Interoperability in Large-scale
Distributed Information Delivery Systems

Ling Liu, Ling Ling Yan, and M. Tamer Ozsu

University of Alberta, Department of Computing Science

Edmonton, Alberta, Canada T6G 2H1

Abstract. In this paper we address interoperability issues in large-scale dis-
tributed information delivery systems. Architecturally, we classify existing
approaches and systems into two paradigms: Multidatabase management-
based paradigm and Mediator-based information delivery paradigm, and an-
alyze the techniques used in each. Technically, we describe a number of data
delivery characteristics in terms of delivery protocols, delivery modes, and
delivery frequencies. We further use these characteristics to discuss and com-
pare several data delivery schemes. We argue that an advanced distributed
information system must incorporate different types of information delivery
so that the system can be optimized according to various criteria, such as net-
work traffic and heterogeneity and constant evolution of online information
sources. To illustrate the architectural and technical aspects of distributed
information delivery systems, we review a number of research prototypes to
demonstrate the various implementation approaches used in practice, and the
different solutions to the interoperability 1ssues addressed in the paper.

1. Introduction

In the past few years there has been an explosion in the amount and diversity
of information available across networks. The proliferation of Internet and
intranets and the ongoing advances in the World Wide Web (WWW or Web)
have fueled the development of a wide range of data-intensive applications
and information dissemination systems. Many new ways are being explored
to deliver information contents to users in office, at home, and on the road.

A common problem facing many organizations and enterprise computing
systems today is the uniform and scalable access of multiple, disparate infor-
mation sources and repositories, including databases, object stores, knowl-
edge bases, file systems, digital libraries, and information retrieval systems.
It is widely recognized that information sources change constantly, and users
are faced with the daunting challenges of navigating, collecting, evaluating,
and processing data in this dynamic and open information universe. Deci-
sion makers often need information from multiple information sources but
are unable to get and fuse information from multiple information sources in
a timely fashion, not only due to the unpredictable state of networks and
the contention at information sources, but also due to the heterogeneous and
evolving nature of information sources.

2 Ling Liu, Ling Ling Yan, M. Tamer Ozsu

An “advanced” distributed information system is an open and interoper-
able system, rather than a static data delivery system. Two immediate func-
tional requirements of such a system 1s the support of extensible distributed
object management and dynamic interoperability among diverse information
sources and between information consumers and information producers.

In terms of object-oriented terminology, interoperability refers to the abil-
ity to exchange requests between objects and the ability to enable objects
to request services of other objects, regardless of the language in which the
objects are defined and their physical location (e.g., hardware platforms, op-
erating systems, DBMS’s). Distributed interoperable objects are objects that
support a level of interoperability beyond the traditional object computing
boundaries imposed by programming languages, data models, process ad-
dress space, and network interface [Bet94]. The abstractions of distributed
interoperable objects are captured and utilized by the distributed object man-
agement services to schedule and control the remote data access and delivery.

A key objective in providing interoperability and distributed object man-
agement in a dynamic and open information universe is the scalability and
effectiveness of remote data access and delivery.

— Scalability refers to the ability of distributed object management services
to scale the process of delivering information (in the form of objects) from
a set of data sources to a typically larger set of consumers, with respect to
both the heterogeneity in hardware platforms, process address spaces, oper-
ating systems, data models and programming languages, and the evolving
nature of information sources.

— Effectiveness of remote data access and delivery refers to the ability of
distributed object management services to incorporate the constant infor-
mation evolution and explosion, the network traffic, and the availability
of information sources or communication links, into the distributed query
optimization and execution strategies.

Query optimization and evaluation strategies have long been studied in
centralized, parallel, and tightly-coupled distributed environments. However,
data access across widely-distributed and highly autonomous information
sources imposes significant new challenges for distributed object management
for a number of reasons. First, there are semantic and performance issues that
arise due to the heterogeneous nature of the data sources. Second, the amount
and diversity of online information available across networks is exploding.
Users today are faced with increasing difficulty in collecting, processing, and
integrating information effectively and in a timely fashion. As the scale and
rate of change for online information continues to grow, the user-initiated,
comprehensive searching is no longer sufficient as a dominant mode of in-
formation access and delivery. To improve the query responsiveness, remote
data access and delivery must combine user-initiated, comprehensive search-
ing with source-initiated dissemination of relevant information, and migrate
from pre-established communication endpoints to anytime-access-anywhere

Interoperability in Information Delivery Systems 3

on the globe. Finally, data access over wide-area networks today depends
heavily on the specific data sources accessed and the current state of the
network at the time that such access is attempted, including the availability
of information sources, intermediate sites, and communication links.

In this paper we describe a number of techniques and strategies that are
used or can be used to address these technical challenges. We also present a
brief review of the state-of-the-art in research and development for accessing
multiple and heterogeneous information sources. The reminder of the paper is
organized as follows. We outline the architectural issues in supporting inter-
operability of multiple and heterogeneous information sources in Section 2.,
and outline a number of mechanisms for effective information delivery in dis-
tributed and interoperable information systems in Section 3.. In Section 4.
we overview several representative systems or ongoing research projects that
contribute to the issues of dynamic interoperability and scalable distributed
object management. A few popular enabling technologies for deployment and
implementation of interoperable distributed object management services is
summarized in Section 5.. In Section 6. a brief overview of the AURORA
project that we are currently developing for the electronic commerce domain
is presented. We end the paper with a summary and some remarks on the
role of database technology within the global information infrastructure, in
particular the wide-range of data-intensive applications being deployed on
the Internet and intranets.

2. Architectural Issues

Over the last decade, several approaches and paradigms have been proposed
for information access and delivery from multiple heterogeneous information
sources. To simplify the review, we classify the state-of-the-art of research and
development into two paradigms: Multidatabase management-based paradigm
and Mediator-based information delivery paradigm. In this section we concen-
trate on the architectural issues of data access and delivery with respect to
these two paradigms. We discuss the techniques and challenges for delivering
information effectively and responsively, in Section 3..

2.1 Multidatabase-Based Paradigm

Multidatabase management has evolved over years and through several
stages. A classic approach [Ram91, She91] for multidatabase management
relies on building a single global schema to encompass the differences among
the multiple local database schemas. The mapping from each local schema to
the global schema is often expressed in a common SQL-like language, such
as HOSQL in the Pegasus system [Aea91] or SQL/M in the UniSQL/M sys-
tem [Kea93]. Although the enforcement of a single global schema through

4 Ling Liu, Ling Ling Yan, M. Tamer Ozsu

data integration yields full transparency for uniform access, component
databases have much restricted autonomy, scalability and their evolution be-
comes difficult.

The federated approach [SLI0] improves the autonomy and the flexibility
(composability) of multidatabase management by relying on multiple im-
port schemas and the customized integration at various multidatabase levels.
However, the integration of component schemas at each multidatabase level
is enforced by the system. The integrated schema is static. The heterogeneity
problems are resolved at the schema integration stage. This approach cannot
scale well when new sources need to be added into an existing multidatabase
system. Also the component schemas cannot evolve without the consent of
the integrated schema.

The distributed object management approach [Mea92, ODV93] general-
izes the federated approach by modeling heterogeneous databases of different
levels of granularity as objects in a distributed object space. It requires the
definition of a common object model and a common object query language.
Recent activities in the OMG and the ODMG standard [Cea94], which ex-
tends the OMG object model to the database interoperability, are important
milestones for distributed object management.

2.2 Mediator-Based Paradigm

Mediator-based information integration architecture has evolved from an ini-
tial proposal by Gio Wiederhold in [Wie92] and elaborated through the intel-
ligent information integration (I?) program [Wie95]. A mediator-based sys-
tem consists of a network of mediators. A mediator is a software module
that exploits encoded knowledge about some sets or subsets of data to cre-
ate information for a higher layer of applications [Wie92]. Intuitively, each
mediator offers a specific data service and acts as an information “broker”
in a particular application domain. Mediators often have knowledge-based
capabilities.
The most interesting features that distinguish the mediator-based paradigm

from conventional multidatabase management approach are the following:

— On the information source side

1. The information universe it addresses is large-scale, dynamic, and open
in nature, rather than small-scale, static, and closed.

2. Information sources considered in mediator-based systems include not
only structured sources such as relational databases, object stores, and
knowledge-bases, but also semi-structured information sources such as
HTML files, WWW pages, or unstructured data sources such as plain
text documents, images, video clips.

3. Information sources are highly autonomous. The amount of information
sources and applications available online is very large and grows rapidly.
The content, the number, and the connectivity of information sources

Interoperability in Information Delivery Systems 5

change constantly. Heterogeneity problems become a natural and un-
avoidable consequence.
— On the interoperability management side

1. The set of functions for interoperability management are divided and
packaged into two architectural tiers: mediator-tier and wrapper-tier.
The mediator-tier is responsible for interfacing with applications and
end-users. The wrapper-tier 1s responsible for interfacing with under-
lying information sources. A wrapper can be seen as a special type of
mediator that deals with idiosyncrasies of the individual data sources
such as translating a mediator tier request to executable instructions at
the source.

2. There is no single global view or system that can serve for all appli-
cations. Different mediator-based systems may access shared informa-
tion sources. All information sources accessed within a mediator system
are wrapped using the mediator system-specific interface language. The
same information source may be wrapped differently for different medi-
ator systems. A wrapper serves as an agent or a delegate of a particular
mediator system to communicate with the underlying (wrapped) infor-
mation sources.

3. The scalability and extensibility issues become a major concern and an
important evaluation criteria for interoperability management. Object-
oriented design, programming, and development technology 1s a powerful
and yet practical paradigm for building distributed information systems.

4. The role of ontology and classification hierarchies becomes increasingly
important for dynamic interoperation and heterogeneity resolution be-
tween information consumers and information producers.

Architecturally, mediator-based systems are more flexible since wrappers
are built independent of one another and are used to serve for all accesses to
the corresponding data sources in the system.

There are many prototype systems and ongoing projects for developing
mediator-based interoperability management systems. They vary in the way
mediators and wrappers are built, functionality and capability that different
mediators may provide, and ways of dividing functional components between
mediator-tier and wrapper-tier. We will discuss some of the representative
systems in Section 4..

3. Technical Issues

With the ongoing advance in WWW technology, everyone today can publish
information on the Web at any time. The flexibility and autonomy of produc-
ing and sharing information on WWW is phenomenal. On the other hand,
one has to learn to deal with the rapid increase of volume and diversity of

6 Ling Liu, Ling Ling Yan, M. Tamer Ozsu

online information and the constant changes of information sources in num-
ber, content, and location. Thus, queries to the current WWW search tools
are mostly specified independent of the structure, location, or existence of re-
quested information. One simply types in the keywords, the search tools will
handle the request and find the sources that match the given keywords. How-
ever, the scalability is achieved at the price of effectiveness of queries, namely
the quality and the responsiveness of the answers, for several reasons. First,
responses returned by WWW search tools often contain too much irrelevant
information (noise). Second, queries in network-centric information systems
are more vulnerable to failure due to the congestion of networks, traffic at
the intermediate sites and the contention at the sources. Thus frequently one
needs information from multiple information sources but is unable to get and
fuse the information from information sources in a timely fashion.

A practical optimization solution to these problems is to provide technolo-
gies that support a variety of data delivery schemes and allow the scheduling
process of queries to be tuned at run-time according to the state of net-
works and the availability of intermediate sites and source sites. One example
of such technology is to combine and interleave the user-initiated, compre-
hensive search-based data delivery with the server-initiated dissemination of
relevant information.

Tn this section we describe a number of data delivery characteristics [FZ96)
in terms of protocols, delivery modes, and delivery frequencies, and use these
characteristics to discuss and compare several data delivery schemes.

3.1 Data Delivery Protocols

Data delivery is defined as the process of delivering information from a set
of information sources (servers) to a set of information consumers (clients).
There are several possible ways that servers and clients communicate for de-
livering information to clients, such as clients request and servers respond,
servers publish what are available and clients subscribe to only the informa-
tion of interest, or servers disseminate information by broadcast. Each way
can be considered as a protocol between servers and clients, and has pros and
cons for delivering data in an open and dynamic information universe.

3.1.1 Clients Request and Servers Response. The request/response
protocol follows the data delivery mechanism that clients send their request
to servers to ask the information of their interest, servers respond to the
requests of clients by delivering the information requested.

Current database servers and object repositories deliver data only to
clients who explicitly request information from them. When a request 1is re-
ceived at a server, the server locates or computes the information of interest
and returns it to the client. The advantage of the request/response protocol is
the high quality of data delivery since only the information that is explicitly
requested by clients is delivered. In a system with a small number of servers

Interoperability in Information Delivery Systems 7

and a very large number of clients, the request/response mechanism may be
inadequate, because the server communication and data processing capacity
must be divided among all of the clients. As the number of clients continu-
ous to grow, servers may become overwhelmed and may respond with slow
delivery or unexpected delay, or even refuse to accept additional connections.
3.1.2 Servers Publish and Clients Subscribe. The publish/subscribe
protocol delivers information based on the principle that servers publish in-
formation online, and clients subscribe to the information of interest. Infor-
mation delivery is primarily based on the selective subscription of clients
to what is available at servers and the subsequent publishing from servers
according to what is subscribed.

As the scale and rate of changes for online information continues to grow,
the publish/subscribe mechanism attracts increasing popularity as a promis-
ing way of disseminating information over networks. Triggers and change
notifications in active database systems bear some resemblance to the pub-
lish /subscribe protocol based on point-to-point communication [AFZ97]. The
publish/subscribe mechanisms may not be beneficial when the interest of
clients change irregularly because in such situations clients may be contin-
ually interrupted to filter data that is not of interest to them. A typical
example is the various online news groups. Another drawback is that pub-
lish /subscribe is mostly useful for delivering new or modified data to clients,
but it cannot be used to efficiently deliver previously existing data to clients,
which the clients later realize they need. Such data are most easily obtained
through the request/respond protocol.

3.1.3 Servers Broadcast. The broadcast mechanism delivers information
to clients periodically. Clients who require access to a data item need to wait
until the item appears. There are two typical types of broadcasting: selec-
tive broadcast (also called multicast) and random broadcast [F796]. Selective
broadcast delivers data to a list of known clients and is typically implemented
through a router that maintains the list of recipients. Random broadcast, on
the other hand, sends information over a medium on which the set of clients
who can listen 1s not known a priori. Note that the difference between selec-
tive broadcast and publish/subscribe is that the list of recipients in selective
broadcast may change dynamically without explicit subscription from clients.

The broadecast protocol allows multiple clients to receive the data sent
by a data source. It is obvious that using broadcast is beneficial when mul-
tiple clients are interested in the same items. The tradeoffs of broadcast
mechanisms depend upon the number of clients who have common inter-
ests and the volume of information that is of interest to a large number of

clients [FZ96, AFZ97].

3.2 Data Delivery Modes

With the rapid growth of the volume and variety of information available
online, combined with the constant increase of information consumers, it is

8 Ling Liu, Ling Ling Yan, M. Tamer Ozsu

no longer efficient to use a single mode of data delivery. A large-scale mod-
ern information system must provide adequate support for different modes of
data delivery in order to effectively cope with the various types of communi-
cations between clients and servers to improve query responsiveness. Another
benefit of providing different modes of data delivery is to allow the system to
be optimized for various criteria according to different requirements of data
delivery. In this section we identify three potentially popular modes of data
delivery and compare them with the types of delivery protocols that can be
used. They are client pull-only option, server push-only option, and client
pull with server push combined option.

3.2.1 Pull-only Mode. In the pull-only mode of data delivery, the transfer
of data from servers to clients is initiated by a client pull. When a client
request 1s received, the server responds to it by locating the requested in-
formation. The request/respond style of client and server communication is
pull-only.

The main characteristic of pull-based delivery is that the arrival of new
data items or updates to existing data items are carried out at a server with-
out notification to clients unless clients explicitly poll the server. Also, in
pull-based mode, servers must be interrupted continuously to deal with re-
quests from clients. Furthermore, the information that clients can obtain from
a server is limited to when and what clients know to ask for. Conventional
database systems (including. relational and object-oriented database servers)
offer primarily pull-based data delivery.

3.2.2 Push-only Mode. In Push-only mode of data delivery, the transfer
of data from servers to clients is initiated by a server push in the absence
of specific request from clients. The main difficulty of push-only approach is
to decide which data would be of common interest, and when to send them
to clients (periodically, irregularly, or conditionally). Thus, the usefulness of
server push depends heavily on the accuracy of a server to predict the needs
of clients. Broadcast style of client and server communication is a typical
push-only type.

In push-only mode, servers disseminate information to either an un-
bounded set of clients (random broadcast) who can listen to a medium or
a selective set of clients (multicast) who belong to some categories of recipi-
ents that may receive the data. It is obvious that the push-only data delivery
avoids the disadvantages identified for client-pull approaches such as unno-
ticed changes. A serious problem with push-only style, however, is the fact
that in the absence of a client request the servers may not deliver the data
of interest in a timely fashion. A practical solution to this problem is to
allow the clients to provide a profile of their interests to the servers. The pub-
lish/subscribe protocol is one of the popular mechanisms for providing such
profiles. Using publish/subscribe, clients (information consumers) subscribe
to a subset of a given class of information by providing a set of expressions
that describe the data of interest. These subscriptions form a profile. When

Interoperability in Information Delivery Systems 9

new data items are created or existing ones are updated, the servers (infor-
mation providers) publish the updated information to the subscribers whose
profiles match the items.

3.2.3 Hybrid Mode. The hybrid mode of data delivery combines the
client-pull and server-push mechanisms. The continual query approach de-
scribed in [LPBZ96] presents one possible way of combining the pull and
push modes, where the transfer of information from servers to clients is first
initiated by a client pull and the subsequent transfer of updated information
to clients is initiated by a server push.

The hybrid mode represented by continual queries approach can be seen
as a specialization of push-only mode. The main difference between hybrid
mode and push-only mode is the initiation of the first data delivery. More
concretely, in a hybrid mode, clients continuously receive the information that
matches their profiles from servers. In addition to new data items and up-
dates, previously existing data that match the profile of a client who initially
pull the server are delivered to the client immediately after the initial pull.
However, in push-only mode, although new data and updates are delivered
to clients with matching profiles, the delivery of previously existing data to
clients that subsequently realize that they need it 1s much more difficult than
through a client pull.

3.3 Data Delivery Frequency

There are three typical frequency measurements that can be used to classify
the regularity of data delivery. They are

— pertodic: Data is delivered from server to clients periodically. The period
can be defined by system default or by clients using their profiles.

— conditional: Data is delivered from servers whenever certain conditions in-
stalled by clients in their profiles are satisfied. Such conditions can be as
simple as a given time span and as complicated as sophisticated ECA rules.

— ad-hoc or irreqular: A data delivery is requested at any time from clients to
servers and the matched data items are sent to clients from servers within
a reasonable response time.

3.3.1 Periodic Data Delivery. Both pull and push can be performed in
periodic fashion. Periodic delivery is carried out on a regular and pre-specified
repeating schedule. A client’s weekly requests for the stock price of IBM is an
example of periodic pull. Periodic pull is a simpler case of the request /respond
protocols. An example of periodic push is when an application can send out
stock price listing on a regular basis, say every morning. Using period push, a
set of data items 1s sent out periodically according to a pre-defined schedule.
Since the pattern repeats, a client who misses a data item in one period of
the pattern can get it in the next one.

10 Ling Liu, Ling Ling Yan, M. Tamer Ozsu

Periodic push is particularly useful for situations when clients might not
be available at all times or might be unable to react to what has been sent,
such as in the mobile setting where clients can become disconnected.

3.3.2 Conditional Data Delivery. Conditional delivery is mostly used in
the hybrid or push-only based delivery systems. Using conditional push, data
are sent out according to a pre-specified condition rather than any particular
repeating schedule. An application that sends out stock prices only when
they change is an example of conditional-push. An application that sends out
the balance statement only when the total balance is %5 below a pre-defined
balance threshold is an example of hybrid conditional push. Conditional push
assumes that changes are critical to the clients and that clients are always
listening and need to respond to what is being sent. Hybrid conditional push
further assumes that missing some update information is not crucial to the
clients.

3.3.3 Ad-Hoc Data Delivery. Ad-hoc delivery is irregular and is per-
formed mostly in a pure pull-based system that uses traditional request/
respond protocol of data delivery. Data is pulled from servers to clients in an
ad-hoc fashion whenever clients request it. In contrast, periodic pull arises
when a client uses polling to obtain data from servers based on a regular
period (schedule).

3.4 General Remarks

An advanced distributed information system must incorporate different types
of information delivery so that the system can be optimized according to var-
ious criteria, such as network traffic and heterogeneity and constant evolution
of online information sources. Based on a number of important characteris-
tics of distributed information delivery discussed in the previous sections, we
provide below a brief comparison of data delivery mechanisms.

The three protocols that are considered here are request/respond, pub-
lish/subscribe and broadcast. Table 1 shows a comparison of the use of dif-
ferent protocols or frequencies of data delivery with respect to the modes of
data delivery.

Table 1. A combination of techniques applicable to different modes of data delivery

request/ | publish/ broadcast | periodic | conditional | ad-hoc
respond | subscribe

pull Y Y Y
only

push Y Y Y Y

only limited

hybrid || Y Y Y Y Y Y

limited

Interoperability in Information Delivery Systems 11

As we mentioned in Section 3.1, most of the conventional database systems
are pull-based data delivery systems and use the request/respond protocol
for data delivery, where clients pull servers by sending requests to the servers
and servers respond by locating and computing the data items that match
the requests and delivering the results to the corresponding clients. Clients
can pull the servers anytime (including a periodic time span controlled by
clients) whenever there is a need for information from servers. Since the
pulling of servers is always initiated by users in an ad-hoc fashion, rather
than monitored by a computer program automatically, neither broadcast,
publish /subscribe nor conditional delivery is relevant.

The pure push style of data delivery is very useful when the volume of
information of common interest is huge and/or the number of clients who are
interested in the same amount of information is large. The push-only deliv-
ery can also be seen as an optimization strategy that reduces the traffic and
server load when the volume of information of common interest at a particu-
lar server continues to grow. The publish/subscribe protocol is typically used
for server-initiated information dissemination, where data is delivered auto-
matically (push-only) or semi-automatically (hybrid mode). The frequency of
such server push is either according to a periodic (regularly repeated) sched-
ule or based on a conditional schedule. Ad-hoc delivery frequency does not
make much sense in practice for push-only mode. The broadcast protocol is
also a push-only delivery protocol. But it is mostly used for server-initiated
periodic delivery. The publish/subscribe protocol can be seen as a specializa-
tion of the broadcast protocol by incorporating profiles of clients that specify
what groups of information to subscribe, such that the servers only publish
the information to the clients, which match their profiles.

4. Overview of Some Existing Projects

We discuss in this section a few projects that are either the well-known sys-
tems (such as Carnot), or mostly related to the mediator-based architecture
discussed in Section 2. (such as TSIMMIS, DIOM, DISCO, InfoSleuth), or
to the data delivery mechanisms outlined in Section 3. (such as Broadcast
Disks project). Space limitation prevents us from being exhaustive.

4.1 Broadcast Disks Approach to Information Dissemination

The broadcast disks approach [AAFZ95, AFZ97, FZ96] to information dis-
semination uses a periodic push-only data delivery with broadcast protocol.
The broadcast disks paradigm is based on a cyclic broadcast of objects (e.g.,
pages) and a corresponding collection of client cache management techniques.
The main idea 1s to explore multi-level frequencies of disks and their rela-
tionship to cache management. For example, using broadcast disks, groups

12 Ling Liu, Ling Ling Yan, M. Tamer Ozsu

of objects (e.g., pages, disks) are assigned different frequencies depending on
their probability of access. By broadcasting higher priority items more fre-
quently, their access times can be reduced at the expense of increasing the
latency for lower priority items. A key 1ssue here is the generation of a broad-
cast schedule that can deliver the data items of different priority requirements
most efficiently.

A broadcast schedule is generated based on the number of disks, the
relative frequencies of each disk and the assignments of data items to the
disks on which these items are to be broadcast [AFZ97]. Interesting to note
is that the multi-levels are in fact superimposed on a single broadcast channel
by interleaving the data items of the various levels in a manner that results in
the desired relative frequencies. For instance, consider a simple broadcast of
three objects (pages), say A, B, C, arranged on two disks, where A is on a disk
that is spinning twice as fast as the disk where B, C are located. If we have
two levels of disk frequency, say 2:1, data item A has a higher priority than
data items B and C'. Thus, a broadcast schedule would generate the following
broadcasting pattern: “A, B, A, C, ...” [FZ96]. One of the difficulties in
deciding how to structure a broadcast schedule is that the server must use its
knowledge to reason about the needs of the clients who require disseminated
data. Intelligent management of client caches is a key to solving this problem.

As we mentioned earlier, most of database systems and current Internet
browsers are pull-only style of data delivery systems. The Broadcast Disks
project developed a set of strategies and algorithms for a periodic push style
of data delivery. Currently, an integrated dissemination-based information
system is under development as a continuation to the Broadcast Disks project
at Brown University and University of Maryland, aiming at supporting a
wider range of ways to deliver data to clients [AFZ97].

4.2 Carnot

The Carnot Project [CHS91, WCHT93] at MCC has developed and assem-
bled a large set of generic facilities for managing integrated enterprise infor-
mation. These facilities are organized into five sets of services: communication
services, support services, distribution services, semantic services, and access
services. The Carnot architecture is shown in Figure 1.

The communication services provide the user with a uniform method of in-
terconnecting heterogeneous equipment and resources. These services imple-
ment and integrate various communication platforms that may occur within
an enterprise. Examples of such platforms include ISO OSI session and pre-
sentation layer protocols running on top of ISO TP4 with CLNP, TCP/IP
via a convergence protocol, or X.25. Additional platforms being considered
are OSF’s DCE and Ul’s Atlas.

The support services implement basic network-wide utilities that are avail-
able to applications and other higher level services. These services currently

Interoperability in Information Delivery Systems 13

Semantic Services

Access Distribution Services

Services

Support Services

Communication Services

Fig. 1. Architecture of Carnot

include the TSO OSI Association Control (ACSE), ISO OSI Remote Oper-
ations (ROSE , CCITT Directory Service (X.500), CCITT Message Han-
dling System (X.400), ISO Remote Data Access (RDA), and MIT Project
Athena Authentication Service Kerberos). Work is progressing on support
for additional services, such as ISO Transaction Processing, OMG’s Object
Request Broker (ORB) and Basic Object Adapter (BOA), interfaces to In-
formation Resource Dictionary Systems (TRDS), and Electronic Data Inter-
change (EDI).

The distribution services layer supports relaxed transaction processors
and a distributed agent facility that interacts with client applications, di-
rectory services, repository managers, and Carnot’s declarative resource con-
straint base to build workflow scripts. The workflow scripts execute tasks
that properly reflect current business realities and accumulated corporate
folklore. The declarative resource constraint base i1s a collection of predi-
cates that expresses business rules, inter-resource dependencies, consistency
requirements, and contingency strategies throughout the enterprise. Carnot’s
Distributed Semantic Query/Transaction Manager (DSQTM), based on the
work of OMNIBASE [Rus89], provides relaxed transaction processing ser-
vices. It dynamically expands a query to include access to all semantically
equivalent and relevant information resources, and also groups any updates
to these resources as a set of independent transactions that interact according
to a dynamically defined relaxed transaction semantics.

The semantic services provide a global or enterprise-wide view of all the
resources integrated within a Carnot-supported system. This view, or por-
tions of the view, can be compiled for use within the distribution services
layer. The Enterprise Modeling and Model Integration facility uses a large
common-sense knowledge base as a global context and federation mechanism
for coherent integration of concepts expressed within a set of enterprise mod-
els. A suite of tools uses an extensive set of semantic properties to represent
an enterprise information model declaratively within the global context and
to construct bidirectional mappings between the model and the global con-
text. There are two interesting features of semantic services: First, a key to
coherent integration is Carnot’s use of the Cyc common-sense knowledge base

14 Ling Liu, Ling Ling Yan, M. Tamer Ozsu

as a global context. Further, Carnot uses the knowledge representation lan-
guage of Cyc to express both the information structures and the processes of
an enterprise. The broad coverage of Cyc’s knowledge enables it to serve as
a fixed-point for representing not only the semantics of the formalisms, but
also the semantics of the modeled domains. Second, the relationship between
a domain concept from a local model and one or more concepts in the global
context is expressed as an articulation axiom equivalence mapping. Enterprise
models are then related to each other — or translated between formalisms — via
this global context by means of the articulation axioms. As a result, each en-
terprise model can be integrated independently, and the articulation axioms
that result do not have to change when additional models are integrated. This
same technology can also be used to integrate database schemas and database
views. Besides its common-sense knowledge of the world, Cyc knows about
most data models and the relationships among them. This enables database
transactions to interoperate semantically between, for example, relational and
object oriented databases.

The access services provide mechanisms for manipulating the other four
Carnot services. The access services allow developers to use a mix of user
interface software and application software to build enterprise-wide systems.
Some situations (such as background processing) utilize only application code
and have no user interface component. In other situations, there 1s a mix of
user interface and application code. Finally, there are situations in which user
interface code provides direct access to functionalities of one or more of the
four services.

4.3 DIOM

The DIOM project [LPL96, LP97] presents a concrete implementation of
the mediator-based interoperability management infrastructure described in
Section 2.2. Users may pose queries to DIOM on the fly, namely queries can
be specified independently of the structure, the content, or the existence of
information sources. The DIOM query mediation manager first filters the
queries by creating user query profiles and then dynamically matches the
queries to the information sources that are relevant at the time the query
is processed. Additional features that distinguish DIOM from other systems
include the dynamic query scheduling strategies, such as the dynamic query
routing algorithms, the dynamic query execution planning strategies, and the
set of result assembly operations. In DIOM application-specific mediators are
created through specialization of meta mediator query processing framework,
which includes DIOM metadata manager for managing user query profiles
and source capability profiles, the distributed query scheduler, and the generic
wrapper manager functions. Figure 2 presents a sketch of the DIOM system
architecture currently developed using SunJDK version 1.1 and accessible
from http://ugweb.cs.ualberta.ca/diom/.

Interoperability in Information Delivery Systems 15

User Interfa Answ
Metadata Catalog (\f,gwlib:ej)ce Hower
User Que:
I‘Z[Profilg Y \ ¢ Query (in forms)
K Interface Query Interface Manager
G Repository | —— | User Query Profile‘IDL Generator
E | Source
R | Content + i Query (in IDL)
Capability
Profile Dynamic Query Processing Engine
Profiles Data
Dynamic Query Dynamic Query Query Result

Routing Execution Planner Assembler

Execution Schedule

Run Time Supervisor
(select, project, join, union, ...)

Wrapper Manager

Subquery Subquery SubqueryResult| | "
Translation Execution Packaging

Metadata
Catalog

Information Source:

Fig. 2. The distributed query scheduling framework in DIOM

The main task of DIOM distributed query mediation manager is to coor-
dinate the communication and distribution of the processing of consumer’s
queries between a mediator and wrappers to the relevant data sources. The
processing at mediator layer includes query routing, query execution plan-
ning, and result assembly. The processing at wrapper layer involves the sub-
query translation and execution and the subquery result packaging.

Query routing is responsible for locating and selecting relevant informa-
tion sources that can actually contribute to answering a query. Query exe-
cution planner is responsible for the decomposition of a user query into a
set of subqueries, each targeting at a single source, and then generating a
query execution schedule that 1s optimal in the sense that it utilizes the po-
tential parallelism and the useful execution dependencies between subqueries
to restrain the search space, minimize the overall response time, and reduce
the total query processing cost. Subquery translation and execution process
basically transforms each subquery into an executable program that can be
executed at the source. The DIOM query result packaging and assembly pro-
cess involves two semantic resolution phases for resolving the semantic vari-
ations among the subquery results: (1) packaging each individual subquery
result into a DTOM object (done at wrapper level) and (2) assembling results
of the subqueries in terms of the consumers’ original query statement (done
at mediator level). The semantic attachment operations and the consumers’

16 Ling Liu, Ling Ling Yan, M. Tamer Ozsu

query profiles are the main techniques that are used for resolving semantic
heterogeneity implied in the query results [LP97].

4.4 DISCO

DISCO, the Distributed Information Search COmponent [TRV96, TRV97],
adopts the general mediator-based paradigm, and can be seen as another
concrete instance of the mediator-based approach. The DISCO mediator data
model is based on ODMG-93 data model specification. It extends the ODMG-
93 Object Definition Language (ODL) with two constructs:

1. Extents. An interface in DISCO may have a bag of extents. Each extent
in this bag mirrors the extent of objects of a particular data source,
associated with the interface. This extension is fully integrated into the
ODMG model, the full modeling capabilities of the ODMG model are
available for organizing data sources. DISCO evaluate queries on extents
and thereby on data sources.

2. Type mapping. This extension associates type mapping information be-
tween a mediator type and the type associated with a data source.

In addition, DISCO defines two standard ODMG interfaces: Wrapper and
and Repository. A DBA can add a new data source into DISCO in a few
steps. First, the DBA creates an instance of the Repository:

r0 := Repository (host="rodin.inria.fr", name="db",
address="123.45.6.7")

Second, the DBA locates a wrapper, implemented separately, for the data
source. A wrapper is an object with a standard interface that identifies the
schema and functionality of a source. It is also able to answer queries, such as
w0 := WrapperPostgress().In the third step, the DBA defines the type in
the mediator which corresponds to the type of the objects in the data source.

interface Person {
attribute String name;
attribute Short salary;}
}

Finally, the DBA specifies the extent of this mediator type: extent person0
of Person wrapper w0 repository rO; This adds extent person0 to the
Person interface. The name person0 is determined by the name of the data
source in the repository, it could be a relation name or an object type name.
To add a new data source containing Person objects, say personi, one needs
to add an extent called personi to the mediator type Person explicitly, i.e.,
extent personl of Person wrapper w0 repository ri; DISCO provides
constructs to specify a name for the Person extent that includes all the sub-
extents specified as above. Assume this extent is defined to be person. Then

Interoperability in Information Delivery Systems 17

DISCO is able to process queries such as select x.name from x in person
where x.salary > 10.

Whenever a new source becomes available or a new relation or class type is
added to an existing source, it is DBA’s task to include the new object (class
or relation or data source) into the existing mediator types by following the
above procedure. This process can become expensive when a large number
of mediators need to include this new class or this new source.

Query processing in DISCO is performed by cooperation between the
mediator and the wrappers in two ways: (1) Determine whether a subquery
can be evaluated by the wrapper; (2) Determine the cost of a query execution
plan where the wrapper evaluates some subqueries. A partial query evaluation
model where the answer to a query is another query is also studied, which
defines semantics of accessing unavailable data sources [TRV96].

4.5 InfoSleuth

InfoSleuth [BBa97] is a mediator-based project at MCC that extends Carnot
technology to meet the challenges presented by the World Wide Web. Al-
though Carnot has developed semantic modeling techniques that enable the
integration of static information resources and pioneered the use of agents
to provide interoperation among autonomous systems, it was not designed
to operate in a dynamic environment where information sources change over
time and new information sources can be added autonomously and without
central control.

InfoSleuth integrates the following new technological development in sup-
porting mediated interoperation of data and services over information net-
work:

— Agent Technology. Specialized agents that represent the users, the informa-
tion resources, and the system itself cooperate to address the user’ infor-
mation requirements. Adding a new source implies adding a new agent and
advertising its capabilities. This provides a high degree of decentralization
of capabilities, which is the key to system scalability and extensibility.

— Domain models (ontologies). Ontologies give a concise uniform and declar-
ative description of semantic information, independent of the underlying
syntactic representation or the conceptual models of information bases.

— Information brokarage. Broker agents match information needs with cur-
rently available resources, so retrieval and update requests can be properly
routed to the relevant sources.

— Internet Computing. Java and Java Applets are used to provide users
and administrators with system-independent user interfaces, and to en-
able ubiquitous agents that can be deployed at any source of information
regardless of its location or platform.

As shown in Figure 3, InfoSleuth is comprised of a network of cooperative
agents communicating by means of the high level query language KQML.

18 Ling Liu, Ling Ling Yan, M. Tamer Ozsu

ontology
agent

server.com
RMI

registry

client.com

resource

Netscape
agent

task
planning
Execution

ey Quory LDL++
agent agent resource
agent

KQML

resource
agent

analysis
agent

KQML

Fig. 3. Architecture of InfoSleuth

Users specify requests and queries over specified ontologies via applet-based
user interfaces. The dialects of the knowledge representation language KIF
and SQL are used internally to represent queries over specified ontologies.
Queries are routed by mediation and brokage agents to specialized agents for
data retrieval from distributed resources, and for integration and analysis of
results.

Agents process requests either by making inferences based on local knowl-
edge, by forwarding the request to a more appropriate agent, or by decom-
posing it into a collection of subrequests and then routing these to other
agents and integrating the results. Decision on relevant source selection is
based on the InfoSleuth ontology, a body of metadata that describes agents’
knowledge and their relationships with one another.

4.6 MIND

The METU INteroperable DBMS (MIND) [DDO96] is a multidatabase
system that supports integrated access to multiple heterogeneous and au-
tonomous databases. MIND can access Oracle 7, Sybase, Adabas and MOOD,
a home grown OODB developed at METU, Turkey. The canonical data model
and query language of MIND are object-oriented. MIND differs from other
multidatabase systems in that it uses CORBA as the model for managing
the distribution and system level heterogeneities. MIND has a distributed
and object-oriented architecture as shown in Figure 4.

The central components of MIND are two object classes: the Global
Database Agent (GDA) class and the Local Database Agent (LDA) class.

Interoperability in Information Delivery Systems 19

- . Schema
Object Factory T ~>
anager

Global Database Agent

Query Processor Query Processor

{Local DB Agent } { Local DB Agent } { Local DB Agent } { Local DB Agent }

| | i |

Sybase Oracle 7 Adabas MOOD

Fig. 4. MIND Architecture

Objects of these classes can be created by an object factory. A LDA ob-
ject acts as a local DBMS driver, and is responsible for maintaining export
schemas provided by the local DBMSs, and translating queries received in the
canonical query language to the query language of the local DBMSs. A GDA
object is responsible for parsing, decomposing and optimizing the queries ac-
cording to the information obtained from the Schema Information Manager
object. It also provides global transaction management that ensures serializ-
ability of multidatabase transactions without violating the autonomy of local
databases. When a user wants to query MIND, a GDA object 1s created by
the object factory. The location and implementation transparency for this
object is provided by ORB. A GDA object contains an object of the Global
Query Manager (GQM) class, which processes queries, and an object of the
Global Transaction Manager (GTM) class which performs global transaction.

MIND views each participating database as an DBMS object registered
with an ORB with a standard interface (but different implementation). Ob-
jects in individual databases are not registered with the ORB, that is, they are
not accessible via the ORB; they are only accessible by the local DBMS where
they reside. For example, consider a data source storing Person information.
With the MIND approach, the interface of Person objects is not known to
the ORB. The fact that MIND does not allow registration of fine-granularity
objects makes MIND different from the distributed object management ap-
proach towards database interoperability as described in [Man92], where all
objects in all databases form an object space that is accessible via the ORB.
The way MIND uses CORBA is largely as a sophisticated communication
backplane, and it has little impact on the major technical aspects of MIND,
such as schema integration and query processing.

20 Ling Liu, Ling Ling Yan, M. Tamer Ozsu

Schema integration in MIND is performed by DBAs using an object
definition language that allows specification of interfaces of objects in the
global schema and how they relate to objects exported by various data
sources. MIND also develops some query processing techniques, especially
in global query optimization [EDNO96, ONK*96], including (1) cost-based
global query optimization in case of data replication. This technique deals
with site selection issues in cases when a subquery can be executed at more
than one site. (2) cost-based inter-site join optimization. This technique starts
from a left-deep join tree and tries to transform this tree into a more bushy
tree so that response time can be reduced by exploiting parallelism. (3) dy-
namic optimization of inter-site joins. This technique is still cost-based but
is dynamic in that it uses partial results at run time, do some cost estima-
tion and determine the next step. This approach reduces uncertainties in cost
estimation.

4.7 TSIMMIS

The TSIMMIS project at Stanford [PGMWO95] [PGGMU95] [PGMU96]
[PAGM96] represents a big step away from most previous work. Rather than
a semantically rich, structured data model, TSIMMIS uses a self-describing
model, the Object Exzchange Model (OEM) for expressing integration and for
querying. OEM is an information exchange model; it does not specify how
objects are stored, 1t only specifies how objects are to be sent and received.

In TSIMMIS, one does not need to define in advance the structure of an
object and there is no notion of schema or object class. Each object instance
contains its own schema. An OEM object consists of four fields: an object
td, a label which explains its meaning, a type and a value. Mostly, the object
ids are internal strings that are used for linking objects. The following OEM
object describes a person Fred:

< pl, person-record, set, {componenty, components, components, } >
< componenty, name, string, “Fred”>

< components, office-number-in-building-5, integer, 333>

< components, department, string, “Toy”>

Each data source to be accessed are viewed as a collection of OEM ob-
jects in the above form, with no predefined structure. Querying in OEM is via
patters of the form <object-id, label, type, value>, where constants or vari-
ables can be put in each position. When a pattern contains constants in the
label (value) field, it matches successfully only with OEM objects that have
the same constant in their label (value). For instance, the following pattern
would match successfully with person Fred given earlier:

<person-record, {<name “Fred”>, <department “Toy”’>}>

Interoperability in Information Delivery Systems 21

Essentially, this pattern matches with all person-record that has a component
name with value “Fred” and a component department with value “Toy”. No-
tice that this pattern matching assumes no structure on the objects, as long as
the object has the right label with the right value, it matches successfully. This
effectively makes the labels (person-record, name, office-number-in-building-
5, department) first-class citizens. Labels do not put any constraints on what
type of queries are acceptable, rather, they can be queried themselves.

Queries and view specifications in TSIMMIS are also formed using pat-
terns. The TSTMMTIS Mediator Specification Language (MST) is a rule-based
language. For instance, the following rule defines a view ToyPeople that con-
tains names of all people who work in the Toy department:

< ToyPeople, {<Name N>}>:- <person-record, {<name N>, <department
((T0y77>}>’

The following query finds all persons who have name “Fred”:
FredPerson :- FredPerson:<person-record, {<name “Fred”>}>

In this query, FredPerson is an object variable. The formula to the right of :-
says that FredPerson must bind to all person-record with a sub-object by the
label of name and value of “Fred”. The symbol :- says that all such objects are
included in the query result. Notice that the query result is potentially het-
erogeneous with objects with all sorts of structures, except that each object
must have a label person-record and a name sub-object with value “Fred”.

TSIMMIS wrappers must be built for every data source in the access
scope. TSIMMIS provides a wrapper implementation toolkit to support fast
generation of wrappers. These wrappers are indeed an OEM query processor.
The wrapper implementer is required to (1) describe the types of OEM queries
that the source can handle using query templates; and (2) map these query
templates to local queries/actions at the data source.

Intuitively, OEM is so simple and flexible that it can represent data of
any type, from unstructured random records, to relational data, to complex
objects. After all types of data is represented in OEM, they can then be in-
tegrated using the set of techniques developed in TSIMMIS. The TSIMMIS
approach uses logic rules that transform and merge OEM objects from var-
ious data sources to form a mediator view. This view can then be queried.
Query processing in TSIMMIS leverages deductive database techniques; it
includes view expansion and execution plan generation. In [PGMW95], var-
ious aspects of the OEM model are defined and discussed. ITn [PGGMU95],
an approach for developing OEM wrappers for semi- or unstructured data
sources is described. In [PGMU96], an OEM-based mediation language and
its implementation is described. This language allows creation of integrated
views in the mediator that removes various types of semantic conflicts. In
[PAGMY6], an approach for object matching (referred to as object fusion in
this paper) using OEM is described. This approach allows resolution of in-

22 Ling Liu, Ling Ling Yan, M. Tamer Ozsu

stance level conflicts. An approach for global optimization of queries posed
against these “fused” object is also described.

In the database community, OEM is also the representative of an emerging
data model that is not constrained by database schemas. This feature alone
removes a major representational heterogeneity among data sources. The
labelled-tree structures like those in OEM can represent all sorts of data
structures equally well and have a great potential in supporting integration
of heterogeneous data. Query and manipulation language and optimization
techniques are being developed for this new data model [BDHS96].

4.8 Comparison with respect to Data Delivery Capabilities

In previous sections we have described several projects or prototype sys-
tems in terms of the capabilities and mechanisms they use to process queries
through mediators and wrappers and the support they provides for interop-
erability and scalable distributed object management.

In addition to Broadcast Disks project which implements a push-only
data delivery system with broadcast protocol, all the others are pull-only
data delivery systems, although the DIOM project has developed techniques
for supporting continual queries [LPBZ96], which use hybrid mode of data
delivery with publish/subscribe protocol. Table 2 shows a brief comparison
of these systems with respect to the variety of data delivery capabilities.

Table 2. A comparison with respect to delivery capabilities

request/ | publish/ | broadcast | pull | Push | hybrid
respond | subscribe
Broadcast Disk Y Y Y Y
Carnot Y Y
DIOM Y Y Y Y
limited
DISCO Y Y
InfoSleuth Y Y
MIND Y Y
TSIMISS Y Y

5. Enabling Technology for Interoperability

5.1 CORBA

The CORBA (Common Object Request Broker Architecture) technology en-
ables object-oriented computing in distributed heterogeneous environments.

Interoperability in Information Delivery Systems 23

The main features of CORBA include the ORB Core, the Interface Defini-
tion Language (TDL), the Interface Repository (TR), the language mappings,
the stubs and skeletons, dynamic invocation and dispatch (DIT and DST), the
object adaptors and the inter-ORB protocols. The general structure of an
ORB is illustrated in Figure 5.

[Client } [Object Implementation

\

Dynamic
Invocation Stubs ORB DSI Skeleton Object
Interface Interface Adapter
(DIl
ORB Core

Fig. 5. Common Object Request Broker Architecture

The ORB core delivers requests to objects and returns any responses to
the callers. The key feature is to facilitate transparent client/object com-
munication by hiding object location, implementation, execution states, and
communication mechanisms. To make a request, the client specifies the target
object by using an object reference. These are created upon CORBA object
creation; they are immutable and opaque references that only ORB cores
know how to manipulate.

Before a client can make requests on an object, it must know the types of
operations supported by the object. The Interface Definition Language (IDT.)
is used to define an object’s interface. IDL is a language independent, declara-
tive language, not a programming language. It forces interfaces to be defined
separately from object implementations. Objects can be constructed using
different programming languages and yet communicate with one another.
Language Mappings determine how IDL features are mapped to facilities of a
given programming language. OMG has standardized language mappings for
C, C4+4 and Smalltalk. IDL language mappings are where the abstractions
and concepts specified in CORBA meet the “real world” of implementation.

A CORBA-based application must have a way to know the types of inter-
faces supported by the objects being used. The CORBA Interface Repository
(TR) allows the OMG IDL type system to be accessed and written program-
matically at runtime. IR is itself a CORBA object that has a standard in-
terface. Using this interface, an application can traverse an entire hierarchy
of IDL information. IR is usually used together with the CORBA dynamic
invocation interface and as a source for generating static support code for
applications.

24 Ling Liu, Ling Ling Yan, M. Tamer Ozsu

OMG IDL language compilers and translators generate client-side stubs
and server-side skeletons. These are interface specific code segments that co-
operate to effectively exchange requests and results. A stub is a mechanism
that effectively creates and issues requests on the client’s behalf. A skeleton
is a mechanism that delivers requests to the CORBA object implementation.
Communicating through stubs and skeletons is often called static invocation
because the stubs and skeletons are built directly into the client application
and object implementation. For clients, a stub is an adapter that adapts the
function call style of its language mapping to the request invocation mech-
anism of the ORB. To object implementation, the skeleton is a prozy that
handles translation issues in passing request in the right format to an object
implementation and also passing result back to the ORB. In addition to the
static invocation via stubs and skeletons, CORBA supports two interfaces for
dynamic invocation: Dynamic Invocation Interface (DIT) and Dynamic Skele-
ton Interface (DSI). DIT allows clients to invoke requests on object without
stubs. DSI allows servers to be written without skeletons.

The Object Adaptor (OA) is the “glue” between CORBA object imple-
mentation and the ORB itself. OA is an object that adapts the interface of
another object to the interface expected by a caller. It is an object that uses
delegation to allow a caller to invoke requests on an object even though the
caller does not know the object’s true interface.

Prior to CORBA 2.0, one of the biggest complaints about commercial
ORB products was that they did not interoperate. Lack of interoperability
was caused by the fact that earlier CORBA specification did not mandate
any particular data formats or protocols for ORB communications. CORBA
2.0 specifies an interoperability architecture based on the General Inter-ORB
Protocol (GIOP), which specifies transfer syntax and a standard set of mes-
sage formats for ORB interoperation over any connection-oriented transport.
CORBA 2.0 also mandates the Internet Inter-ORB Protocol (ITOP), which is
an implementation of GIOP over TCP/IP transport. With IIOP, ORBs can
interoperate with one another over the Internet.

5.2 COM/OLE

This is the alternative standard to CORBA that is developed by Microsoft.
COM (Common Object Model) is similar in functionality to CORBA ORB,
while OLE (Object Linking and Embedding) is the complete environment for
componentization for handling compound documents. COM/OLE is less well-
defined than CORBA and since 1t is a single vendor proposal, its contents
are fluid and changing. Currently, it is a single machine environment with
distribution to come with the release of Cairo.

COM object model is quite different than CORBA’s; COM objects are
really not “objects” in the commonly accepted sense of the term. The main
differences with CORBA object model are the following:

Interoperability in Information Delivery Systems 25

— A COM (or OLE) object is one which supports one or more interfaces as
defined by its class. Thus, there could be multiple interfaces to an object.

— All objects support one interface called IUnknown.

— COM objects have no identifiers (OIDs).

— There is no inheritence defined among object classes. The relationship
among them is defined by means of containment/delegation and aggre-
gation.

— COM objects do not have state; applications obtain a pointer to interfaces
that point to the methods that implement them.

— There are two definition languages: IDL for defining interfaces and ODL
for describing object types.

Clients access COM objects by means of the interfaces defined for each
object. This is accomplished by indirection through an Interface Function
Table each of whose entries points to an interface implementation inside the
COM object. There is one Interface Function Table per each interface that
the object supports. The client obtains a pointer to the Interface Function
Table that corresponds to the particular interface that it wishes to access and
invokes the interface functions contained therin. This method isolates clients
from interface implementations.

A COM server performs a number of functions. It encapsulates a COM
object and a class factory. In addition to the COM object interfaces that it
supports, it provides an IClassFactory interface to interact with the class
factory. The functions that the server performs are the following: (a) it im-
plemetns a class factory interface, (b) it registers the classes that it supports,
(c) it initializes the COM library, (d) it verifies that the library version is
compatible with the object version, (e) it implements a method for termi-
nating itself when no clients are active, and (f) it terminates the use of the
library ewhen it is no longer needed.

There are three types of COM servers. An in-process server is one that
shares the same process space as the clients that connect to it. A local server
runs on the same machine as the clients, but in a different process space.
The interconnection between the clients and the COM server in this case is
by means of lightweight RPC. Finally, a remote server is one that runs as a
separate process on a separate machine. In this case, the connection between
the clients and the server is by means of DCE RPC.

6. AURORA and its Application to Electronic
Commerce

The AURORA project at the University of Alberta, in collaboration with
IBM Canada, is developing a collection of mediators that can be used for
constructing integrated (read only) access to heterogeneous and autonomous
data sources. The goal of the project is to make such access scalable and

26 Ling Liu, Ling Ling Yan, M. Tamer Ozsu

efficient. The target application driving the research in AURORA is electronic
commerce.

6.1 A Motivating Example: Virtual Catalogs in Electronic
Commerce

A virtual shopping mall is a typical electronic commerce (EC) application. A
key component in a virtual mall is a catalog system. Companies organize their
catalogs differently. This gives rise to a set of heterogeneous and autonomous
catalogs. When the number of participating catalogs is large, it is difficult
for a shopper to perform cross-catalog searching or comparative shopping
in order to locate items of interest. One possible solution to this problem is
to require all vendors to re-organize their catalogs in a common format and
merge all the catalogs into a central catalog database which allows customers
to perform sophisticated searching without dealing with individual catalogs.
This requires re-engineering of existing catalogs. In general, vendors want to
participate in the central catalog without making changes to their existing
catalogs. One solution is to create a wvirtual catalog that has the look and
feel of a central catalog but holds no physical catalog information. Upon a
customer request, this catalog retrieves relevant information from (multiple)
individual catalogs and assemble an answer. Such a virtual catalog should
satisfy the following requirements:

— It is up-to-date but does not violate the autonomy of the participating
catalogs.

— Its search performance does not degrade as the number of participating
catalogs increases.

— It allows easy inclusion of new catalogs and integrates with other EC ap-
plications.

— It is easy to construct. Tools should be provided to assist in construction.

The AURORA project potentially allows construction of such virtual catalog.
AURORA adopts the mediator paradigm as described in [Wie92]. Tt has two
main themes: (1) a scalable mediation model; and (2) the enabling techniques.

6.2 Homogenization and Integration Mediators: a 2-tier
Mediation Model

A mediation model describes how heterogeneities among data sources are per-
ceived and handled. The AURORA mediation model, shown in Figure 6, is
a 2-tier model. Tt 1s 2-tier because it models mediation as a 2-step process:
homogenization followed by integration, performed by respective mediators.
The original mediator framework proposed by [Wie92] encourages specializa-
tion of mediators but using specialized mediators for accessing heterogeneous
data sources has not been explored before. Most previous mediator systems
are 1-tier, providing a single type of mediator. AURORA’s 2-tier mediation
model is designed to allow scalable mediation.

Interoperability in Information Delivery Systems 27

Application 1 Application 2
Integration Integration
Mediator Mediator

Homogenization Homogenization Homogenization Homogenization
Mediator Mediator Mediator Mediator

‘ Wrapper ‘ ‘ Wrapper ‘

Fig. 6. The AURORA Mediation Model

6.2.1 AURORA’s 2-tier Mediation Model. We distinguish between two
categories of heterogeneities among data sources: schematic mismatches that
arise when the same application domain is modeled differently; and instance
level conflicts that arise when inconsistent values on the same real world ob-
ject are recorded. Schematic mismatches must be resolved first, otherwise
there is no basis for further integration. The process of resolving schematic
mismatches is referred to as homogenization. In AURORA, specialized media-
tors, the homogenization mediators, support this process. The task of homog-
enization is to map a common application model onto a participating data
source that models the same application (differently and partially) by con-
structing a homogenizing view on top of it. The integration mediator “glues”
a large number of data sources together by combining all the homogenizing
views into an integrated view. In this process, instance level conflicts must
be resolved.

6.2.2 The 2-tier Mediation Model and Scalability. To include a new
data source into the access scope, one must resolve two issues:

1. Communication. Tt must be possible to “talk” to the data source. A
wrapper is used to remove idiosyncrasies of the data source.
2. Semantic integration.

Scalability requires that both steps be performed rapidly. For 1, this requires
rapid, if not automatic, wrapper generation. Various enabling techniques have
already been developed [PGGMU95]. Much is known about how 2 can be
done; the scalability aspect of it has not been well addressed. The tradi-
tional approach is to derive an integrated view from all the data sources in a
monolithic integration specification. This approach does not favor scalability
because adding or removing a data source potentially requires the integration
specification to be modified. There has been no methodology that prescribes
incremental modifications. When the number of data sources involved is large,
the specification is difficult to modify or reconstruct.

28 Ling Liu, Ling Ling Yan, M. Tamer Ozsu

AURORA’s 2-tier mediation model requires that data sources be homog-
enized before being integrated. The scalability issue in AURORA is reduced
to the issues of rapid homogenization of individual data sources and the
rapid integration of multiple data sources. Homogenization can be performed
in parallel among sources. It is a process that concerns single data sources;
it has good potential to be fast. AURORA provides tools to assist in this
process. Integration handles multiple but homogeneous (although still au-
tonomous) sources. To achieve scalability of this step, AURORA integration
mediator assumes that the integrated view is pre-defined by the application
requirement. Let this view be pre-defined as V3. To integrate objects in each
data sources (these data sources now appear as homogenization mediators)
into Vi, AURORA requires these objects to be registered as fragments of ob-
jects defined in Viy. Removing a source from the access scope only requires
the relevant registrations to be cancelled. This way the integration can be
performed in a plug-and-play fashion.

6.3 AURORA Mediators as Distributed Components

AURORA does not restrict the canonical data model to a specific one that
is deemed to be most “suitable”. Rather, AURORA provides mediators and
wrappers in two popular data models, the relational data model and the
ODMG object data model. Necessary facilities are provided to allow the two
data models to coexist seamlessly. AURORA mediators are classified along
two dimensions: the canonical data model and the specialty, homogenization
or integration. Figure 7 shows this classification.

Canonical Data
Mediator Model Relational Object-Oriented
Type
Homogenization AURORA-RH | AURORA-OH
Integration AURORA-RI AURORA-OI

Fig. 7. AURORA Mediator Classification

AURORA designs and develops three types of software components:
the wrappers, the homogenization mediators and the integration mediators.
These are provided as distributed components that communicate and coop-
erate via an Object Request Broker (ORB), as shown in Figure 8. AURORA
wrappers and mediators support pre-defined interfaces, as shown in Figure 9.
These are the only interfaces via which a wrapper/mediator can be accessed
by the application or by other AURORA mediators.

A middleware that facilitates integrated access to multiple heterogeneous
data sources can be constructed by using a network of mediators that cooper-
ate with one another to provide an integrated data service. With AURORA,

Interoperability in Information Delivery Systems

Application

Object Request Broker
Interface Interface Interface
_AUROI_IA AUBO_RA_ AURORA
integration homogenization wranner
mediator mediator PP

Fig. 8. AURORA Mediators/Wrappers and ORB

Schema Export | Query | Event Notification
Service Service Service

AURORA Wrapper

Schema Export| Query | Materialization | Event Notification
Service Service Service Service

AURORA Homogenization/Integration
Mediator

Fig. 9. The AURORA Mediator Interfaces

29

30 Ling Liu, Ling Ling Yan, M. Tamer Ozsu

one can choose between relational and object-oriented components. The use
of AURORA mediators in building middleware is best illustrated by Figures
10 and 11. AURORA-O mediators have the built-in capability of accessing
AURORA-R components.

Application/Use Application/Use

CTRCT

W W W W W w

O O & o LO A

Fig. 10. Application Using AURORA Mediators (Uniform)

Application/Use

W [e

W1 W2 W3 W4 WSO W6

O O A O

Fig. 11. Application Using AURORA Mediators (Mixed)

Interoperability in Information Delivery Systems 31

6.4 AURORA Mediator Development Workbench

Each AURORA mediator is a mediator development workbench consisting of
a mediator skeleton and a toolkit named MAT.

Mediator Skeletons. The most important components in a mediator
are an integrated view over (multiple) data sources and a query processor
that answers queries posed against this view. Building a mediator means
building the view, the query processor, and software modules that support
other standard services. In AURORA, mediators are constructed from medi-
ator skeletons that have all the necessary components of a mediator except
for the view.

Mediator Author’s Toolkits (M ATs). In AURORA, a mediator au-
thor chooses a mediator skeleton, identifies heterogeneities among the sources,
and defines views into the mediator skeleton to resolve the heterogeneities.
AURORA MATSs assist the mediator authors in performing such tasks. This
scenario is shown in Figure 12. A MAT has two main functionalities: it man-
dates a mediation methodology and 1t provides Mediation Enabling Operators
(MEOs).

Application /End-user/ Other mediators

|

Mediator Author -
AURORA Mediator
¢ Standard Service Interfaces
AURORA
Mediator Author’s AURORA Mediator Skeleton
Toolkit (MAT)
Mediator/Wrapper ‘ ‘ Mediator/Wrapper ‘ ‘ Mediator/Wrapper ‘

Fig. 12. General Form of AURORA Workbenches

6.5 Homogenization Mediators

The architecture of AURORA-RH is shown in Figure 13. MAT-RH is a
toolkit that assists a mediator author in constructing a homogenizing view.
It provides a set of MEOs and mandates a homogenization methodology.
Each tool in the toolkit allows specification of transformations and domain
mappings. Transformations are expressions consisting of the AURORA-RH
MEOs and the usual relational operators. Domain mappings are arbitrary
mappings. This information is captured in the View Definition Repos-
itory and are used for query processing. AURORA-RH Primitives are

32 Ling Liu, Ling Ling Yan, M. Tamer Ozsu

MEQOs; they extend the relational algebra to form a Mediation Enabling Al-
gebra (MEA), MEA-RH. AURORA-RH Query Processor (AQP) pro-
cesses mediator queries posed against the target database. It rewrites such
a query into a (optimal) set of queries over the source database, sends these
queries for execution and assembles the answer to the mediator query from
the returned data.

MAT-RH Skeleton-RH

Mediator |7 DUE AURORA-RH Query Processor (AQP)

Author
e // & Query Query Query
f Z 1+=| RLE Rewriter | Optimizer | Execution Engine
§ SME-2 s
—
/

/

/

SME-1 View Definition AURORA-RH
1E

Repository Primitives
)

1 |

\]
‘ Wrapper

% Source DB

Fig. 13. AURORA-RH Workbench

6.5.1 MAT-RH and AURORA-RH Query Processing. MAT-RH iden-
tifies a wide range of domain and schema mismatches and mandates a
methodology to resolve them systematically. It also provides constructs for
expressing such resolutions. The types of mismatches considered by MAT-RH
are the following:

Cross-over schema mismatches. A type 1 cross-over mismatch hap-
pens when a concept is represented as data in M but as relations in B. A
type 2 cross-over mismatch happens when a concept is represented as data
in M but as attributes in B.

Domain structural mismatches. This mismatch happens when a do-
main in M corresponds to a domain with a different data type or several data
domains in B.

Domain unit mismatches. This mismatch happens when a domain in
M assumes different unit of measurement from the corresponding domain(s)
in B.

Domain population mismatches. This mismatch happens when a do-
main in M assumes different population from the corresponding domain(s)
in B.

MAT-RH mandates a 6-step methodology for homogenization. It supports
each step by a specialized tool (environment) that accepts certain types of
transformations and domain mappings. This is shown in Figure 13 and is
further described below:

Interoperability in Information Delivery Systems 33

1. Construct an import schema. The supporting environment is the Import
Environment (TE).

2. Resolve type 1 schema mismatches. The supporting environment is the
Schema Mismatch Environment 1 (SME-1).

3. Resolve type 2 schema mismatches. The supporting environment is the
Schema Mismatch Environment 2 (SME-2).

4. Link relations. The supporting environment is the Relation Linking En-
vironment (RLE). RLE mandates that for each relation in the homoge-
nizing view, a prototype relation must be specified. This relation is close
to the target relation modulo domain mismatches.

5. Resolve domain structural mismatches. The supporting environment is
the Domain Structural Environment (DSE). DSE allows specification of
domain structural functions.

6. Resolve domain unit/population mismatches. The supporting environ-
ment is the Domain Unit Environment (DUE). DUE allows specification
of domain value functions.

Detailed description of these environments and their application are given in
[YOL97].

Query processing in AURORA-RH is based on MEA-RH. MEA-RH ex-
tends the relational algebra with operators specially designed for homog-
enization. These new operators are retrieve, pad, rename, and deriveAttr.
Homogenizing views are defined using these operators. When processing a
mediator query, AQP uses these view definitions to rewrite the query into
an algebraic formula in MEA-RH, transforms this formula into an “optimal”
form, and evaluates it with the participation of a relational wrapper. Details

of AQP are described in [YOL97].

6.6 AURORA Integration Mediators

AURORA integration mediators, AURORA-RT and AURORA-OT (Figure 7),
are responsible for integrating a large number of homogenized sources. Since
the sources are homogenized, the types of heterogeneities that the integration
mediator must handle is limited. First, lets give a closer look at the 2-tier
mediation model and the meaning of homogenization.

6.6.1 A Plug-and-Play Integration Mechanism. Lets assume that the
application view consists of a single relation R,. A data source is said to be
homogenized in regard to R, if:

1. Tt is structurally homogenized. Tt contains a single relation R, that is a
fragment of R,, that is, ATTR(R,) C ATTR(R,).

2. Tt is semantically homogenized. Each attribute in R, is the same as that
in Ry with the same attribute name.

Now the following plug-and-play integration mechanism can be imagined: To
“plug” a data source into the the integration mediator, we first homogenize

34 Ling Liu, Ling Ling Yan, M. Tamer Ozsu

this data source in regard to the application view, that is, construct a ho-
mogenizing view on top of the data source. We then register each relation in
this view with the integration mediator as a fragment of a global relation. To
“unplug” a data source from the integration mediator, we remove all frag-
ments from this source. When a particular source is down, all fragments from
this source are considered to be empty.

6.7 Constructing Virtual Catalogs with AURORA

Consider a number of vendors each having an autonomous catalog database.
A virtual catalog effort can be initiated by a third-party broker who seeks to
offer value-added services. The broker first design a common catalog struc-
ture, its data model and query language. To include a vendor into the virtual
catalog, the broker first homogenizes the vendor’s catalog using an AURORA
homogenization mediator. This process maps the vendor catalog structure
and semantics into that in the common catalog. After homogenization, it
should be straightforward to “plug” a catalog into an AURORA integration
mediator that supports the common catalog. While homogenization is a more
complex process, the broker can hire a few people to homogenize individual
vendor catalogs in parallel. Integration mediator is where large number of
virtual catalogs merge but the integration is a simple mechanism. Overall,
construction of the virtual catalog is scalable.

7. Conclusion

We have discussed several interoperability issues in large-scale distributed
information delivery systems from both architectural and technical perspec-
tive. We present two representative architectural paradigms: Multidatabase
management-based paradigm and Mediator-based information delivery paradigm.
The former contributes to the interoperability research in terms of techniques
for resolution of semantic heterogeneity and techniques for distributed query
optimization in tightly-coupled and somewhat closed distributed environ-
ments [She91, SL90]. The later contributes to the interoperability research
in terms of techniques for handling both structured data sources and semi-
structured or unstructured data sources, and techniques for providing scalable
and adaptable data delivery services in loosely-coupled and open distributed
environments.

Technically, we identify a number of data delivery characteristics in terms
of (1) delivery protocols, such as Client Request/Server Response, Server Pub-
lish/Client Subscribe, and Server Broadcast, (2) delivery modes, such as Pull-
only, Push-only, and Hybrid, and (3) delivery frequencies, such as periodic,
conditional, and ad-hoc. We analyse several data delivery schemes using dif-
ferent combinations of these characteristics (Section 3.4). For example, the

Interoperability in Information Delivery Systems 35

publish /subscribe protocol is typically used for server-initiated information
dissemination, where data is delivered automatically (push-only) or semi-
automatically (hybrid mode). The frequency of server push can be either
periodic or conditional. Ad-hoc delivery frequency does not make much sense
in practice for push-only mode. We argue that an advanced distributed in-
formation system must incorporate different types of information delivery so
that the system can be optimized according to various criteria, such as net-
work traffic and heterogeneity and constant evolution of online information
sources.

We illustrate the architectural and technical aspects of distributed infor-
mation delivery systems through a review of several existing research proto-
types and demonstrate the different implementation approaches used in prac-
tice, and the various solutions to the interoperability issues. We also report
our research and experience with AURORA, a mediator-based information
integration project, in collaboration with IBM Canada, and its application
to electronic commerce domain.

We believe that interoperability in large-scale distributed information de-
livery systems is one of the most critical functional requirements for many
enterprise-wide cooperative applications, such as business workflow automa-
tion, computer-aided software engineering (CASE), computer-aided design
(CAD) and manufacturing (CAM), and interactive programming environ-
ments.

References

[AAFZ95] S. Acharya, R. Alonso, M. Franklin, and S. Zdonik. Broadcast disks:
Data management for asymmetric communications environments. In Proceed-
ings of the ACM SIGMOD International Conference on Management of Data,
San Jose, CA, May 1995.

[Aea91] Ahmed and et al. The pagasus heterogeneous multidatabase system. IEEE
Computer, 24(12), 1991.

[AFZ97] S. Acharya, M. Franklin, and S. Zdonik. Balancing push and pull for data
broadcast. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, Tucson, Arizona, May 1997.

[BBa97] R. Bayardo, W. Bohrer, and R. Brice and et al. Semantic Integration of
Information in Open and Dynamic Environments. In SIGMOD 97, 1997.

[BDHS96] P. Buneman, S.B. Davidson, G.G. Hillebrand, and D. Suciu. A Query
Language and Optimization Techniques for Unstructured Data. In SIGMOD
96, pages 505-516, 1996.

[Bet94] Mark Betz. Interoperable objects: laying the foundation for distributed
object computing. Dr. Dobb’s Journal: Software Tools for Professional Pro-
grammer, October 1994.

[Cea94] R. Cattell and et al. The Object Database Standard: ODMG-93 (Release
1.1). Morgan Kaufmann, 1994.

[CHS91] C. Collet, M. Huhns, and W. Shen. Resource Integration Using a Large
Knowledge Base in Carnot. IEEE Computer, 24(12):55-62, December 1991.

36 Ling Liu, Ling Ling Yan, M. Tamer Ozsu

[DDOY%] A. Dogac, C. Dengi, and M.T. Ozsu. Building Interoperable Databases
on Distributed Object Management Platforms. Communication of ACM (to
appear), 1996.

[EDNO96] C. Evrendilek, A. Dogac, S. Nural, and F. Ozcan. Query Optimization
in Multidatabase Systems. Journal of Distributed and Parallel Databases (to
appear), 1996.

[FZ96] M. Franklin and S. Zdonik. Dissemination-based information systems. I[EEE
Bulletin of the Technical Committee on Data Engineering, 19(3):20-30, Septem-
ber 1996.

[Kea93] W. Kim and et al. On resolving semantic heterogeneity in multidatabase
systems. Distributed and Parallel Databases, 1(3), 1993.

[LP97] Ling Liu and Calton Pu. An adaptive object-oriented approach to integra-
tion and access of heterogeneous information sources. DISTRIBUTED AND
PARALLEL DATABASES: An International Journal, 5(2), 1997.

[LPBZ96] Ling Liu, Calton Pu, R. Barga, and T. Zhou. Differential evaluation of
continual queries. In TEFFE Proceedings of the 16th International Conference on
Distributed Computing Systems, Hong Kong, May 27-30 1996.

[LPL96] L. Liu, C. Pu, and Y. Lee. An adaptive approach to query mediation
across heterogeneous databases. In Proceedings of the International Conference
on Coopertive Information Systems, Brussels, June 19-21 1996.

[Man92] F. Manola et al. Distributed Object Management. International Journal
of Intelligent and Cooperative Information Systems, 1(1), March 1992.

[Mea92] F. Manola and et al. Distributed object management. International Jour-
nal of Intelligent and Cooperative Information Systems, 1(1), March 1992.
[ODV93] T. Ozsu, U. Dayal, and P. Valduriez. Distributed Object Management.

Morgan Kaufmann, 1993.

[ONK*96] F. Ozcan, S. Nural, P. Koksal, C. Evrendilek, and A. Dogac. Dynamic
Query Optimization on a Distributed Object Management Platform. In Pro-
ceedings of Fifth International Conference on Information and Knowledge Man-
agement (CIKM), Maryland, USA, 1996.

[PAGM96] Y. Papakonstantinou, S. Abiteboul, and H. Garcia-Molina. Object Fu-
sion in Mediator Systems. In VIL.DB 96, Bombay, India, September 1996.

[PGGMU95] Y. Papakonstantinou, A. Gupta, H. Garcia-Molina, and J. Ullman.
A Query Translation Scheme for Rapid Implementation of Wrappers. In Inter-
national Conference on Deductive and Object-Oriented Databases, 1995.

[PGMU96] Y. Papakonstantinou, H. Garcia-Molina, and J. Ullman. Medmaker:
A Mediation System Based on Declarative Specifications. In ICDFE 96, pages
132-141, New Orleans, February 1996.

[PGMWO95] Y. Papakonstantinou, H. Garcia-Molina, and J. Widom. Object Ex-
change Across Heterogeneous Information Sources. In ICDFE 95, pages 251-260,
Taipei, Taiwan, March 1995.

[Ram91] Sudha Ram. Special Issue on Heterogeneous Distributed Database Sys-
tems. IEEE Computer Magazine, Vol. 24, No. 12, December 1991.

[Rus89] M. Rusinkiewciz et al. OMNIBASE: Design and implementation of a mul-
tidatabase system. In Proceedings of the 1st Annual Symposium in Parallel and
Distributed Processing, pages 162-169, Dallas, May 1989.

[She91] Amit Sheth. Special Issue in Multidatabase Systems. ACM SIGMOD
Record, Vol.20, No. 4, December 1991.

[SL.90] A. Sheth and J.A. Larson. Federated database systems for managing dis-
tributed, heterogeneous, and autonomous databases. ACM Computing Surveys,
Vol. 22, No.3 1990. 183-236.

Interoperability in Information Delivery Systems 37

[TRV96] A. Tomasic, L. Raschid, and P. Valduriez. = Scaling Heterogeneous
Databases and the Design of Disco. In Proceedings of the International Confer-
ence on Distributed Computer Systems, 1996.

[TRV97] A. Tomasic, L. Raschid, and P. Valduriez. A Data Model and Query Pro-
cessing Techniques for Scaling Access to Distributed Heterogeneous Databases
in Disco. TEEFE Transactions on Computers, special issue on Distributed Com-
puting Systems, 1997.

[WCH*93] D. Woelk, P. Cannata, M. Huhns, W. Shen, and C. Tomlinson. Using
Carnot for Enterprise Information Integration. In Second International Confer-
ence on Parallel and Distributed Information Systems, pages 133136, January
1993.

[Wie92] Gio Wiederhold. Mediators in the Architecture of Future Information
Systems. TFEE Computer, pages 3849, March 1992.

[Wie95] Gio Wiederhold. 13 glossary. Draft 7, March 16 1995.

[YOL1.97] L L. Yan, T. Ozsu, and L. Liu. Accessing Heterogeneous Data Through
Homogenization and Integration Mediators. In Second IFCIS Conference on Co-
operative Information Systems (CooplS-97), Charleston, South Carolina, USA,
June 1997.

