International Journal of Cooperative Information Systems,
© World Scientific Publishing Company

Accessing Heterogeneous Data Through
Homogenization and Integration Mediators

LING LING YAN, M. TAMER OZSU, LING LIU
Laboratory for Database Systems Research
Department of Computing Science
University of Alberta
Edmonton, Alberta, T6G 2H1, CANADA

ABSTRACT

We develop a 2-tier, plug-and-play mediation model for accessing a large number of
heterogeneous data sources. This model defines a divide-and-conquer approach towards
information integration. It is more suitable than existing models for applications such as
electronic commerce. We also develop algebras that manipulate heterogeneous data, the
mediation enabling algebras, that provide new techniques for efficient query processing
in large-scale middleware. This paper presents the mediation model, architecture and
techniques studied in the AURORA project.

Keywords: Mediator architecture, Mediation enabling algebras, Scalability

1. Introduction

Today, a vast amount of digital information is provided by sources such as
database systems, WWW pages, file systems and spreadsheets. With the advent
of the Internet, the way people use information is changing rapidly. Software that
facilitates access to multiple heterogeneous information sources is needed. Such
software is commonly known as middleware. Building middleware is a complicated
process due to the heterogeneities among the sources at levels ranging from platform
to semantics '2; this complexity grows rapidly as the number of sources increases.
Middleware provides one-stop data access by managing the complexity on the appli-
cation’s behalf; it performs mediation between applications and diverse data sources.
The goal of the AURORA project is to develop a collection of mediators that can
be used for constructing middleware which provides integrated (read-only) access
to heterogeneous and autonomous data sources. This middleware must be:

1. Scalable. Adding or removing a data source from the access scope is easy.

2. Efficient. When processing a query, redundant data retrieval is minimized.

Research in AURORA has two main themes: a 2-tier mediation model and tech-
niques for efficient query processing.

2 Accessing Heterogeneous Data through Homogenization and Integration Mediators

1.1. 2-tier Mediation Model

AURORA models mediation as a 2-step process: homogenization followed by
integration, each performed by respective mediators. Homogenization removes id-
iosyncrasies of a source in structure and semantics; multiple sources can be homog-
enized independently and in parallel. After being homogenized, a data source can
be “plugged” into an integration mediator and removed by “unplugging” it. Since
all the sources are homogenized, the procedures of plugging and unplugging handle
a small range of heterogeneities and require minimum expertise. Homogenization
is more difficult and is assisted by AURORA tools.

AURORA’s mediation model defines a divide-and-conquer approach towards
information integration. It facilitates scalable data management in large scale ap-
plications such as electronic commerce. It also enables us to decompose the highly
complex technical issues in large-scale middleware, such as query optimization, into
more manageable problems. Although many previous mediation models exist, none
provides the above facilities. Many technical issues in large-scale middleware are
known to be difficult (ref. Sections 4.1.3, 4.1.4).

1.2. Efficient Query Processing

Much is known about identifying and resolving semantic heterogeneities '2:23,

the impact of this process on query processing efficiency is seldom discussed. We
intend to address this missing link. AURORA schema integration constructs are
tightly tied with algebras suitable for query optimization. These algebras, called
Mediation Enabling Algebras (MEASs), provide operations specifically designed for
manipulating heterogeneous and autonomous data. With MEAs, we identify the
impact of mediation and take it into account in query processing.

Mediator views as well as mediator queries are expressed in MEAs. The view
expressions are used to modify a mediator view query into an expression that is
then manipulated by an algebraic query optimizer in order to achieve optimal query
performance. The following techniques are studied:

1. MEAs for AURORA mediators.
2. Algebraic query rewriting and optimization in each MEA.

3. Selective materialization of data to enable intelligent query decomposition.

The rest of this paper is organized as follows. Section 2 describes a motivating
application for AURORA. Section 3 reviews existing approaches and techniques.
Section 4 describes the AURORA approach. Section 5 describes the technique
suite employed by AURORA-RH, the relational homogenization mediator. Section
6 describes AURORA integration mediators. Section 7 contains conclusions and
future work.

Accessing Heterogeneous Data through Homogenization and Integration Mediators 3

2. Electronic Commerce: a Motivating Application

A virtual shopping mall is a typical electronic commerce (EC) application. A
key component in this application is the catalog system. Companies organize their
catalogs differently. This gives rise to a set of heterogeneous and autonomous cata-
logs. When the number of participating catalogs is large, it is difficult for a shopper
to locate items of interest. One approach is to require all vendors to re-organize
their catalogs in a common format and merge all the catalogs into a central catalog
database which allows customers to perform sophisticated searching without deal-
ing with individual catalogs. This requires re-engineering of existing catalogs. In
general, vendors want to participate in the central catalog without making changes
to their existing catalogs. We study a virtual catalog that has the look and feel of a
central catalog but holds no physical data. Upon a customer request, this catalog
retrieves relevant information from (multiple) individual catalogs and assembles an
answer. Such a virtual catalog should satisfy the following requirements: (1) it
is up-to-date but does not violate the autonomy of the participating catalogs; (2)
its search performance does not degrade as the number of participating catalogs
increases; (3) it allows easy inclusion of new catalogs and integrates with other EC
applications; and (4) it is easy to construct; assisting tools should be provided.

3. Existing Approaches and Techniques

A few paradigms exist for facilitating integrated access to heterogeneous and
autonomous data sources, notably the federated database systems (FDBs) 33 and
the mediator systems 37. More recent approaches handle sources with diverse avail-
ability and query processing capability.

Federated databases (FDBs) 4:15:35:1,2:5:12:3 qupport variations of a five-level ex-
tended schema architecture as shown in Figure 1. There are two types of FDBs:
the tightly-coupled and the loosely-coupled. Tightly-coupled systems require the
construction of a global schema via which queries can be posed. Semantic het-
erogeneities among participating databases are resolved at the global scheme level.
Loosely-coupled systems maintain a collection of possibly inconsistent schemas that
are represented uniformly in a canonical data model. The end-user queries these
schemas using a multidatabase query language such as MSQL °. Semantic hetero-
geneities are resolved at query time.

A mediator is a software module that exploits encoded knowledge about some
sets or subsets of data to create information for a higher layer of applications 37.
A mediator system has the form illustrated in Figure 3. A wrapper is a special
mediator that handles idiosyncrasies of individual data sources. Today, many me-
diator systems are being built 28:29,26:25,34,30,31,8,9,32,10 [jp]ike federated databases
that often aim at creating a single database illusion, mediator systems offer specific
information services. A mediator system is not monolithic but is often a network
of mediators, each accessing multiple heterogeneous data sources and/or other me-
diators; it often has knowledge-based capabilities. Domain specific mediators may

4 Accessing Heterogeneous Data through Homogenization and Integration Mediators

CExternal schem@ Gxternal schema Gxternal schema
Federated
schema

CExport schema} CExport schema) (Export schema)

Component
schema

Federated
schema

Component
schema

Local schema

Component DB Component DB

Local schema

Figure 1: FDB Schema Architecture

exploit domain knowledge to enhance usability and performance.

With the Internet and WWW, more data sources are open with diverse avail-
ability and query processing capabilities. A few approaches deal with this situation.
DISCO 36 extends the ODMG ODL to allow a bag of extents for a single interface
type. Adding a new source means adding an extent into this bag. DIOM 2 intends
to identify relevant data sources and bind to them at runtime. The Information
Manifold project 18:16:17

capabilities. It assumes the existence of a worldview, a pre-defined common applica-

considers large number of data sources with varying query

tion view. A source participating in the worldview is regarded as a materialized view
of the worldview, with capability records attached describing the types of queries it
can handle. Adding a new source only means adding a new materialized view. The
problem of answering a query against the worldview is transformed to that of an-
swering a query using existing materialized views with additional constraints, this
problem is solved '®. Handling sources with limited query capabilities is especially
useful for accessing sources on the Web.

Intelligent mediation techniques 3%-1? detect and resolve semantic heterogeneities
automatically by reasoning about semantics in a knowledge base or ontology. In
AURORA, such tasks are performed by a mediator author using MATs. Once
established, these techniques can replace mediator authors. AURORA investigates
a host of issues in mediator view expression and query processing that are essential
even when heterogeneities are detected and resolved automatically.

Kent !! identifies domain mappings for resolving domain and schema mismatches.
Resolutions for individual mismatches are demonstrated using an object-oriented
database programming language. However, this work does not provide a mediation
methodology, nor does it explore query optimization techniques in presence of the
new language constructs. Kim et al. '® provides a comprehensive classification of

Accessing Heterogeneous Data through Homogenization and Integration Mediators 5

Application / End User Application / End User

Federated DB Federated DB

Query Interface Query Interface

Schema

Global Schema

Tightly-Coupled System Loosely-Coupled System

Figure 2: The Federated Database Systems

Application / End User

mediator mediator

wrapper \ \wrapper \ \wrapper \wrapper

Do O

Figure 3: A Mediator System

mismatches and conflicts. Resolutions for individual conflicts are given. New lan-
guage constructs are proposed but query rewriting and optimization methods for
these constructs are not given. Goh et al. '© uses ontology to detect and resolve
mismatches due to different units of measure. It is not clear how other types of
schematic mismatches can be handled.

4. The AURORA Approach

4.1. AURORA Mediation Model

A mediation model describes how heterogeneities among data sources are per-
ceived and handled. The AURORA mediation model, shown in Figure 4, is a unique
2-tier model. It models mediation as a 2-step process: homogenization followed by
integration, performed by respective, specialized mediators.

6 Accessing Heterogeneous Data through Homogenization and Integration Mediators

‘ Application 1 ‘ Application 2
Integration Integration
Mediator Mediator

Homogenization Homogenization Homogenization Homogenization
Mediator Mediator Mediator Mediator

‘ Wrapper ‘ ‘ Wrapper ‘

Figure 4: The AURORA Mediation Model

4.1.1. A 2-tier Mediation Model

We distinguish between two categories of heterogeneities among data sources:
schematic mismatches that arise when the same application domain is modeled dif-
ferently; and instance level conflicts that arise when inconsistent values on the same
real world object are recorded. Schematic mismatches must be resolved before in-
stance level conflicts are tackled. The process of resolving schematic mismatches
is referred to as homogenization. In AURORA, specialized mediators, the homog-
enization mediators, support this process. The result of homogenizing a source is
a homogenizing view that hides the deviations of this source from the target ap-
plication view in both structure and semantics. The integration mediator “glues”
a large number of data sources together by combining all the homogenizing views
into an integrated view. Since all the sources are homogenized, the integration
process is greatly simplified; it only considers instance level conflicts; schematic
heterogeneities have been largely removed by homogenization.

4.1.2. 2-tier Model and Scalability

To include a new data source into the access scope, one must resolve two issues:

1. Communication. It must be possible to “talk” to the data source. This
is achieved by a wrapper that removes idiosyncrasies of the data source in
communication protocol, data model, and query language.

2. Semantic integration. It must be possible to construct an integrated view that
protect the end-users from the scale and diversity of the access scope.

Scalability requires that both steps be performed rapidly. For 1, this requires rapid,
if not automatic, wrapper generation. Various enabling techniques have already
been developed 2°. Much is known about how 2 can be done, the scalability aspect
of it has not been well addressed (ref. Section 4.1.3).

The scalability issue in AURORA is reduced to the issues of rapid homogeniza-
tion of individual sources and rapid integration of multiple sources. Homogenization
can be performed in parallel among sources. It concerns single data sources and
has good potential to be fast. AURORA provides tools to assist in this process.

Accessing Heterogeneous Data through Homogenization and Integration Mediators 7

Integration handles multiple but homogeneous (although still autonomous) sources.
To achieve scalability of this step, AURORA integration mediator assumes that
the integrated view is pre-defined by application requirements. Let this view be
Vw . To integrate objects in each data source (it now appears as a homogenization
mediator) into Vi, AURORA requires these objects to be registered as fragments
of objects defined in Viy. Removing a source from the access scope only requires
the relevant registrations to be cancelled. This way the integration is performed in
a plug-and-play fashion.

With many mediation models and architectures already developed, does the
world need another one? In the next two sections, we answer this question.

4.1.3. Related Mediation Models

With respect to scalability, we distinguish between two types of mediation mod-
els: derivation-based and plug-and-play.

In derivation-based models, a mediator view is derived from a set of source
descriptions, usually via a monolithic view specification. When sources participate
or withdraw from the scope of the mediator, this specification must be modified.
This modification may affect many parts of the specification, in the worst case, the
specification has to be reconstructed. When the number of participating sources
are large, this specification becomes large and complex, difficult to maintain. Most
FDBs and mediator systems uses this model.

In plug-and-play models, a common application view is pre-defined. Data sources
contribute to and withdraw from this view without affecting other participating
sources or the applications that access this view. To our knowledge, two systems
use this model: DISCO 3¢ and Information Manifold (IM) 18.

Apparently, derivation-based models do not favor scalability since including or
excluding a source is difficult when the number of sources involved is large. The
plug-and-play model avoids this problem. AURORA’s mediation model is indeed a
plug-and-play model; like those used by DISCO and IM. However, the AURORA
model is 2-tier, using two types of mediators, each handling a specific range of het-
erogeneities, while both DISCO and IM models are 1-tier, using a single mediator
to handle the whole range of heterogeneities considered. IM assumes that wrappers
handle some mismatches but it is not clear what these mismatches are; IM concen-
trates on query plan generation. Both DISCO and IM consider a limited range of
mismatches; none of them considers instance level conflicts.

4.1.4. Why 2-tier?

A 2-tier model defines a divide-and-conquer approach to information integration.
Such an approach facilitates applications such as electronic commerce. It also allows
us to better manage the technical complexity in large-scale middleware.

8 Accessing Heterogeneous Data through Homogenization and Integration Mediators

2-tier mediation in EC

Typically, to include a supplier catalog into a virtual catalog, the supplier is first
required to map his or her catalog into a format required by the virtual catalog.
Essentially, the supplier catalog must be homogenized before participating in the vir-
tual catalog. Homogenization is performed by suppliers independently referencing
the common catalog format. Individual suppliers are not concerned with inter-
catalog conflicts which are resolved at the central catalog level. Often, suppliers are
provided with a workbench to perform homogenization. This workbench is indeed
a homogenization mediator. The central catalog is an integration mediator. A sup-
plier can participate in multiple virtual catalogs requiring varying catalog formats.
In this case, the supplier must use multiple homogenization mediators.

Obviously, AURORA’s 2-tier model models the activity of constructing virtual
catalogs closely. For DISCO or IM to be used in the above scenario, some refine-
ment to their mediation models must be done to clearly define which mismatches
are to be resolved by the suppliers independently and which are to be handled at
the central catalog level. In general, the 1-tier mediation models do not support
application scenarios like the one described above.

Managing technical complexities in large-scale middleware
There are two aspects to this complexity: integration and query processing.

Complexity in integration. When there are 100 sources involving many types
of mismatches and conflicts, which one do we resolve first? Can multiple people
work on a single integration task? None of the previous models address these issues.

Complexity in query processing. When a large number of highly hetero-
geneous sources are involved in a query, we face a complex optimization problem
that is unknown to traditional data management systems. Query optimization in
middleware systems is known as a difficult problem even without considering the
scale of the system 2!. In large scale middleware systems such as virtual catalogs
in EC, this problem is even more difficult 38.

AURORA’s 2-tier model manages both complexities. To manage the complexity
of integration, AURORA divides the integration task into two well-defined, smaller
tasks, homogenization and integration, that are to be performed by multiple peo-
ple assisted by specialized tools mandating specific mediation methodologies. AU-
RORA'’s 2-tier mediation model enables us to decompose the query processing issue
into two smaller problems: that in homogenization mediators and that in integra-
tion mediators. It is our intension to take advantage of this simplification to develop
new techniques in mediator query processing. As shown later, each type of mediator
uses a specialized Mediation Enabling Algebra (MEA) to facilitate efficient query
processing.

4.2. AURORA Mediators as Distributed Components

AURORA does not restrict the canonical data model to a specific one that is
deemed to be most “suitable”. Rather, AURORA provides mediators and wrappers

Accessing Heterogeneous Data through Homogenization and Integration Mediators 9

in two popular data models, the relational data model and the ODMG object data
model. Necessary facilities are provided to allow the two data models to coexist
seamlessly. AURORA mediators are classified along two dimensions: the canonical
data model and the mediator type, homogenization or integration. Figure 5 shows
this classification.

Canonical Data
Mediator Model Relational Object-Oriented
Type
Homogenization AURORA-RH | AURORA-OH
Integration AURORA-RI | AURORA-OI

Figure 5: AURORA Mediator Classification

We design and develop three types of software components: the wrappers, the
homogenization mediators and the integration mediators. These are provided as
distributed components that cooperate via an Object Request Broker (ORB), as
shown in Figure 6. AURORA wrappers and mediators support pre-defined inter-

faces shown in Figure 7.
Application

Object Request Broker
Interface Interface Interface
'AUHOI.RA AIJHO'IIA. AURORA
integration homogenization
" . wrapper

Figure 6: AURORA Components and ORB

Schema Export | Query | Event Notification
Service Service Service

AURORA Wrapper

Schema Export| Query | Materialization | Event Notification
Service Service | Service Service

AURORA Homogenization/Integration
Mediator

Figure 7: The AURORA Mediator Interfaces

10 Accessing Heterogeneous Data through Homogenization and Integration Mediators

A middleware that facilitates integrated access to multiple heterogeneous data
sources can be constructed by using a network of mediators that cooperate with
one another to provide an integrated data service. With AURORA, one can choose
between relational and object-oriented components. The use of AURORA medi-
ators in building middleware is best illustrated by Figures 8 and 9. AURORA-O
mediators have the built-in capability of accessing AURORA-R components, but
not vice versa.

Application/Use Application/Use:

Figure 9: AURORA Application: mixed

4.8. AURORA Mediator Development Workbench

Each AURORA mediator is a mediator development workbench consisting of a
mediator skeleton and a toolkit named MAT.

Mediator Skeletons. The most important components in a mediator are an
integrated view over (multiple) data sources and a query processor that answers
queries posed against this view. Building a mediator means building the view,
the query processor, and software modules that support other standard services.
In AURORA, mediators are constructed from mediator skeletons that have all the
necessary components of a mediator except for the view.

Mediator Author’s Toolkits (MATs). In AURORA, a mediator author
chooses a mediator skeleton, identifies heterogeneities among the sources, and de-
fines views into the mediator skeleton to resolve the heterogeneities. AURORA

Accessing Heterogeneous Data through Homogenization and Integration Mediators 11

MATS assist the mediator authors in performing such tasks. This scenario is shown
in Figure 10. A MAT has two main functionalities: it mandates a mediation method-
ology and it provides Mediation Enabling Operators (MEOs).

Application /End-user/ Other mediators

Mediator Author

AURORA Mediator
¢ Standard Service Interfaces
AURORA
AU 0 AURORA
Mediator Author’s [<— h
. Mediator Skeleton

Toolkit (MAT)

Mediator/ Mediator/ Mediator/
Wrapper Wrapper Wrapper

Figure 10: An AURORA Workbench

4.4. Constructing Virtual Catalogs with AURORA

Now we go back to our example of virtual catalogs described in Section 2 and
see how the AURORA approach could be used. Consider a number of vendors
each having an autonomous catalog database. A virtual catalog effort can be ini-
tiated by a third-party broker who seeks to offer value-added services. The broker
first designs a common catalog structure, its data model and query language. To
include a vendor into the virtual catalog, the broker first homogenizes the ven-
dor’s catalog using an AURORA homogenization mediator. This process maps the
vendor catalog structure and semantics into those in the common catalog. After
homogenization, it should be straightforward to “plug” a catalog into an AURORA
integration mediator that supports the common catalog. While homogenization is
a more complex process, the broker can hire a few people to homogenize individual
vendor catalogs in parallel. An integration mediator is where large number of virtual
catalogs merge but the integration is a simple mechanism. Overall, construction of
the virtual catalog is scalable.

4.5. Enabling Techniques in AURORA

Each AURORA component requires a suite of enabling techniques. The basis
of such a suite is a Mediation Enabling Algebra, a MEA, that provides Mediation
Enabling Operators, MEOs, that are specially designed for manipulation of hetero-
geneous and autonomous data. Different mediators require different MEAs. Once
a MEA is designed, development of the rest of the suite involves the following:

e Design of a MAT. This involves the design of a mediation methodology and
the supporting tools. Each tool offers a subset of the MEOs in the MEA.

e Design of a skeleton. This involves (1) developing a query rewriting algorithm

12 Accessing Heterogeneous Data through Homogenization and Integration Mediators

in the MEA; (2) developing query transformation rules in the MEA that po-
tentially allow query optimization; (3) design of a query optimization strategy;
and (4) developing techniques for evaluating expensive MEOs efficiently.

The technique suite for AURORA-RH mediator has been developed and is presented
in detail in Section 5. This suite sets a paradigm; other suites can be developed in
a similar fashion. Work in integration mediator is in early stage and is described in
Section 6.

5. Techniques in AURORA-RH

5.1. Homogenization and Query Processing

Let B be a relational database. Let H be a view consisting of relations My, ..., M,,.
To homogenize B into H is to specify procedures, P;(B)(1 < ¢ < n), that construct
relations M;(i = 1,n) from the relations in B. B is the source database; relations
in B are source relations; M;(i = 1,n) are target relations. Queries posed against
H are referred to as mediator queries. Assume procedures P;(B)(1 < ¢ < n) have
been specified and consider a mediator query Q. The task of processing @ is to 1)
translate @ into queries over B; and 2) send the queries to B and use the returned
data to assemble the answer to Q).

Example Application. Figure 11 depicts a homogenization problem. Besides the
differences in schema, we also assume: (1) In the source database, the sales and salary
data is recorded in Canadian dollars, while in the target database, the same data is to
be in US dollars; (2) In the target database, Employee.salary includes bonus as well as
base salary; and (8) The target database perceives the domain of “jobs” differently from
the source database. Rather than having job titles from {SysAdm, SoftwareEngineer, Mar-
ketingStaff, ResearchStaff, ProjectDirector}, the target database assumes the job titles are
from {System Engineer, Development Engineer, Consultant, Research Scientist, Program

Manager}.

Databases model conceptual territories by domains. Domains in different databases
that model the same concept may differ, giving rise to domain mismatches. These
domains can be converted to each other via domain mappings.

5.2. Architecture of AURORA-RH

Figure 12 shows the architecture. M AT-RH is a toolkit that assists a mediator
author in constructing a homogenizing view, or a target database. It provides a
MEA and mandates a homogenization methodology. Homogenization process is
divided into 6 steps, each supported by a specialized tool (Sections 5.4.3-5.4.8).
Each tool accepts two types of information: (1) transformations, expressions in
MEA-RH. (2) domain mappings, arbitrary functions. These are captured in the
View Definition Repository and used for query processing. AURORA-RH

Accessing Heterogeneous Data through Homogenization and Integration Mediators

13

Source Database Target Database
Sales SysAdm
[month | ibm_pc| mac| laptop| |id| name | salary | bonus | CompanySales
! ! ! ! b ! ! ! month | product_type | salesAmt
SoftwareEngineer MarketingStaff
id| name | salary| bonus| id| name | salary | bonus |
1 \ \ I \ \ \ Employee
ResearchStaff ProjectDirector id | name| jobTitle |salary
‘ id‘ name ‘ salary ‘ bnnus‘ ‘ id‘ name ‘ salary ‘ bonus ‘
[| | | [| | |

Figure 11: A Homogenization Problem

Primitives are operators designed to facilitate homogenization; they extend the
relational algebra to form MEA-RH. AURORA-RH Query Processor (AQP)
translates a view query into a set of queries against the source and assembles the
final answer using data retrieved from the source.

MAT-RH Skeleton-RH
Mediat |71 DUE AURORA-RH Query Processor (AQP)
Author
0) /;’ DSE Query Query Query
f Z t=| RLE Rewriter | Optimizer | Execution Engine
%\ SME-2 N 1 {
> osmEd] AURORA-RH
- = Repository Primitives
B IE Sl .

T \

I T
Wrapper

% Source DB

Figure 12: AURORA-RH Workbench

5.8. Primitives and Transformations

AURORA-RH primitives are MEOs designed to facilitate homogenization; they
extend the relational algebra to form MEA-RH. All primitives take a relation as
an argument and generate a relation; they compose with relational operators in a
well-defined manner. For simplicity, two attributes are considered to be the “same”
if they have the same name. We use ATTR(R) to denote the set of attributes in
relation R, RELname(R) for the name of relation R, and ATT Rname(A) for the
name of attribute A. Let B be the source database to be homogenized. AURORA-
RH provides the following primitives:

retrieve. Let () be an algebraic expression over the source relations in B,
R’ = retrieve(Q)
submits @ to database B and returns result in R'.

14 Accessing Heterogeneous Data through Homogenization and Integration Mediators

pad. Let R be a relation, A be an attribute, A ¢ ATTR(R), and ¢ a constant,
R’ = pad(R, A, c)
defines relation R', ATTR(R') = ATTR(R) U {A}. The population of R’ is de-
fined by R' = {t' | '[A] = ¢; t'[A'] = t[A'],t € R,A" € ATTR(R)}. Let R’ =
pad(retrieve(SysAdm),jobTitle, “SysAdm”), where SysAdm is given in Figure 11. R’
has scheme (id, name, salary, bonus, jobTitle) and includes all SysAdm tuples tagged with
“SysAdm” as attribute jobTitle.

rename. Let R be a relation, A € ATTR(R), and n be an attribute name, n ¢
ATTR(R), then
R' = rename(R, A, n)
defines a relation R’ with scheme identical to the scheme of R with attribute A renamed
to n. The population of R’ is defined by:
R = {t'|t'[n] = t{A],t'[A'] = t[A"],t € R, A" € ATTR(R) — {A}}

deriveAttr. Let R be a relation. Let L; C ATTR(R)(i = 1, k) be a list of attributes in

R. Let N;(i = 1,k) be attributes. Let f; be functions of appropriate signatures.
R’ = deriveAttr(R, L1, N1, fi,...., Lk, Ni, fx)

defines a relation R', ATTR(R') = ATTR(R)U {Nu, ..., N}, with population:
R ={t' |¢'[N:;] = fi(#[L:]),1 < i < ks ¢'[A] = t[A],A € ATTR(R) — {N1,..., N },t € R}
For each tuple ¢t € R, deriveAttr generates t' € R' by adding fields N; to t (i=1,k) and
sets its value to be f;(t[L;]). deriveAttr is used in map values with arbitrary functions,
as in Sections 5.4.7 and 5.4.8.

A transformation expression, Tg, is a well-formed expression in MEA-RH. Tk
defines a relation, R = Tg. If Tg is retrieve(Q), R is a direct relation, otherwise, R is a
derived relation. A direct relation is the result of a query over the source.

5.4. Mediator Author’s Toolkit: MAT-RH

5.4.1. Domain and Schema Mismatches

Let B be a source database and M be a target relation. MAT-RH identifies these
types of mismatches:

Cross-over schema mismatches. A type 1 cross-over mismatch happens when a
concept is represented as data in M but as relations in B. A type 2 cross-over mismatch
happens when a concept is represented as data in M but as attributes in B.

Domain structural mismatches. This mismatch happens when a domain in M
corresponds to a domain with a different data type or several domains in B.

Domain unit mismatches. This mismatch happens when a domain in M assumes
different unit of measurement from the corresponding domain(s) in B.

Domain population mismatches. This mismatch happens when a domain in M
assumes different population from the corresponding domain(s) in B.

Example-1. Figure 11 demonstrates all of the above mentioned mismatches:

- (cross-over schema mismatch, type 1.) In the target database, jobs is represented
as data domain “jobT'itle” in Employee, but as relations in the source.

- (cross-over schema mismatch, type 2.) In the target database, product types is
represented as data domain product_type but as attributes in the source.

- (domain structural mismatch.) In the target database, salary means the total
income. The same concept is represented by two data domains, salary and bonus,

Accessing Heterogeneous Data through Homogenization and Integration Mediators 15

in the source.

- (domain unit mismatch.) In the target database, all money amounts use US dollar
as unit, while in the source, all money amounts are in Canadian dollars.

- (domain population mismatch.) The two database schemas assume different do-
main populations of the concept jobs.

5.4.2. Homogenization Methodology

The MAT-RH mandates a 6-step methodology for homogenization:
. Construct an import schema;
. Resolve type 1 schema mismatches;
. Resolve type 2 schema mismatches;
. Link relations;
. Resolve domain structural mismatches; and,
6. Resolve domain unit/population mismatches.
This methodology is demonstrated by examples in the rest of this section. In each step,
derived relations and/or domain mappings are specified. MAT-RH supports each step by
a specialized tool (environment) that accepts certain transformations and domain map-
pings. Some environments provide special transformations for resolving specific types of
mismatches. In the following sections, each environment is described along 4 dimensions:
1) Input relations.
2) Transformations allowed.
3) Output semantic information: domain mappings and other semantic information
allowed.
4) Output relations.

T W N~

5.4.3. Import Environment (IE)

The input to IE (Figure 14) includes all the source relations exported by source B.
Output of IE is a set of direct relations of the form R = retrieve(Q), where Q is a relational
algebraic expression over database B. No semantic mapping information is produced.

Example-2: Importing source database. IE allows the mediator authors to choose
relations and data of interest from the source. In our example, all relations are of interest.
The importing step produces a set of direct relations R = retrieve(R), where R € { Sales,
SysAdm, SoftwareEngineer, MarketingStaff, ResearchStaff, ProjectDirector }.

5.4.4. SME-1 for Type 1 Cross-over Mismatches

Figure 14 depicts Schema Mismatch Environment 1 (SME-1).

Input relations. All relations produced by IE.

Transformation operators. RELmat, 7, o, X, rename, pad, derive Attr.

RELmat(relation materialize) is a special transformation operator. Given DT =
{Ri1,...,R.}, a group of relations with identical schemes, let A be an attribute, A ¢
ATTR(R:1), then

RELmat(DT A) = U;_, pad(R:, A, RELname(R;))

The result relation contains tuples from all the relations in DF, each tagged with a new
field A that contains the name of the relation it came from, as illustrated in Figure 13.
The application of RELmat is illustrated in Example-3.

Output semantic information. SME-1 allows specification of relation groups (D%).
In the target database, the names of the relations in the group form an enumerated data
domain which represents a concept that is represented as relations in the source.

16 Accessing Heterogeneous Data through Homogenization and Integration Mediators

SysAdm
id | name | salary bonus DR:{SysAdm,SoﬁwareEngineer,MarketingStaﬁ",ResearchStaﬁ;ProjectDirector}
001 |Lane, N | 18000 | 1200 R, .
002 | Kim,Y | 17500 | 1360 RELmay(D , jobTitle) id | name |salary|bonus| jobTitle
001 | Lane, N | 18000 | 1200 SysAdm
SoftwareEngineer MarketingStaff 002 | Kim, Y |17500 |1360 SysAdm
id name | salary| bonus id | name |salary| bonus 101 | Chan, K | 23000 | 2450 |SoftwareEngineer
101 | Chan, K | 23000 | 2450 201 | Beck, B | 27000 | 4500 104 | Smith, P | 28000 | 2370 |SoftwareEngineer
104 | Smith, P | 28000 | 2370 205 | Barry, D | 29500 | 4680 201 | Beck, B | 27000 | 4500 | MarketingStaff
205 | Barry, D | 29500 | 4680 | MarketingStaff
ResearchStaff ProjectDirector 304 | Carey,J | 34700 | 2460 | ResearchStaff
id | name |salary| bonus id | name |salary| bonus 306 | Shaw, G | 35600 | 2530 | ResearchStaff
304 | Carey,J | 34700 | 2460 403 | Keller, T | 56000 | 1000 403 | Keller,T | 56000 | 1000 | ProjectDirector
306 | Shaw, G | 35600 | 2530 401 | Poston,T | 67000 | 1200 401 | Poston,T | 67000 | 1200 ProjectDirector

Figure 13: The RELmat operator

Relation Definitions
(basic and derived)

source schema Import Env Schema Mismatch
1E Env 1: SME-1

Figure 14: IE, SME-1 and SME-2

Schema Mismatch
Env 2: SME-2

Output relations. Derived relations.

Example-3: solving type 1 cross-over schema mismatch. The source database
models jobs as relations. The target database models jobs as a data domain Employee.job T'itle.
The following is the resolution to this mismatch:

DE={SysAdm, SoftwareEngineer, MarketingStaff, ResearchStaff, ProjectDirector}

SEmpioyee = RELmat(D®, jobTitle)

Figure 13 further illustrates this resolution.

5.4.5. SME-2 for Type 2 Cross-over Mismatches

Schema Mismatch Environment 2 (SME-2) is depicted in Figure 14.

Input relations. All relations defined in previous steps.

Transformation operators. ATT Rmat, 7, o, M, rename, pad, derive Attr.

ATT Rmat(attribute materialize) is a special transformation operator. Given D* =
{Ai,..., A}, a group of attributes in a relation S that have identical data types, let N4
and Ny be attributes, Na, Nv ¢ ATTR(S), then:

ATTRmat(S,D*,Na, Ny) = U, pad(rename(m s rrr(s)—pauga;y(S), Ai,

ATTRname(Nv)), Na, AT'T Rname(A;))

The effect of this operator is illustrated in Figure 15. Application of ATT Rmat is demon-
strated in Example-4.

Output semantic information. SME-2 allows specification of attribute groups
(D*). 1In the target database, the names of the attributes in an attribute group form
an enumerated data domain which represents a concept that is represented as attributes
in the source database.

Output relations. Derived relations.

Accessing Heterogeneous Data through Homogenization and Integration Mediators 17

Sales month | salesAmt | product_type
month | ibm_pc | mac laptop Feb/96| 6700 ibm_pc
Feb/96 6700 | 6900 | 8000 Mar/96| 7600 ibm_pc
Mar/96 | 7600 | 8400 | 7800 Feb/96| 6900 mac

n Mar/96| 8400 mac

D= {ibm_pc, mac, laptop} Feb/96| 8000 laptop

ATTRmat(Sales, D ,Aproductftype, salesAmt) —= | Mar/96| 7800 laptop

Figure 15: The ATTRmat operator

Example-4: Solving type 2 schema mismatch. The source database models
product_types as attributes tbm_pc, mac, laptop in Sales, while the target database models
it as a domain CompanySales.product_type. The following is the resolution:

D* = {ibm_pc, mac, laptop}

ScompanySates = ATT Rmat(Sales, DA,product_type, salesAmit)

This resolution is further illustrated in Figure 15.

5.4.6. RLE: Environment for Relation Linking

Relation Linking Environment, RLE, is depicted in Figure 16. The input includes
relations previously defined. Derived relations can be defined using rename, 7, o, and X.
RLE mandates the derivation of a distinguished relation Sy, a “prototype” of M modulo
data domain mismatches. Sy is the only relation referenced in future steps.

Example-5: relation linking. In Example-3 and 4, relations Sgmpioyee and
SCompanySales are defined. Nothing is to be done in RLE in the example application.

5.4.7. DSE: Solving Domain Structural Mismatches

The Domain Structure Environment, DSE (Figure 16), supports resolution of struc-
tural mismatches (Section 5.4.1).

Input relations. The distinguished relation, Sas.

Transformation operators. None.

I - - - Skeleton-RH View-Definition Repository
domain s
value functions __)

Relation Linking Domain Structural Domain Unit Env
Env: RLE Env: DSE DUE

Relation Definitions
~(basic and derived,

Figure 16: RLE, DSE and DUE

Output semantic information. DSE captures domain structural functions. Con-
sider A € ATTR(M). The corresponding domain(s) of A in Sy might be an attribute
of the same data type, or an attribute of a different data type, or several attributes. Let
ATTR(M)={Ax,...,Am}. To derive each of these attributes from attributes of Sus, the
DSE requires the following to be specified for each A;(i = 1, m):

1. L; = {Ail, ...,Afk}, attributes in Sjs that correspond to A;. By default L; =
{Sum.A;}. If A; ¢ ATTR(Sn), L; must be given explicitly.

18 Accessing Heterogeneous Data through Homogenization and Integration Mediators

2. domain structural function (DSF), f, that maps L; to A;. f; is an identity function
by default. Inverses of DSFs, if they exist, must be given.
Output relations. No relation is explicitly derived. However, by defining DSF's for
all attributes in M, the following relation is implicitly defined:
M, =ma,,... A, (derive Attr(Su, L1, A1, fi,oeey L, Am, fi))
M, is identical to M modulo domain value mismatches.

Example-6: solving domain structural mismatch. In relation Sgmpioyce defined
in Example-3, there is (base)salary and bonus. In target relation E'mployee, we expect
salary to be the total income of an employee. The following is a resolution:

Lgmployee.salary = {salary, bonus}, JEmployee.satary ($,0) = s+ b

5.4.8. DUE: Solving Domain Value Mismatches

The Domain Unit Environment, DUE (Figure 16), supports resolution of domain
unit/population mismatches(Section 5.4.1).

Input relations. Relation M, constructed by DSE.

Transformation operators. None.

Output semantic information. The DUE captures domain value functions. For
an attribute A € ATTR(M), the values of M,.A may differ from that of M.A due to (1)
difference in unit of measure; and/or (2) difference in domain population. DUE requires
that for each attribute A € ATTR(M), a domain value mapping be specified to convert
values in domain M,.A to that in M.A. This mapping is by default an identity function
but can be an arbitrary function or a stored mapping table. In this paper, we only consider
domain value function (DVF), that maps each M,.A value to a unique M.A value. Inverses
of DVFs, if they exist, must also be specified.

Output relations. No relation is explicitly derived. However, by specifying DVFs
for each attribute in M, the following relation is implicitly derived:

M = derive Attr(M,, Av, Av, f1, ooy Ay Ak,)

where ATTR(M) = {Ax,..., A} and f(i = 1,m) is the DVF for attribute A;.

Example-7: Solving domain unit mismatch. Employee, derived in Example-6
has attribute salary, but its values are in Canadian dollars. In the target database, we
expect to see US dollars only. Assume 1 Canadian dollar worths r US dollars, we define
DVF for Employee.salary as:

b mptoec.satary(s) = OCNDUUSD(s) = s x
Similarly, we define DVF for CompanySales.salesAmt:

[CompanySates.satesamt(s) = CNDtoUSD(s) = s X r
CNDtoUSD() has an inverse, USDtoCND.

Example-8: Solving domain population mismatch. FEmployee, derived in
Example-6 has attribute jobT'itle but its values are from {SysAdm, SoftwareEngineer,
MarketingStaff, ResearchStaff, ProjectDirector}. Employee.jobT'itle consists of {System
Engineer, Development Engineer, Consultant, Research Scientist, Program Manager}. To
resolve this mismatch, a DVF must be specified for Employee.jobTitle:

fg‘mployee.jobTitle(j) = jObMa’p(J)
jobMap is a mapping table given in Table 1, it has an inverse.

5.5. AURORA-RH Query Processor (AQP)

As shown in Figure 12, AQP consists of a query execution engine, a query rewriter
and a query optimizer. Query Execution Plans(QEPs) are expressions that involve only

Accessing Heterogeneous Data through Homogenization and Integration Mediators 19

source database target database
SysAdm System Engineer
SoftwareEngineer Development Engineer
MarketingStaff Consultant
ResearchStaff Research Scientist
ProjectDirector Program Manager

Table 1: jobMap for Employee.jobT itle

source relations; it can be depicted as an operation tree whose nodes are annotated with an
operator name and an argument list. A non-leaf node of the tree is either an AURORA-RH
primitive, rename, pad or deriveAttr, or a relational operator. The leaf nodes of the tree
are retrieve primitives. Figures 17, 18, and 19 are QEP trees. The AQP query execution
engine evaluates QEP trees bottom up.

5.5.1. AQP Query Rewriter

We consider mediator queries in the form of wro,(M), where L is a list of attributes
in M and p is a predicate. The rewriting algorithm given below can be adapted for join
queries. Via MAT-RH, the derivation of M is captured as transformations and domain
mappings in the View Definition Repository. These are used to rewrite) into a QEP.

Algorithm. AQPrewriteQuery
Input: Q = 7wrop(M) Output: A QEP for Q
1. Replace M in Q with Sa. Replace RELmat and ATTRmat with its definition.
while (Q involves a direct or derived relation R)

Replace R with its derivation.
Replace RELmat and ATT Rmat with its definition.
2. Let Q = 7(Q'), let {A1,.., A} be all the attributes in L whose domain value
functions, f{, ..., fm, are not identity functions, rewrite @ as:
Q = deriveAttr(rr(Q"), A1, A1, f1, ooy Am, Am, fr)
3. For each attribute A involved in p, if its DVF, f*, is not identity, replace it with
fo(A).
4. Let L = {A,,...., A.}. Let fi,..., fn be the DSFs of A1,....; A,. Let L;(i = 1,n) be
the list of attributes which are the arguments of f;. Then do the following:
(a) Replace Q' by deriveAttr(Q', L1, A1, i, ... Ln, An, fr)
(b) For i =1 to n do:
If f7 is an identity function, first, remove L;, A;, f{ from the argument list
of deriveAttr function constructed above; second, if the argument attribute

in L;, A}, has a different name from A;, replace the first argument of
derive Attr, E' with rename(E’, A}, ATT Rname(A;)).

5. For each attribute A involved in p, if its DSF, f°, is not identity, replace A with
J°(AY, ..., AL), where A ... A} is the argument list of f°.
6. Repeat until no modification can be made:
For each subexpression in p that is in the form of f(E1)0f(FE:2) or f(E3)fc,
where F1, E> and Ej3 are expressions, c¢ is a constant, § € {=,>,<}, and fisa

function which has an inverse f 1, if f is strictly monotonic or # is “=", replace
this subexpression with E10FE, or Esfc | respectively, where ¢/ = f~1(c). I

20 Accessing Heterogeneous Data through Homogenization and Integration Mediators

deriveAttr

salary, "salary", CNDtoUSD()

n
deriveAttr

id, name, salary

s=salary,b=bonus, "salary", s+b

o salary+bonus > C

JjobTitle = "SoftwareEngineer"
U

pad
JjobTitle JjobTitle
”ResearchSmﬁ"(L "ProjectDirector"

pad

JjobTitle
"SysAdm"

pad
JjobTitle JjobTitle
"Softwarel’:‘ngineer"J> "MarketingStaff"

retrieve retrieve retrieve

retrieve retrieve
SysAdm SoftwareEngineer MarketingStaff ResearchStaff ProjectDirector

Figure 17: An QEP for Example-9.

Example-9. Consider query
Q = Tid,name,salaryTsalary>500000j0bTitle=“Development Engineer” (Mployee)
that retrieves the id, name and salary of development engineers who earn more than
50000. Rewrite Q using the above algorithm:
step 1. From the definitions of Sgmpioyee (Example-3) and RE Lmat, we get:
Q = Tid,name,salaryTsalary>500000 jobTitle=“DevelopmentEngineer” (
pad(retrieve(SysAdm), “jobTitle” , “SysAdm”)U
pad(retrieve(Software Engineer), “jobTitle” , “Software Engineer”)J
pad(retrieve(MarketingStaf f), “jobTitle”, “MarketingStaf 7)U
pad(retrieve(ResearchStaf f), “jobTitle”, “ResearchStaf f”)U
pad(retrieve(Project Director), “jobT'itle”, “Project Director”))

steps 2 and 3. DVF's are defined for salary and jobT'itle. The salary is in projection
list. Performing steps 2 and 3 we get:
Q = derive Attr(Tid name,salaryT CN DtoU S D (salary)>50000
OjobMap(jobTitle)=“Development Engineer” (U(pad()))7 salary, “salary”, ONDtOUSD())

steps 4 and 5. salary has a non-trivial DSF. It is in the projection list and the predi-
cate. Performing steps 4 and 5, we get:
Q = derive Attr(Tid name, salary (derive Attr(0c N DtoU S D (salary+bonus)> 50000

OjobMap(jobTitle)=“Development Engineer” (U(pa/d()))v {Sa‘laryy bonus}, “Salm’y” 5
f%mployee.salary)% Sa’lary7 “Sala’ry”, ONDtOUSD())

step 6. CNDtoUSD has an inverse USDtoCN D, so does jobMap(Table 1). Let C =
USDtoCND(50000). Performing step 6, we get the final QEP shown in Figure 17:
Q = deri'UeAttr(ﬂ—id,name,salav‘y(deriveAttr(asalary+bonus>CajobTitle:“SoftwareEngineer”

(U(pad()))v {SCLZCLT’y, bonus}, “salary”, fz‘mployee.salary))v
salary, “salary”, C N DtoUSD())

5.5.2. AQP Query Optimization

The AQP query optimizer maximizes the number of relational operations performed by
the source database so as to leverage the query optimization capability of the source and
reduce the amount of data fetched. A QEP generated by the rewriter is transformed to
enlarge the (sub)queries submitted to the source database. As retrieve is the only operator

Accessing Heterogeneous Data through Homogenization and Integration Mediators 21

that submits queries, the optimizer pushes as many as possible relational operators into
retrieve. Consider a QEP tree such as Figure 17. the query optimizer 1) pushes relational
operators “across” pad, rename, and derive Attr so that they move towards the leaves; and
2) pushes relational operators across retrieve, so that they become part of the argument
(annotation) of the retrieve leaf. In this section, we discuss transformation rules and
control strategies in AQP query optimizer.

Transformation rules for pad

Tpaall]- wr(pad(R,N,s)) = n.(R), L C ATTR(R), N ¢ ATTR(R).
Tpaal2]- wr(pad(R,N,s)) = pad(wL,{N}(R),N, s), LC{N}UATTR(R), N € L.
Tpaal3]- op(pad(R, N, s)) = pad(a’pNHS (R), N, s).
Tpad{ﬁl] R [><]p pu,d(Rl7 Nl, 31) = pad(R M],Nl‘_"'l Rl, Nl, 31).
Tpadl5] pad(R1, N1, s1) M, pad(Rz, N2, s2) =
pad(pad(R1 M Ny sy Ny—sy R2, N1,51), Na,s2).
Transformation rules for rename

Trenamell] 7w (rename(R, A, N)) = n(R), L C ATTR(R), N ¢ ATTR(R).
Trenamel2]. 7 (rename(R, A, N)) = Tename(ﬂ'LNkA (R),A,N),

L C{N}UATTR(R) — {A}.
Trenamel3] op(rename(R, A, N)) = renume(apN(;A (R),A,N).
Trenamel4]. R N, rename(R1, A1, N1) = rename(R Mle‘_Al Ry, A1, Ny).
Trenameld]. rename(R1, A1, N1) X, rename(R2, A2, N2)

= rename(rename(R; MPN1<—A1‘N2<—A2 Rz, A1, N1), Az, Na).

Transformation rules for deriveAttr
Taeriveattr[1]. wr (derive Attr(R, L1, N, f)) = n(R), L C ATTR(R), N ¢ ATTR(R).
Taeriveattr[2]. nr (deriveAttr(R, L1, N, f)) = wr(derive Attr(rr,_(nyur, (R), L1, N, f)),
L C{N}UATTR(R),N € L.
Taeriveattr[3]. op(deriveAttr(R, L, N, f)) = deriveAttr(o’pN&f(L) (R),L, N, f).
Taeriveattr[4]. R N, deriveAttr(R1, Ly, N1, f1) = derive Attr(R Mlekf(Ll) Ri,L1, N1, f1),
ATTR(R) N ATTR(Ry) = ¢, N1 ¢ ATTR(R).
TdeT,j“eAt{T[S]. deriveAttr(Rh Li,Ny, fl) My, deriveAttr(Rg7 L2, N3, fz) =
deriveAttr(deriveAttr(Rl MPN1Hf1(L1)~N2<*f2(L2) Ry, L1, Ny, f1)7 L3, N2, f2)7
ATTR(R2) = ¢, N1 ¢ ATTR(R2), N2 ¢ ATTR(R1), N1 # Na, Nao & L».

Table 2: Transformation Rules for pad, rename and deriveAttr

Table 2 gives transformation rules for exchanging relational operators with pad, rename
and derive Attr. For simplicity, the rules for derive Attr are given only for cases where there
is one derived attribute. Proof of rules for deriveAttr is given in 3°. p™ =% denotes the
predicate obtained from p by substituting all appearances of N with X. If p does not
involve N, pV =% = p. Ly_4 denotes the list of attributes obtained from L by replacing
attribute NV with A. If L does not involve N, Ly—a = L.

A relational operator can be pushed into retrieve if it is acceptable to the source query
facility. As most relational query languages do not allow user-defined functions, selections
whose predicates involve functions that are not built-in in the source query facility do not
exchange with retrieve. This potentially increases the amount of data fetched from the
source. In Algorithm AQPrewriteQuery step 6, inverses of domain mapping functions
are used to eliminate such selection predicates.

Example-10. Use rule Tyeriveatt-[2] to exchange m with the derive Attr under it, the
7w argument list is now ¢d, name, salary,bonus. Exchange U with this 7 and o, we get
Figure 18. Push o across pad using rule T,.4[3], many pad subtrees become ¢, e.g.

CjobTitle=“So ftware Engineer” (Pad(retrieve(SysAdm), jobTitle, “SysAdm”))

= 0«SysAdm”=“Software Engineer” (pad(retrieve(SysAdm), jobT'itle, “SysAdm”)) = ¢
Trim the empty branches from Figure 18 to get Figure 19 (a). Use rule Tpq4[1] to push 7
across pad to obtain Figure 19 (b). Finally, push the relational operators across retrieve.
Since the selection predicate involves a function +, known to the source database, both =

22 Accessing Heterogeneous Data through Homogenization and Integration Mediators

deriveAttr salary, "salary", CNDtoUSD()

n id,name,salary

deriveAttr s=salary,b=bonus, "salary", s+b
Note: C=USDtoCND(50000)

u
T T 7 t id
id, name id, name, X . id, name,
| ! salary,bonus id, name, id, name, salary,bonus
salary,bonus v salary,bonus salary,bonus K
o o o
salary+bonus>C
salary+bonus>C jobTitle = salary+bonus>C salary+bonus>C salary+bonus>C
JobTitle = "SoftwareEngineer" | JobTitle = o jobTitle= jobTitle =
"SoftwareEngineer ! & "SoftwareEngineer" SoftwareEngineer "S(fftwareEngineer”
pad pad pad pad pad
JjobTitle iobTi JjobTitle JjobTitle
JjobTitle § iobTitle
"SysAdm" "MarketingStaff" Jo! ¢ VDo ioetDirector!
"SoftwareEngineer" "ResearchStaff" ProjectDirector
O retrieve () retrieve Qretrieve retrieve O retrieve
SysAdm SoftwareEngineer MarketingStaff ResearchStaff ProjectDirector

Figure 18: Transformed QEP

and o exchange with retrieve to form Figure 19 (c).

X deriveAttr deriveAttr . .
deriveAttr salary,"salary" salary,"salary" salary,"salary
CND1oUSD() CND1USD() CND1oUSD()
7T id,name,salary n id,name,salary id,name salary
. deriveAttr
deriveAttr xz“salary ,i):borms s=salary,b=bonus s=salary,b=bonus
salary", s+b deriveAttr "salary", s+b "salary", s+b
11 id, name, T id, name,
d salary,bonus salary,bonus retrieve
pa JjobTitle
"SoftwareEngineer" o salary+bonus > C nid,name,xalary,banus

o o
salary+bonus > C salary+bonus > C
: ’ . (SoftwareEngineer)
retrieve 3 refrieve SoftwareEngineer
SoftwareEngineer

(a) (b) (©)

Figure 19: Transformed QEPs

6. Integration Mediators

AURORA integration mediators, AURORA-RI and AURORA-OI (Figure 5), are re-
sponsible for integrating a large number of homogenized sources. Since the sources are
homogenized, the types of heterogeneities that the integration mediator must handle is
limited. Lets assume that the application view consists of a single relation Ry. A data

source is said to be homogenized in regard to Ry if:

1. It is structurally homogenized. It contains a single relation R, that is a fragment of

Ry, that is, ATTR(R,) C ATTR(R,).

2. It is semantically homogenized. Each attribute in R; is the same as that in Ry with

the same attribute name.

Accessing Heterogeneous Data through Homogenization and Integration Mediators 23

Now the following plug-and-play integration mechanism can be imagined: To “plug” a data
source into the the integration mediator, we first homogenize this data source in regard
to the application view, that is, construct a homogenizing view on top of the data source.
We then register each relation in this view with the integration mediator as a fragment of
a global relation. To “unplug” a data source from the integration mediator, we remove
all fragments from this source. When a particular source is down, all fragments from this
source are considered to be empty.

At query time, the integration mediators derive the population of global relations and
resolve instance level conflicts. We study the following techniques:

1. MEAs for integration. This involves designing new MEOs specially for integration.
It also involves development of query modification algorithms and query transfor-
mation rules.

2. Efficient evaluation of expensive MEOs in such MEAs. In particular, we explore
selectively materializing data to facilitate intelligent query decomposition and join
order selection. An initial study along this direction has been done under the name
of Mediator Join Index (MJI) *°.

7. Conclusion and Future Work

We have described AURORA, a project that develops techniques for building efficient
and scalable mediation. Our contributions are the following. First, we have defined a
2-tier, plug-and-play mediation model (Figure 4). Technically, this model enables us to
take a divide-and-conquer approach towards building integrated access to heterogeneous
sources. Mediation is divided into 2 steps, homogenization followed by integration, and
respective mediation methodologies are provided for each step. The general mediator
query processing techniques are also divided into two categories: those in homogenization
mediators and those in integration mediators. AURORA develops specialized mediation
enabling algebras (MEAs) for each category. Second, we have described a complete suite
of techniques used by a specific AURORA mediator, AURORA-RH. With this, we have
explored the feasibility of our paradigm and are ready to develop technique suites for other
AURORA mediators.

Research wise, our goal is to design a collection of mediators, AURORA-RI, AURORA-
OH, and AURORA-OI (Figure 5). These mediators will be of similar forms as AURORA-
RH but require different mediation methodologies and MEAs. Different query rewriting
algorithm and transformation rules must also be developed.

We plan to implement proof-of-concept wrappers and mediators as distributed compo-
nents communicating and cooperating via an ORB. Our target application and test-bed
is an electronic commerce.

Acknowledgment. The first author would like to thank the Center for Advanced
Studies, IBM Canada, for funding my PhD program and for providing a stimulating envi-
ronment during my field study at IBM Toronto.

24 Accessing Heterogeneous Data through Homogenization and Integration Mediators

References

1

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22

. R. Ahmed et al. The Pegasus Heterogeneous Multidatabase System. IEEE Computer,
24(12):19-27, Dec. 1991.

Y. Arens, C. Chee, C.-N. Hsu, and C. Knoblock. Retrieving and Integrating data from
multiple information sources. International Journal of Intelligent and Cooperative In-
formations Systems, pages 127-158, June 1993.

M. J. Carey et al. Towards Heterogeneous Multimedia Information Systems: the Garlic
Approach. In Fifth Int. Workshop on Research Issues in Data Engineering — Distributed
Object Management (RIDE-DOM’95), pages 124-131, Tai Pei, TaiWan, Mar. 1995.

C. Chung. Dataplex: An access to Heterogenous Distributed Databases. CACM,
33(1):70-80, Jan. 1990.

C. Collet, M. Huhns, and W. Shen. Resource Integration Using a Large Knowledge
Base in Carnot. IEEE Computer, 24(12):55-62, Dec. 1991.

U. Dayal and H.-Y. Hwang. View definition and generalization for database integration
in a multidatabase system. IEEE Trans. on Software Engineering, SE-10(6):628-645,
Nov. 1984.

W. Du, R. Krishnamurthy, and M. Shan. Query Optimization in a Heterogeneous
DBMS. In VLDB 92, pages 277-291, 1992.

D. Florescu, L. Raschid, and P. Valduriez. Using Heterogeneous Equivalences for Query
Rewriting in Multidatabase Systems. In CoopIS 95, 1995.

D. Florescu, L. Raschid, and P. Valduriez. Defining the search space for query opti-
mization in a heterogeneous database management system. In Under Review, 1996.

C. H. Goh, M. E. Madnick, and M. D. Siegel. Ontologies, Context, and Mediation: Rep-
resenting and Reasoning about Semantic Conflicts in Heterogeneous and Autonomous
Systems. Working Paper 3848, MIT Sloan School of Management, 1995.

W. Kent. Solving Domain Mismatch and Schema Mismatch Problems with an Object-
Oriented Database Programming Language. In VLDB 91, pages 147-160, 1991.

W. Kim and J. Seo. Classifying Schematic and Data Heterogeneity in Multidatabase
Systems. IEEE Computer, 24(12):12-18, Dec. 1991.

W. Kim et al. On Resolving Schematic Heterogeneity in Multidatabase Systems. Dis-
tributed and Parallel Databases, 1(3):251-279, 1993.

R. Krishnamurthy, W. Litwin, and W. Kent. Language Features for Interoperability of
Databases with Schematic Discrepancies. In SIGMOD 91, pages 40-49, 1991.

T. Landers and R. Rosenberg. An overview of Multibase. In H. J. Schneider, editor,
Distributed Databases, pages 153—-184. North-Holland, Netherland, 1982.

A. Levy. Obtaining Complete Answers from Incomplete Databases. In VLDB 96, Bom-
bay, India, Sept. 1996.

A. Levy, A. Rajaraman, and J. Ordille. Query Answering Algorithms for Information
Agents. In Proceedings of the 13th National Conference on Artificial Intelligence, AAAI-
96,, Portland, Oregon, Aug. 1996.

A. Levy, A. Rajaraman, and J. Ordille. Querying Heterogeneous Information Sources
Using Source Descriptions. In VLDB 96, Bombay, India, Sept. 1996.

W. Litwin et al. MSQL: A multidatabase Language. Information Sciences, 49(1-3):59—
101, Oct. 1990.

L. Liu, C. Pu, and Y. Lee. An Adaptive Approach to Query Mediation Across Heteroge-
neous Information Sources. In Int. Conf. on Cooperative Information Systems (CooplS),
pages 144-156, June 1996.

H. J. Lu, B. C. Ooi, and C. H. Goh. On Global Multidatabase Query Optimization.
ACM SIGMOD Record, 21(4):6-11, Dec. 1992.

. W. Meng et al. Construction of Relational Front-end for Object-Oriented Database

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

Accessing Heterogeneous Data through Homogenization and Integration Mediators 25

Systems. In ICDE 93, pages 476-483, 1993.

R. Miller, Y. Ioannidis, and R. Ramakrishnan. The Use of information capacity in
schema integration and translation. In VLDB 93, pages 120-133, 1993.

A. Motro. Superviews: Virtual Integration of Multiple Databases. IEEE Trans. on Soft-
ware Engineering, SE-13(7):785-798, July 1987.

Y. Papakonstantinou, S. Abiteboul, and H. Garcia-Molina. Object Fusion in Mediator
Systems. In VLDB 96, Bombay, India, Sept. 1996.

Y. Papakonstantinou, H. Garcia-Molina, and J. Ullman. Medmaker: A Mediation Sys-
tem Based on Declarative Specifications. In ICDE 96, pages 132-141, New Orleans,
Feb. 1996.

Y. Papakonstantinou, H. Garcia-Molina, and J. Ullman. MedMaker: A Mediation Sys-
tem Based on Declarative Specifications. In ICDE 96, 1996.

Y. Papakonstantinou, H. Garcia-Molina, and J. Widom. Object Exchange Across Het-
erogeneous Information Sources. In ICDE 95, pages 251-260, Taipei, Taiwan, Mar.
1995.

Y. Papakonstantinou, A. Gupta, H. Garcia-Molina, and J. Ullman. A Query Transla-
tion Scheme for Rapid Implementation of Wrappers. In International Conference on
Deductive and Object-Oriented Databases, 1995.

X. Qian and T. F. Lunt. Semantic Interoperation: A Query Mediation Approach. Tech-
nical Report SRI-CSL-94-02, Computer Science Laboratory, SRI International, Apr.
1994.

L. Raschid, Y. Chang, and B. Dorr. Query transformation techniques for interoperable
query processing in cooperative information systems. In CooplS 94, 1994.

E. Sciore, M. Siegel, and A. Rosenthal. Using Semantic values to facilitate interoper-
ability among heterogeneous information systems. ACM TODS, 19(2):254-290, June
1994.

A. Sheth and J. Larson. Federated Database Systems for Managing Distributed, Het-
erogeneous, and Autonomous Databases. ACM Computing Surveys, 22(3), Sept. 1990.
V. S. Subrahmanian et al. HERMES: Heterogeneous Reasoning and Mediator System.
Unpublished document, University of Maryland.

M. Templeton, H. Henley, E. Maros, and D. V. Buer. InterViso: Dealing With the
Complexity of Federated Database Access. VLDB Journal, 4(2):287-317, 1995.

A. Tomasic, L. Raschid, and P. Valduriez. Scaling Heterogeneous Databases and the De-
sign of Disco. In Proceedings of the International Conference on Distributed Computer
Systems, 1996.

G. Wiederhold. Mediators in the Architecture of Future Information Systems. I[EEE
Computer, pages 38-49, Mar. 1992.

L. L. Yan. Building Scalable and Efficient Mediation: the AURORA Approach. PhD
thesis in preparation, 1997.

L. L. Yan, T. Ozsu, and L. Liu. Towards a Mediator Development Environment: The
AURORA Approach. Technical Report TR-96-21, Department of Computing Science,
University of Alberta, Aug. 1996.

L. L. Yan, T. Ozsu, and L. Liu. Mediator Join Indices. In Seventh International Work-
shop on Research Issues in Data Engineering: High-Performance Database Management
for Large Scale Applications (RIDE’97), Birmingham, England, Apr. 1997.

C. Yu et al. Translation of Object-Oriented Queries to Relational Queries. In ICDE 95,
pages 90-97, Taipei, Taiwan, Mar. 1995.

