AN OBJECT-ORIENTED SGML/HYTIME COMPLIANT MULTIMEDIA DATABASE
MANAGEMENT SYSTEM®

M. Tamer Ozsu, Paul Iglinski, Duane Szafron, Sherine El-Medani', and Manuela Junghanns'"

Laboratory for Database Systems Research
Department of Computing Science
University of Alberta
Edmonton, Alberta, Canada T6G 2H1
{ozsu, iglinski, duane, sherine } @cs.ualberta.ca

ABSTRACT

We describe the design of an object-oriented multimedia
database management system that can store and manage
SGML/HyTime compliant multimedia documents. The system
is capable of storing, within one database, different types of
documents by accommodating multiple document type
definitions (DTDs). This is accomplished by dynamically
creating object types according to element definitions in each
DTD. The system also has tools to automatically insert marked-
up documents into the database. We discuss the system
architecture, design issues and the system features.

1. INTRODUCTION

Traditionally, multimedia applications have not fully exploited
database management system (DBMS) technology. Mostly
they have used DBMSs to store meta-information and have
stored multimedia objects in flat files. The connection between
the DBMSs and the object files is usually non-existent (or very
loose), requiring the application programs and users to access
both of the repositories independently. This is not a preferable
course of action for three major reasons. First, file systems
leave to the user the responsibility of formatting the file for
multimedia objects as well as the management of a large
amount of data. The development of multimedia computing
systems can benefit from traditional DBMS services such as
data independence (data abstraction), high-level access through
query languages, application neutrality (openness), controlled
multi-user access (concurrency control), and fault tolerance
(transactions, recovery). Second, multimedia objects have
temporal and spatial relationships that must be taken into
account for synchronization and display of information (e.g.,
synchronization of an image with its audio annotation). These
relationships should be modeled explicitly as part of the stored
data. Thus, even if the multimedia data is stored in files, their
relationships need to be stored as part of the meta-information
in some DBMS. Finally, the size and complexity of multimedia
objects require special treatment in storage, retrieval, and
transmission. DBMS technology, especially the technology of
object DBMSs, is particularly well suited for the representation
and storage of this type of data.

Recently, a number of multimedia projects that have used
DBMSs have been reported in the literature (see [PS97] for a
survey). However, there are a number of common deficiencies

in many of these attempts. Some of them use the DBMS
technology only to store and manage meta-data, while the
actual multimedia objects are stored in ordinary files with very
little integration between the DBMS and these files. This
restricts the role of DBMSs and makes it difficult (if not
impossible) to apply regular database access methods to
multimedia data. Others store some of the multimedia objects
(e.g., text and still images) as binary large objects (“BLOB”s)
in relational DBMSs. Even though this puts some of the
multimedia objects in a database, it is usually not possible to
provide database functionality over these objects. For
example, content-based querying of BLOBs is not possible
since the DBMS treats them as byte strings whose
interpretation is left to the application. Still others develop
and implement their own one-of-a-kind models for multimedia
data. Unfortunately, this requires everything to be developed
from scratch since various tools based on international
standards cannot be used together with these one-of-a-kind
systems.

In this paper, we report our work in developing an object
DBMS to store and manage SGML/HyTime [Gold90, DD94]
compliant multimedia documents. Three points are important
about our work. First, even though we heavily use DBMS
technology to manage multimedia data, we are not arguing for
the storage of all multimedia data in a database. In fact, most
of the multimedia data currently reside in traditional files which
will need to be incorporated into multimedia information
systems in an interoperable environment. The argument put
forth here is that the users’ access to this data should be
managed by a DBMS. We propose to accomplish this by
storing and managing the structure of all multimedia
objects, as well as some of the objects themselves in an object
database, and providing strong links from this DBMS to the
particular servers (e.g., image file systems or video-on-demand
systems) that store the remainder of the data. Thus,
interoperability, the second important point, is a central
aspect of our work. In this paper our emphasis is on the
database models and associated tools to store and manage
multimedia data; interoperability issues will be reported
elsewhere. Finally, we chose to base our work on the
SGML/HyTime standard for representing multimedia
documents. This allows us to build an entire system by using
commonly available tools that work with these standards, most
importantly, SGML parsers, authoring tools and browsers.
Moreover, adopting the widely used document standard of

* This research is supported by Canadian Institute for
Telecommunications Research (CITR), one of the Networks of Centres
of Excellence funded by the Government of Canada.

T Current address: Vicom Multimedia Inc., Edmonton, Alberta, Canada.
F1 Current address: Intelligent Marketing Systems, Edmonton, Alberta,
Canada (Manuela_Junghanns@imsi.ca). Maiden name: Manuela
Schone.

SGML allows pre-existing document collections to be readily
incorporated into our system. Users of SGML can effectively
use the system without a steep learning curve.

Our research task of modeling multimedia SGML documents and
implementing an object database management system for them
which can support a rich query interface has been a non-trivial
endeavor. We hope our experience and accomplishments
benefit other research in this area.

The system described in this paper is part of the larger
Broadband Services Project that is being conducted by five
institutions in Canada with support from the Canadian Institute
for Telecommunications Research. The objective of the larger
project is to develop a software infrastructure and to define an
API that is suitable for a wide range of broadband distributed
multimedia applications [WLE+97]. The multimedia DBMS
component of this project covers a broad spectrum of activities
from the design and implementation of an appropriate database
type system (schema) to the development of application-
specific query models and languages that support content-based
access to multimedia objects. This paper focuses on a couple of
components of the multimedia DBMS; issues such as video and
image modeling are reported elsewhere [LOS96a-b, LOS97] and
other components including multimedia query languages,
image and video indexing will be reported in the future.

We assume that the reader is familiar with SGML/HyTime and
we do not repeat the basic characteristics of these standards.
Readers can refer to the standards themselves [ISO86, ISO92] or
to the various books that describe them (e.g., [Gold90,
DD94]). Even just a familiarity with HTML, the most
ubiquitous SGML document type, will help in understanding the
level of SGML detail presented here.

The organization of the rest of the paper is as follows. In the
next section, we present the architecture of the system that we
have developed. Sections 3-5 focus on the core aspects of our
system: the type system that we have implemented, the
management of multiple document structures, and the automatic
insertion of documents into the database. Section 6 contains a
review of some of the related work and compares our system
with others. Section 7 discusses the current status of the system
and reviews some of the improvements that are underway.

2.SYSTEM OVERVIEW

One of the strengths of DBMSs is their ability to manage data
on behalf of multiple applications and enable data sharing
among them. DBMSs provide this service in a transparent
manner, shielding the applications from the particulars of
physical data organization, distribution and performance
considerations (query optimization). If DBMSs are to support
multimedia applications, the same services need to be extended
to multimedia data. Within the context of an SGML/HyTime
compliant system, this means the following:

1. The system has to be able to model all types of
multimedia data (video, audio, text, images), not only
simple data such as character strings and numeric values.

2. The system needs to be open and extensible, both in
terms of the types of data it can manage and in terms of
its architecture so that it can accommodate different
servers and applications.

3. The system has to be able to store and manage different
types of documents in one database. In SGML parlance, it
should be able to deal with multiple DTDs and be able to

DTD DTD
DTDs —3| Parser [2 Manager*

Type || o
Generator [H——t»| Multimedia
i Database
SGML Inst)’/
Marked-u, nstance
DocumenFt)s 7| Parser 7 | Generator I
| DBMS
- A &
| Queries/Responses
O O O
| DBMS Igjsers i
SGML/HyTime rocessin
Processing

Figure 1. Complete Processing Environment

store documents whose markup conforms to these DTDs.

4. The system should facilitate the automatic insertion of
multimedia documents into the database and provide
facilities for querying these documents both with respect
to their contents and with respect to their structure.

The system described here satisfies these constraints. It is a
distributed (client-server), object-oriented system that allows
coupling with other servers (in particular continuous media
servers) and handles dynamic creation of object types based on
DTD elements.

The system is built as an extension layer on top of a generic'
object DBMS, ObjectStore [LLOWI91]. The extensions
provided by the multimedia DBMS include specific support for
multimedia information systems. The development of a type
system that supports common multimedia types is at the heart
of the multimedia extensions. This paper focuses on the
extensible kernel type system as well as the supporting tools
to facilitate automatic type creation from a given DTD and the
automatic insertion of conforming documents into the
database.

This architecture is open so that it can accommodate various
multimedia servers. Many of these are file system servers
without full database management functionality (e.g.,
querying). If file system servers are used, but the applications
require database functionality, then a multimedia DBMS layer
can be placed on top of the file system servers and the
underlying storage system can be modified accordingly.
Alternatively, links can be provided from the multimedia
DBMS to the various servers which may be located at different
sites of a distributed system. In our prototype configuration,
for example, the audio and video objects are stored in a separate
continuous media server [MNH96] while meta-data about these
objects are stored in our multimedia DBMS.

! ObjectStore is a generic ODBMS in the sense that it doesn’t have native
multimedia support in its base product. The latest version (Version 5) of
ObjectStore incorporates object managers as add-on products providing
limited support for multimedia data types. These class libraries provide
some partial solutions to multimedia issues, which may benefit our
implementation in future releases.

Another aspect of our system is its integration of tools
associated with the management of SGML/HyTime databases.
These include a DTD parser and manager, and a SGML parser and
instance generator. These are discussed in detail in Sections 5
and 6. Overall, the system deals with both database processing
and SGML/HyTime processing issues (Figure 1).

3. MULTIMEDIA TYPE SYSTEM

In designing a type system for an SGML/HyTime compliant
DBMS, four issues need to be addressed [OSEV95]:

. The different media components of the document (i.e.,
text, image, audio, video, and synchronized text) need to
be modeled and stored in the database. These are called
monomedia objects. The design of their storage
structures in the database is critical for good performance.
These fundamentally physical objects are modeled in our
atomic type system.

. A representation is needed for the document’s logical
structure. Not every multimedia information system
represents the document structure explicitly. For
example, a multimedia system using postscript files for
documents ignores the hierarchical structure of the
document. Explicit representation of the structure
facilitates querying and presentation. This logical,
structural dimension of documents is modeled by our
element type system.

. In multimedia documents, one has to deal with the
representation of the spatial and temporal relationships
between monomedia objects. These relationships are
important for presentation purposes — spatial
relationships are used to model the placement of the
various components on the screen while temporal
relationships are essential for the synchronization of
monomedia objects during presentation (e.g., audio
synchronization with video or captioned text with
video). These synchronization requirements, as well as
hyperlinking, are modeled by the HyTime component of
the element type system..

. Meta information about the DTD elements and instance
creation functionality are necessary for document
insertion and queries about document structure. A meta-
type system can satisfy these requirements.

We discuss below how our system handles each of these issues
within the framework of an object DBMS. In this context,
“modeling” refers to the design of a type system that supports
the representation of various system components.

3.1 Atomic Type System

Our atomic type system consists of the types that are defined to
model monomedia objects. This part of the type system
establishes the basic types that are used in multimedia
applications.

One of the important considerations in the design of the type
system is quality-of-service (QoS) requirements. Monomedia
objects are associated with specific QoS parameters that are
needed for presentation purposes. For example, the QoS
parameters of an image can be the format (e.g., JPEG, GIF,
TIF), size, resolution, and color depth. For one logical
monomedia object, there can be a number of concrete objects
that can be distinguished only in their QoS parameters. These
concrete objects are called variants logical monomedia
object. During QoS negotiation, depending on the available

Monomedia
Object

Variant 1 Data Stream 1

Variant 2

Variant 3

Variant n

Figure 2. Variants of Monomedia Objects

hardware and the desired quality and cost, different variants of
the same monomedia object can be retrieved and displayed.
Moreover, continuous media objects, such as audio and video,
may consist of a number of data streams. Some video and image
compression technologies, for example, utilize a base stream
that can be merged with enhancement streams to obtain higher
quality of service levels. Similarly, an audio variant might
provide quadraphonic sound with four data streams, one for each
channel. It is important to be able to model these
relationships between monomedia objects, their variants and
the data streams that make up each variant, because multimedia
applications need to access each of these objects coherently.

Figure 2 shows a monomedia object with different QoS levels
represented by different variants. Variant 1 consists of Data
Stream 1; Variant 2 shares Data Stream 1 with Variant 1, but
also contains Data Stream 2. In general, the presentation
quality is higher if more data streams are used. Therefore, the
QoS level of Variant 2 is higher than of Variant 1. In this
example, Variant 3 and Variant n consist of the same streams

Atomic
Monomedia DataStream Variant
AudioMgdia TextMedia NCMType T CMType

AtomicCompoun

Text
VideoMedfa ImageMedia 1
AtomicText AtomicVideo AtomicAudio
TextMedia
Atomiclmage AtomicSText

Figure 3. Atomic Type System

but may differ in other QoS parameters, such as maximum jitter,
frame loss or delay.

The type system for atomic types is depicted in Figure 3°. All
atomic types are subtypes of the abstract supertype Atomic,
which is the root type in the Atomic type system. Atomic

2 Abstract supertypes are displayed in bold font, whereas concrete types
are displayed in a normal font.

has one data member, the logical identifier id, which stores an
SGML ID. Each element utilizing an atomic type requires an
SGML ID attribute. SGML requires that this ID be unique
throughout the document. The details of the type definitions are
omitted here due to space limitations—they are provided in
[Sch96]; in the remainder of this sub-section, we provide an
overview of the semantics of the atomic types.

DataStream is an atomic type for streams. A stream
identifies a particular file on the continuous media file server. It
has data members for meta data related to the data streams,
namely size and a universal object identifier.

Instances of Uariaont subtypes hold the monomedia
representation and the variant’s QoS information. Type
Uariant contains functions to access QoS parameters that are
common to all variants. There are two abstract subtypes of
Uariant,NCMType for non-continuous media such as text and
images, and CHType for continuous media such as audio and
video. This distinction is made since non-continuous and
continuous media are handled differently in the system. The
difference between the two types is that instances of types
derived from HCHType store the raw media in their objects,
whereas instances of types derived from CHType have only
meta-information stored about the continuous media streams,
which themselves reside on the continuous media server.
NCHType and CMType have subtypes for the types of
monomedia objects that they model (AtomicSText
corresponds to synchronized text). A composite type,
AtomicCompoundText, contains a collection of
AtomicText to represent the textual component of documents
whose DTD specifies segmentation of text storage, as described
in the following subsection.

The concept of monomedia types has been introduced to group
variants that are logically equivalent. An instance of a subtype
of type Honomedia (say alideoObject which is an
instance of UideoMedia) may have a number of variants, as
discussed previously. Instances of monomedia types store
references to all of their variants. Thus, alideoObject has
references to its variants which are instances of
AtomicVideo. A monomedia object can have only variants of
the same type associated with it; for example, UideoMedia
can only contain AtomiclUideo objects.

In this paper, we do not discuss the details of how we model and
represent the contents of monomedia objects. Our approach to
representing the textual part of multimedia documents is
described in [OSEV95]; the video modeling approach is
discussed in [LOS96b] and the image model is presented in
[LOS96a]. We have not yet done extensive work on audio
representation, though the types are implemented and used in
our demonstration applications.

3.2 Element Type System

The element type system is a uniform representation of
elements in a DTD and their hierarchical relationships. Each
logical element in a DTD is represented by a concrete type in
the element type system.

An important design decision relates to the “shape” of the
element type system. SGML, as a grammar, is fairly flat but
allows free composition of elements. This, coupled with the
requirement to handle multiple DTDs within the same database,
suggests that the type system also be flat, consisting of
collections of types (one collection for each DTD) unrelated by
inheritance. This simplifies the dynamic type creation when a
new DTD is inserted (to be discussed in Section 5). However,

Element

HyTime

Elements

Atomic

Type
System

Standard
Elements

Figure 4. Element Type System

this approach does not take full advantage of object-oriented
modeling facilities, most importantly behavioral reuse. Instead
of a flat type system, we implement a structured type system
where some of the higher-level types are reused through
inheritance. This has the advantage of directly mapping the
logical document structure to the type system in an effective
way. Furthermore, some of the common data definitions and
behaviors for similar types can be reused. The disadvantage is
that type creation (as discussed in Section 5) is more difficult.
Information such as the characteristics of elements have to be
obtained from the DTD to generate the new types as part of the
type hierarchy.

As a result of this design decision, the system provides a set of
built-in types that constitute the kernal of the element type
system. These types model characteristics that are common to
all or some DTD elements. Figure 4 depicts an abstracted view
of the element type system. The entire system is rooted upon
the abstract supertype Element. One group of element types
contains the HyTime elements, elements conforming to the
HyTime architectural forms. A second group contains what we
call MM (MonoMedia) elements, elements conforming to our
own MM architectural forms. The MM elements constitute a
bridge between the element type system and the atomic type
system, between the logical and physical dimensions of
documents. Each of the MM elements holds a pointer to an
atomic type object. A third group contains all the “standard”
SGML elements. Within each of these groups is a core set of
built-in abstract element types. All other element types that

Document

=" /\

AnnotatedElement Structured

N\ A

StructuredAnnotated

Figure 5. Standard Element Type System

may be defined, i.e., concrete element types corresponding to
DTD elements, are derived from one of these abstract built-in
types. Figure 5 shows some of the standard core element types.

Type Element, the supertype of all element types, contains
the data members document and parent, together with
member functions to access them. Data member document , of
type Document, points to the multimedia document that
contains the element. The introduction of this attribute enables
each element to know its document. Since SGML documents
have a tree structure, each element, except the root element, has
a parent. The data member parent models this structure by
pointing to the element’s parent element. The type of parent
is Structured since all parent elements must be structured
elements with child nodes (this is further discussed below).

Type Structured is a supertype for all elements in the DTD
that are potentially non-leaf nodes in the document tree. Such
elements have a complex content model, meaning that the
content model is not EMPTY or #*PCOATAH. Elements with a
complex content model may have child elements. That is why
structured elements must maintain references to their child
elements. Type Structured has data members that keep track
of these references and member functions that access them.

For efficiency reasons, all textual components of a document
are, by default, stored together as one text string [OSEV95].
Each textual component (e.g., paragraph, emphasis, etc.) has
an annotation associated with it that indicates the start and end
index of the object’s text in the text string. Annotations are
not only useful for elements that contain textual data
(*PCDATA) but also for other elements that have to be located
within the text string to display them properly (e.g., figure,
link). Type AnnotatedElement is the abstract type that has

the data members that maintain these annotations. For
elements that are both structured and annotated, a type
StructuredAnnotated is multiply derived from

Structured and AnnotatedElement to serve as their
supertype.

While this default text storage model avoids fragmentation of
the document text into numerous objects and facilitates text
retrieval and text searching, it leads to expensive document
updating and may not be suitable for lengthy documents. Under
this model, the modification of text in a document requires
modification of all annotations that follow or span (i.e., as a
parent element) the changed text. Thus, a small change near the
front of a long document requires annotation updates for nearly
all the elements as well as (potentially) a string copy of the
entire document text.

To address this problem, the text storage model has been
augmented by means of a type, AtomicCompoundText, and a
text segmentation facility that responds to the use of a “text-
seg” attribute for elements in the DTD. This allows the DTD
writer to specify which elements are to be maintained as
separate text segments. The attribute can be given a default
token value that can be over-ridden by the document author.
Thus, while the DTD writer bears the initial responsibility for
determining the desired granularity of text segmentation, the
document author can over-ride the default specified in the DID
by specifying an alternative value for the “text-seg” attribute

3 The decision to use such system-specific attributes as “text-seg” and
“reusable” (Section 4) does not violate the SGML principal of document
portability, even though these attributes may be semantically meaningless
in the context of another document processing system. Their contribution
to our system is essentially to add customizable efficiencies.

in the particular element's tag. With user-specified text
segmentation, annotations are relative, consisting of a start-
key and end-key. These keys are associated in a dictionary with
areference to an AtomicText (atext segment) object and an
offset into the string in that object. = The hash table
implementation of the dictionary insures rapid lookup. User-
specified text segments nested within other user-specified text
segments are handled appropriately as a simple sequence of
segments. Text that intervenes between user-specified text
segments is treated as a separate segment.

Current work involves developing a simple interface for
updating documents based on insertion and deletion using
HyTime's tree location address (treeloc) for specification of
elements in the document tree. Both insertion and deletion will
involve validation by the SGML parser.

In order to provide a consistent way of handling DTD elements
that refer to atomic objects, we have introduced another special
attribute named MM (MonoMedia) for such elements. The
value of the MM attribute is fixed in the DTD to a value that
identifies the appropriate atomic type. The mechanism of the
MM attribute closely parallels that of the HyTime attribute,
described in the following sub-section, which identifies a pre-
defined architectural form to which the element must conform.
Essentially, this constitutes a set of MM architectural forms for
our system which supplement the standard HyTime architectural
forms.* In fact, some elements can be defined so as to conform
to both a HyTime architectural form and an MM architectural
form. Some of the kernal MM element types are shown in
Figure 6.

Element

/ Stream
Image

VariantElement Audio

/ Video Text
Stext

Audio Image
Variant Variant
Video Text
Variant Variant
SText
Variant

Figure 6. MM Element Types

For each concrete atomic type there is a pre-defined element
type which contains a pointer to an object of the
corresponding atomic type. If, for example, the DTD defines
an element Mylmage with an MM attribute fixed to the value
imageVariant, a new type will be generated that is subtyped
from the pre-defined class ImagelUariant, which contains a
data member that points to an AtomicImage. In this case, the
element MylImage must have attributes, namely QoS data, and a
content model that conform to the MM architectural form for
imageVariant. The image and its required QoS data are all stored
directly in the atomic object.

* This work was based upon the First Edition of the HyTime standard.
The Second Edition contains standardizations for new architectural
forms which could have benefited our design of the MM architectural
forms.

This way, we can exploit our atomic type system and maintain
a one-to-one correspondence between concrete element types
and elements defined in the DTD. The advantages are two-fold.
First, there is a clear distinction and interface between atomic
types and element types. Atomic types model the primitive
monomedia objects whereas element types model elements in a
DTD. Second, this clear separation simplifies the interaction of
other system components with the database. For example, the
QoS negotiator module, developed by a partner research group,
deals exclusively with the atomic types, completely ignoring
the element type system.

For type checking, it is very useful for an object to know its
type. To achieve this, the data member type has been
introduced as a static member of each concrete element class. It
is initialized to point to a meta-type object that specifies the
type of the element. Each element type has a meta-type
associated with it (e.g., type Article has the meta-type
ArticleType). The meta-type object contains the name of
the element as it appears in the DID and other useful
information that can be queried. Meta-types are discussed fully
in Section 3.4.

3.3 Presentation Type System

Presentation of multimedia documents may involve
complicated scenarios which require synchronization of
various media, the placement of various objects on the screen,
and QoS considerations. The algorithms to meet these
requirements are outside the scope of the multimedia DBMS.
However, it should be possible to store in the database
presentation related data for a document that is then used by the
presentation tools. In general, the presentation data involves
the spatio-temporal relationships between the various objects.

The design challenge is how to model these relationships
within the framework of the SGML/HyTime standard. In our
system, we make use of several architectural forms that are
defined within HyTime. Our system is not a full HyTime
engine. As a background, the HyTime standard is divided into
modules, each of which describes a group of concepts that are
represented by architectural forms (AFs). The modules include
the base module, the measurement module, the location address
module, the hyperlinks module, the scheduling module, and the
rendition module. Each module may use certain features of other
modules lower down in the hierarchy; thus the location address
module defines AF’s which are used in the rendition module.
Each HyTime DTD must declare the names of the modules it
requires.

To represent relatively simple spatial and temporal constraints
between document elements, we use the finite coordinate space
(FCS) architectural form defined in the scheduling module.
This, in turn, requires features of the measurement and location
modules.

HyTime models space and time using axes of finite dimensions.
A finite coordinate space is a set of such axes. All
measurements are associated with axes. The units of
measurement along axes are called quanta. An extent is a set of
ranges along the various axes defining the FCS. An event
corresponds to an extent in the FCS. An event schedule
consists of one or more events. Extents are specified using the
ext | ist AF, events using the event AF,and event schedules
using the eusched AF. The document instance associates a
data object with the event. The semantics and the manner in
which the events are rendered are defined by the application.

To represent spatio-temporal relationships, we define a FCS

y axis

A X axis

Event

Extent

Time Axis
Figure 7. Finite Coordinate Space

consisting of three axes: the x and y axes for spatial
relationships of objects on screen, and the time axis for
temporal relationships (Figure 7).

The representation of this idea in the database requires the
definition of a number of HyTime architectural forms. Of the 69
architectural forms defined as part of the HyTime standard, we
have implemented hydoc, dimspec, axis, event, link, fcs,
exlist, and evsched. HyElement is the supertype of all
HyTime types in the element type system. Its immediate
subtypes correspond to the AFs we have implemented (Figure
8). Following the HyTime standard, all HyTime elements in
the DTD must have ID and HyT ime attributes. The ID is used as
a unique identifier to make element references possible. The
HyTime attribute specifies the architectural form to which the
element belongs. Types Uideo, Stext, and Audio are
directly derived from the HyTime type Event_AF. They use
HyTime events for synchronization purposes.

Element

HyElement

HYDociAF // \ Evsched_AF

Dimspec_AF Extlist_AF

Axis_AF Fcs_AF

Event_AF llink_AF

Figure 8. HyTime Element Types

3.4 Meta-Types

The meta-type system roughly parallels the element type
system. Like the built-in element types, which function as
abstract supertypes for the concrete DTD-specific element

ElementType

=N

AnnotatedType AF_Type

MonomediaType DataStreamType

EventType AxisType

VariantType
Figure 9. Partial Meta-type System

types, a directed acyclic graph of built-in meta-types provides
the supertypes for the concrete meta-types that are generated by
the Type Generator.

For each concrete element type that is generated from a DTD, a
corresponding meta-type is generated. These meta-types
perform two important tasks:

1. They store meta information about the elements in the
DTD, such as the element names, their attributes, and the
supertypes from which the corresponding element types
are derived. This information is necessary for
instantiating the appropriate element instances and
setting their attributes.

2. They define virtual create functions to instantiate
persistent objects representing document element
instances. These are referred to as instantiation methods.

Single instances of these meta-types are created as persistent
objects in a database destined for document instances
conforming to a particular DTD. The instantiation methods that
are implemented in the generated code can create the
corresponding element objects, parameterized according to the
data extracted by an SGML document parser during the
automated document insertion process. Virtual function
resolution ensures that any meta-type object will create the
appropriate object(s) when its instantiation method is
invoked.

The meta-type system is rooted in the base type
ElementType. This base type contains all the meta
information: name, attributes, and supertypes. It also declares
and defines member functions that fall into the following
categories:

1. The instantiation methods. These are virtual
functions, mentioned previously, which get redefined in
the generated meta-type. There are separate functions for
structured elements (with a complex content model) and
unstructured elements (with a simple content model).

2. Functions for setting attributes. There are non-
virtual functions that loop through attribute lists or
provide general attribute setting functionalities. A virtual
function for setting specific attributes is redefined in the
generated element types.

3. Functions for determining special attributes.
These functions take care of special attributes that are

used by the HyTime and MM architectural forms.

The top levels of the built-in meta-type system are shown in
Figure 9. In all, there are five levels in this kernal type
hierarchy, which utilizes multiple inheritance in parts of the
lower levels. This meta-type system is described in detail in
[EM96].

4. SUPPORT FOR MULTIPLE DOCUMENT
STRUCTURES

One fundamental requirement of a multimedia DBMS for
SGML/HyTime documents is that it should be able to support
multiple DTDs by creating types that are induced by these
DTDs. This is essential if the multimedia DBMS is to support a
variety of applications. The system must be able to analyze
new DTDs and automatically generate the types that correspond
to the elements they define. In addition, the DTD must be an
object in the database so that users can run queries like “Find all
DTDs in which a ‘paragraph’ element is defined.”

The components that have been implemented to support
multiple DTDs are depicted in Figure 1. A DTD Parser parses
each DTD according to the SGML grammar defined for DTDs.
While parsing the DTD, a data structure is built consisting of
nodes representing each valid SGML element defined in the
DTD. Each DID element node contains information about the
element, such as its name, attribute list and content model. If
the DTD is valid, a Type Generator is used to automatically
generate C++ code that defines a new ObjectStore type’ for each
element in the DTD. Additionally, code is generated to define a
meta-type for each new element type. Moreover, initialization
code is generated and executed to instantiate extents for the
new element objects and to create single instances of each
meta-type in the specified database. A Otd object is also
created in the database. This object contains the DTD name, a
string representation of the DTD, and a list of the meta-type
objects that can be used to create actual element instances when
documents are inserted into the database.

There are two important problems that need to be addressed in
this process. Both of these are abstraction problems that can
reduce the complexity of the multimedia type system and
therefore reduce maintenance time and errors. First, if two or
more DTD elements in the same DTD definition share common
features, then this feature should, ideally, be automatically
extracted and promoted to an abstract superclass. For example,
in a prototype news-on-demand type system, the two types,
Video and Audio both shared a common duration attribute, so
the abstract supertype Temporal was created to promote this
feature. If the feature is a common content model, this factoring
is straightforward. Otherwise, the problem is harder to solve.
Even if attributes of different elements have the same name and
specification, they may be semantically unrelated.

Second, common element definitions across different DTDs
should be represented by a common type in the type system.
However, there is no easy solution to this problem since it
leads to the well-known semantic heterogeneity problem,
studied extensively within the multidatabase community.
Briefly, the problem is one of being able to determine whether
two elements are semantically equivalent. This problem has
also been studied in the programming languages field, where
there are many different definitions for type equivalence. For

5 By ObjectStore type, we mean a C++ class defined to be used
persistently by ObjectStore. This includes creating a persistent class
extent for instances of the class.

example, two types are name equivalent if they have the same
name. However, this would not be a good definition of type
equivalence in our model since two different DTDs might use
the same name to describe semantically different elements, for
example, a Signature in a Thesis DTD and a Signature in
a Symphony DTD. Similarly, programming languages define
two types to be structurally equivalent if the components
recursively have the same names and types. This may also lead
to faulty equivalencies. For example, Caption and Title
could be structurally equivalent, each having a content model
that is *PCOATA. However, they are semantically different, a
difference that may only become clear in the context of what
composite objects can contain them. Since this is not a trivial
problem, we have chosen to give up some abstraction in favor
of a semantically “safe” type system.

This does not mean, however, that we have completely
abandoned type re-use across DTDs. We re-use the atomic types
such as AtomicAudio,AtomicImoge and AtomicText, as
well as the high-level abstract supertypes such as
Structured and the HyTime and MM kernal types in the
element type system. These types are safe to re-use because
they have well defined semantics that appear across many
document types. For the specific elements in a given DTD, we
create new types derived from the abstract supertypes. Name
conflicts between elements in different (uniquely named) DTDs
are resolved automatically by using the DTD name as a prefix
during type creation (e.g. ArticleSection,
BookSection).

In addition to re-use through atomic types and abstract element
supertypes, we have provided a mechanism for the DTD writer
to specify which elements in a DTD are to be treated as reusable
across all the DTDs in the system. This is specified by
explicitly using a “reusable”™ attribute in an element's
definition. Then, if a reusable type of that name does not exist
in the system at the time the DTD is instantiated, it gets created
along with reusable types for all its implicitly reusable
descendants.

If such a reusable type (or any of its descendants) already exists
in the system, the incoming element definition (and its
descendants) is validated to ensure that the old and the new type
definitions are compatible. If compatible, no new class is
created. If not, an error report is generated containing valid
definitions for the invalid elements which can later be pasted
into the DTD in place of the invalid definitions. A dedicated
database maintains information about reusable element
definitions, as well as a record of which DTDs utilize a
particular reusable element.

Metatype classes are also generated for each reusable element.
An instance of a metatype class is capable of creating an object
of its associated type during document instantiation. However,
for annotated elements (generally elements with textual
content) a single reusable metatype instance is not sufficient
since the annotation of an object must also be recorded in a
DocumentRoot” object particular to the DID (e.g.
BookRoot). In these cases, metatype classes derived from the
reusable metatype classes must also be generated in the DTD
specific code. An instance of the specific metatype is needed
for each DID in the database using the reusable annotated
element. For non-annotated elements, a single instance of a
reusable metatype is sufficient for creating objects of reusable

¢ See Footnote 3.
"DocumentRoot is one of several auxilliary classes that lie outside
the atomic, element, or meta-type type systems.

types for any DTD.

This facility for reusable types can significantly reduce the
amount of generated code in a system that contains multiple
DTDs sharing commonly defined elements. Such reusable
elements can later be uniformly queried across multiple
document types.

The DTD Manager in Figure 1 stores the DTD in the database
as an enhanced object that can be used for parsing documents
and for other purposes. This is done after type creation. As
soon as a DID object is stored in the database, SGML
documents of that type can be inserted. If a DTD is internal to a
document, i.e., the DTD is in the DOCTYPE declaration subset,
it must first be removed and processed by the DID parser and
manager before the document can be inserted in a database.

5. AUTOMATIC DOCUMENT INSERTION

One of the serious shortcomings of many multimedia DBMS
projects is the unavailability of tools for the insertion of
documents into the database. Many systems have facilities for
querying the database once the documents are inserted in it, but
no tools exist to automatically insert documents. This is
generally considered to be outside the scope of database work.
One of our sub-projects has concentrated on coupling the
multimedia database with a retrofitted SGML parser, so that
SGML documents can be created, using existing authoring
tools, and automatically inserted into the database.

The general architecture for this coupling is depicted in Figure
10. The SGML Parser accepts an SGML document instance
from an Authoring Tool, validates it, and forms a parse tree.
The Instance Generator traverses the parse tree and
instantiates the appropriate objects in the database
corresponding to the elements in the document. These are
persistent objects stored in the database that can be accessed
using the query interface.

| Authoring
|__Tools ﬂ

SGML
Document

Instance N
DTDs o V O
| &
> &
Parse — Type £ "’O
Tree |HY C++ System >
Types N_oystem A g b
! A~ SGML g IN
Instance T\ ¢ Documents O
Generator C++ ~ N
Object U
jocts Multimedia DBMS sers

10. Automatic Document Insertion

The parser is based on a freeware application called nsgmls®. It
was modified to incorporate the following changes:

1. The DID used for parsing the document instance is

8 This parser was developed by James Clark and is available on the
Internet.

fetched from the multimedia database.

2. The output is passed to the Instance Generator as a parse
tree instead of producing parsed text output. This output
includes a text string for the document that is stripped of
markup, together with a linked list of nodes containing
annotations into the string, an attribute list, and pointers
to parent and next nodes.

3. The parser does not produce any output for the Instance
Generator unless the document is error-free. In the event
of errors, error messages are generated.

While the parser component is independent of any particular
DTD, the Instance Generator is DTD specific. The specific
library linked to the parser is the one built from code generated
for the specific DTD.

Much of the instance generating code in the system was
discussed in Section 3.4 on meta-type types. Object instances
of all the meta-types required by a DTD are persistently stored
in the DTD object. For each node in the parse tree, the
appropriate meta-type object is found by querying the DTD’s
meta-type list. The appropriate Createlbject method is
invoked on this object, which in turn invokes a method for
setting attributes according to the data in the parse tree node.

Though most of the instance creating behavior is implemented
in the meta-types, some behavior is implemented directly in
the element types. Once element type objects are created by a
meta-type object, they themselves can perform some of the
instantiation work. The element types may implement three
specific instantiation behaviors: SetChild,
SetSpecificAttribute, and ResolueRef.

The SetChild behavior sets pointers in the parent of a newly
created object. Each structured object maintains a list of all its
child objects as well as lists for each differing child type. The
SetAttribute method in Element Type loops through all
the attributes and invokes SetSpecificAttribute
methods specific to each element type. The ResoluveRef
method implements the behavior of resolving an element’s
references. If the attribute’s declared value type is IDREF, the
resolution of the attribute is deferred until the end of the
document instantiation process. This reference resolving
approach is similar to a pass-and-a-half compiler.

6. RELATED WORK

Among the numerous multimedia DBMS described in the
literature, there are three object-oriented systems supporting
SGML/HyTime documents which warrant comparison with our
own.

6.1 HyperStorM

HyperStorM (Hypermedia Document Storage and Modeling)
project currently undertaken at GMD-IPSI (Germany) has
similar goals to ours but is built upon the object-oriented
DBMS VODAK”’. The Structured Document Database component
[BA96] of HyperStorM, which investigates various object-
oriented technologies for structured documents, is the research
effort that most closely resembles our system.

® VODAK is itself built upon ObjectStore. It utilizes ObjectStore’s
persistent storage management, but implements its own modeling
language (VML) and query language (VQL). The application
programmer codes in these languages, instead of using C++. The VML
code is converted by the VODAK compiler into C++ code that is linked
to the VODAK and ObjectStore libraries.

In the first version of HyperStorM’s Structured Document
Database, D-STREAT [ABH94], every element in the DID
corresponded to a class in the database, and every element in a
document corresponded to a database object. Textual content
was fragmented across these objects, rather than being stored
as a continuous text string, like in our default approach.
Although this design was efficient in declarative queries and
document component updates, there was a high performance
overhead in access operations involving entire documents,
document insertions, and text-based searches.

The current version [B6h95] provides a hybrid approach for
physical document representation that is configurable by the
DTD designer. In this version, the DTD designer can use
special attributes to specify which elements should be flat. In
each flat element, the textual content of all nested elements is
stored as one continuous string, including markup. Indexing
mechanisms are similarly configurable.

The Structured Document Database handles a new DTD by first
parsing it with a parser generator, which is an extension of the
Amsterdam Parser (ASP), that generates an SGML document
instance of a super-DTD. As well, the parser generator
generates a document parser for that DTD. The resulting super-
DID instance then gets parsed by an ASP extension for the
super-DTD. This parser validates the document and generates a
script, which in turn creates database objects to represent the
DID and generates a configuration file for optimization of
document insertion and querying. For each element in the DTD,
new classes of the metaclass ELEMENT_TYPE are created using
the VODAK metaclass feature. Moreover, special FLAT_TYPE
classes are created to model flat elements. To support HyTime,
a metaclass is defined for each architectural form.

Whereas the Structured Document Database uses VODAK’s
metaclass feature to dynamically add classes to the database
schema, our system dynamically generates C++ code that gets
linked into ObjectStore applications. Moreover, we do not
rely on external data files, such as configuration files, outside
the control of the database for document insertion or querying.

6.2 HyOctane

A distributed multimedia information system being developed
at the University of Massachusetts [KRRK93, BRRK94]
consists of an SGML parser, an ObjectStore database for
storing HyTime documents, and the HyTime engine HyOctane
for accessing and presenting the document instances. The
database schema is based on one specific DTD, the HDTD (a
HyTime conforming DITD for interactive multimedia
presentations).

The system is designed in three layers: an SGML layer, a
HyTime layer, and an application layer. The layers are
instantiated consecutively. A document is first instantiated in
the SGML layer as instances of document, element, and
attribute. The HyOctane engine then queries the SGML layer
for data to instantiate the HyTime layer. Finally the
application process is invoked to instantiate the application
layer by querying the SGML and HyTime layers. The
application layer contains a type for each element in the DTD.

In contrast to our system, the HyOctane system as described in
[BRRK94] does not support the automatic addition of new
DTDs to the system. However, the authors claim their system
can be easily extended to support other DTDs. The design of a
newer version of HyOctane [RBP96], in fact, involves an open-
DTD approach.

6.3 VERSO

VERSO [CACS94], developed at INRIA in France, is an object-
oriented database system for SGML documents. It is built on
top of O, to exploit its sophisticated type system and
extensible query language O,SQL.

Using an extended version of the Euroclid SGML parser,
VERSO maps DTDs into O, schema, and document instances
into corresponding objects. There is no native support for
HyTime; however, the authors claim that their query language
extensions are particularly well suited for multimedia and
hypermedia documents.

While VERSO models SGML constraints in the data model, our
system enforces those constraints through the SGML parser.
We also have HyTime support explicitly built into the system.
Our textual storage model is also inherently more efficient for
document retrieval than the fragmented model in VERSO.

7. CONCLUSIONS

In this paper we have described an object-oriented multimedia
DBMS that is compliant with SGML/HyTime. The system, as
described here, is operational and has been integrated with the
other components (continuous media file system, QoS
negotiation, synchronization and client modules) of the
Broadband Services Project to provide a demonstration
prototype. Our base implementation platform is IBM RS6000
workstations running AIX 4.1.4. The implementation language
(for the multimedia DBMS component) is C Set++, which is the
IBM’s implementation of ANSI C++ for the AIX platform.

The primary contributions of this research, as reflected in the
capabilities of the system, are the following:

1. It is an object database that can store not only meta-data
about multimedia objects, but also multimedia objects
themselves. This facilitates querying over multimedia
data. A rich set of operations can be performed on
database objects to select documents or their
components. Multimedia objects and meta-data can be
queried as first-class objects. For example, we could pose
a query to find “all news documents from the CBC
between the years 1993 to 1995 containing video of
Prime Minister Jean Chretien with a minimum framerate
of 10 frames per second.”

2. Itis implemented as an open and extensible system with
facilities to incorporate outside repositories. The current
version supports linkages to a continuous media server;
in the future, we intend to incorporate more general
external repositories.

3. The document model is compliant with SGML/HyTime
standards, enabling the use of tools developed for these
standards. Pre-existing SGML document collections can
be readily inserted into a database.

4. The system can automatically support multiple DTDs
through code generation and thereby store objects from
different document types in one logical database.

5 provides facilities for the automatic parsing of
multimedia documents and their insertion into the
database.

We are currently involved in extending the system in a number
of directions. First, we are improving the modeling

capabilities of the system. In this regard, we are working on
the design of a document versioning mechanism'® and the
automatic generation of indexes and queries. To date, our query
engines and interfaces have been customized to specific DTDs
and applications. These interfaces have been written in
Smalltalk and AIXwindows.

The second direction is the expansion of system capabilities
by introducing more of the features that are common in
traditional DBMSs. In particular, we are building multimedia-
specific query models and languages that are easier to use and
more efficient than general query models and languages. We
have defined, and are in the process of implementing, a text-
based query language, called MOQL [LOS097], based on the
standard OQL query language defined by ODMG [Cat95]. We are
also building a visual interface on top of this language that will
support dynamic and incremental querying. In order to optimize
the execution of multimedia queries, we are developing content-
based indexing techniques to facilitate access to images based
on the spatial relationships among objects. For example, the
user should be able to ask for “all images that show Bill
Clinton in front of the White House and next fo Jean Chretien”.
Our current approach involves extensions to 2D strings
[CSY87] in order to improve the search time [NOL97].

Finally, we are studying architectural improvements to our
system. Along these lines, we are investigating appropriate
distribution architectures whereby the multimedia data that is
stored on multiple servers can be transparently accessed by
users. In this regard, system interoperability becomes an
important issue since multimedia data is likely to be stored in
varying repositories in different formats. The results of this
work will be reported in future papers.

REFERENCES

[ABH94] K. Aberer, K. Bohm, and C. Hiiser. “The
Prospects of Publishing Using Advanced
Database Concepts,” In Proceedings of the
Conference on Electronic Publishing, pages
469-480, April 1994.

K. Bohm. “Building a Configurable Databse
Application for Structured Documents,”
Arbeitspapiere der GMD 942, GMD-IPSI
Darmstadt, 1995.

K. Bohm and K. Aberer. “HyperStorM—
Administring Structured Documents Using
Object-Oriented Database Technology,” In
Proceedings of the ACM SIGMOD
International Conference on Management of
Data, page 547, June 1996.

J.F. Buford, L. Rutledge, J.L. Rutledge, and C.
Keskin. “HyOctane: A HyTime Engine for
MMIS,” Multimedia Systems Journal, 1(4),
February 1994.

V. Christophides, S. Abiteboul, S. Cluet, and
M. Scholl. “From Structured Documents to
Novel Query Facilities,” In Proceedings of the
ACM SIGMOD International Conference on
Management of Data, pages 313-324, 1994.

R.G.G. Cattell (ed.). The Object Database

[B6h95]

[BA96]

[BRRK94]

[CACS94]

[Cat95]

19 ObjectStore’s versioning facility was architecturally flawed and
consequently removed from its latest release, 5.0.

[CSYS7]

[DD94]

[Gold90]

[EM96]

[ISO86]

[1S092]

[KRRK93]

[LLOWI91]

[LOS96a]

[LOS96b]

[LOS97]

[LOS097]

[NMH96]

Standard: ODMG-93, Release 1.2, Morgan
Kaufmann, 1995.

S K. Chang, Q.Y. Shi and C.W. Yan. “Iconic
Indexing by 2D Strings,” IEEE Trans. Pattern
Analysis and Machine Intelligence, 9(3):
413-428, 1987.

S.J. DeRose and D.G. Durand. Making
Hypermedia Work —A User’s Guide to
HyTime. Kluwer Publishers, 1994.

C. F. Goldfarb. The SGML Handbook, Oxford
University Press, 1990.

S. El-Medani. Support for Document Entry in
the Multimedia Database, M.Sc. Thesis,
University of Alberta, Department of
Computing Science, 1996. Also available as
Technical Report 96-23
(http://ftp.cs.ualberta/pub/TechReports/1996/
TR96-23).

International Standards Organization.
Information Processing —Text and Office
Information Systems —Standard Generalized
Markup Language (ISO 8879), 1986.

International Standards Organization.
Hypermedia/Time-based Structuring Language:
HyTime (ISO 10744), 1992.

J.F. Koegel, L.W. Rutledge, J.L. Rutledge, and
C. Keskin. “HyOctane: A HyTime Engine for
an MMIS,” In Proceedings of the ACM
Multimedia Conference, pages 129-135,
1993.

C. Lamb, G. Landis, J. Orenstein, and D.
Weinreb. “The ObjectStore database system,”
Communications of the ACM, 34(10): 50-63,
October 1991.

JZ. Li, M.T. Ozsu, D. Szafron. “Spatial
Reasoning Rules in Multimedia Management
System,” In Proc. International Conference on
Multimedia Modeling, pages 119-133,
November 1996.

J.Z. Li, M.T. Ozsu, D. Szafron. “Modeling of
Video Spatial Relationships in an Objectbase
Management System,” In Proc. International
Workshop on Multimedia DBMS, pages 124-
133, 1996.

JZ. Li, M.T. Ozsu, D. Szafron. “Modeling
Video Temporal Relationships in an Object
Database Management System,” In Proc. SPIE
Multimedia Computing and Networking
(MMCNO97), pages 80-91, February 1997.

J.Z. Li, M.T. Ozsu, D. Szafron and V. Oria.
“MOQL: A Multimedia Object Query
Language”, Third International Workshop on
Multimedia Information Systems, Como,
Italy, September 1996.

G. Neufeld, D. Makaroff, and N. Hutchinson.
“Design of a Variable Bit Rate Continuous
Media Server for ATM Network,” In Proc. SPIE

[NOL97]

[OSEV95]

[PS97]

[RBPY6]

[Sch96]

[WLE+97]

Multimedia Computing and Networking

(MMCNO96), January 1996.

Y. Niu, M.T. Ozsu and X. Li. “2D-h Trees: An
Index Scheme for Content-Based Retrieval of
Images in Multimedia Systems”, [EEE
International ~ Conference on Intelligent
Processing Systems 1997 (IEEE ICIPS’97),
Beijing, China, October 1997.

M.T. Ozsu, D. Szafron, G. El-Medani, and C.
Vittal, “An Object-Oriented ~ Multimedia
Database System for News-on-Demand
Application”, Multimedia Systems, 3: 182-
203, 199s.

P. Pazandak and J. Srivastava. “Evaluating
Object Database = Management System
Functionality to Support Multimedia,”/EEE
Multimedia, Fall 1997.

L. Rutledge, J.F. Buford, and R. Price.
“Mobile Objects and the HyOctane Distributed
Hyperdocument Server,” Computers &
Graphics: Special Issue on “Mobile
Computing and Graphics”, 20(5), 1996

M. Schone. A Generic Type System for an
Object-Oriented Multimedia Database System,
M.Sc. Thesis, University of Alberta, Dept. of
Computing Science, 1996.
(http://ftp.cs.ualberta/pub/TechReports/1996/
TR96-14).

JW. Wong, K.A. Lyons, D. Evans, R.J.
Velthuys, G.v. Bochmann, E. Dubois, N.D.
Georganas, G. Neufeld, M.T. Ozsu, J.
Brinskelle, A. Hafid, N. Hutchinson, P.
Iglinski, B. Kerhervé, L. Lamont, D.
Makaroff, and D. Szafron. “Enabling
Technology for Distributed Multimedia
Applications”, IBM Systems Journal, 36(4),
1997 (in press).

