Towards a Mediator Development Environment: The AURORA Approach

Ling Ling Yan, M. Tamer Ozsu, and Ling Liu
Laboratory for Database Systems Research, Department of Computing Science
University of Alberta, Edmonton, Alberta, T6G 2H1

email: {ling, ozsu, lingliu}@cs.ualberta.ca

Abstract

The AURORA mediator architecture uses specialized mediators to provide integrated ac-
cess to heterogeneous databases. Tt is an instance of the mediator framework in [Wied92]. A
mediator development environment is designed to support construction of AURORA mediators
by mediator authors. This environment consists of a collection of workbenches, each support-
ing construction of a specific type of mediator. We demonstrate the AURORA approach by
presenting a specific suite of techniques for building high performance relational homogeniza-
tion mediators. This includes a special mediation methodology, new view operators, a query

rewriting algorithm and transformation rules for logical query optimization.

1 Introduction

Data from multiple information sources maybe heterogeneous in semantics and representation. This
heterogeneity poses a major difficulty in providing integrated access to the data. The mediator
architecture proposed in [Wied92] is widely accepted as a general framework for coping with this
problem. The goal of the AURORA project is to develop environment tools to support construction
of mediators, and to develop techniques for mediator view expression and efficient query processing.

This project consists of a reference mediation framework and a mediator development environment.

1.1 The AURORA Reference Mediator Architecture

The AURORA reference mediator architecture, shown in Figure 1, is an instance of the general
mediator framework [Wied92]. It has multiple incarnations depending on the canonical data model
and query language assumed. Wrappers and mediators present their schemas in the canonical data
model and entertain queries in the canonical query language. Wrappers handle idiosyncrasies of the
data sources. If the source data model and query language are different from the canonical ones,

the wrapper must translate queries from the latter to the former and also assemble query answers

using data retrieved from the source. Mediators are not concerned with such specifics; they focus on
providing a desirable view that can be queried by applications. Mediators are application dependent
while wrappers are not. There are two types of mediators in Figure 1, the homogenization mediators

and the integration mediators.

Application 1 Application 2
Integration Integration
Mediator Mediator
Homogenization Homogenization Homogenization Homogenization
Mediator Mediator Mediator Mediator
‘ Wrapper ‘ ‘ Wrapper ‘

Figure 1: The AURORA Mediation Framework

Integrating multiple data sources is a complicated task when multiple types of heterogeneities

[Kent91, Kim93] exist simultaneously. We distinguish between two categories of heterogeneities:
1. Schematic mismatches that arise when data sources model the same application differently.

2. Instance level conflicts that arise when data sources record inconsistent values/descriptions on
the same real world object. These conflicts are relevant only if instance level object matching

among multiple data sources is performed.

Schematic mismatches must be resolved first; otherwise, there is no basis for further integration
since data from different databases may not be comparable. The process of resolving schematic
mismatches is referred to as homogenization. In AURORA, specialized mediators, the homogeniza-
tion mediators, support this process. The task of homogenization is to map a common application
model into each participating database that models the same application (differently). Once this
common model is defined, each database is homogenized independently. Homogenization mediators
are application specific. In Figure 1, a data source is accessed by multiple homogenization medi-
ators(multiple applications) but each such mediator accesses only one data source. Resolutions
of instance level conflicts necessarily span all participating databases; these resolutions are also
handled by specialized mediators, the integration mediators.

Rather than assuming a certain data model to be the most “suitable” for mediation, we intend

to develop techniques for a variety of mediators, as discussed in the next section.

1.2 The AURORA Mediator Development Environment

The mediator development environment in AURORA consists of a collection of workbenches, each
consisting of a mediator skeleton and a Mediator Author’s Toolkit (MAT).

AURORA Mediator Skeletons. A mediator consists of an integrated view over (multiple)
data sources and a query processor that answers queries posed against this view in a canonical
query language. Based on the view definition, the query processor translates the view queries
into queries over data sources and assemble query answers from the query results returned by the
sources. Building a mediator means building the view and the query processor. In AURORA,
mediators are constructed from mediator skeletons that have the following built-in capabilities:

1. A framework for defining views and a repository to maintain them; and

2. A query processor that entertains queries posed against views expressed in this framework.
Indeed, mediator skeletons are mediators with an empty view. Once a view is defined and stored in
its repository, a mediator skeleton becomes a custom-made mediator that is able to process queries
posed against this view. Different types of mediators requires skeletons that have different view
expression capabilities and query processors.

AURORA Mediator Author’s Toolkits (M ATs). In AURORA, a mediator author chooses
a mediator skeleton, identifies heterogeneities among the sources, and defines views into the me-
diator skeleton to resolve the heterogeneities. AURORA provides interactive tools, the Mediator
Author’s Toolkits (MATSs), to assist the mediator authors in performing such tasks. This scenario
is shown in Figure 2(a). A MAT has the following capabilities:

1. Tt mandates a mediation methodology for detecting and resolving heterogeneities; and

2. It provides view operators for expressing the resolutions.

Construction of different types of mediators require different methodologies and operators.

AURORA Mediator Development Environment. The AURORA mediator development
environment consists of a collection of workbenches. A workbench consists of a mediator skele-
ton and a MAT. Figure 2(a) shows the general form of a workbench. Intuitively, a workbench is
an environment where mediators of a particular type can be constructed by a mediator author.
Construction of different mediators require different suites of MAT and skeleton. Rather than pro-
viding one workbench for all, AURORA provides a collection of workbenches. These workbenches
are classified along two dimensions: 1) canonical data model and query language supported by the

mediator; and 2) the specialty of the mediator, homogenization or integration. Figure 2(b) shows

this classification for two possible canonical data models: relational and object-oriented.

Mediator Author End user/ application ® queries
- - AURORA Workbenches
Mediator Skeleton / Mediator -
AURORA Canonical
) View Definition Query Mediator~~M odel| Relational Ol_’/‘?Ct'
Mediator Author’s - Processor specialty Oriented
. Repository
Toolkit (MAT) _ Homogenization | AURORA-RH | AURORA-OH
S,Cf’?m?f’,’@/ Lo R, = ;@I{b)gk@r}es Integration AURORA-RI AURORA-OI
‘ Mediator/Wrapper ‘ ‘ Mediator/Wrapper ‘ ‘ Mediator/Wrapper ‘
(a) (b)

Figure 2: AURORA Workbench: General Form and Classification

1.3 The Scope and Contributions of This Paper

In this paper, we present detailed techniques used by AURORA-RH (Figure 2(b)), the workbench
for building high performance relational homogenization mediators. It consists of a MAT and a
mediator skeleton tightly coupled through a view mechanism. Our contributions include a homog-
enization methodology and mediator skeleton techniques that support powerful view mapping and
efficient query processing.

Homogenization Methodology in AURORA-RH. Homogenization can be a complicated
process when multiple types of domain and schema mismatches exist simultaneously. In practice,
not only do we need language constructs and/or operators to express resolutions, we also need a
methodology to ensure that the resolutions are correct and complete. Moreover, such methodologies
should be supported by tools. Little previous research exists in this regard. In AURORA, MATs
support mediation methodologies as well as powerful view operators. In particular, we establish a
homogenization methodology, to be employed by mediator authors and mandated by the MAT in
AURORA-RH, for homogenizing relational databases.

View Operators and Query Processing in AURORA-RH. A homogenizing view maps
a common application model into a data source. This view is different from the usual relational
views. First, it requires more powerful structural mapping. A relation in the homogenizing view
may have an attribute whose values correspond to relation or attribute names in the underlying
database. This is referred to as a cross-over schema mismatch [Kent91]. Tt has been argued that
relational view mechanism can not express such mappings [KLK91]. Second, it requires more
powerful value mapping. When defining homogenizing views, it may be necessary to use arbitrary

functions/look-up tables to derive values of a data domain in this view from one or more domains

in the underlying database. The relational view does not allow user-defined functions. On the
other hand, while not powerful enough for homogenization, the relational view supports view query
optimization by modifying them into basic relational queries which are optimized by well-established
techniques. More powerful frameworks tend to lose this property by focusing on expressive power
and ignoring query optimization issues. For instance, [Kim93], [KLK91] and [Kent91] all provide
powerful language constructs for resolving heterogeneities but none discusses query optimization
issues in presence of the new constructs.

The AURORA-RH view framework allows both powerful view mapping and efficient query
processing. We define a few operators that extend the power of relational algebra to express ho-
mogenizing views. The new operators compose with relational operators in a well-defined manner
and are easy to implement. Arbitrary functions can be used for value mapping, however, char-
acteristics of these functions, such as whether they are monotonic or have inverses, are used for
query optimization. A view query rewriting algorithm and transformation rules involving the new
operators are also developed to facilitate optimization of mediator queries.

The rest of this paper is organized as follows. Section 2 reviews related work. Section 3 gives
an overview of AURORA-RH. Section 4 presents AURORA-RH primitives that extend the power
of relational algebra. Section 5 describes the MAT in AURORA-RH. Section 6 presents the query

processing techniques in AURORA-RH. Section 7 contains conclusion and future work.

2 Related Work

There are many mediation frameworks in the literature, Multidatabase [DH84], Superviews [Mot&87],
TSIMMIS [PGU96], Garlic [Carey94], HERMES [Subr], DIOM [LPL96], to cite a few. The AU-
RORA project is different from these frameworks in two ways: (1) AURORA defines a 2-tier
mediation framework (Figure 1), homogenization followed by integration, that uses specialized me-
diators to resolve various types of heterogeneities. This specialization allows us to isolate a host
of issues in mediator construction. No previous work makes this distinction; and (2) AURORA
provides specialized tools, the mediator development workbenches, that assist mediator authors
in building specific types of mediators. HERMES provides a mediator programming environment.
Compared with AURORA workbenches, this environment is yet to be refined.

[Qian94] and [Goh95] present intelligent mediation techniques that detect and resolve semantic

heterogeneities automatically by reasoning about semantics in a knowledge base or ontology. In

AURORA, such tasks are performed by a mediator author using MATs. Once established, intel-
ligent mediation techniques can replace mediator authors. We plan to build APIs to allow such
replacement. Until then, the AURORA approach is a practical solution. The AURORA project
investigates a host of issues in mediator view expression and query processing that are essential no
matter the heterogeneities are detected and resolved automatically or manually.

[Kent91] identifies domain mappings for resolving domain and schema mismatches. Resolutions
for individual mismatches are demonstrated using an object-oriented database programming lan-
guage. [Kent91] does not provide a mediation methodology, nor does it explore query optimization
techniques in presence of the new language constructs. [Kim93] provides a comprehensive classi-
fication of mismatches and conflicts. Resolutions for individual conflicts are given. New language
constructs are proposed but query rewriting and optimization methods for these constructs are not
given. [Goh95] uses ontology to detect and resolve mismatches due to different units of measure.
It is not clear how [Goh95] handles other types of schematic mismatches.

Disco [TRV95] extends ODMG ODL for mediation and intends to use Volcano for query opti-
mization. It introduces a logical operator submit and gives rules for exchanging relational operators
with it. The physical cost model used is unclear. [DKS92, LOG92] describe approaches that col-
lect /establish statistics to build mediator query cost models. In AURORA-RH, we handle a single
data source. Currently we concentrate on query modification techniques to leverage the source
query optimization capability; a mediator query cost model is not necessary. However, cost model

for mediator queries is highly desirable. This is a topic of future research in AURORA.

3 Overview of the AURORA-RH Workbench

3.1 Homogenization Problem and Mediator Query Processing

Let B be a relational database. Let H be a homogenizing view consisting of relations My, ..., M,,.
The problem of homogenizing database B into H is to specify procedures, P;(B)(1 < i < n), that
construct relations M;(¢ = 1,n) from the relations in B. B is the source database; relations in B
are source relations; M;(i = 1,n) are target relations. We also refer to H as the target database.
Queries posed against H are referred to as mediator queries. Assume procedures P;(B)(1 < i< n)
have been specified and consider a mediator query). The task of processing @) is to 1) translate
@ into queries over Bj; this process intuitively “reverses” the P;’s specified earlier; and 2) send the

queries to the source database and use the returned data to assemble the answer to @@ in H.

Example Application. Figure 8 depicts a homogenization problem. Besides the differences in
schema, we also assume: 1) in the source database, the sales and salary data is recorded in Canadian
dollars, while in the target database, the same data is to be reported in US dollars; 2) In the target
database, Employee.salary includes bonus as well as base salary; and 3) The target database perceives

the domain of jobs differently from the source database. Rather than having job titles from
{SysAdm, Software Engineer, MarketingStaf f, ResearchStaf f, Project Director}
the target database assumes the job titles are from

{System Engineer, Development Engineer, Consultant, Research Scientist, Program Manager}

Source Database Target Database

Sales SysAdm
‘ month ‘ ibm_pc‘ mac‘ laptop ‘ ‘ id‘ name ‘ salary ‘ bonus ‘ CompanySales
! ! ! ! P ! ! ! month | product_type | salesAmt
SoftwareEngineer MarketingStaff
‘ id‘ name ‘ salary ‘ bonus‘ ‘ id‘ name ‘ salary ‘ bonus ‘
1 \ \ I \ \ | Employee
ResearchStaff ProjectDirector id | name | jobTitle |salary
‘ id‘ name ‘ salary ‘ bonus‘ ‘ id‘ name ‘ salary ‘ bonus ‘

| | | | T |

Figure 3: A Homogenization Problem

Each database defines domains that model conceptual territories. Domains can be a meta
domain or a data domain. A domain is characterized by its conceptual territory and the unit,
population, and data type of its elements. Domains from different databases that model the same
concept are said to be corresponding domains (called a domain group in [Kent91]). These domains
may be different from each other, giving rise to domain mismatches. A domain mismatch that
involves a meta domain is referred to as a schema mismatch. Corresponding domains are converted
to each other via domain mappings. To interpret the source database from the target database,
the target must be mapped into the source, resolving domain and schema mismatches between the

two. In AURORA, a mediator author defines this mapping using AURORA-RH.

3.2 Architecture of AURORA-RH

The architecture of AURORA-RH is shown in Figure 4. MAT-RH is a toolkit that assists a me-
diator author in constructing a homogenizing view, or a target database. It provides a set of view
operators and mandates a homogenization methodology. The homogenization process is divided
into 6 steps, each supported by a specialized tool (sections 5.3-5.8). In each tool, two types of in-

formation can be specified: transformation and domain mapping. Transformations are expressions

MAT-RH Skeleton-RH
. DUE
Mediator 7 AURORA-RH Query Processor (AQP)
Author | - DSE
O / Query Query Query
f Z |=| RLE Rewriter | Optimizer | Execution Engine
Vs\ SME-2 s i
\ . . el .
st |8 Vi etmon) [augors
E P pository A s
Il \

I v
Wrapper ‘

% Source DB

Figure 4: Architecture of AURORA-RH Workbench

consisting of the AURORA-RH view operators and the usual relational operators. Domain map-
pings are arbitrary mappings. Transformations and domain mappings are captured in the View
Definition Repository and are used for query processing. AURORA-RH Primitives are new
view operators that facilitate homogenization; they form an extension of the relational algebra.
AURORA-RH Query Processor (AQP) processes mediator queries posed against the target
database. It translates such a query into a (optimal) set of queries over the source database, sends
these queries for execution and assembles the answer to the mediator query from the returned data.

The Wrapper is not part of the AURORA-RH. It translates queries from the canonical query
language to the query language supported by the source. For AURORA-RH, the canonical query
language is the relational algebra. If the source is relational, the translation performed by the
wrappers is from a relational algebraic expression to an SQL query. This translation is simple
because the relational model, algebra and SQI language are mostly standard among commonly
used relational database systems. In general, wrappers vary in complexity depending on whether
the source data model is different from the canonical one [Yu95, Meng93], and how standard the

canonical data model is. Wrapper construction is beyond the scope of this paper.

4 Primitives and Transformations in AURORA-RH

AURORA-RH primitives extend the power of the relational algebra to enable the mediator author
to express homogenizing views. All primitives take a relation as an argument and generate a
relation; they compose with relational operators in a well-defined manner. The term “attribute”
refers to both the name and the data type of the attribute. For simplicity, we do not discuss

type checking or inferencing; the techniques established in this paper can be extended with these

features. Two attributes are often considered to be the “same” if they have the same name. We use
ATTR(R) to denote the set of attributes in relation R, RFE Lname(R) for the name of relation R,
and ATT Rname(A) for the name of attribute A. Let B be the source database to be homogenized.
AURORA-RH provides the following primitives:
retrieve. Let () be an algebraic expression over the source relations in database B,
R' = retrieve(Q)
submits query @) to database B and returns the result table R'.
pad. Let R be a relation, A be an attribute, A ¢ ATTR(R), and ¢ a constant,
R’ = pad(R, A, c)
defines a relation R, ATTR(R') = ATTR(R) U {A}. The population of R’ is defined by
R = {t' | V[A] = ¢; #[A] = t[A],t € R, A’ € ATTR(R)}
Intuitively, for each tuple ¢t € R, pad generates a R’ tuple ¢’ by “padding” ¢ with a new field A
with value ¢. pad is useful for restructuring relations. Consider the relation SysAdm in Figure 3.
Let R’ = pad(retrieve(SysAdm), jobTitle, “SysAdm”). R’ has scheme (id, name, salary, bonus,
jobTitle) and a population consisting of all the SysAdm tuples each tagged with relation name
“SysAdm” as attribute jobTitle. The scheme of R’ is closer to that of Employee than SysAdm.
rename. Let R be a relation, A € ATTR(R), and n be an attribute name, such that no attribute
in R has name n, then
R’ = rename(R, A, n)
defines a relation R’ with scheme identical to the scheme of R with attribute A renamed to n. The
population of R’ is defined by the following:
R ={¥ | ¥[n] = t[A],¥'[A'] = t[A'],t € R, A’ € ATTR(R) — {A}}
deriveAttr. Let R be a relation. Let L; C ATTR(R)(: = 1,k) be a list of attributes in R. Let
N;(i = 1,k) be attributes. Let f; be functions of appropriate signatures.
R’ = deriveAttr(R, Ly, N1, f1, ..., Ly, Nk, fi)
defines a relation R', ATTR(R') = ATTR(R)U {Ny,..., Ni}. The population of R’ is defined by:
R ={t' | t'[N;] = fi(t[Li]), 1 < i < k; t'[A] = t[A], A € ATTR(R) — {N1, ..., Np},t € R}
Intuitively, for each R tuple ¢, derive Attr generates a R’ tuple t' by adding fields N; to t (i=1,k)
and sets its value to be f;(¢[L;]), where t[L;] is the list of values obtained by projecting ¢ over L;.
If an attribute in R has the same name with some N, (1 < s < k), this attribute is replaced by Nj.
deriveAttr is used in resolving domain mismatches with arbitrary functions, as shown in sections

5.7 and 5.8. Notice that functions fi(1 < ¢ < k) in deriveAttr are different from aggregates in

relational query languages; they apply to field(s) in a single tuple, while aggregates are applied to
multiple tuples. For example, given a table containing student grades, deriveAtir can not be used
to derive an attribute “GradeAverage”; it can only be used to derive the basic student-grade table.
“GradeAverage” can then be derived using aggregates in relational views.

A transformation expression is a well-formed expression involving relational operators and
AURORA-RH operators. It defines the derivation of the scheme and population of a relation
from given relations and other arguments. A transformation expression T may define a relation,
R =Tg. If Ty is of the form of retrieve(Q), R is a direct relation, otherwise, R is a derived relation.

Intuitively, a direct relation is the direct result of a query over the source database.

5 Mediator Author’s Toolkit in AURORA-RH (MAT-RH)

5.1 Domain and Schema Mismatches Identified in MAT-RH

Consider a source relational database B and a target relation M. The following types of mismatches
are identified in MAT-RH:

Cross-over schema mismatches. A type 1 cross-over mismatch happens when a concept
is represented as data in M but as relations in B. A type 2 cross-over mismatch happens when
a concept is represented as data in M but as attributes in B. There are two nonessential cases of
cross-over schema mismatches. Case 1, when a concept is represented as relation or attribute in
M but as data in B. Case 2, when a concept is represented as relations (attributes) in M but as
attributes (relations) in B. These two cases are further discussed in Appendix A.

Domain structural mismatches. A domain structural mismatch happens when a domain in
M corresponds to a domain with a different data type or several (related) data domains in B.

Domain unit mismatches. A domain unit mismatch happens when a domain in M assumes

different unit of measurement from the corresponding domain(s) in the source database.
Domain population mismatches. A domain population mismatch happens when a domain

in M assumes different population from the corresponding domain(s) in the source database.

Example-1. The example shown in Figure 3 demonstrates all of the above mentioned mismatches:
- (cross-over schema mismatch, type 1.) Tn the target database, the concept of jobs is represented as
data domain “jobT'itle” in relation Employee, but is represented as relations in the source database.
- (cross-over schema mismatch, type 2.) TIn the target database, the concept of product types is
represented as data domain product_type, but is represented as attributes in the source database.

- (domain structural mismatch.) Tn the target database, salary means the total income. The same

10

concept 1s represented by two data domains, salary and bonus, in the source database.

- (domain unit mismatch.) In the target database, all money amounts use US dollar as unit, while in
the source database, all money amounts reported are in Canadian dollars.

- (domain population mismatch.) The two database schemas assume different domain populations of

the concept jobs.

5.2 Homogenization Methodology Supported by MAT-RH

Consider deriving a target relation M from a source database B. When multiple mismatches exists
between the target and the source, MAT-RH mandates that they be resolved in 6 steps:

1. construct an import schema;

2. resolve type 1 schema mismatches;

3. resolve type 2 schema mismatches;

4. link relations;

5. resolve domain structural mismatches; and,

6. resolve domain unit/population mismatches.
The above 6 steps consist the MAT-RH homogenization methodology. In each step, new view
relations are defined over a set of (virtual) relations defined by earlier steps. MAT-RH supports
each step by a specialized tool, or environment, that allows certain transformations and mappings
to be specified. Some environments provide special transformations for resolving specific types of
mismatches. In the following sections, each environment is described along 4 dimensions:

1) Input relations: relations that can be used in defining new view relations.

2) Transformation operators: operators and special transformations provided.

3) Output semantic information: domain mappings and other semantic information allowed.

)

4) Output relations: new relations (if any) that can be defined.

5.3 Import Environment (IE)

The input to IE (Figure 5) includes all the source relations exported by a source database B. TE
produces a set of direct relations of the form R = retrieve(Q), where @) is a relational algebraic

expression over database B. No semantic mapping information is produced.

Example-2: Importing source database. The IE allows the mediator authors to choose relations
and data of interest from the source database. In our example, all relations are of interest. The
importing step produces a set of direct relations R = retrieve(R), where R € { Sales, SysAdm,
Software Engineer, MarketingStaff, ResearchStaff, ProjectDirector }.

11

5.4 SME-1: Solving Type 1 Cross-over Schema Mismatches

Schema Mismatch Environment 1, SME-1 is depicted in Figure 5.

source
relational
schema

Relation Definitions
(basic and derived)

retrieve

‘ ‘RELmat ‘rename ‘ ‘ATTRmat ‘rename‘

Import Env.

IE ‘

Schema Mismatch

Env(l): SME-1

Schema Mismatch
Env(2): SME-2

Figure 5: Environments supporting Step 1, 2 and 3 of Homogenization.

Input relations. All relations produced by TE for deriving M.

Transformation operators. RELmat, n, o, X, rename, pad, derive Attr.

Operator RELmat (relation materialize) is defined as follows. Given DF = {Ry,..

group of relations with identical schemes, let A be an attribute, A ¢ ATTR(R), then:

The result relation has attribute set ATTR(R,) U {A}. It contains tuples from all the relations
in DT, each tagged with a new field A that contains the name of the relation it came from. This

is illustrated in Figure 6. RFELmat transforms a meta domain, the relation group, into a data

RELmat(D®, A) = U/_, pad(R;, A, RE Lname(R;))

domain. The application of RE Lmat is illustrated in Example-3.

Output semantic information. SME-1 allows specification of relation groups. In the target

database, the names of the relations in a relation group form an enumerated data domain which

Figure 6: The RELmat operator

represents a concept that is represented as relations in the source database.

12

SysAdm
id | name | salary bonus| D £ {SysAdm,SoftwareEngineer,MarketingStaff,ResearchStaff,ProjectDirector}
001 |Lane,N | 18000 | 1200 R, .
002 | Kim,Y | 17500 | 1360 RELmai(D , jobTitle) id | name |salary|bonus| jobTitle
001 | Lane, N | 18000 | 1200 SysAdm
SoftwareEngineer MarketingStaff 002 | Kim,Y | 17500 |1360 SysAdm
id name |salary| bonus id | name |salary| bonus 101 | Chan, K | 23000 |2450 SoftwareEngineer
101 | Chan, K | 23000 | 2450 201 | Beck, B | 27000 | 4500 104 | Smith, P | 28000 | 2370 |SoftwareEngineer
104 | Smith, P | 28000 | 2370 205 | Barry, D | 29500 | 4680 201 | Beck, B | 27000 |4500 | MarketingStaff
205 | Barry, D | 29500 | 4680 | MarketingStaff
ResearchStaff ProjectDirector 304 | Carey, J | 34700 |2460 | ResearchStaff
id | name |salary| bonus id | name |salary| bonus 306 | Shaw, G | 35600 | 2530 | ResearchStaff
304 | Carey, J | 34700 | 2460 403 | Keller, T | 56000 | 1000 403 | Keller,T | 56000 | 1000 | ProjectDirector
306 | Shaw, G | 35600 | 2530 401 | Poston,T | 67000 | 1200 401 | Poston,T | 67000 | 1200 | ProjectDirector

SRy}, a

Output relations. SME-1 allows multiple derived relations to be defined.

Example-3: solving type 1 cross-over schema mismatch. The source database models the
concept of jobs as relations. The target database models jobs as a data domain Employee.jobTitle.
The following is the resolution to this mismatch:

DF = {SysAdm, Software Engineer, MarketingStaf f, ResearchStaff, Project Director}

SEmployee = RELmat(D®, jobTitle)

As shown in Figure 6, relation Sgmpioyee has scheme Sgmpioyee (id, name, salary, bonus, jobTitle).

The data domain jobT'itle has population DF.

5.5 SME-2: Solving Type 2 Cross-over Schema Mismatches

Schema Mismatch Environment 2 (SME-2) is depicted in Figure 5.

Input relations. All relations defined in previous steps for deriving M.

Transformation operators: ATT Rmat, ©, o, W, rename, pad, deriveAttr.

Operator ATTRmat (attribute materialize) is defined as follows. Given D4 = {Ay,..., A4,}, a
group of attributes in a relation S that have identical data types, let N4 and Ny be attributes,
N4, Ny ¢ ATTR(S), then:

ATTRmat(S, D4, N4, Nv) = ', pad(rename(m gprp(s)-pauga,y(S), Ai, ATT Rname(Ny)),
Na, ATT Rname(A;))
The result relation has attribute set ATTR(R) — DA U {N4, Nv}. The effect of this operator is
illustrated in Figure 7. ATT Rmat transforms a meta domain, the attribute group, into a data

domain. Application of ATT Rmat is demonstrated in Example-4.

Sales month | salesAmt | product_type
month | ibm_pc | mac laptop Feb/96 | 6700 ibm_pc
Feb/96 6700 | 6900 | 8000 Mar/96| 7600 ibm_pc
Mar/96 | 7600 | 8400 | 7800 Feb/96 | 6900 mac

A Mar/96| 8400 mac
D= {ibm_pc, mac, laptop} Feb/96 | 8000 laptop
A
ATTRmat(Sales, D , product_type, salesAmt) —= | Mar/96| 7800 laptop

Figure 7: The ATTRmat operator

Output semantic information. SME-2 allows specification of attribute groups. In the target
database, the names of the attributes in an attribute group form an enumerated data domain which

represents a concept that is represented as attributes in the source database.

Output relations. SME-2 allows multiple derived relations to be defined.

13

Example-4: Solving type 2 schema mismatch. The source database models product types as
attributes ibm_pe, mac,laptop in Sales, while the target database models it as a domain Compa-
nySales.product_type. The following 1s the resolution for this mismatch:

DA = {ibm_pc, mac,laptop}, ScompanySates = ATT Rmat(Sales, DA, product type, sales Amt)

As shown in Figure 7, relation ScompanySaies has scheme (month, salesAmt, product_type). The data

domain product type has population D4.

5.6 RLE: Environment for Relation Linking

Relation Linking Environment, RLE, is depicted in Figure 8. The input includes relations previously
defined. Derived relations can be defined using rename, ®, o, and M. A distinguished relation
Sar, which contains all data domains(attributes) that corresponds to those in target relation M,
must be defined. Sys is a “prototype” of M modulo data domain mismatches, and is the only
relation referenced in future steps. Intuitively, relation linking explicitly “joins” relations to form
a meaningful view. [Missi95] employs a universal relation approach to “complete” such joins. This

technique can be “plugged” into RLE.

Example-5: relation linking. In Example-3 and 4, relations Sempioyee and ScompanySates are

defined. Nothing is to be done in RLE in the example application.

5.7 DSE: Solving Domain Structural Mismatches

The mediator author resolves domain structural mismatches (section 5.1) in Domain Structure
Environment, DSE (Figure 8).
Input relations. The distinguished output relation of RLE, Sp;.

Transformation operators. None.

Relation Definitions
basic and derived

| rename | \ | \ |

Domain Unit Env:
DUE

Domain Structure
Env: DSE

Relation Linking
Env: RLE

Figure 8: Environments supporting Step 4, 5 and 6 of Homogenization.

Output semantic information. DSE captures domain structural functions. Consider A €
ATTR(M). The corresponding domain(s) of A in Sys might be (a) an attribute of the same data

type as A; or (b) an attribute of a different data type from A; or (¢) several related attributes that

14

together correspond to A. Let ATTR(M)={Ay, ..., An}. To derive each of these attributes from

attributes of Sys, the DSE requires the following to be specified for each A;(i = 1,m):

1. IL; = {Ail, ...,Afk}, attributes in Sy that correspond to A;. By default L; = {Sy.A;}. If
A; ¢ ATTR(Sn), Li must be given explicitly.

2. domain structural function (DSF), f?, that maps L; to A;. f? is an identity function by
default.

For case (a) described above, the DSF is an identity function. For cases (b) and (c¢), the DSF is an
arbitrary function. Inverses of DSFs, if they exist, must also be specified.
Output relations. No relation is explicitly derived. However, by defining DSFs for all at-

tributes in M, the mediator author implicitly defines the following relation:
M, = rma,, a, (deriveAttr(Sy, L1, A, £}, ..., Lim, A, 1))
The scheme of M, is mostly identical to that of the target relation M except that an attribute in

M, may have a different unit of measure from the attribute in M that has the same name.

Example-6: solving domain structural mismatch. In relation Sgmpioyee defined in Example-3,
there is (base)salary and bonus. In target relation Employee, we expect salary to include the total

income of an employee. To resolve this mismatch, the following is specified:

LEmployee.salary = {Salary, bonus}, fgmployee,salary (Sa b) =s+b
Relation ScompanySates defined in Example-4 is identical in scheme to the target relation CompanySales.
All DSFs in CompanySales are identity functions. Relations Employee, and CompanySales, can be

inferred as described earlier.

5.8 DUE: Solving Domain Unit/Population Mismatches

The mediator author resolves domain unit/population mismatches(section 5.1) in Domain Unit
Environment, DUE (Figure 8).

Input relations. Relation M, constructed by DSE.

Transformation operators. None.

Output semantic information. The DUE captures domain value functions. While M, is
mostly identical to the target relation M, the values for attribute M,.A may differ from that for
M.A due to (1) difference in unit of measurement; or (2) difference in domain population. DUE
requires that for each attribute A € ATTR(M), a domain value mapping be specified to convert

values in the domain M,.A to that in M.A. This mapping is by default an identity function but

15

can be an arbitrary function or a stored mapping table, as illustrated in Example-7 and Example-8.
If a domain value mapping maps each M,.A value to a unique M.A value, it is a domain value
function (DVF). Otherwise, there is uncertainty in the homogenization process. In this paper, we
only consider DVFs. Inverses of DVFs, if they exist, must also be specified. They are used for
efficient query processing in section 6.2.

Output relations. No relation is explicitly derived. However, by specifying DVFs for each

attribute in M, the mediator author implicitly defines the following relation:
M = derive Attr(My, My Av, M. Ay, Y, oy My A, ML Ay, fY)
where ATTR(M) = {Ay,..., Ay} and f'(i = 1,m) is the domain value function for attribute A;.

Example-7: Solving domain unit mismatch. Consider relation Employee, constructed in
Example-6. Attribute salary is derived, but its values are still in Canadian dollars. In the target
database, we expect to see US dollars only. Assume 1 Canadian dollar worths » US dollars, a domain
value function is defined for Employee.salary:
fﬁ“mployee.salary(s) = CNDtoUSD(s) =s xr
Similarly, a domain value function can be defined for CompanySales.sales Amit:
fgompanySales.salesAmt(5) =CNDtoUSD(s) = s xr
Fiatesami () is the same as f{;.,.,(); CNDtoUSD() has an inverse, USDtoC'ND(). Domain value

5

functions for attributes id and name are identity functions by default.

Example-8: Solving domain population mismatch. Consider relation Employee, in Example-6.
The domain of jobTitle consists of {SysAdm, SoftwareEngincer, MarketingStaff, ResearchStaff, Pro-
jectDirector}; while in Employee, this domain consists of {System Engineer, Development Engineer,
Consultant, Research Scientist, Program Manager}. To resolve this mismatch, a domain value function
must be specified for Employee.jobTitle. This function is a stored mapping table, jobMap, given in
Table 1. fpiopec jobritie(J) = jobMap(j). jobMap has an inverse.

source database target database
SysAdm System Engineer
SoftwareEngineer | Development Engineer
MarketingStaff Consultant
ResearchStaff Research Scientist
ProjectDirector Program Manager

Table 1: jobMap: Domain Value Mapping for Employee.jobTitle

16

6 AURORA-RH Query Processor (AQP)

Assume that the source database B has been homogenized into the target database H. Let @
be a relational query against H. AQP translates this query into a set of queries over the source
database, sends the queries for execution, and assembles the answer to) using the data returned.
As shown in Figure 4, AQP consists of a query execution engine, a query rewriter and a query

optimizer.

6.1 AQP Query Execution Engine and QEPs

Query Execution Plans(QEPs) are expressions that involve only source relations. A QEP can be
depicted as an operation tree. Each node in this tree is annotated with the operator name and a
list of arguments. A non-leaf node of the tree is either an AURORA-RH primitive, rename, pad
or deriveAttr, or a relational operator. The leaf nodes of the tree are retrieve primitives. Figures

9, 10, and 11 are QEP trees. The AQP query execution engine evaluates QEP trees bottom up.

6.2 AQP Query Rewriter

We consider mediator queries in the form of mr0,(M), where L is a list of attributes in M and p
is a predicate. The rewriting algorithm given in this section can be adapted for join queries. Via
MAT-RH, the derivation of M is captured as transformations and domain mappings in the View

Definition Repository. These are used to modify @ and generate a QEP.

Algorithm. AQPrewriteQuery

Input: Q = rpo,(M) Output: A QEP for @

1. Replace M in @ with Sy;.
Replace each RE Lmat and ATT Rmat operation with its definition(section 5.4, 5.5)
while (Q involves a direct or derived relation R)
Replace R with its defining transformation expression.
Replace each RELmat and ATT Rmat operation with its definition.

2. Let Q = 7.(Q"), let {Ay,.., A,,} be all the attributes in L whose domain value functions,
fU s fY, are not identity functions, rewrite @ as:

Q = derive Attr(nr(Q'), A, Av, f7, ooy Amy A, F2)

3. For each attribute A involved in predicate p, if its domain value function, f¥, is not identity,
replace it with fY(A).

4. Let L = {Ay,....., An}. Let f7, ..., f2 be the domain structural functions for {A4,...., A,,}. Let
L;(i = 1,n) be the list of attributes which are the arguments of f?. Then do the following:

17

(a) Replace Q' by derive Attr(Q', L1, Av, [, ..., Ln, An, [Y)
(b) Fori =1 ton do:

If f? is an identity function, first, remove L;, A;, f from the argument list of de-
riveAttr function constructed above; second, if the argument attribute in L;, A%,
has a different name from A;, replace the first argument of deriveAttr, F' with

rename(E’, AL, ATT Rname(A4;)).

5. For each attribute A involved in predicate p, if A’s domain structural function, f*, is not an
identity function, replace A with f*(A], ..., A}), where A}, ..., A} is the argument list of f*.

6. Repeat until no modification can be made:

For each subexpression in p that is in the form of f(Fy)0f(F2) or f(Fs)fc, where Ey,
Fy and FE5 are expressions, ¢ is a constant, § € {=, >, <}, and f is a function which has
an inverse f~', if f is strictly monotonic or 8 is “=", replace this predicate with E0F,
or F36c, respectively, where ¢’ = f=1(c).

Example'g- Consider query: Fid,name,salaryasalary>SOOOOUjobTitle:“DevelopmentEngineer”(EmplOyee)
that retrieves the i¢d, name and salary of development engineers who earn more than 50000. We rewrite

this query using the above algorithm:

step 1. From the definitions of Sgmpioyee and RELmat in Example-3 and section 5.4, we get:
Q = Fid,name,salaryUsalary>500000-jobTitle:“DevelopmentEngineer”(
pad(retrieve(SysAdm), “jobTitle”, “SysAdm”)U
pad(retrieve(Software Engineer), “jobTitle”, “Software Engineer”)J
pad(retrieve(MarketingStaff), “jobTitle”, “MarketingStaf f”)U
pad(retrieve(ResearchStaff), “jobTitle” , “ResearchStaf f”)J
pad(retrieve(Project Director), “jobTitle” , “Project Director”))

steps 2 and 3. Domain value functions are defined for salary and jobT'itle, as in Example-7 and Example-
8. However, only salary is involved in a projection list. Performing steps 2 and 3 we get:
Q = derive Attr(Tid name,salary CC N Dol S D(salary)>50000
TjobMap(jobTitle)=“Development Engineer” (| J(pad(...))), salary, “salary”, CN DtoU SD())
steps 4 and 5. salary has a non-trivial domain structural function, as in Example-6. It is involved in the
projection list and the predicate. Performing steps 4 and 5, we get the following:
Q = derive Attr(Tid name,salary (derive AT (0 ¢ N Dol 5 D (salary+bonws)>50000
O jobM ap(jobTitle)=“Development Engineer” (U(pad(...))), {salary, bonus}, “salary”,
FBmployee satary)) s Salary, “salary”, C'N DtoU SD())
step 6. C'N DtoUSD has an inverse U SDtoCN D, and jobMap(Table 1) also has an inverse. Let C' =
USDtoC'N D(50000). Performing step 6, we get the final QEP given below and in Figure 9:

Q = deriveAttr(Fid,name,salary (deriveAttr(Usalary+bonus>CUjobTitle: “SoftwareEngineer”

(U(pad(...))), {salary, bonus}, “salary”, fumpiopee. satary)) Salary, “salary”, CN DtolU.SD())

18

deriveAttr

T
deriveAttr

o

U

id, name, salary

salary+bonus > C

salary, "salary", CNDtoUSD()

s=salary,b=bonus, "salary", s+b

JjobTitle = "SoftwareEngineer"

pad pad pad pad
jobTitle JjobTitle JjobTitle JjobTitle JjobTitle
"SysAdm" "SoftwareEngineer" "MarketingStaff" "ResearchStaff" "ProjectDirector"
Qretrieve retrieve retrieve retrieve Qretrieve
SysAdm SoftwareEngineer MarketingStaff ResearchStaff ProjectDirector
Figure 9: An QEP for Example-9.
deriveAttr salary, "salary", CNDtoUSD()
7 id,name,salary
deriveAttr s=salary,b=bonus, "salary", s+b
Note: C=USDtoCND(50000) u

C>T[id, name,

T
id, name,

T id, name, id, name, id, name,
salary,bonus salary,bonus salary,bonus salary,bonus salary,bonus
o o O,
salary+bonus>C salary+bonus>C salary+bonus>C salary+bonus>C salary+bonus>C
jobTitle = JjobTitle = jobTitle = jobTitle = JjobTitle =
"SoftwareEngineer" "SoftwareEngineer" | "SoftwareEngineer" | "SoftwareEngineer" |"SoftwareEngineer"
pad pad pad pad pad
jobTitle JjobTitle jobTitle D jobTitle O jobTitle
"SysAdm" "SoftwareEngineer" "MarketingStaff" "ResearchStaff" "ProjectDirector"
etrieve retrieve retrieve etrieve retrieve
SysAdm SoftwareEngineer MarketingStaff ResearchStaff ProjectDirector
Figure 10: Transformed QEP
deriveAttr ~ Salary,"salary" deriveAttr salary,"salary" deriveAttr salary,"salary"
CNDtoUSD() CNDtoUSD() CNDtoUSD()
Tt
T id,name salary T id,name salary id,name,salary
i s=salary,b=bonus . o _
deriveAttr ol ryy Vo deriveAttr i—salar?,b—bonus
. ’ salary", s+b deriveAttr s=salary,b=bonus
7 b id name, - id, name, "salary", s+b
salary,bonus salary,bonus retrieve
pad Q) iopTitle o
5 "SoftwareEngineer" salary+bonus > C T id name,salary,bonus
salary+bonus > C retrieve O salary+bonus > c
. (SoftwareEngineer)
retrieve SoftwareEngineer
SoftwareEngineer
(a) (b) (©)

Figure 11: Transformed QEPs

19

6.3 AQP Query Optimization

The AQP query optimizer maximizes the number of relational operations performed by the source
database so0 as to leverage the query optimization capability of the source and reduce the amount of
data fetched. A QEP generated by the rewriter is transformed to enlarge the (sub)queries submitted
to the source database. As retrieve is the only operator that submits queries, the optimizer pushes
as many as possible relational operators into retrieve. Consider a QEP tree such as Figure 9. the
query optimizer 1) pushes relational operators “across” pad, rename, and derive Attr so that they
move towards the leaves; and 2) pushes relational operators across retrieve, so that they become
part of the argument (annotation) of the retrieve leaf. In this section, we discuss transformation

rules and control strategies in AQP query optimizer.

Transformation rules for pad

Tpaall]- mn(pad(R, N, s)) = n,(R), L C ATTR(R), N ¢ ATTR(R).

Tpaal2]. mr(pad(R, N, s)) = pad(n_n}(R),N,s), LC{N}UATTR(R), N € L.

Tpaal3]. op(pad(R, N, s)) = pad(c,~ves(R), N, s).

Tpad[4]~ R Mp pad(Rl, Nl, 81) = pad(R [><|le<—31 Rl, Nl, 81).

Tpad[5]~ pad(Rl, Nl, 81) Mp pad(Rz, Nz, 82) = pad(pad(R1 Mleesl,Ny—sQ Rz, Nl, 81), Nz, 82).

Transformation rules for rename
Trename[1]- nr(rename(R, A, N)) = r(R), L. C ATTR(R), N ¢ ATTR(R).
Trename[2]- nr(rename(R, A, N)) = rename(mr_ . (R), A, N),
L C{N}UATTR(R) — {A}.
Trename[3]- op(rename(R, A, N)) = rename(c,vea (R), A, N).
Trename[4]- R X, rename(Ry, A1, N1) = rename(R M,n 4, Ry, Ay, Np).
Trename[d]- rename(R1, A1, N1) X, rename(Rs, Aa, No)
= rename(rename(Ri M,nycay vpea; R, Ay, Ni), Ag, No).
Transformation rules for deriveAttr
Taeriveartr[1]. mr(deriveAttr(R, L1, N, f)) = nr(R), L. C ATTR(R), N ¢ ATTR(R).
Taeriveartr[2]. mr(deriveAttr(R, L1, N, f)) = mp(derive Attr(rr_ynyur, (R), L1, N, f)),
LC{N}UATTR(R),N € L.
Taeriveartr[3]. op(derive Attr(R, L, N, f)) = d@riveAttr(UpNef(L) (R), L, N, f).
TderiveAttr[4]~ R Mp deriveAttr(Rl, Ll, Nl, fl) = deriveAttr(R Mleef(Ll) Rl, Ll, Nl, fl),
ATTR(R) N ATTR(R) = 6, Ny ¢ ATTR(R).
Tieriveartr[5]. deriveAttr(Ri, L1, N1, f1) W, deriveAttr(Ra, Lo, No, fa)
= deriveAttr(deriveAttr(R1 Mleefl(Ll),NQHfQ(LQ) Rz, Ll, Nl, fl), Lz, Nz, fz),
ATTR(Rs) = 6, N1 ¢ ATTR(Rs), No ¢ ATTR(R:), Ny # N, No ¢ L.

Table 2: Transformation Rules for pad, rename and deriveAttr

Table 2 gives transformation rules for pushing relational operators across primitives pad, rename
and deritveAttr, respectively. For simplicity, the rules for derive Attr are given only for cases where
there is one derived attribute. Extensions can be easily made to allow cases where multiple derived
attributes are present. These rules are mostly self-explanatory. Proof of rules for deriveAttr is

given in Appendix B. In Table 2, pV< X denotes the predicate obtained from p by substituting all

20

appearances of N with X. If p does not involve N, pV< ¥

= p. Ly 4 denotes the list of attributes
obtained from I by replacing attribute N with A. If I does not involve N, Ly, 4 = L.

A relational operator can be pushed into retrieve if it is acceptable to the source query facility.
As most relational query languages do not allow user-defined functions, selections whose predicates
involve functions that are not built-in in the source query facility do not exchange with retrieve.
This potentially increases the amount of data fetched from the source. In Algorithm AQPrewrite-
Query step 6, inverses of domain mapping functions are used to eliminate such selection predicates.

A control strategy selects the next transformation rule to be applied. Currently AQP pushes
relational operators across AURORA-RH primitives towards the leaves using the rules in Table 2,

whenever and wherever applicable, in no particular sequence, until no rules are applicable. More

sophisticated strategies to speed up optimization are a topic for future research.

Example-10: Optimization of Figure 9. Use rule T jepiyeater[2] to exchange 7 with the derive Attr
under it, the 7 argument list is now id, name, salary, bonus. Exchange U with this 7 and o, we get

Figure 10. Push o across pad operators using rule Tpq4[3], many of the pad subtrees become ¢, e.g.
OjobTitle=“Software Engineer” (pad(retrieve(SysAdm), jobTitle, “SysAdm”))

= Ousys Adm” = “Software Engineer” (pad(retrieve(SysAdm), jobTitle, “SysAdm”)) = ¢
Trim the empty branches from Figure 10 to get Figure 11 (a). Use rule Tpqq[1] to push 7 across pad
to obtain Figure 11 (b). Finally, push the relational operators across retrieve. Since the selection
predicate involves a function +, known to the source database, both 7 and ¢ exchange with retrieve

and we obtain Figure 11 (c).

7 Conclusion and Future Work

We have described AURORA, a project that aims at developing practical techniques for building
high performance mediators. Our contributions are summarized as follows. First, we have proposed
a 2-tier, homogenization followed by integration, mediator architecture (Figure 1). The key feature
of this architecture is to use specialized mediators to perform specific types of mediations. This
specialization allows us to isolate a collection of technical issues in constructing mediators, such as
mediation methodology, view expression, and query processing. Second, we have designed a medi-
ator development environment, consisting of a collection of workbenches that assist the mediator
authors in constructing various types of mediators. We believe that such environments are crucial
for making the mediator framework practical. Third, we have developed a suite of techniques for

AURORA-RH, a workbench for building relational homogenization mediators. These techniques

21

include: 1) a homogenization methodology, to be employed by the mediator author and mandated
by the workbench; 2) a set of view operators that extend the power of relational algebra for ex-
pressing homogenizing views; 3) a query rewrite algorithm; and 4) a set of transformation rules
that facilitate logical optimization of the mediator queries.

Currently we are implementing AURORA-RH. The major implementation issue is the design
of an interactive user interface. To use AURORA-RH, the mediator author must have knowledge
about the source and target schemas, the mismatches, and the resolutions. A friendly user interface
should provide clear presentations of the schemas and guide the mediator author to perform correct
and complete homogenization. In particular, this interface should help the user to: 1) follow the
homogenization methodology (section 5.2); 2) correctly use the AURORA-RH transformations,
such as RELmat and ATT Rmat; 3) define domain structural/value functions with appropriate
signatures and valid implementations; and 4) browse the source and target schema, and current
transformations and mappings captured in the view definition repository. A properly designed GUI
would make AURORA-RH a practical tool for constructing mediators.

Our ultimate goal is to build a collection of workbenches, AURORA-RI, AURORA-OH, and
AURORA-OI (Figure 2 (b)). These workbenches will be of similar forms as AURORA-RH but
require different suites of techniques. For instance, AURORA-RI may require different mediation
methodology and view expression operators. Different query rewriting algorithm and transforma-

tion rules must be developed in similar fashion as in AURORA-RH.

References

[Carey94] M.J.Carey, Towards Heterogeneous Multimedia Information Systems: the Garlic Ap-
proach, Tech Report RJ 9911, IBM Almaden Research Center, 1994.

[DH&4] U.Dayal, H-Y Hwang, “View definition and generalization for database integration in
a multidatabase system”, IEEE Trans. on Software Engineering, vol SE-10, No.6, Nov
1984, pp 628-645.

[DKS92] W.Du, R.Krishnamurthy, M.Shan, “Query Optimization in a Heterogeneous DBMS”,
VLDB 1992, pp277-291.

[Goh95] C.H.Goh, M.E.Madnick and M.D.Siegel, “Ontologies, Context, and mediation: Rep-
resenting and Reasoning about Semantic Conflicts in Heterogeneous and Autonomous
Systems”, MIT Sloan School of Management Working Paper 3848, 1995.

[KLK91] R.Krishnamurthy, W.Litwin, W.Kent, “Language Features for Interoperability of
Databases with Schematic Discrepancies”, SIGMOD 1991, pp 40-49.

[Kent91] W.Kent, “Solving Domain Mismatch and Schema Mismatch Problems with an Object-
Oriented Database Programming Language”, VLDB 1991, pp 147-160.

22

[Kim93]

[LOGY2]

[LPLI6]

[Meng93]

[Mot87]

[Missi95]

[PGU96]

[Qian94]

[Subr]

[TRV95]

[Wied92]

[Yu95]

Won Kim et al, “On Resolving Schematic Heterogeneilty in Multidatabase Systems”,
Distributed and Parallel Databases, 1(3), 1993, pp 251-279.

H.Lu, B.C.Ooi, C.H.Goh, “On Global Multidatabase Query Optimization”, SIGMOD
Record, 20, 4 1992, pp 6-11.

L.Liu, C.Pu, Y.Lee, “An Adaptive Approach to Query Mediation Across Heterogeneous
Information Sources”, Int. Conf. on Cooperative Information Systems (CooplS), June
1996, pp 144-156.

W.Meng et al, “Construction of Relational Front-end for Object-Oriented Database Sys-
tems”, IEEE International Conference on Data Engineering 1993, pp476-483.

A.Motro, “Superviews: Virtual Integration of Multiple Databases”, IEEE Trans. on
Software Engineering, vol SE-13, No.7, July 1987, pp 785-798.

P.Missier and Mark Rusinkiewicz, “Frtending a multidatabase manipulation language to
resolve schema and data conflicts”, IFIP TC-2 Working Conference on Data Semantics
(DS-6), May 1995, Stone Mountain, Georgia.

Y.Papakonstantinou, H.Garcia-Molina, J.Ullman, “MedMaker: A Mediation System
Based on Declarative Specifications”, IEEE International Conference on Data Engi-
neering 1996.

Xiaolei Qian and Teresa F.Lunt, “Semantic Interoperation: A Query Mediation Ap-
proach, Tech report SRI-CSI.-94-02, Computer Science Laboratory, SRI International,
April 1994.

V.S.Subrahmanian et al, “HERMFES: Heterogeneous Reasoning and Mediator System”,
unpublished document, University of Maryland.

A.Tomasic, L..Raschid, P.Valduriez, “Scaling Heterogeneous Databases and the Design
of Disco”, Tech Report 2704, November 1995, INRIA.

Gio Wiederhold, “Mediator Architecture of Future Information Systems”, IEEE Com-
puter, pp 38-49. March 1992.

C.Yu et al, “Translation of Object-Oriented Queries to Relational Queries”, IEEE In-
ternational Conference on Data Engineering 1995, pp90-97.

23

Appendix A: Cross-Over Schema Mismatches

Figure 12 shows 3 databases. To transform (b) and (c) to (a), we need to resolve type 2 and type
1 cross-over schema mismatches, respectively. However, if (b) or (c) is chosen to be the target
database, one has to resolve other types of cross-over schema mismatches as pointed out in section
5.1. In this Appendix, we demonstrate resolutions for these mismatches using relational operators

and AURORA operators.

Sphere 1 3 Sphere 2 3 Sphere 3
stockInfo ' stockPrice + IBM HP APPLE
date | stkCode | clsPrice | date IBM HP | APPLE | date | clsPrice date | clsPrice date | clsPrice
dl I1BM 45.78 3 dl 45.78 | 56.90 | 48.34 3 dl | 45.78 dl 56.90 dl 48.34
dl HP 56.90 . d2 5726 | 50.86 | 62.60 . d2 | 57.26 d2 50.86 d2 62.60
dl | APPLE | 48.34 | |
d2 | IBM | 57.26
d2 HP 50.86 ! !
d2 |APPLE | 62.60 | |
(a) (b) (c)

Figure 12: Example stocks

(a) = (c): stkCode is represented as data domain in (a) but as relations in (c). This mismatch

can be resolved as follows:

IBM = Fdate,clsPrice(UstkCode:“IBM”(retrieve(StOCkInfO)))
HP = Tdate,cls Price (UstkCode: “HP” (retrieve(stock[nfo)))
APPLE = TaatecisPrice(TsthCode=<apprLE» (retrieve(stockInfo)))

(b) — (c): stkCode is represented as attributes in (b) but as relations in (c). This mismatch can

be resolved as follows:

IBM = rename(Tqate rpm (retrieve(stock Price)), IBM, “clsPrice”)
HP = rename(Tqate mp(retrieve(stock Price)), HP, “clsPrice)
APPLE = rename(Taate apprE (retrieve(stockPrice)), APPLE, “clsPrice)

(c) — (b): stkCode is represented as relations in (c) but as attributes in (b). This mismatch can

be resolved as follows

stockPrice = rename(retrieve(IBM), clsPrice, IBM)
rename(retrieve(H P), cls Price, HP) <

rename(retrieve(APPLE), elsPrice, APPLE)
(a) — (b): This case can be resolved by transforming (a) to (c), and (c) to (b).

24

Appendix B: Proof of AURORA-RH Transformation Rules

We prove transformation rules for operator deriveAttr given in Table 2. For the purpose of this
section, we do not consider the data type of an attribute. We assume that two attributes are the
same if and only if they have the same name. In the rest of this section, we use “L HS” to refer to
the left hand side of an equation, and “RHS” for the right hand side. To prove the equivalence,
we prove that for any tuple t,t € LHS if and only if t € RHS.

Given a relation R, consider relation R’ = deriveAttr(R,L,N, f). Let X = ATTR(R). By
definition, for a tuple ¢, € R, there exists a tuple t; € R’, such that t;[X — {N}] = ¢, [X — {N}],
and t4[N] = f(t.[L]). We say that t; is the image of ¢, due to deriveAttr(R,L, N, f), and t, is
the origin of t; due to deriveAtir(R, L, N, f).

Property 1. Let R’ = deriveAttr(R, L, N, f). Each tuple in R’ has an origin in R; each tuple in

R has an image in R'.

Taeriveartr[1] 71 (deriveAttr(R, L1, N, f)) = 71,(R), L C ATTR(R), N ¢ ATTR(R).
Proof: TLet X = ATTR(R). Consider any tuple ¢ in LHS, ¢t € np(deriveAttr(R, L1, N, f)), by
definition of 7, there exists t; € deriveAttr(R, L1, N, f), such that:

t =t[L] (1)

Let t3 be the origin of t; due to deriveAttr(R, L1, N, f). By definition, t; € R and t4,[X — {N}] =
to[X — {N}]. Since N ¢ L, L C (X — {N}), we get t1[L] = t3[L]. Combining this with 1, we get
t = t[L]. Since ty[L] € 7 (R), t € 71, (R), i.e. t € RHS.

Consider any tuple ¢ in RHS, t € 71, (R). By definition of 7, there exists t; € R, such that

t=t[l] (2)

Let to € deriveAttr(R, L1, N, f) be the image of t; due to deriveAttr(R, L1, N, f). By definition,
t[X — {N}] =t2[X —{N}]. Since N ¢ L, L C (X — {N}), we get t,[L] = t2[L]. Combining this
with 2, we get ¢ = t3[L]. Since ty € deriveAttr(R, L1, N, f), t2 € wr(deriveAttr(R, L1, N, f)), i.e.
te LHS.

Taeriveartr[2] Tr(derive Attr(R, Ly, N, f)) = mp(deriveAttr(rr_nyur, (R), L1, N, f)),

25

L C{N}UATTR(R),N € L.
Proof: Let X = ATTR(R). Consider any ¢ in LHS, ¢ € 7y, (deriveAttr(R, L1, N, f)). By definition
of 7, there exists t; € deriveAttr(R, L1, N, f), such that

t=t;[L] (3)
Let £y € R be the origin of £, by definition, we have:
t1[X = {N}] = t2[X = {N}], t2[N]= f(ta[L1]) (4)
Since (I — {N}) C (X — {N}), we also have
t1[L = {N}] = t2[L — {N}] (5)
Let ts = to[L — {N}YU L], t3 € 7 _nyur, (R). Obviously we have the following:
ta[L — {N}] = ts[L — {N}], ta[L1] = t5[L1] (6)

Let ¢4 be the image of t3 due to deriveAttr(r_(nyur, (R), L1, N, f). By definition, #, satisfies the

following:
ta[L = {N}YU Ly = {N}] = tu[L = {N}U Ly — {N}], ta[N]= f(l5[]1]) (7)

Since (L —{N}) C(L—{N}ULy—{N}), we have t5[L — {N}] = t4[L — {N}]. Combine this with

6 and 5, we get:
t[L = {N}] = ta[L = {N}] (8)
Combine 7 with 6 and 4, we get
t1[N] = t4[N] (9)

From 8,9 and 3, we get t = #1[L] = t4[L]. Since t4 € deriveAttr(r;_inyur, (R), L1, N, f), we have
t € wp(deriveAttr(wr_(nyur, (R), L1, N, f)),i.e. t € RHS.

Consider any t € RHS, t € mp(deriveAttr(rr_(nyur, (R), L1, N, f)). By definition of 7, there
exists t1 € derive Attr(rr_(nyur, (R), L1, N, f), such that:

t =t1[1] (10)
Let ty € mr,_ynyur, (R) be the origin of ¢, then ¢, satisfies the following:
t[L = {N}U L1 = {N} = to[L = {N}U L1 —={N}], t:[N]= f(t2[L1]) (11)

26

Since (L—{N}) C(L-{N}UL;—{N}), we also have:
t[L = {N}] = to[L = {N}] (12)
By definition of 7, there exists t3 € R, ty = t3[L — {N} U L1]. Obviously we have
to[L = {N}]=ts[L — {N}], t2[L1] = t3[L4] (13)
Let t4 be the image of t3 due to deriveAttr(R, L1, N, f), then ¢4 satisfies the following:
t3[X = {N}] = ta[X = {N}], 14[N] = f(ts[L1]) (14)

Since (L —{N}) C (X — {N}), we have

ta[L = {N}] = ta[L = {N}] (15)

From 15, 13 and 12, we have
WL = {N}] = tu[L - {N}] (16)

From 14, 13 and 11, we have
t[N] = ta[N] (17)

From 10, 16 and 17, we have t = t;[L] = t4[L]. Since t4 € deriveAttr(R, L1, N, f), we have:
t € mr(deriveAttr(R, Ly, N, f))
thatis, t € LHS. I
Tderivettr[3) op(deriveAttr(R, L, N, f)) = deriveAttr(UpN(_f(L) (R),L,N, f).
Proof: Let X = ATTR(R). Let p be in the form of p(Ay,..., Ay) where 4, € X U{N} (1 <

i < k). Consider any tuple ¢ in LHS, ¢t € o,(deriveAttr(R,L,N, f)). By definition of o, t €
deriveAttr(R, L, N, f) and we also have:

p(t[A1], ..., t[Ag]) = true (18)
Let t; € R be the origin of ¢, by definition, we have
X —{N} =t[X —{N}], {[N] = f(t:[L]) (19)

27

If there exists no 4, (1 < ¢ < k), A; = N, i.e. p does not involve attribute N, from 19 and 18, we

have

p(t1[A1], ..., t1[Ag]) = true
i.e. t1 € 0,(R). Otherwise, without loss of generality, assume A; = N, from 19 we have:
p(t1[A1], .oy t1[Ak—1], t[N]) = true
Since t{N] = f(t1[L]), we have
p(t1[A1], .oy t1[Ak—1], fF(H[L])) = true

In both cases, we have {1 € 0 nesr)(R). Let ty € deriveAttr(o vesr)(R), L, N, f) be the image

of t1, then we have
BIX — {N)] = X — {N}], [N = f(0[T]) (20)
From 20 and 19, we have t = t9, since {5 € d@riv@Attr(UpN(—f(L) (R),L,N, f), we have:
t € deriweAttr(o,veru) (R), L, N, f)

that is, t € RHS.
Consider any tuple from the RIS, t € deriveAttr(o, vy (R), L, N, f). Let t1 € o ver) (R)

be the origin of ¢. ¢, satisfies the following:
X =N} = t[X = {N}], {{N] = f(t[L]) (21)

Since 11 € o, ver1)(R), t1 € R. Let 3 be the image of t; due to deriveAttr(R, L, N, f), then ¢,

satisfies the following:
WX = AN} = 12[X = {N}], ta[N]= f(tu[L]) (22)
From 22 and 21 we have
t=ty (23)

Now consider the fact that t; € o,vesu) (R). If there exists no ¢, (1 <i < k), A; = N, i.e. p does

not involve attribute NV, we have
p(t1[A1], ..., t1[Ag]) = true

28

Otherwise, without loss of generality, assume Ay = N, we have:
p(t1[A1], ooy t1[Ak—1], f(t1[L])) = true
From 22, we can immediately derive for both cases:
p(ta[Ar], ..., t2[Ak]) = true
Combine the above with the fact that ¢y € deriveAttr(R, L, N, f), we have
ty € oy (deriveAttr(R, L, N, f))

i.e. to € LHS. From 23, we get t € LHS. I

TderiveAttr [4] R Mp deriveAttr(Rl, L17]\717 fl) = deriveAttr(R Mle(_f(Ll) R17 L17 N17 f1)7
ATTR(R)NATTR(Ry) = ¢, N1 ¢ ATTR(R).
Proof: Let X = ATTR(R). Let X; = ATTR(R;). Let p be in the form of

p(Bh sy Bn7 A17 sy Ak)

where B; € X(1<i<mn),and 4; € Xy U{N;} (1 <i<k).
Consider any t from the LHS, t € R M, deriveAttr(Ry, L1, Ny, fi). Consider that X N Xy = ¢,
by definition of the X operator, there exists t; € R, ty € deriveAttr(Ry, L1, N1, f1), such that:

t[X] = tl [X], t[Xl U {Nl}] = tQ[Xl U {Nl}]7p(t1[B1]7 ceny tl[Bn]7 t2[141:|7 ceny tQ[Ak]) = true (24)
Let t3 € Ry be the origin of t5 due to deriveAttr (Ry, L1, N1, f1), then we have:
L[X1 — {N1}] = t3[X1 — {N1}], 2[Ni] = fi(ta[L1]) (25)

Since Ny ¢ X, there exists no j, (1 < j < n), such that B; = N;. If there exists no 4, (1 <1i < k)

such that A; = Ny, i.e. p does not involve attribute Ny, we have the following from 25 and 24:
p(t1[B1], ..oy t1[Bnl, t3[A1), ..., ta[Ag]) = true (26)
Otherwise, without loss of generality, assume Ay = Ny, from 25 and 24, we have:
p(t1[B1]s ..., t1[Bul, ts[A1], ..., fi(ts[L1])) = true (27)
Let t4 € R x Ry be the concatenation of ¢ and t3, i.e.
11 [X] = ta[XT, 15[X0] = 14[X4] (28)

29

From 27 and 26 we get:

ty ER Mleefl(Ll) R,

Let t5 € deriveAttr(R X ~yszy) Ri, L1, N1, f1) be the image of ¢4. By definition:
ta[X U Xy —{Ni}] = t5[X U Xy = {N1}], t5[N1] = fi(ta[L4]) (29)
Consider Ny ¢ X, Ly C Xy, from 29, 28, 25, and 24, we have:
t=ts
Since t5 € deriweAttr(R ™ xicp iy Ri, L1, N1, fi), we have:
t € deriveAtlri My (ry) Ri, L1, N1, fi)

ie. t€ RHS.
Consider any t € RHS, t € deriveAttr(R My s) Bay Dy Nu, fi). Lett; € R XNy er (o) B
be the origin of ¢ due to deriveAtir(R M,y g0y By Ly Ny, f1). Then we have:

XU Xy = {Ni}] =t [X UXy = {N}], t[N1] = fi(ta[L]) (30)
Since t1 € R X v, s (1) Ri, there exist {; € R and {5 € Ry, such that
t1[X] = ta2[X], 11 [X1] = 15[X] (31)

Since Ny ¢ X, there exists no j, (1 < j < n), such that B; = N;. If there exists no 4, (1 <1i < k)

and A; = Ny, i.e. p does not involve attribute Ny, we have
p(ta[Bi], ..y ta[Bnl, ta[A1], ..., ta[Ag]) = true (32)
Otherwise, without loss of generality, assume Ay = Ny, then we have:
p(t2[Bi], ..y to[Bnl, ts[A1], ...y f(ta[L1])) = true (33)

Let t4 € deriveAttr(Ry, L1, Ny, fi) be the image of t5 due to deriveAttr(Ry, L1, N1, f1), then we

have:
ts[X1 — {N1}] = ta[Xy = {N1}], ta[N1] = f1(ts[LA]) (34)
Let t5 € R x deriveAttr(Ry, L1, Ny, f1) be the concatenation of t3 and t4, then we have:
t5[X] = t2[X], t5[X1 U{N1}] = ta[X7 U{N1}] (35)

30

From 35, 34, 33 and 32, we have
ts € R ™, deriveAttr(Ry, L1, N1, f1)

From 35, 31, 34 and 30, we have:

t=ts

i.e. t € RM, deriveAttr(Ry, Ly, Ny, f1),i.e. t € LHS.

Tderivettr D) dertveAttr(Ry, L1, N1, fi1) W, deriveAttr(Ry, Lo, No, f2) =
deriveAttr(derive Attr(Ry XN e £1 (L1), N2 F(L2) Ry, L1, Ny, f1), La, No, f3),
ATTR(R)) N ATTR(Ry) = ¢, Ny ¢ ATTR(R,), Ny ¢ ATTR(R,),
Ny # Na, Ny ¢ Lo.

Proof: Let Xy = ATTR(Ry), Xo = ATTR(R;). Also let p be in the form of:

p(Ah ceey Ak7 B17 ceey Bl)

where A; € XqU{N;} (1 <i<k), B € XoU{Ny} (1<j<I).
Consider any t € deriveAttr(Ry, L1, N1, f1) W, deriveAttr(Ry, L2, No, f2). There exists t; €
deriveAttr(Ry, L1, N1, f1), t2 € deriveAttr(Rq, Ly, Na, f2), such that:

Xy ULN Y = 6 [X0 U{N L X2 U {N}] = £2[Xo U {2 }] (36)
Moreover, we have:
p(ti[A1], ..y ta[Ar], t2[B1], ..., t2[Bi]) = true (37)
Let t3 € Ry be the origin of ¢y due to deriveAttr(Ry, L1, N1, f1), then we have:
t[Xy = {N1}] = 13[Xy = {N1}], ta[V1] = fi(Es[L4]) (38)
Let t4 € Ry be the origin of t5 due to deriveAttr(Ry, Ly, Na, f2), then we have:
ta[Xo — {N2}] = ta[X5 — {Na}], 12[No] = fa(ta[L2]) (39)
Let t5 € Ry X Ry be the concatenation of t3 and t4, i.e:

t5[X1] = t3[X1], 15[Xo] = t4[Xo] (40)

31

From 40, 39, and 38, we get:
t1[N1] = fi(ts[La]), t2[No] = fa(t5[L2]) (41)
From 41, 40, 39, 38 and 37, we can easily infer:
ts € By M,n csi(0),5 —a(ra) B2 (42)
Let tg be the image of ¢5 due to deriveAttr(Ry X~ s (11).8 < 12(12) B2, L1, N1, f1), we have:
ts[X1 U Xy — {N1}] = t6[X1 U Xo = {N1}], t6[N1] = f1(t5[L1]) (43)

Let t7 € deriveAttr(deriveAttr(Ry M xicri(2y) ¥ esa(ra) Ry L1, N1, fi), L2, N, f2) be the image of
te. Noticing that Ny # Ny, we have:

t6[X1 U Xp — {N1} = {No}] = 17[X1 U Xy = {N1} = {No}], t6[N1] = #7[N4] (44)
And
tz[Na] = fa(te[L2]) (45)
From 43, and Ny ¢ X, we get:
ts[La] = ta[L2] (46)

From 45, 46, 40, 39, and 36, we have
t[N] = t7[N3]

From 44, 43, 40, 38, and 36, we have
t{N1] = t7[N4]

From 44, 43, 40, 39, 38, and 36, we have
X1 U Xy = {N1} — {No}] = t7[Xq1 U Xy — {N1} — {N2}]

ie.

t=tr

Since t7 € deriwveAttr(derive Attr(Ry M nicpi(1y) 5o efa(Lo) Ray L1, N1, f1), Lo, Na, f2), we have:

t € deriveAttr(derive Attr(By M ny sy (10).N «1o(00) Ray L1y N1, f1), Lo, Na, f2)

32

ie. t € RHS.
Consider any tuple ¢ in the LHS), i.e.

t € derive Attr(derive Attr(Ry XN e 11 (20) N2 (1) B2y D1y Niy f1)s Lo, Na, f2)
Let {1 € deriveAttr(Ry M~y 5 (11),8 < 12(12) B2, L1, N1, f1) be the origin of {. We have:
X1 U Xo U{NFU{No} = {No}] = 14 [X5 U Xo U{N1} U {No} — {N2}] (47)
and
t{N2] = f2(t1[L2]) (48)
Let ¢y € Ry M Ny sy (01), N2 £2(12) B2 be the origin of ¢;. We have:
HIXGT U X U{NFU{N} = {No} = {N1}] = 62[X5 U X U{N JU{No} — {No} — {N1}] (49)
and
t1[N1] = fi(ta[L4]) (50)
By definition of M, there exists t3 € Ry and t4 € Ry, such that:
ts[X1] = t2[X1], t4[X3] = 12[X)] (51)
and
pNr)N fo(L2) (10 1) = true (52)
Let t5 € deriveAttr(Ry, L1, N1, f1) be the image of 5, we have:
ts[X1 — {N1}] = 15[Xy — {N1}], t5[V1] = fi(Es[L4]) (53)
Let tg € deriveAttr(Ra, Lo, N2, f2) be the image of t4, we have:
ta[Xo — {N2}] = t6[Xy — {Na}], te[Vo] = fa(ta[L2]) (54)
From 54, 53, 52, we have:
p(ts,ts) = true (55)
Let t7 € deriveAttr(Ry, L1, Ny, f1) X deriveAttr(Rz, L, No, f2) be the concatenation of ¢5 and ftg,
tr[X1 U{N1}] = t5,t:[Xo U { N2} = tg (56)

33

From 56 and 55, we have:
ty € deriveAttr(Ry, Ly, Ny, fi) M, derive Attr(Rq, Ly, N3, fo)

ie. t; € LHS. Since Ly C Xy, Ny, Ny ¢ Ly, from 56, 54, 51, 49, and 48, we have
t[N] = t7[N3]

From 56, 53, 51, 50, and 47, we have:
t{N1] = t7[N4]

Easily we can also get:

X3 U Xg — {N1} —{No}] = t7[X1 U Xo — {N1} — {N2}]

From 60, 59, and 58, we have:

From 57, we get:
t e deriveAttr(Rl, L17 N17 fl) Mp d@f‘iv@AttT‘(R27 L27 N27 f2)

ie.te LHS.

34

(59)

