
Conflict Tolerant Queries in AURORA

Ling Ling Yan and M. Tamer Özsu
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Abstract

Conflict tolerant queries are a new way of dealing with
instance level conflicts in data integrated from multiple
sources. In contrast to the traditional approach of resolv-
ing such conflicts during schema integration using aggrega-
tion functions, we establish a query model and processing
techniques to tolerate these conflicts at query time to a de-
gree specified by the users. Resolutions are only performed
to produce conflict-free results. Currently we support 3
levels of conflict tolerance: HighConfidence, RandomEvi-
dence, and PossibleAtAll and allow user-defined functions
to be used for conflict resolution. The approach reduces the
overhead of conflict detection and resolution and lends itself
to new query optimization techniques. Fundamentally, our
approach allows users to handle conflict at a coarse gran-
ularity to achieve better query performance when conflict
resolution requirements are relaxed and when data contain
occasional conflicts.

1. Introduction

Vast amount of digital information is stored in a variety
of data sources. With the advent of the Internet, the way
people use information is changing rapidly; integrated ac-
cess to heterogeneous sources is required. When integrating
data from such sources, two types of conflicts may arise:
semantic conflicts, which happen when sources model the
same application differently, and instance level conflicts,
which happen when sources record inconsistent values on
the same objects. In this paper, we propose a technique
for querying data in the presence of instance level conflicts.
Traditionally, these conflicts are resolved at schema inte-
gration time using aggregation functions [2]. For instance,
one may specify that when multiple sources record differ-
ent age values for a person, the “correct” age be computed
as the average of these values. Queries are written as if

data are conflict-free. Conceptually, instance level conflicts
are resolved before queries are evaluated; users have no say
over resolution policies at query time. We refer to this ap-
proach as the static resolution approach. These resolutions
are realized during materialization or query processing. If
integrated data are materialized, instance level conflicts are
removed before any query is processed. If data are vir-
tual, enough data must be retrieved for conflict detection
and resolution at query time; this may incur significant per-
formance penalty as illustrated below:

EXAMPLE 1.1 Assume that sources A and B provide data
on Person and conflicts on Age are to be resolved by tak-
ing the average of all Age values. Consider query:

= select ID, Name, Address
from Person
where Age 30

It is not sufficient to retrieve only persons with Age 30;
we must retrieve all Person data from both A and B, com-
pute all Age values, and evaluate the query. This cost stays
the same even when no Age conflict actually occurs. Opti-
mization strategies have been proposed but cases such as
are fundamentally difficult to optimize. This drawback be-
comes significant when more sources contribute large vol-
umes of Person data.

In a dynamic data integration system where large num-
bers of data sources come and go, materialization may not
be desirable. It may also be difficult to foresee when and
where instance level conflicts are likely to happen; adding
a new source may give rise to new conflicts. Specifying
a resolution for conflicts that do not really happen incurs
unnecessary performance penalties if data are virtual. On
the other hand, applications vary in requirements for con-
flict handling. For in Example 1.1, the exact age of a
person does not matter so long as he/she is older than 30.
When multiple sources offer different Age values of a per-
son, one user may consider him to be older than 30 if some
sources say so, while another may require that all sources



say so. Conflict resolutions on Name and Address can be
performed only for persons who qualified as older than 30.
Conflicts on Person.Age are not resolved, but rather tol-
erated by the system during query processing. We refer to
this approach of instance level conflict handling conflict tol-
erant (CT) querying.

Conflicts
Statically Tolerated
Resolved

Query Evaluation
On Materialized Data 1 3
On Virtual Data 2 4

Table 1. Querying Integrated Data

Depending on whether integrated data are materialized
and how instance level conflicts are handled, we distinguish
among 4 cases of querying integrated data, as shown in Ta-
ble 1. Cases 1 and 2 raise no new issues in query semantics;
these are well-studied domains. Case 1 requires mainte-
nance of materialized data. Query optimization issues in
case 2 has been studied. The CT query model applies to
cases 3 and 4. Optimizing queries on materialized data
leverages existing techniques and is not discussed.

The CT query model enables users to resolve instance
level conflicts to a desired degree and let the system “toler-
ate” the rest; it allows flexible conflict handling and better
query performance for users who do not require static reso-
lutions. Consider the following CT query:

= select PIN, Name[ANY], Age[ANY],
Address[DISCARD]

from Person
where Age 30with HighConfidence

HighConfidence in the “with” clause specifies that if in-
consistent age values exist, a person qualifies as Age 30
only if all sources say so. After a person qualifies, if
there is conflict on Name, Age, or Address, the func-
tions ANY, ANY, and DISCARD, respectively, are used
to remove these conflicts to produce a conflict-free query
answer. Given a set of values , function ANY returns a
random value from , function DISCARD returns a null
value if contains more than one distinct value, otherwise
it returns the only value in . These resolutions do not af-
fect predicate evaluation; they are only used to construct
conflict-free query results. If all sources record that Fred is
younger than 30, then he does not have to be retrieved even
if there is conflict on his Age. The framework described in
Section 6 enables such optimized processing.

The CT query model and its optimization framework are
developed as part of AURORA system [8], which pro-
vides a mediation framework for scalable integration of

large number of sources. Section 2 describes the relevant
aspects of AURORA. Section 3 defines conflicts and reso-
lutions in AURORA terms. Section 4 defines the CT query
model. Section 5 describes primitive CT query evaluation.
Section 6 describes a query optimization framework. Sec-
tion 7 reviews related work. Section 8 contains conclusions
and future work.
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Figure 1. The AURORA Mediation Framework
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Notation. denotes the value of attribute in tuple
, and denotes all values of attribute in relation ,

Given a collection of relations, , and an
attribute , .
is the set of attributes of relation , is the set of
attributes referenced by predicate .

2. Data Integration in AURORA

AURORA employs a two-tiered, plug-and-play media-
tion model depicted in Figure 1. This model is designed
to facilitate dynamic and scalable data integration [8].



Sources are first homogenized and then integrated. Ho-
mogenization removes idiosyncrasies of individual sources,
which is done independently and, possibly, in parallel. A
homogenized source describes its content to the integra-
tion mediator to which it contributes data. The integra-
tion mediator deals with a large number of homogenized
sources and is fully automatic. All mediators are data model
specific. Currently the system has relational and object-
oriented mediators. This paper considers only the relational
ones. Figure 2 shows the current architecture of AURORA.
AURORA-RH [10] is the Relational Homogenization me-
diator and AURORA-RI is the Relational Integration me-
diator. Wrappers support relational interface to sources. In
the current implementation, we use OLE-DB providers sup-
porting SQL as wrappers, such wrappers are readily avail-
able for a large variety of data sources. Mediators and wrap-
pers cooperate via COM/DCOM.

The integration mediator, AURORA-RI, maintains a pre-
defined service view, a usual relational schema that can be
queried by applications. Sources wishing to participate in
the service view maintained by an AURORA-RI media-
tor must be homogenized against using an AURORA-
RH mediator, which also communicates with to describe
the content of the source in the context of the service view.
At query time, AURORA-RI merges data from relevant
sources and deals with instance level conflicts using the CT
query model.

2.1. Service View

For applications, the service view is a relational schema
that can be queried. For sources that provide data through
this view, it is a pre-defined relational schema where each
relation, called a global relation, specifies a group of at-
tributes as its plug-in identifier (PID). The PID is used by
AURORA-RI for object matching, to identify tuples from
different sources that describe the same object so that they
can be combined to form tuples in the global relation; a
source tuple must carry relevant PID in order to “fit” into
the service view. Intuitively, the PID is a “ticket” to the ser-
vice view. We use to denote the PID of relation

. To simplify presentation, we also assume that
is a single attribute. For , its PID value is denoted as

. For example, a service view may contain relation
Person described below with (Person) = “ID”:
Person(ID, Name, Age, HomeNo, WorkNo,

Employer, NoWorkYear, NoSchoolYear)

2.2. Registrations, Fragments, and Match Join

A data source must register the data it provides to a target
AURORA-RI mediator. A registration is a 3-tuple:

where is the data source name, is a source relation
schema, and is a global relation name. Once this reg-
istration goes through, becomes a registered fragment
of . The attribute set of must include the PID of

, that is, . For any attribute
, if , we say that source

relation supports . A registered fragment of a global
relation often supports some, but not all, of its attributes.

AURORA-RI uses the Match Join (MJ) operator to
“manufacture” tuples in global relations using registered
fragments based on PID values. Consider two registered
fragments, and , of global rela-
tion with PID . If ,

, then . If
and , then both and are
in . MJ can be expressed using outer-joins.

DEFINITION 2.1 Let be a set of frag-
ments with a common PID . Let be a non-PID at-
tribute. The value set of given is defined as:

where 's ( are all the fragments in sup-
porting .

is a binary relation containing all
the -values from the fragments in and the related PID
value. These binary relations are then outer-joined to derive
a global relation.
DEFINITION 2.2 Let be a set of frag-
ments with a common PID . Let be a
set of attributes, . The Match Join (MJ)
of relations in based on in regard to is defined as:

where denotes outer-equi-join on .

Let be a global relation and let be the set of all frag-
ments registered with , . Then relation

is derived as: . Global
relations thus computed may contain null values. For any
tuple and predicate , we assume that is true if and
only if contains no null values on all attributes referenced
by and holds on .

EXAMPLE 2.1 Assume that at one mediator we have de-
fined a global relation Person as
Person(ID, Name, Age, HomeNo, WorkNo,

Employer, NoWorkYear, NoSchoolYear)
with PID “ID”. Also assume that Person has four registered
fragments, as shown in Figure 3. AURORA-RI will derive
Person as shown in Figure 4. The column is not part of
the result but is used later to refer to tuples.



Fragment 1 Fragment 2
ID Name Age HomeNo ID Name HomeNo WorkNo
001 Peter 20 1001 002 Mary 2000 2002
002 Mary 26 2000 003 Fred 3003 3000
003 Fred 32 3000 004 James 4000 4000
004 James 30 4000 005 Joan 5005 5005

Fragment 3 Fragment 4
ID WorkNo Employer ID Name Age NoWorkYear NoSchoolYear
002 2000 Company2 001 Peter 20 1 12
003 3003 Company3 002 Mary 28 5 7
004 4000 Company4 003 Fred 34 8 7
005 5005 Company5 004 James 40 9 3
006 6000 Company6 005 Joan 52 15 15

006 Julie 34 16 2
007 Alan 46 10 14

Figure 3. Registered Fragments for Global Relation Person

3. Instance Level Conflicts and Resolutions

In Figure 3, Fragment 1 records that Fred is 32 years
old while Fragment 4 indicates that Fred's age is 34. This
conflict is reflected in Figure 4 as a violation of key con-
straint, since there are more than one tuple with ID 003;
these tuples form the alternative tuple set for 003, denoted
as . An alternative tuple set containing
more than one distinct value indicates an instance level con-
flict.

Formally, for global relation and a PID value . The
alternative tuple set of at , , is defined as:

For example, we have the following in Figure 4:
(Person, 001) = ,
(Person, 002) = ,
(Person, 004) =

If , we say there is a conflict in at
. Relations that may contain conflicts are called conflict-
accommodating relations, or CA-relations.

Global relations derived using MJ are CA-relations; this
is because we make no effort to remove any conflicts dur-
ing this derivation. Conflicts are caused by inconsistencies
among registered fragments and demonstrate themselves as

s with cardinalities larger than 1. describes
conflicts at tuple level. These conflicts are caused by one or
more conflicts at attribute level, For global relation , non-
PID attribute and PID value , we say there is an attribute
level conflict on at if .

Even with the conflict tolerant query model, conflict res-
olution must still be performed, although delayed and re-
laxed in a controlled way. AURORA provides two oper-
ators, Resolve Tuple level Conflict (RTC) and Resolve At-

tribute level Conflict (RAC), for conflict resolution at tuple
and attribute levels, respectively. These operators are used
for defining the CT query model later. Both operators take a
resolution as a parameter. As defined below, a resolution is
a function with an appropriate signature; it can be system-
defined or provided by users.

DEFINITION 3.1 Given a global relation and its attribute
, an attribute conflict resolution on is a function
: , where is the type of . A tuple
conflict resolution on is a function such that, given a set
of tuples = , = for ,
= where = , = or = .

AURORA provides common resolution functions such as
SUM, AVG, MAX, MIN, ANY, DISCARD, but also al-
lows user-defined functions. If we resolve conflicts on all
attributes, we effectively have defined a tuple conflict res-
olution. This relationship between the two types of reso-
lutions is captured by the concept of equivalent tuple con-
flict resolution (ETCR) given below. This concept allows
us to build the CT query model only based on tuple-level
conflict resolutions, although the users can still specify at-
tribute level conflict resolutions if they wish. Traditionally,
attribute level conflicts are the only type of conflicts dis-
cussed [2]; users may be more comfortable with them.

DEFINITION 3.2 Let be a global relation and =
be all the non-PID attributes of over which

there may be conflicts. Let be attribute conflict res-
olutions on , respectively. Let be a set of tuples
of that have the same PID value. A tuple conflict reso-
lution of , , is the Equivalent Tuple Conflict Resolution
(ETCR) of , denoted as = ( ), if for
any set of -tuples with a common PID value, ,
where satisfies the following:



tid ID Name Age HomeNo WorkNo Employer NoWorkYear NoSchoolYear
001 Peter 20 1001 null null 1 12
002 Mary 26 2000 2000 Company2 5 7
002 Mary 28 2000 2000 Company2 5 7
002 Mary 26 2000 2002 Company2 5 7
002 Mary 28 2000 2002 Company2 5 7
003 Fred 32 3000 3003 Company3 8 7
003 Fred 32 3000 3003 Company3 8 7
003 Fred 32 3003 3000 Company3 8 7
003 Fred 32 3003 3003 Company3 8 7
003 Fred 34 3000 3003 Company3 8 7
003 Fred 34 3000 3003 Company3 8 7
003 Fred 34 3003 3000 Company3 8 7
003 Fred 34 3003 3003 Company3 8 7
004 James 30 4000 4000 Company4 null null
004 James 40 4000 4000 Company4 null null
005 Joan 52 5000 5005 Company5 15 15
006 Julie 34 null 6000 Company6 16 2
007 Alan 46 null null null 10 14

Figure 4. Derived Population of Global Relation Person

1. , = where
; and

2. , , where .

DEFINITION 3.3 Let be a CA-relation and be
conflict resolutions on non-PID attributes . Oper-
ator Resolve Attribute Conflict, RAC, is defined as

( , : : ) =
,

, ,
,

where .

DEFINITION 3.4 Let be a CA-relation and be a tuple
conflict resolution of . Operator Resolve Tuple Conflict,
RTC, is defined as:

Intuitively, removes conflicts on attributes
of using functions ; removes tuple level
conflicts using function . These operators are illustrated
in Figures 5 and 6. Given , a set of conflict resolution
functions for all the non-PID attributes of over which
there may exists conflicts, we have

.

4. Conflict Tolerant Query Model

We define the semantics of single relation CT queries.
A CT query over global relations is semantically
equivalent to a single relation CT query over

. The PID of includes PIDs of all involved relations.
Single relation CT queries are in the following form:

= select from where with
where is in one of the following forms:

1. where ( ) if
= ; if , is an
attribute conflict resolution for .

2. where is a tuple conflict resolu-
tion for .

is called the predicate evaluation parameter, or
PE-parameter, HighConfidence, RandomEvidence,
PossibleAtAll ; 's and specify how conflicts are removed
to produce a conflict-free query answer. and are ex-
ample CT queries:

select PIN, Name[ANY], Age[ANY],
Address[DISCARD]

from Person
where Age 30
with HighConfidence
select [ANY] PIN, Name, Age, Address
from Person
where Age 30
with RandomEvidence



ID Name Age HomeNo WorkNo Employer NoWorkYear NoSchoolYear
001 Peter 20 1001 null null 1 12
002 Mary 27 2000 null Company2 5 7
003 Fred 33 3000 null Company3 8 7
004 James 35 4000 4000 Company4 null null
005 Joan 52 5000 5005 Company5 15 15
006 Julie 34 null 6000 Company6 16 2
007 Alan 46 null null null 10 14

Figure 5. (Person, Age:AVG, HomeNo:ANY, WorkNo:DISCARD)

ID Name Age HomeNo WorkNo Employer NoWorkYear NoSchoolYear
001 Peter 20 1001 null null 1 12
002 Mary 26 2000 2002 Company2 5 7
003 Fred 34 3000 3003 Company3 8 7
004 James 30 4000 4000 Company4 null null
005 Joan 52 5000 5005 Company5 15 15
006 Julie 34 null 6000 Company6 16 2
007 Alan 46 null null null 10 14

Figure 6. (Person, ANY)

Both queries retrieve PIN, Name, Age and Address of
persons older than 30. When there is conflict on Age,
selects persons for whom all Age values available are 30,
while randomly sample one Age value and if it is 30,
then the person is selected. After a person qualifies as 30,
there may still be conflicts on Name, Age or Address;
these conflicts are resolved using the resolutions specified
in the selection clause. resolves conflicts on attribute
level while does it on tuple level. We support a few de-
fault forms of . , where s are attributes,
is the same as ANY . If at least one at-
tribute resolution is specified in , the default resolution
for all other non-PID attributes with no specified resolution
is ANY. Fundamentally, no matter which form takes, it
specifies a tuple conflict resolution, , referred to as
the data extraction parameter, the DE-parameter. If is
in form 2, . A form 1 select clause can be
rewritten into form 2 with = ( ). We only
consider form 2 select clause in the rest of the presentation.

Semantics of is defined in two steps. First, we de-
fine how to find all the PID values that identify objects in

that satisfy the query predicate , this set is called the
contributing PID set (CSET). Since is a CA-relation, a
given PID value, , may identify a set of tuples, namely

. Whether identifies an object that satisfies
must be determined by properties of against
given PE-parameter . Second, we have to remove any

conflicts on data related to PIDs in the CSET computed ear-
lier according to the DE-parameter of . Semantics of

is formally defined below.

DEFINITION 4.1 Given a CA-relation , a predicate and
a PE-parameter , the contributing PID set of in regard
to under , ( , , , is defined as follows:

1. For any such that ( , ) = 1,
( , , ) if and only if = , where

.

2. For any such that :

If = , ( , , ) if
and only if = , where is
selected by a function at query evaluation time.
If = , ( , , ) if and
only if , = .
If = , ( if
and only if , = .

A contains PIDs identifying tuples that satisfy a
predicate under a given PE-parameter; these tuples will con-
tribute to the query result. When the PE-parameter is Ran-
domEvidence, the value of depends on the run-time
function used to choose a tuple from an based on
which the query predicate is evaluated. Thus more than one
CSET can be considered valid. Such variations are captured
by the following definition.

DEFINITION 4.2 Let be a CA-relation, a predicate and
a PE-parameter. A set of PID values is a valid CSET of
in regard to under if:



and ; or

and , such that
, there exist tu-

ples , such that ,
, .

EXAMPLE 4.1 Examine relation Person in Figure 4, we see
the following:

(Person, “Age 33”, PossibleAtAll)
= 003, 004, 005, 006, 007

(Person, “Age 33”, HighConfidence)
= 005, 006, 007

(Person, “Age 33”, RandomEvidence)
= 004, 005, 006, 007

(Person, “Age 33”, RandomEvidence)
= 003, 004, 005, 006, 007

The last two s given above are both valid. 003 does
not satisfy Age 33 under because there
is evidence that 003 is 32 years old.

DEFINITION 4.3 [Answer Set.] The answer to query
given earlier is defined as:

Table 2 shows 12 CT queries and results. These queries
vary in PE-parameter and DE-parameter. We use two DE-
parameters: ANY and DISCARD but they can be any func-
tion defined by the system or user. We vary the select clause
to demonstrate how CT query model tolerates conflicts. Re-
sults of queries involving or ANY may
vary with the selection function used at run-time. By speci-
fying these parameters, one accepts such variations.

EXAMPLE 4.2 First examine - shown in the left
columns of Table 2. The most stringent control appears in

. This query has one of the smallest results. We next ob-
serve that queries in the 3rd column often have larger results
than those in the 1st column. For example, and . This
is because relation Person contains no conflicts over Name
but it contains conflicts over Age. When a query retrieves
only conflict-free attributes, conflicts on other attributes are
often hidden from the users altogether; the system does not
resolve conflicts on them either.

5. Primitive CT Query Evaluation

Algorithm CT-QP-NoOpt is an unoptimized algorithm
that directly implements the CT query semantics given
earlier. Correctness of this algorithm is straightforward.

ALGORITHM CT-QP-NoOpt ( , , )
input:

: Global relation involved in the query.

: = select from where with .

: All the fragments registered with , .

output: : the query answer.
begin

1. , where
= .

2. .

3.
;

end of algorithm.
In step 1, CT-QP-NoOpt retrieves all fragments and

performs a match join. This can be expensive when
fragments are large and numerous. When query selectivity
is low, large portion of the retrieved data is discarded in
step 2 where is computed with the algorithm given
below; it is desirable to not retrieve these data in step 1. In
step 3, we apply operator to produce a conflict-free
result. is a direct implementation of Definition 3.4
and is not given here.

ALGORITHM ComputeCSET
input:

: A CA-relation, sorted on .

: A predicate.

: A PE parameter.

output: : .
begin

1. Let .

2. If or , then
.

3. If , then
.

end of algorithm.
In the next Section, we establish techniques to use query

predicate to derive conditions based on which the amount
of fragment data retrieved in step 1 can be reduced without
impacting on the correctness of the query result. This tech-
nique will reduce both communication cost and the volume
of data manipulated.

6. Optimizing CT Query Processing

For predicate over a global relation and a fragment
of , , if , we say is applicable
to . CT query optimization aims at using applicable pred-
icates to reduce the volume of fragment data retrieved into
the mediator while preserving query semantics.



Query Answer Query Answer
select [ANY] Name, Age select [ANY] Name
from Person from Person
where where
with with
select [DISCARD] Name, Age select [DISCARD] Name
from Person from Person
where where
with with
select [ANY] Name, Age select [ANY] Name
from Person from Person
where where
with with
select [DISCARD] Name, Age select [DISCARD] Name
from Person from Person
where where
with with
select [ANY] Name, Age select [DISCARD] Name
from Person from Person
where where
with with
select [DISCARD] Name, Age select [DISCARD] Name
from Person from Person
where where
with with

Table 2. Example Queries and Answers

6.1. CT Query Optimization Examples

Let be a predicate over and let be
its conjunctive normal form. Given a registered fragment of

, , the question is: “if is applicable
to , can we retrieve only into the mediator and still
evaluate correctly?”

In order to decide whether we can push a predicate onto
a fragment, we have to consider the impact of such reduc-
tions on the query semantics. Consider the fragments shown
in Figure 3 and = (Person, “Age 33”, ). Assume
we retrieve only (Fragment 1) and (Fragment
4) into the mediator. = (003, “Fred”, 32, 3000) in Frag-
ment 1 will not be retrieved. This potentially excludes 003
from . If = RandomEvidence, it is valid to exclude 003
from , according to Definition 4.2. If = HighConfidence
then it is necessary to exclude 003 from . However, the
mediator will retrieve = (003, “Fred”, 34, 8, 7) from
Fragment 4 and algorithm ComputeCSETwould include 003
in , resulting in an incorrect CSET. To fix this problem,
we can send 003 to the site of Fragment 1 to verify that
Fred indeed has Age 33. In our example, the verification
fails and 003 is removed from . This process is referred
to as PID verification. Obviously, when Age is supported
by only one fragment, PID verification is not needed. As-
sume we have derived a temporary value from

reduced fragments. To perform PID verification, we send
the following queries to the sites of Fragment 1 and 4, re-
spectively:

Fragment 1
Fragment 4

PID values in or must be removed from . The cost
of this approach is low when (1) query selectivity is low re-
sulting in a small ; and (2) Conflict rate is low resulting
in small s. When no conflict exists, all s are empty. When

is large, the cost of PID verification may offset the sav-
ings achieved by pushing selections onto fragments; a cost
model is needed for strategy selection.

If = PossibleAtAll, can be computed by
correctly from reduced fragments.

However, we must be careful about pushing predicates that
involve more than one attribute. Consider = CSET(Person,
“HomeNo=WorkNo”, PossibleAtAll). In Figure 3, Fragment
2 contains tuple (003, Fred, 3003, 3000). If we retrieve
only (Fragment 2), 003 will be excluded
from , which is incorrect since combining Fragments 1
and 2, it is possible that Fred's HomeNo and WorkNo are
the same, 3000. Generally, we can push a multi-attribute
predicate onto a fragment only if no fragments other
than support any of the attributes involved in .

CT query optimization possibilities as illustrated by the
example above are summarized in Table 3. In the next sec-



tion, we formally establish the above described optimiza-
tion strategies. When = HighConfidence, a cost model is
needed to determine whether the strategies we devise actu-
ally reduce cost. This is a future research issue; we only
establish the validity of the strategies in this paper.

Can be used
for fragment reduction?
YES
YES (Conditional)
YES (with PID verification)

Table 3. Fragment Reduction with Selections

6.2. A Theory for CT query Optimization

The main theorems of our theory are Theorems 6.1 and
6.2, which allow us to push selections across MJ onto frag-
ments to various degrees according to the PE-parameter.

THEOREM 6.1 Let R be a CA-relation. Let
be a predicate over in conjunctive nor-

mal form. Let be all fragments registered with
that contain no null values. Let ,

where is applicable to .
Let , . Let ,

. Let .
Let . Then we
have the following:

1. CSET( , p, RandomEvidence) is a valid value for
CSET(R, p, RandomEvidence);

2. CSET(R, p, HighConfidence) = CSET( , p, HighCon-
fidence) W.

Note that 2 of Theorem 6.1 says that
can be computed from

reduced fragments but we must verify that PID values
thus selected are not in any . This process is the PID
verification as described earlier.

THEOREM 6.2 Let be a CA-relation. Let
be a predicate over in conjunctive normal form.

Let be all fragments registered with . 's do
not contain null values. Then

where , , ,
; satisfies the following:

1. or
; and

2. involves at most one non-PID attribute
or no registered fragment of R other than supports
any of the non-PID attributes in .

We omit the formal proof of these theorems due to limit
in space. Interested readers can find these proofs in [9].

6.3. Optimized CT Query Evaluation

The following algorithm is directly based on Theorems
6.1 and 6.2.

ALGORITHM Optimized-CT-QP ( , , )
input:

: Global relation involved in the query.

: = select from where with .

: All the fragments registered with .

output: : the query answer.
begin
Compute CSET:

- Let . Write
into conjunctive normal form = . Let

.

- For do:

- if then let be the conjunction
of all predicates in that are applicable to . If no
such is found, ;

- if = PossibleAtAll then let be the conjunction of
all predicates in such that (1) it involves at most
one non-PID attribute; or (2) No fragments other than

supports any of the non-PID attributes involved. If
ATTR( ) ATTR(p) ATTR( ), .

S1 .

- = MJ(PID(R), );

- C = ComputeCSET( , p, );

PID Verification:

- If = HighConfidence or DE(L) ANY then

- Let = ATTR(L) PID(R) .

- For do:

S2 Let ;
- if = HighConfidence

C = C (PID(R)); ;

- = ;

Data Completion:

- if DE(L) ANY then = MJ(PID(R), , , );

Data Extraction:

- A = [RTC( C, DE(L))].



ID Name Age HomeNo ID Name HomeNo WorkNo
004 James 4000 4000
005 Joan 5005 5005

ID WorkNo ID Name Age NoWorkYear NoSchoolYear
002 2000 003 Fred 34 8 7
003 3003 004 James 40 9 3
004 4000 005 Joan 52 15 15
005 5005 006 Julie 34 16 2
006 6000

ID Name Age HomeNo WorkNo NoWorkYear NoSchoolYear
002 null null null 2000 null null
003 Fred 34 null 3003 8 7
004 James 40 4000 4000 9 3
005 Joan 52 5005 5005 15 15
006 Julie 34 null 6000 16 2

Figure 7. Compute CSET and content of when = RandomEvidence or HighConfidence

end of algorithm.
Steps S1 in Compute CSET and S2 in PID Verification

are where queries are sent to the data sources that provide
the respective fragments. These steps follow directly from
Theorems 6.1 and 6.2. When the number of sources in-
volved is large and data volume is large, cutting down on
data retrieval at S1 and S2 improves query performance. We
further observe the following:
Optimized-CT-QP is a 1- or 2-phase algorithm. The

first phase retrieves enough data to compute . De-
pending on the PE- and the DE-parameter, a second phase
retrieves extra data for PID verification and/or data comple-
tion. PID verification is only needed if the PE-parameter is
HighConfidence. Data completion is not needed when the
DE-parameter is ANY.
Performance perspectives of Optimized-CT-QP. Step

S1 is obviously a good move towards saving communica-
tion cost. At step S2, we could send the content of the com-
puted , , to relevant data sources. This works well
when is small due to a low query selectivity, but may get
expensive when is large. A simple computation can be
applied to restrict this cost. Consider performing step S2
against a data source supporting a fragment . The pur-
pose of sending a query to compute is indeed to retrieve
data related to PIDs in that are in but have not been
retrieved in step S1. Thus we can compare the volume of

with the volume of C. If the former
is smaller, then we simply retrieve it without sending C to
the relevant data source, and proceed normally.
Optimized-CT-QP performs better when conflict rate

is low. When conflict rate is low, the 's will be empty or
very small. This means the cost of PID verification and Data
Completion becomes low. We expectOptimize-CT-QP to be
most efficient against low conflict data.

EXAMPLE 6.1 We use the above given algorithms to eval-
uate the following 6 queries:

select [ ] Name, Age
from Person
where Age 33 and HomeNo = WorkNo

and NoWorkYear NoSchoolYear
with

where RandomEvidence, HighConfidence,
PossibleAtAll and ANY, DISCARD . Figure
7 shows the predicates pushed onto 's to compute

's ( ) in the case of HighConfidence and
RandomEvidence. It also shows the result of the match
join producing , from which we get: (Person,
p, RandomEvidence) = . Based on this result
we perform PID verification. The are computed
when = HighConfidence or = DISCARD, shown in
Figure 9. Based on this result we have: CSET(Person, p,
HighConfidence) = Figure 8 shows the predicates
pushed onto 's to compute of 's, in the case
of = PossibleAtAll. It also shows the result of the match
join producing , from which we get: CSET(Person, p,
PossibleAtAll) = Final results of the 6
queries are given in Figure 10.



ID Name Age HomeNo ID Name HomeNo WorkNo
001 Peter 20 1001 002 Mary 2000 2002
002 Mary 26 2000 003 Fred 3003 3000
003 Fred 32 3000 004 James 4000 4000
004 James 30 4000 005 Joan 5005 5005

ID WorkNo ID Name Age NoWorkYear NoSchoolYear
002 2000 003 Fred 34 8 7
003 3003 004 James 40 9 3
004 4000 005 Joan 52 15 15
005 5005 006 Julie 34 16 2
006 6000

ID Name Age HomeNo WorkNo NoWorkYear NoSchoolYear
001 Peter 20 null null null null
002 Mary 26 2000 2002 null null
002 Mary 26 2000 2000 null null
003 Fred 32 3000 3000 8 7
003 Fred 32 3000 3003 8 7
003 Fred 32 3003 3000 8 7
003 Fred 32 3003 3003 8 7
003 Fred 34 3000 3000 8 7
003 Fred 34 3000 3003 8 7
003 Fred 34 3003 3000 8 7
003 Fred 34 3003 3003 8 7
004 James 40 4000 4000 9 3
004 James 30 4000 4000 9 3
005 Joan 52 5005 5005 15 15
006 Julie 34 null 6000 16 2

Figure 8. Compute CSET Phase for PossibleAtAll

7. RelatedWork

Projects that employ a similar style data integration
model include DISCO [7] and Information Manifold (IM)
[4]. AURORA differs from these systems in its 2-tiered me-
diation model, designed to make adding and removing data
sources easier. Unlike previous systems, we do not force the
adoption of a specific data model; above the wrapper level,
relational and object-oriented mediators can be developed
independently. A comparison between AURORA and other
mediation models can be found in [8, 9]. Many integration
systems with comparable model do not deal with instance
level conflicts.

[1, 2] study algebraic rules for pushing selections across
aggregation functions, under the assumption that schema in-
tegration is performed by an integration specification which
resolves all potential instance level conflicts using various
aggregation functions. AURORA integration mediators do

not keep integration specifications, sources participate in
the data service by registering with the mediator the data
they can contribute. Conflicts are not resolved at schema
integration time but rather tolerated at query time and re-
solved only upon returning of query results. In general, AU-
RORA's approach towards instance level conflict handling
offers a new way of querying potentially inconsistent data
and new techniques for processing such queries efficiently.

The flexible relation model [3, 6] is designed to deal
with instance level conflicts but it requires the applications
to use a non-standard data model for data access. This
approach only deals with conflicts at predicate evaluation
time and the tolerance mode is always HighConfidence.
Conflicts in query results are not removed. Multiplex [5]
deals with instance level conflicts in the context of answer-
ing queries using given materialized views. Conflicts arise
when the materialized views overlap and the same query can
be evaluated in multiple ways resulting in multiple answers.



= HighConfidence = RandomEvidence = PossibleAtAll
= 004, James, 30 = 004, James, 30 =
= = =
= = =
= = =

Figure 9. Value of 's with = DISCARD

= HighConfidence = RandomEvidence = PossibleAtAll
A = 005, Joan, 52 A = 004, James, 40 , A = 003, Fred, 34 ,

= ANY 005, Joan, 52 004, James, 40 ,
005, Joan, 52

= DISCARD A = 005, Joan, 52 A = 005, Joan, 52 A = 005, Joan, 52

Figure 10. Query Results

A mechanism is proposed to derive an approximate query
answer using these candidate answers. However, without
any object matching assumption, it is not clear how con-
flicts can be detected.

8. Conclusion and Future Work

In this paper, we described AURORA's approach to in-
stance level conflict handling. This approach differs from
previous approaches in that we do not resolve conflicts at
schema integration time with aggregation functions, we de-
fine a new model for querying possibly inconsistent data,
the CT query model. With this model, conflicts are tolerated
to a degree specified by the user at query time. The advan-
tage of the CT query approach is that applications gain more
control of the quality of the data access service they receive
and the mediator gain more room for query optimization;
we have developed techniques for optimized processing of
such queries. We believe that the ability of optimizing query
processing according to applications' requirements is a sig-
nificant factor in deployment.

Future research involves development of a cost model for
strategy selection and a detailed performance study of the
query optimization techniques presented here. Since query
processing is a multi-phase procedure, apart from the ma-
jor transformations given in this paper, many smaller tech-
niques for smart reuse of data retrieved in previous phases
can be explored. These are engineering issues but may im-
prove performance further.
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