI document instance from an off-the-shelf
authoring tool, validates it, and forms a parse tree. The Instance Generator traverses the
parse tree and uses meta-type instances from the database to instantiate the appropriate
element objects in the database. These persistent objects stored in the database can be
accessed using the query interface.

3 The DISIMA Experience

The DISIMA research project deals specifically with the development of technology to
facilitate the management of and access to images using a database management system.
Specifically, we propose to develop an image DBMS which will provide the users with
convenient services for uniform access to multiple, historically separated, and possibly
heterogeneous image and spatial repositories.

3.1 The DISIMA Model

The DISIMA model addresses both image and spatial databases, allowing independence
between image representations and applications and distinguishing the existence and iden-
tity of salient objects (logical salient objects) from their appearance in an Image (physical
salient objects). The DISIMA model, is composed of two main blocks: the image block
and the salient object block. We define a block as a group of semantically related entities.

3.2 The Image Block

The image block is made up of two layers: the image layer and the image representation
layer. We distinguish an image from its representations to maintain an independence
between them, referred to as representation independence. At the image layer, the user
defines an image type classification similar to hierarchies in object type systems. This
layer allows the user to define functional relationships between images. Figure 5 depicts a
classification hierarchy for an application which manages news and medical images. These
images can be classified according to specific criteria. The NewsImage class is specialized
by three classes: one for images where a person has been identified (Personlmage), another
for nature images (FEnvironmentallmage) and the last one for the others (MiscImage).

Salient_object Image

T

Human_body Other Person Medicallmage Catalog}}vl’slmag\e

Head Limb Politician Athlete Environmentallmage Misclmage
Torso Other_person Personlmage

Figure 5: An Example of Image and Logical Salient Object Hierarchies

3.3 The Salient Object Block

DISIMA views the content of an image as a set of salient objects (i.e., interesting entities
in the image) with certain spatial relationships to each other. The salient object block

is designed to handle salient object organization. For a given application, salient objects
are known and can be defined. The definition of salient objects can lead to a type lattice
as in Figure 5. DISIMA distinguishes two kinds of salient objects: physical and logical
salient objects. A logical salient object is an abstraction of a salient object that is relevant
to some application. For example, an object may be created as instance of type Politician
to represent President Clinton. The object “Clinton” is created and exists even if there is
yet no image in the database in which President Clinton appears. This is called a logical
salient object; it maintains the generic information that might be stored about this object
of interest (e.g., name, position, spouse).

Particular instances of this object may appear in specific images. There is a set of
information (data and relationships) linked to the fact that “Clinton appears in image i,”.
The data can be his posture, his localization, or his shape in the image ¢;. Examples of
relationships are spatial relationships with regards to other salient objects belonging to im-
age 1;. We create a physical salient object, (P_objectClinton_1) linked to the logical salient
object Clinton, that refers to image ¢; and gives the additional information. If President
Clinton is found in another image iz, another physical salient object (P_objectClinton_2)
will be created.

3.4 How to recognize the salient objects of an image

An image database can be seen as composed of two distict parts (Figure 6): the database
component in charge of data organization and querying and the computer vision compo-
nent that brings computational techniques to recognize objects. Despites progress in the
computer vision field, automatic detection of objects is hard and application-dependent.
As stated in [SKG98], the state of the art in computer vision does not permit automatic
recognition of an arbitrary scene. Assume an object is detected by the image analysis soft-

Image Analysis Syntactic
e
And Pattern Recognition Objects

Image and
Meta-data
Raw Image — Annotation) (S_)‘::lzzltg
] - T [l b
OO DBMS
DISIMA System
i
i
i
i
i
i
i
l
Computer Vision and/or Manual Processing DBMS Processing

Figure 6: Tmage Processing Environment

ware. In the general case, this object is a syntactic object without any semantics. That
is, it is a region of an image with properties such as color, shape and texture. Another
challenge is to provide syntactic objects with semantics. Assume the object detected is a

10

person. How can a computer assign a name to this person? This example explains why
in most cases the image analysis is semi-automatic or manual.

One component of the DISIMA project is in charge of image processing and object
detection. QOur first concern was images with people. The image processing software
detects the faces contained in the image with a minimum bounding rectangle (useful for
spatial relationships) and a human-annotator assigns a logical salient object to the face.
In addition, an image has some descriptive properties such, as date and photographer that
have to be provided.

3.5 Querying images in DISIMA

DISIMA offers two ways to specify queries. A DISIMA query can be posed using the
MOQL query language or the VisualMOQL interface. MOQL(Multimedia Object Query
Language) [LOSO97] is a general multimedia query language that extends OQL [CBB*97]
by adding some spatial properties, temporal properties, and presentation properties for
content-based image and video data retrieval as well as queries on structured documents.
VisualMOQL is a visual programming language that we defined for the image component

of MOQL ([OX098]).

4 Conclusion

This paper has described a general framework for multimedia DBMSs. With reference
to this framework we have described our experiences with developing two multimedia
DBMSs: an SGML/HyTime DBMS and an image DBMS, DISIMA.

Our proposed research for the coming year will be in the application domain of elec-
tronic commerce. Our focus is to start development of multimedia smart catalog servers.
This system will incorporate full multimedia with the inclusion of advertisement videos
and audio “talk-overs”. Since a monolithic system with all data stored at one location is
not practical, we propose an open architecture that uses different specialized servers for
different media types. A unifying generic interface layer on top of the specialized servers
will provide for coherent user interactions while allowing underlying components to man-
age specific types of media objects and respond to the queries about them. This top layer
will accept general user queries in MOQL and then decompose the queries so that they can
be handled appropriately by the relevant underlying system. Initially we will integrate the
SGMIL and DISIMA DBMSs that we already have. We have also begun to examine the
integration of a video DBMS into DISIMA. This will be based on annotating key frames
or composite frames extracted from a video by a tool such as Panorama [TAT97].

An associated project that we have begun [YOL97] will investigate the interoperabil-
ity architecture for distributed heterogeneous repositories. This approach is based on
the mediator/wrapper paradigm [Wie92] where information sources are wrapped so that
their interfaces with the outside world are uniform and mediators are built to mediate the
performance of various tasks across these repositories. The implementation will use a com-
munication bus following both CORBA’s Object Request Broker (ORB) [Sie96] approach
and the COM/OLE [Bro95] approach.

11

References

[Bro95]
[CBB+97]

[LLOW91]

[LOSO97]

[OEMV95]

[018197]

[OOL+97]

[0X098]

[Sch96]

[Sie96]

[SKG9S]

[TATO7]

[Wie92]

[YOL97]

K. Brockschmidt. Inside OLE. Microsoft Press, Redmond, WA, 1995. 2nd Edition.

R. G. G. Cattell, D. Barry, D. Bartels, M. Berler, J. Eastman, S. Gamerman, D. Jordan,
A. Springer, H. Strickland, and D. Wade, editors. The Object Database Standard:
ODMG 2.0. Morgan Kaufmann, San Francisco, CA, 1997.

C. Lamb, G. Landis, J. Orenstein, and D. Weinreb. The objectstore database system.
Communications of ACM, 34(10):19—20, 1991.

J. 7. Ta, M. T. Ozsu, D. Szafron, and V. Oria. MOQL: A multimedia object query
language. In Proceedings of the 3rd International Workshop on Multimedia Information
Systems, pages 19—28, Como, Ttaly, September 1997.

M. T. Ozsu, G. El-Medani, and C. Vittal. An object-oriented multimedia database
system for news-on-demand applications. Multimedia Systems, 3:182—203, 1995.

M. T. Ozsu, P. Iglinski, D. Szafron, S. El-Medani, and M. Junghanns. An object-
oriented SGML/HyTime compliant multimedia database management system. In Fifth
ACM International Multimedia Conference (ACM Multimedia °97), pages 239—249,
Seattle, WA, November 1997.

V. Oria, M. T. Ozsu, X. L1, L. Liu, J. Li, Y. Niu, and P. J. Iglinski. Modeling images
for content-based queries: The DISIMA approach. In Proceedings of 2nd International

Conference of Visual Information Systems, pages 339—346, San Diego, California,
December 1997.

V. Oria, B. Xu, and M. T. Ozsu. VisualMOQL: A visual query language for image
databases. In Proceedings of jth IFIP 2.6 Working Conference on Visual Database
Systems - VDB 4, pages 186—191, I’Aquila, Italy, May 1998.

M. Schone. A generic type system for an object-oriented multimedia database system.
Msc thesis, Department of Computing Science, University of Alberta. Available as
Technical Report TR96-14, 1996.

J. Siegel, editor. CORBA Fundamentals and Programming. John Wiley, New York,
NY, 1996.

A. W. M. Smeulders, M. L. Kersten, and T. Gevers. Crossing the divide between
computer vision and data bases in search of image databases. In Proceedings of jth
IFIP 2.6 Working Conference on Visual Database Systems - VDB Jj, pages 223—239,
L’Aquila, Ttaly, May 1998.

Y. Tanigushi, A. Akutsu, and Y. Tonomura. PanoramaExcerpts: extracting and pack-
ing panoramas for video browsing. In Fifth ACM International Multimedia Conference

(ACM Multimedia ’97), pages 427—A436, Seattle, WA, November 1997.

G. Wiederhold. Mediators in the architecture of future information systems. In IFEE
Computers, pages 38—49, March 1992.

L.L. Yan, M.T. Ozsu, and L. Liu. Accessing heterogeneous data through homog-
enization and integration mediators. In Proceeding of Second IFCIS International
Conference on Cooperative Information Systems (CoopIS’97), June 1997.

12

