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Abstract

Egenhofer and Franzosa’s model of fundamental topological relations for spatial re-
gions has received a lot of research attention in geographic information systems and spatial
databases. We propose a new way of computing these topological relations with much less
storage requirement. We investigate different cases where the new approach can perform
even better than the original approach in terms of CPU time. All the experiments are
run on top of a commercial object database management system. Some important factors
which impact the performance of computing topological relations are also discussed in de-
tail. An image database prototype has been built based on this new approach.
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1 INTRODUCTION

Management of multimedia data poses special requirements for database management systems
(DBMSs). Many applications depend on spatial relationships among multimedia data. There is
significant research on spatial relationships in geographic information systems (GIS) and image
databases [1, 2, 3, 4, 5, 6]. Part of this research is on supporting content-based retrieval, which
is the most striking difference between multimedia DBMSs and their traditional counterparts.
Spatial relations have been classified [7] into several categories, including topological relations
that describe neighborhood and incidence (e.g., overlap, disjoint); directional relations that
describe order in space (e.g., south, northwest); and distance relations that describe space
range between objects (e.g., far, near).

Users are always interested in the topological relations between regions — intuitively, those
that pertain to connectivity of the regions. For example, “Find all satellite images which show
two adjacent cities or towns each with population more than 10000”. In many cases the precise
knowledge of the regions is important. The point-set approach [1, 8] is the most general model
for the representation of spatial regions. However, point-set approaches are notorious for large
storage space requirement. Saving space with a small degradation in computation efficiency
is the major motivation of our work. Directly extracting point-sets from raw images is too
expensive and almost impossible in practice. As some research [6] indicates we can reduced
the size of raw images, say to 64 x 64, without losing their spatial relations.

In this paper, we propose a new way of computing point-set topological spatial relations
by eliminating the interior point-set. This will not only dramatically reduce the database size,
but also speed up query evaluation in some cases. The major contributions of this work are:
a completely new way of computing point-set topological spatial relations; experimental data
to show the efficiency and feasibility of the new approach; and an image database prototype
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available for public accesses. We are using an object database management system, ObjectStore
[9], as spatial object repository.

2 RELATED WORK

Egenhofer and Franzosa [1] have specified eight fundamental topological relations that can
hold between two planar regions. These relations are computed using four intersections over
the concepts of boundary and interior of point-sets between two regions embedded in a two-
dimensional space. For example, let A° and B° be the interiors of objects A and B respectively
and A* and B® be the boundaries of A and B respectively, then the combinations of inter-
sections (A° N B°, A°N B*, A*N B°, A* N B*) between interiors and boundaries form a set of
topological relations. By checking each intersection is empty or not empty, there are 16 possible
results. However, only eight meaningful topological relations are identified: disjoint, contains,
inside, touch, equal, covers, covered_by, and overlap as shown in Figure 1.
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Figure 1: Definitions of Topological Relations

Papadias et al. [3, 4] assume a construction process that detects a set of special points,
called representative points, in an image. Every spatial relation in the modeling space can be
defined using only the representative points. Two kinds of representative points are considered:
directional representative points and topological representative points. Their topological reason-
ing work is based on Egenhofer and Franzosa’s eight topological relations in two dimensional
space. The topological relations are divided into three levels of resolution (high, medium, and
low) according to the applications. The objective is to reduce the computational complexity
whenever possible by a using lower level resolution.

Based on point-set approach, a sound and complete spatial reasoning system is presented in
[8]. The soundness and completeness require that each object be connected, which means that
the object does not have disjoint parts. The reasoning model is expressed in rules which can be
easily integrated into a spatial database. However, a serious drawback of this inference system
is its low expressive power. There are only four directional relations and three topological
relations in two dimensional space, which is not enough.



3 EXPERIMENT

The model of topological spatial relations is based on the point-set topological notions of
interior and boundary. Following theorem tells us that the interior point-set can be eliminated
in computing topological relations. The proof is omitted because of the space limit.
Theorem Let A be a convex region, A° be A’s interior and A® be A’s exterior point-sets
respectively. For all p € A° there always exist four points py, p2, p3, psa in A®, ie., p; € A®
(1=1,2,3,4), such that

Fo(pr) = Fop) and Fy(p1) < Fy(p), Fr(p2) = Fa(p) and Fy(p2) > Fy(p),

Fy(ps) = Fy(p) and Fa(ps) < Faul(p), Fy(pa) = Fy(p) and Fa(pa) > Fu(p).
where F, and F, map a point into the projections of an z-axis and y-axis respectively.

In order to see the performance of this approach for computing topological relations, we
have designed and run following experiments over ObjectStore using C4++4. The goal of this
experiment is to evaluate the performance of two different approaches on computing point-set
topological relations. The first approach is to explicitly store the interior of a spatial region
and the second approach is to replace such an interior with a function. Let us call the first
approach original approach and the second approach functional approach. The performance
metrics are CPU time required in computing topological relations.

The experiment design technique being used is the 2% factorial design [10]. 2* factorial
design is an effective experiment method for evaluating effects of some factors and their combi-
nations. k represents the number of factors and 2 refers to the levels of each factor. We choose
three factors in our experiment; therefore, we use 23 factorial design. The three factors are: (1)
Average sizes of interiors of spatial regions; (2) Average sizes of boundaries of spatial regions;
(3) Whether point-sets have index support or not. Since our argument is to eliminate spatial
region’s interior explicitly, it is natural to see how different size relationships between interiors
and boundaries of spatial regions influence the overall performance, i.e., the CPU time. It is
a common technique to use indexes in databases to handle large amount of data. We would
like to see how indexes affect the overall performance too. One thing to point out is that in
the case of using indexes we do not consider the time to create and maintain the indexes. The
cost of maintaining indexes can be very high if there are many region updates. The two levels
for average sizes of region interiors and region boundaries are both 100 points and 200 points
respectively. We use two-dimensional hash index over a point. The maximum testing size is
200 spatial regions which are randomly generated. The final database size is at around 8M
bytes and all the experiments are conducted on a SUN SPARC SS20 with a 70MHZ cpu and
a 64MB memory.

Table 1 and Table 2 show the results of our experiments over the three factors: interior
size (Interior-100 and Interior-200), boundary size (Boundary-100 and Boundary-200), and
indexable (Hash or no Hash). For each spatial region, a pair-wise comparison over all other
spatial regions is computed for each of the eight topological relations. The average number of
of topological relation comparisons are 135,000. In general, the original approach has a better
performance than functional approach when the testing size is small.

Index Interior-100 Interior-200
Boundary-100 | Boundary-200 | Boundary-100 | Boundary-200
No Hash 489 257 205 194
Hash 201 163 107 108

Table 1: CPU Times (seconds) of the Original Approach




Tndex Interior-100 Interior-200
Boundary-100 | Boundary-200 | Boundary-100 | Boundary-200
No Hash 471 288 242 218
Hash 266 240 134 194

Table 2: CPU Times (seconds) of the Functional Approach

However, the purpose of this 23 factorial experiment is not to compare the performance
between these two approaches; it is to see the impact of each factor and their combinations
over each approach. Using the method, discussed in [10], of computing the effect of each factor,
we come out Table 3 from Table 1 and Table 2. In Table 3 the Interior is the effect of interior
sizes of spatial regions; the Boundary is the effect of boundary sizes of spatial regions; and
the Hash is the effect of hash index. “I-B” is the effect of the combination of Interior and
Boundary; “I-H” is the effect of the combination of Interior and Hash; “B-H” is the effect
of the combination of Boundary and Hash; and “I-B-H” is the effect of the combination of
Interior, Boundary, Hash.

In the case of the original approach, indexing has played an important role with 39%
contribution to the total CPU time while the sizes of region boundaries contribute 30% which
is also significant. This reveals that region boundaries are more important than region interiors
because it seems they consume more CPU time in the computation of topological relations. The
combination of Interior and Hash contributes 8% and other combinations have little impact
on the overall performance.

In the case of the functional approach, indexing has played a less important role (28% of
total CPU time) compared with the original approach (39%). This makes sense because in
the functional approach there are no interiors for spatial regions so indexes are only for the
boundaries. On the other hand, boundaries of spatial regions (42%) have bigger impact com-
pared with the case in the original approach (30%). The reason is that we are relying on region
boundaries more than before. The interiors contribute only 5% of the total performance. The
combination of region interiors and boundaries have 11% effect which is quite significant. So
does the combination of region interiors and hash index. The contribution of the combination
of all the three factors is negligible.

H Approach H Intem’or‘ Boundary ‘ Hash ‘ I-B ‘ I-H ‘ B-H ‘ I-B-H H
10% 30% | 39% | 8% | 5% | 5% 3%
5% 2% | 28% | 11% | 11% | 2% 1%

Original

Functional

Table 3: Percentage of Effects of 3 Factors over Different Approaches

Figure 2 shows different CPU times in computing different topological relations. In Figure 2
(a) (overlap), (b) (cover), and (c) (touch) the original approach beats the functional approach
with quite a bit of margin while in Figure 2 (d) (disjoint) the two approaches are alternately
taking the leads. This reveals that when there are many comparisons to region interiors (as the
cases in computing overlap and cover relations) the original approach performs better. This is
because region interiors have been indexed in the original approach while there is no index at
all in the functional approach.

In Figure 2 (e) (equal) and (f) (inside), the functional approach performs consistently better
than the original approach. The reason is that the computation is mainly dependent on region
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Figure 2: Different Topological Relations (CPU time in seconds)

boundaries so the computation workload is roughly the same with both two approaches. For
the functional approach the database is much smaller so it requires less CPU and 1/O time to
do the processing. That is why the functional approach out-performs the original approach in
these two cases. In summary the functional approach has better performance than the original
approach in some cases. These graphs also reveal that the most expensive topological relations
in terms of CPU time are touch, overlap, and disjoint.

4 CONCLUSIONS

Different applications of spatial databases pose different requirements on data representations.
Although higher level of abstraction over spatial objects are desirable, sometimes it is not
possible to attain these abstractions. This is true especially in the case of multimedia system,
which could be either because image processing techniques are not good enough or the quality
of multimedia objects (e.g., images) is not high. We see the point-set approach as the most



general model for the representation of spatial regions.

In this paper, we propose a new way of computing point-set topological spatial relations by
eliminating the interior point-set, which dramatically reduces the database size and speeds up
query evaluation in some cases. Although in terms of CPU time performance of the functional
approach is not as good as that of the original approach, our work does show that it is a
good strategy to use the functional approach if a limited increase in computation time is
acceptable in order to save space. As a matter of fact, the major issue concerning spatial and
multimedia databases is the huge volume of data. Storage space is, and will still be, a big
problem. Although our approach applies only to the convex regions, it may also be applied to
non-convex regions because a non-convex region can be divided into a set of convex regions.

We have developed an image database using the functional approach. A two-level approach
is used to process spatial queries. At first level (or filter level), all the spatial regions are
approximated by their minimum bounding rectangles (MBRs). The computation of topological
relations between MBRs are very simple [5]. Possible candidates generated from this level
are passed to the next level which is the point-set model. Hopefully this level deals with
significantly less spatial regions than the first level. This image database supports a wide
range set of spatial queries. One goal, which we achieved, is to allow this system being queried
by either traditional way (key-word) or the content-based retrieval approach. Furthermore, the
combination of these two is also possible. Our image database contains around 500 images and
a demo version is publically accessible from http://www.cs.ualberta.ca/~zhong through
any popular web browser (e.g., Netscape).
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