Accessing Heterogeneous Data Through Homogenization and Integration
Mediators

Ling Ling Yan

M. Tamer Ozsu

Ling Liu

Laboratory for Database Systems Research
Department of Computing Science
University of Alberta, Edmonton, Alberta, T6G 2H]1
{ling, ozsu, lingliu } @cs.ualberta.ca

Abstract

The AURORA mediator system employs a novel 2-tier,
plug-and-play mediation model that is designed to facilitate
access to a large number of heterogeneous data sources.
This paper describes AURORA's mediation model and a
suite of techniques used by a specific AURORA mediator,
AURORA-RH. This suite includes a mediation methodology
provided via an interactive mediator author's toolkit (MAT),
a mediation enabling algebra, a query rewriting algorithm,
and transformation rules that facilitate query optimization.

1. Introduction

The advent of the Internet gives rise to new types of ap-
plications such as electronic commerce and virtual enter-
prise that require integrated access to large number of het-
erogeneous data sources around the globe. Much is known
about schema integration but the impact of this process on
query processing efficiency is seldom discussed. In the In-
ternet age, it is crucial that this impact be considered. The
AURORA project builds integrated access to heterogeneous
data sources based on a novel 2-tier, plug-and-play style
mediation model shown in Figure 1. Data sources to be
accessed via an application view V' are first homogenized in
regard to V' and then integrated into V. Homogenization
removes “deviations” of a source from V. Integration is a
registration mechanism that relates a homogenized source
into V. Homogenization and integration are performed by
specialized mediators as in Figure 1. AURORA Media-
tor Author's Toolkits (MATSs) provide homogenization and
integration constructs and mandate mediation methodolo-
gies. Each mediator employs a Mediation Enabling Alge-
bra (MEA) for manipulating heterogeneous data and for
query optimization. With MEAs, AURORA identifies the

impact of mediation and takes it into account in query pro-
cessing. This paper describes AURORA's mediation model
and the suite of techniques used by a AURORA mediator,
AURORA-RH, including a homogenization methodology, a
MEA and query modification and optimization algorithms
enabled by this MEA.

‘ Application 1 ‘ Application 2

Integration
Mediator

Integration
Mediator

Homogenization
Mediator

Homogenization
Mediator

Homogenization
Mediator

Homogenization
Mediator

‘ Wrapper ‘ ‘ Wrapper ‘

Figure 1. The AURORA Mediation Framework

Homogenization can be a complicated process when
multiple types of mismatches exist simultaneously. A ho-
mogenization methodology ensures correct and complete
homogenization. The MEA of AURORA-RH, MEA-RH,
extends the relational algebra with operators specially de-
signed for expressing homogenizing views. Queries posed
against such views are mapped to one or more subqueries
against the data source (via wrapper). This mapping should
be optimized. In AURORA, such optimization is achieved
via query modification in MEA-RH. We present a query
rewriting algorithm and a set of transformation rules for
query optimization in MEA-RH.

This paper is organized as follows. Section 2 introduces
AURORA. Section 3 describes the structure of AURORA-
RH. Section 4 describes MEA-RH. Section 5 describes
MAT-RH. Section 6 describes query processing and opti-
mization in AURORA-RH. Section 7 reviews related work.
Section 8 contains conclusion and future research.

2. An Overview of AURORA
2.1. The AURORA Mediation Model

Assume that an application requires access to a set of
data sources via an integrated view V. V is defined by ap-
plication requirements, regardless of how the data are pre-
sented by the underlying data sources. In AURORA, each
data source in the access scope of V' must first be homoge-
nized in regard to V' and then infegrated into V. Homog-
enization removes schematic discrepancies of individual
data sources in regard to V; these discrepancies arise when
data sources model the same application domain differently.
Once homogenized, a data source can be integrated into V'
through a simple “registration” mechanism. The exact defi-
nition of this mechanism is a research issue in AURORA.
The goal is to make it (1) simple: it requires minimum
expertise to manage; and (2) incremental: the sequence in
which sources register is insignificant; and (3) scalable: its
complexity is independent of the number of sources reg-
istered. AURORA mediation model is heavy in homoge-
nization but light in integration; homogenization counts for
most of the effort for including a new source. However,
homogenization involves only one data source and can be
managed with Mediator Author's Toolkits (MATs). Multi-
ple sources can be homogenized in parallel.

2.2. Mediator Development Environment

AURORA provides a collection of workbenches, each
consisting of a mediator skeleton and a Mediator Author's
Toolkit (MAT).

AURORA Mediator Skeletons. A mediator consists of
a mediator view and a query processor. Building a mediator
means building both components. In AURORA, mediators
are constructed from mediator skeletons that have the fol-
lowing built-in capabilities:

1. A mediation enabling algebra (MEA) for defining

views and a repository to maintain them.

2. A query processor that entertains queries posed

against views defined via the MEA.
Mediator skeletons are mediators with an empty view. Once
a view is defined, a mediator skeleton becomes a custom-
made mediator that is able to process queries posed against
this view. Different types of mediators require skeletons
that have different MEAs and query processors.

AURORA Mediator Author's Toolkits (MATs). In
AURORA, a mediator author chooses a mediator skele-
ton, identifies heterogeneities among the sources, and de-
fines views into the mediator skeleton to resolve the het-
erogeneities. As shown in Figure 2(a), AURORA provides
interactive tools, the Mediator Author's Toolkits (MATSs),

to assist the mediator authors in performing such tasks. A
MAT has the following capabilities:
1. It mandates a mediation methodology; and
2. It provides mediation enabling operators (MEOs) for
expressing the resolutions.
Construction of different types of mediators requires differ-
ent methodologies and operators.

AURORA Mediator Development Environment. The
AURORA mediator development environment consists of
a collection of workbenches, environments where media-
tors of a particular type can be constructed by a media-
tor author. Figure 2(a) shows the general form of a work-
bench. Construction of different mediators requires differ-
ent suites of MAT and skeleton. Rather than providing one
workbench for all, AURORA provides a collection of work-
benches classified along two dimensions: (1) the canon-
ical data model and query language, relational or object-
oriented, chosen according to application requirements. (2)
the mediator type, homogenization or integration. Figure
2(b) shows this classification.

3. AURORA-RH
3.1. Homogenization and Query Processing

Let B be a relational database. Let H be a view con-
sisting of relations My, ..., M,,. To homogenize B into H
is to specify procedures, P;(B)(1 < i < n), that con-
struct relations M;(i = 1,n) from the relations in B. B
is the source database; relations in B are source relations;
M;(i = 1,n) are targer relations. Queries posed against
H are referred to as mediator queries. Assume procedures
P;(B)(1 < i < n) have been specified and consider a me-
diator query . The task of processing () is to 1) translate
(into queries over B; and 2) send the queries to B and use
the returned data to assemble the answer to (.

Example Application. Figure 3 depicts a homogenization
problem. Besides the differences in schema, we also assume: (1)
In the source database, the sales and salary data is recorded in
Canadian dollars, while in the target database, the same data is to
be in US dollars; (2) In the target database, Fmployee.salary
includes bonus as well as base salary; and (3) The target
database perceives the domain of “jobs” differently from the
source database. Rather than having job titles from {SysAdm,
SoftwareEngineer, MarketingStaff, ResearchStaff, ProjectDirec-
tor}, the target database assumes the job titles are from {System
Engineer, Development Engineer, Consultant, Research Scientist,
Program Manager?} .

Databases model conceptual territories by domains. Do-
mains in different databases that model the same concept
may differ, giving rise to domain mismatches. These do-
mains can be converted to each other via domain mappings.

Mediator Author End user/ application ® queries
- - AURORA Workbenches
Mediator Skeleton / Mediator -
AURORA Canonical
) View Definiti Query Mediator. Model | Rejational Ol_’/‘?Ct’
Mediator Author’s 1ew Delinition Processor specialty Oriented
. Repository
Toolkit (MAT) _ X Homogenization | AURORA-RH | AURORA-OH
S,Cl/l?’z/l?,l{lf,o— Lo _ I e ;@I'fb,)g,ugr,ws Integration AURORA-RI AURORA-OI
‘Mediator/Wrapper ‘ ‘Mediator/Wrapper ‘ ‘Mediator/Wrapper ‘
(@) (b)
Figure 2. AURORA Workbench: General Form and Classification
Source Database Target Database
Sales SysAdm
‘ month ‘ ibm_pc‘ mac‘ laptop ‘ ‘ id‘ name ‘ salary ‘ bonus ‘ CompanySales
! ! ! ! P ! ! ! month | product_type | salesAmt
SoftwareEngineer MarketingStaff
‘ id‘ name ‘ salary ‘ bonus‘ ‘ id‘ name ‘ salary ‘ bonus ‘
M \ \ I \ \ \ Employee
ResearchStaff ProjectDirector id | name | jobTitle |salary
‘ id‘ name ‘ salary ‘ honus‘ ‘ id‘ name ‘ salary ‘ bonus ‘
o | | | T | | |
Figure 3. A Homogenization Problem
3.2. Architecture of AURORA-RH MAT-RH Skeleton-RH
“1; ;h |7 DUE AURORA-RH Query Processor (AQP)
. . . . uthor DSE
Figure 4 shows the architecture. MAT-RH is a toolkit %/ Query | Query Query
. . . . < |=| RLE Rewriter |Optimizer | Execution Engine
that assists a mediator author in constructing a homoge- ﬁ =]
.. . . S| sme2 1 §
nizing view, or a target database. It provides a MEA and Lo N Vi -
.) . SME-1 [~—] iew Definition AURORA-RH
mandates a homogenization methodology. Homogeniza- = = Repository Primitives
tion process is divided into 6 steps, each supported by a 1 }

specialized tool (sections 5.3-5.8). Each tool accepts two
types of information: (1) transformations, expressions in
MEA-RH. (2) domain mappings, arbitrary functions. These
are captured in the View Definition Repository and used
for query processing. AURORA-RH Primitives are op-
erators designed to facilitate homogenization; they extend
the relational algebra to form MEA-RH. AURORA-RH
Query Processor (AQP) translates a view query into a set
of queries against the source and assembles the final answer
using data retrieved from the source.

4. Primitives and Transformations

AURORA-RH primitives are MEOs designed to facili-
tate homogenization; they extend the relational algebra to
form MEA-RH. All primitives take a relation as an argu-
ment and generate a relation; they compose with relational
operators in a well-defined manner. For simplicity, two at-
tributes are considered to be the “same” if they have the
same name. We use ATTR(R) to denote the set of at-
tributes in relation R, RELname(R) for the name of re-
lation R, and ATT Rname(A) for the name of attribute

I v
‘Wrapper ‘

% Source DB

Figure 4. AURORA-RH Workbench

A. Let B be the source database to be homogenized.
AURORA-RH provides the following primitives:
retrieve. Let () be an algebraic expression over the
source relations in database B,
R' = retrieve(Q)
submits) to database B and returns result in R’.
pad. Let R be a relation, A be an attribute, A ¢
ATTR(R),and c a constant,
R' = pad(R, A, c)
defines relation R', ATTR(R') = ATTR(R) U {A}. The
population of R’ is defined by
R ={t' |t'[A] =c; ¥'[A"1 =t[A'],t € R, A' € ATTR(R)}
Let R' = pad(retrieve(SysAdm), jobTitle, “SysAdm”),
where SysAdm is given in Figure 3. R’ has scheme (id,
name, salary, bonus, jobTitle) and includes all SysAdm tu-
ples ragged with “SysAdm” as attribute jobTitle.

rename. Let R be a relation, A € ATTR(R), and n be

an attribute name, n ¢ ATTR(R), then

R' = rename(R, A, n)
defines a relation R’ with scheme identical to the scheme of
R with attribute A renamed to n. The population of R’ is
defined by: R' = {¢'|t'[n] = t[A],'[A"] = t[A'],t € R,
A’ € ATTR(R) — {A}}

deriveAttr. Let R be arelation. Let I, C ATTR(R)

(i = 1, k) be a list of attributes in R. Let N,;(¢ = 1, k) be
attributes. Let f; be functions of appropriate signatures.

R' = deriveAttr(R, L1, N1, f1,...., Lx, Nk, fx)
defines a relation R/, ATTR(R') = ATTR(R) U
{Ny, ..., Ni}. The population of R’ is defined by:

R = {t' | ¥IN:] = fi(¢{Li]),1 <0 < k; V'[A] = t[A], A €
ATTR(R) — {N,...,Ny},t € R}

For each tuple t € R, deriveAtir generates ¢ € R’
by adding fields N; to ¢ (i=1,k) and sets its value to be
Ji(¢[L;]). derive Attr is used in map values with arbitrary
functions, as in sections 5.7 and 5.8.

A transformation expression, 7y, is a well-formed ex-
pression in MEA-RH. T defines a relation, R = Tg. If
Ty is retrieve(Q), R is a direct relation, otherwise, R is
a derived relation. A direct relation is the result of a query
over the source.

5. Mediator Author's Toolkit: MAT-RH
5.1. Domain and Schema Mismatches

Let B be a source database and M be a target relation.
MAT-RH identifies these types of mismatches:

Cross-over schema mismatches. A type 1 cross-over
mismatch happens when a concept is represented as data
in M but as relations in B. A type 2 cross-over mismatch
happens when a concept is represented as data in M but as
attributes in B.

Domain structural mismatches. This mismatch hap-
pens when a domain in M corresponds to a domain with a
different data type or several data domains in B.

Domain unit mismatches. This mismatch happens
when a domain in M assumes different unit of measure-
ment from the corresponding domain(s) in B.

Domain population mismatches. This mismatch hap-
pens when a domain in M assumes different population
from the corresponding domain(s) in B.

Example-1. The example shown in Figure 3 demonstrates all
of the above mentioned mismatches:

- (cross-over schema mismatch, type 1.) In the target database,
jobs is represented as data domain “jobT'itle” in relation Em-
ployee, but is represented as relations in the source database.

- (cross-over schema mismatch, type 2.) In the target database,
product types is represented as data domain product type, but is
represented as attributes in the source database.

- (domain structural mismatch.) In the target database, salary
means the total income. The same concept is represented by two
data domains, salary and bonus, in the source database.

- (domain unit mismatch.) In the target database, all money
amounts use US dollar as unit, while in the source database, all
money amounts reported are in Canadian dollars.

- (domain population mismatch.) The two database schemas as-
sume different domain populations of the concept jobs.

5.2. Homogenization Methodology

The MAT-RH mandates a 6-step methodology for ho-
mogenization:

1. Construct an import schema;

2. Resolve type 1 schema mismatches;

3. Resolve type 2 schema mismatches;

4. Link relations;

5. Resolve domain structural mismatches; and,

6. Resolve domain unit/population mismatches.
This methodology is demonstrated by examples in the rest
of this section. In each step, derived relations and/or domain
mappings are specified. MAT-RH supports each step by a
specialized tool (environment) that accepts certain transfor-
mations and domain mappings. Some environments pro-
vide special transformations for resolving specific types of
mismatches. In the following sections, each environment is
described along 4 dimensions:

1) Input relations.

2) Transformations allowed.

3) Output semantic information: domain mappings and
other semantic information allowed.

4) Output relations.

5.3. Import Environment (IE)

The input to IE (Figure 6) includes all the source rela-
tions exported by source B. Output of IE is a set of direct
relations of the form R = retrieve(Q), where @ is a rela-
tional algebraic expression over database B. No semantic
mapping information is produced.

Example-2: Importing source database. The IE allows the
mediator authors to choose relations and data of interest from
the source database. In our example, all relations are of inter-
est. The importing step produces a set of direct relations R =
retrieve(R), where R € { Sales, SysAdm, SoftwareEngineer,
MarketingStaff, ResearchStaff, ProjectDirector }.

5.4. SME-1 for Type 1 Cross-over Mismatches

Figure 6 depicts Schema Mismatch Environment 1
(SME-1).
Input relations. All relations produced by IE.

SysAdm

id name | salary bonus| D £ {SysAdm,SoftwareEngineer,MarketingStaff,ResearchStaff,ProjectDirector}
001 |Lane,N | 18000 | 1200 R, .
002 | Kim,Y | 17500 | 1360 RELmat(D , jobTitle) id | name |salary|bonus| jobTitle
001 | Lane, N | 18000 | 1200 SysAdm
SoftwareEngineer MarketingStaff 002 | Kim,Y | 17500 | 1360 SysAdm
id name | salary | bonus id name |salary| bonus 101 | Chan, K | 23000 | 2450 (SoftwareEngineer
101 | Chan, K | 23000 | 2450 201 | Beck, B | 27000 | 4500 104 | Smith, P | 28000 | 2370 SoftwareEngineer
104 | Smith, P | 28000 | 2370 205 | Barry, D | 29500 | 4680 201 | Beck, B | 27000 | 4500 | MarketingStaff
205 | Barry, D | 29500 | 4680 | MarketingStaff
ResearchStaff ProjectDirector 304 | Carey,J | 34700 | 2460 | ResearchStaff
id name |salary | bonus id name |salary| bonus 306 | Shaw, G | 35600 | 2530 | ResearchStaff
304 | Carey, J | 34700 | 2460 403 | Keller,T | 56000 | 1000 403 | Keller,T | 56000 | 1000 | ProjectDirector
306 | Shaw, G | 35600 | 2530 401 | Poston,T | 67000 | 1200 401 | Poston,T | 67000 | 1200 | ProjectDirector

Figure 5. The RELmat operator

Skeleton-RH View Definition Repository

Relation Definitions
(basic and derived)

Schema Mismatch
Env 2: SME-2

Schema Mismatch
Env 1: SME-1

Figure 6. IE, SME-1 and SME-2

Import Env
IE

source schema

Transformation operators.
rename, pad, derive Attr.

RFE Lmat(relation materialize) is a special transforma-
tion operator. Given D® = {Ri,..,R,}, a group of re-
lations with identical schemes, let A be an attribute, A ¢
ATTR(R;), then

RELmat(D", Ay =JI_, pad(R:, A, RELname(R;))
The result relation contains tuples from all the relations in
D% | each tagged with a new field A that contains the name
of the relation it came from, as illustrated in Figure 5. The
application of RF Lmat is illustrated in Example-3.

Output semantic information. SME-1 allows specifi-
cation of relation groups (D). In the target database, the
names of the relations in a relation group form an enumer-
ated data domain which represents a concept that is repre-
sented as relations in the source database.

Output relations. Derived relations.

Example-3: solving type 1 cross-over schema mismatch.
The source database models jobs as relations. The target database
models jobs as a data domain Employee jobTitle. The following
is the resolution to this mismatch:

DP={SysAdm, SoftwareEngineer, MarketingStaff, Research-
Staff, ProjectDirector}

SEmpioyee = RELmat(D", jobTitle)

Figure 5 further illustrates this resolution.

RELmat, m, o, X,

5.5. SME-2 for Type 2 Cross-over Mismatches

Schema Mismatch Environment 2 (SME-2) is depicted
in Figure 6.
Input relations. All relations defined in previous steps.

Transformation operators.
rename, pad, derive Attr.

ATT Rmat(attribute materialize) is a special transfor-
mation operator. Given D4 = {A;, ..., A,}, a group of
attributes in a relation S’ that have identical data types, let
N4 and Ny be attributes, N4, Ny ¢ ATTR(S), then:
ATTRmat(S, D* Na, Ny) =

U:‘L=1 Pad(rename(ﬂATTR(s)—DA U{A,}(S)7

Ai, ATT Rname(Nv)), Na, ATT Rname(A;))
The effect of this operator is illustrated in Figure 7. Appli-
cation of AT'T'Rmat is demonstrated in Example-4.

ATTRmat, m, o, X,

Sales month | salesAmt | product_type
month | ibm_pc | mac laptop Feb/96| 6700 ibm_pc
Feb/96 6700 | 6900 | 8000 Mar/96| 7600 ibm_pc
Mar/96 | 7600 | 8400 | 7800 Febi%6| 6900 mac

a Mar/96| 8400 mac
D = {ibm_pc, mac, laptop} Feb/96 | 8000 laptop
ATTRmat(Sales, D ,Aproductftype, salesAmt) —= | Mar/96| 7800 laptop

Figure 7. The ATTRmat operator

Output semantic information. SME-2 allows specifi-
cation of attribute groups (1D4). In the target database, the
names of the attributes in an attribute group form an enu-
merated data domain which represents a concept that is rep-
resented as attributes in the source database.

Output relations. Derived relations.

Example-4: Solving type 2 schema mismatch. The source
database models product types as attributes ibm _pc, mac, laptop
in Sales, while the target database models it as a domain Compa-
nySales . product type. The following is the resolution:

D* = {ibm_pc, mac, laptop}, ScompanySates =

ATT Rmat(Sales, D?, product _type, sales Amt)
This resolution is further illustrated in Figure 7.

5.6. RLE: Environment for Relation Linking
Relation Linking Environment, RLE, is depicted in Fig-

ure 8. The input includes relations previously defined. De-
rived relations can be defined using rename, m, ¢, and

. RLE mandates the derivation of a distinguished relation
S, a “prototype” of M modulo data domain mismatches.
S is the only relation referenced in future steps.

Example-5: relation linking. In Example-3 and 4, relations
SEmployee aNd Scompany saies are defined. Nothing is to be done
in RLE in the example application.

5.7. DSE: Solving Domain Structural Mismatches

The Domain Structure Environment, DSE (Figure 8),

supports resolution of structural mismatches (section 5.1).
Input relations. The distinguished relation, Sy .
Transformation operators. None.

== -- - Skeleton-RH View Definition Repository
@ domain
structural functions

" (“Relation Definitions domain

~.>(basic and derived

Relation Linking Domain Structural Domain Unit Env
Env: RLE Env: DSE DUE

Figure 8. RLE, DSE and DUE

Output semantic information. DSE captures domain
structural functions. Consider A € ATTR(M). The corre-
sponding domain(s) of A in Sy might be an attribute of the
same data type, or an attribute of a different data type, or
several attributes. Let ATTR(M)={ A, ..., A }. To derive
each of these attributes from attributes of Sy, the DSE re-
quires the following to be specified for each A;(i = 1, m):

1. L; = {Afl, ..., A7}, attributes in Sy that cor-
respond to A;. By default L; = {Sum.A;}. If A; ¢
ATTR(Sm), L; must be given explicitly.

2. domain structural function (DSF), f? , that maps L; to
A;. f{ is an identity function by default.

Inverses of DSFs, if they exist, must be given.

Output relations. No relation is explicitly derived.
However, by defining DSFs for all attributes in M , the fol-
lowing relation is implicitly defined:

My = ma,,.. A, (dertve Attr(Sur, L1, Aq, fT, ..,

Loy Ay fm))

M, is identical to M/ modulo domain value mismatches.

Example-6: solving domain structural mismatch. In rela-
tion SEmpioyee defined in Example-3, there is (base)salary and
bonus. In target relation Employee, we expect salary to include
the total income of an employee. The following is a resolution to
this mismatch:

L Employee.salary = {salary, bonus},
s,b)=s+b

fgmployee.salary(

5.8. DUE: Solving Domain Value Mismatches

The Domain Unit Environment, DUE
(Figure 8), supports resolution of domain unit/population
mismatches(section 5.1).

value functions _~

Input relations. Relation M, constructed by DSE.

Transformation operators. None.

Output semantic information. The DUE captures do-
main value functions. For an attribute A € ATTR(M),
the values of M, .A may differ from that of AM.A due to
(1) difference in unit of measure; and/or (2) difference in
domain population. DUE requires that for each attribute
A € ATTR(M), a domain value mapping be specified to
convert values in domain M, .A to that in M.A. This map-
ping is by default an identity function but can be an arbi-
trary function or a stored mapping table. In this paper, we
only consider domain value function (DVF), that maps each
M, .A value to a unique M.A value. Inverses of DVFs, if
they exist, must also be specified.

Output relations. No relation is explicitly derived.
However, by specifying DVFs for each attribute in A, the
following relation is implicitly derived:

M = derive Attr(M,, A1, Av, f7, oo, Ak, A,y fn)

where ATTR(M) = {A1, ..., An}and f/(i = 1,m) is
the DVF for attribute A;.

Example-7: Solving domain unit mismatch. Employee,
derived in Example-6 has attribute salary, but its values are in
Canadian dollars. In the target database, we expect to see US dol-
lars only. Assume 1 Canadian dollar worths r US dollars, we de-
fine DVF for Employee.salary as:

T Employee.satary(8) = CNDtoUSD(s) = s x r
Similarly, we define DVF for CompanySales.sales Amit:

Tl ompanysates.sates ami(s) = CNDtoUSD(s) = s x r
CN DtoUSD() has an inverse, U SDtoCN D.

Example-8: Solving domain population mismatch.
Employee,, derived in Example-6 has attribute jobT'itle but its
values are from {SysAdm, SoftwareEngineer, MarketingStaff, Re-
searchStaff, ProjectDirector}. Employee.jobTitle consists of
{System Engineer, Development Engineer, Consultant, Research
Scientist, Program Manager}. To resolve this mismatch, a DVF
must be specified for Employee.jobTitle:

f§mployee.]obTitle(j) = jobMap(j)
jobMap is a mapping table given in Table 1, it has an inverse.

source database target database
SysAdm System Engineer
SoftwareEngineer | Development Engineer
MarketingStaff Consultant
ResearchStaff Research Scientist
ProjectDirector Program Manager

Table 1. jobM ap for Employee.jobT'itle

6. AURORA-RH Query Processor (AQP)

As shown in Figure 4, AQP consists of a query execution
engine, a query rewriter and a query optimizer. Query Exe-

cution Plans(QEPs) are expressions that involve only source
relations; it can be depicted as an operation tree whose
nodes are annotated with an operator name and an argument
list. A non-leaf node of the tree is either an AURORA-RH
primitive, rename, pad or derive Attr, or a relational op-
erator. The leaf nodes of the tree are retrieve primitives.
Figures 9, 10, and 11 are QEP trees. The AQP query execu-
tion engine evaluates QEP trees bottom up.

6.1. AQP Query Rewriter

We consider mediator queries in the form of 77,0, (M),
where I is a list of attributes in M and p is a predicate.
The rewriting algorithm given below can be adapted for join
queries. Via MAT-RH, the derivation of M is captured as
transformations and domain mappings in the View Defini-
tion Repository. These are used to rewrite () into a QEP.

Algorithm. AQPrewriteQuery

Input: Q = rrop(M) Output: A QEP for @
1. Replace M in @ with Sas. Replace RELmat and ATTRmat
with its definition.
while (@) involves a direct or derived relation R)
Replace R with its derivation.
Replace RE Lmat and ATT Rmat with its definition.

2. Let @ = 71.(Q'), let { A1, .., A} be all the attributes in I
whose domain value functions, f{, ..., f5,, are not identity
functions, rewrite) as:

Q = derive Attr(mr(Q"), A, Ar, f1y ooy Ay Am, Fi0)

3. For each attribute A involved in p, if its DVF, f”, is not iden-
tity, replace it with f”(A).

4. Let L = {A,....,An}. Let f7, ..., f; be the DSFs of
A1, ..., An. Let L;(1 = 1, n) be the list of attributes which
are the arguments of f;°. Then do the following:

(a) Replace Q' by
derive Attr(Q', L1, Av, 1, ..c; Ln, An, f2)

(b) For: =1 ton do:

If f7 is an identity function, first, remove L;,
Ay, f{ from the argument list of deriveAttr func-
tion constructed above; second, if the argument
attribute in L;, A}, has a different name from
A;, replace the first argument of derive Attr, E’
with rename(E’, A}, ATT Rname(A;)).

5. For each attribute A involved in p, if its DSF, f°, is not iden-
tity, replace A with f*(A1, ..., Ay), where A1, ..., A}, is the
argument list of f°.

6. Repeat until no modification can be made:

For each subexpression in p that is in the form of
f(E1)0f(E2) or f(Es)fc, where E1, E; and E3 are
expressions, ¢ is a constant, § € {=,>,<},and f is
a function which has an inverse f ', if f is strictly
monotonic or § is “=", replace this subexpression with
E10F; or Esfc’, respectively, where ¢’ = f71(c). [|

deriveAttr

salary, "salary", CNDtoUSD()

T

deriveAttr

id, name, salary

s=salary,b=bonus, "salary", s+b

o salary+bonus > C

JobTitle = "SoftwareEngineer"
U

pad
JjobTitle JobTitle
”ResearchS!aﬁ"J> "ProjectDirector"

pad

JjobTitle
"SysAdm"

pad
JjobTitle
"MarketingStaff"

JobTitle

"SoftwareEngineer"

retrieve

retrieve retrieve retrieve

MarketingStaff

retrieve
SysAdm

SoftwareEngineer

ResearchStaff ProjectDirector

Figure 9. An QEP for Example-9.

Example-9. Consider query:
Q = Tid,name,salary
T salary>500000 j0bTitle=“Development Engineer” (Employee)
that retrieves the id, name and salary of development engineers
who earn more than 50000. Rewrite ¢} using the above algorithm:

step 1. From the definitions of SEmpioyee and RELmat in
Example-3 and section 5.4, we get:
Q=
Tid,name,salaryT salary>500000 j0bTitle=“Development Engineer” (
pad(retrieve(SysAdm), “jobTitle”, “SysAdm”)U
pad(retrieve(So ftware Engineer), “jobTitle”
“So ftware Engineer”)U
pad(retrieve(MarketingStaf f), “jobTitle”,
“MarketingStaf ")U
pad(retrieve(ResearchStaf f), “jobTitle”,
“ResearchStaf f”)U
pad(retrieve(ProjectDirector), “jobTitle”
“Project Director”))

steps 2 and 3. DVFs are defined for salary and jobT'itle. The
salary is in projection list. Performing steps 2 and 3 we get:
Q = deriveAttr(ﬂ'id,name,salary O CNDtoUSD (salary)>50000

g obMap(jobTitle)=“Development Engineer”

(U(pad(...))), salary, “salary”, CN DtoUSD())

steps 4 and 5. salary has a non-trivial DSF. It is in the projec-
tion list and the predicate. Performing steps 4 and 5, we get:
Q = derive Attr(Tidname,salary
(deriveAttr(aCNDtoUSD(salary-l-bonus) >50000

g obMap(jobTitle)=“Development Engineer”

(U(pad(...))), {salary, bonus}, “salary”,
fgmployee.salary))7 SCllClTy, “salary”, CNDtOUSD())

step 6. C' N DtoUSD has an inverse USDtoCN D, so does
jobMap(Table 1). Let C = USDtoC N D(50000). Performing
step 6, we get the final QEP, also shown in Figure 9:
Q = derive Attr(Tia mame,salary (derive Attr

(Usalary+bonus>c’a'] obTitle=“SoftwareEngineer”

(U(pad()))7 {salary, bOTlUS}, “salary”, fgmployee.salary))7
salary, “salary”, CN DtoU SD())

6.2. AQP Query Optimization

The AQP query optimizer maximizes the number of rela-
tional operations performed by the source database so as to
leverage the query optimization capability of the source and
reduce the amount of data fetched. A QEP generated by the
rewriter is transformed to enlarge the (sub)queries submit-
ted to the source database. As retrieve is the only operator
that submits queries, the optimizer pushes as many as possi-
ble relational operators into retrieve. Consider a QEP tree
such as Figure 9. the query optimizer 1) pushes relational
operators “across” pad, rename, and derive Atir so that
they move towards the leaves; and 2) pushes relational op-
erators across retrieve, so that they become part of the ar-
gument (annotation) of the retrzeve leaf. In this section, we
discuss transformation rules and control strategies in AQP
query optimizer.

Table 2 gives transformation rules for exchanging rela-
tional operators with pad, rename and derive Attr. For
simplicity, the rules for derive Attr are given only for cases
where there is one derived attribute. Proof of rules for
derive Attr is given in [18]. pV*< X denotes the predicate
obtained from p by substituting all appearances of N with
X. If p does not involve N, pV<* = p. Ly denotes
the list of attributes obtained from 7. by replacing attribute
N with A. If L does notinvolve N, Ly 4 = L.

A relational operator can be pushed into retrieve if it is
acceptable to the source query facility. As most relational
query languages do not allow user-defined functions, selec-
tions whose predicates involve functions that are not built-in
in the source query facility do not exchange with retrieve.
This potentially increases the amount of data fetched from
the source. In Algorithm AQPrewriteQuery step 6, in-
verses of domain mapping functions are used to eliminate
such selection predicates.

deriveAttr salary, "salary", CNDtoUSD()

T id,name,salary

deriveAttr
Note: C=USDioCND(50000) u

s=salary,b=bonus, "salary", s+b

T (L id, name,

"SoftwareEngineer "SoftwareEngineer"

pad pad
JjobTitle

pad pad
JjobTitle JjobTitle

pad

JjobTitle

"SysAdm" "MarketingStaff" jobTitle WDy . "
"SoftwareEngineer" "ResearchStaff" ProjectDirector

O retrieve retrieve retrieve retrieve retrieve
SysAdm SoftwareEngineer MarketingStaff ResearchStaff ProjectDirector

Figure 10. Transformed QEP

- T
id, name, id, name, i i
! salary,bonus id, name, id, name, salary,bonus
salary,bonus - salary,bonus salary,bonus)

() o o

salary+bonus>C
3{le;v:-;[70nu,&'>C jobTitle = "‘.‘leryi‘;[’””“"'>C S“l.”;f;f;’""“‘DC salary+bonus>C
Joblitle = "SoftwareEngineer" Joblitle = "So) tl‘:/ar[efé,ngineer" JobTitle =

"SoftwareEngineer"

Example-10. Use rule Tgeriveassr[2] to exchange =
with the deriveAttr under it, the = argument list is now
1d, name, salary, bonus. Exchange U with this 7 and o, we get
Figure 10. Push & across pad operators using rule T ,q4[3], many
of the pad subtrees become ¢, e.g.

OjobTitle=“Software Engineer” (pad(retrieve(SysAdm),
jobTitle, “SysAdm”))

= 0«gys Adm” =“Software Engineer” (pad(retrieve(SysAdm),
jobTitle, “SysAdm”)) = ¢

Trim the empty branches from Figure 10 to get Figure 11 (a). Use

rule Tpaq[1] to push 7 across pad to obtain Figure 11 (b). Finally,

push the relational operators across retrieve. Since the selection

predicate involves a function 4, known to the source database,

both 7 and o exchange with retrieve to form Figure 11 (c).

. deriveAttr deriveAttr . .
deriveAttr salary,"salary" salary,"salary" salary,"salary
CNDtoUSD() CNDtoUSD() CNDroUSD()
T T id,name salary id,name salary

id,name salary
deriveAttr

s=salary,b=bonus

"salary", s+b

deriveAttr A, s=salary,b=bonus

" " s=salary,b=bonus
salary", s+ goriveAttr

"salary", s+b
id, name,
salary,bonus

T id, name,
salary,bonus

retrieve
pad Q) joprie

o salary+bonus > C T

"SoftwareEngineer" id,name salary,bonus

o
salary+bonus > C
retrieve retrieve SoftwareEngineer

SoftwareEngineer

() (b) (©

Gsalary+b0nus >C
(SoftwareEngineer)

Figure 11. Transformed QEPs

7. Related Work

There are many mediation frameworks in the literature,
Multidatabase [2], Superviews [13], TSIMMIS [14], Gar-
lic [1], HERMES [16], DIOM [9], to cite a few. The AU-
RORA project is different from all these frameworks due to
its novel plug-and-play mediation model. Usually, an in-
tegrated view is constructed using a mediation language,
such as the Mediator Specification Language of TSIMMIS
[14], or the definition language of UniSQL/M [6], that al-
lows specification of the derivation of this view from data
provided by the underlying sources. Adding or removing
a data source requires modifying this specification. When
a large number of data sources are involved, this specifica-
tion grows large and complex, difficult to create or mod-
ify. AURORA's mediation model intends to remove this
problem. AURORA integration mediators bear some sim-
ilarity to the Information Manifold (IM) project [8] in that
both systems assume the existence of a pre-defined appli-
cation view (called the “worldview” in IM). However, AU-
RORA differs from IM by including a homogenization step.
Technically, IM's query processing is logic-based while that

Transformation rules for pad

T, al1]. 7L(pad(R, N,s)) = 7.(R). L C ATTR(R), N & ATTR(R).
Tpadl2] wr(pad(R, N, s)) = pad(m_(n1(R), N,s), LC{N}YUATTR(R), N € L.
Tpaal3] op(pad(R, N,s)) = pad(o,nves (R), N, s).
Tpad[4]~ R [><|p pad(R1 s Nl, 51) = pad(R [><|le<—51 Ry y Nl, 51).
Tpad[5]- pad(Ri, N1, 81) My, pad(Ra, N3, s2) = pad(pad(Ri M Ny esi Nyesy B2, Niys1), Na, s2).
Transformation rules for rename
Trename[1] nr(rename(R, A,N)) =r(R),L C ATTR(R), N ¢ ATTR(R).
Trename[2] nr(rename(R, A, N)) = rename(rr,_ , (R), A, N),
L C{N}UATTR(R) — {A}.
Trename[3] op(rename(R, A, N)) = rename(crpm_A (R),A,N).
Trename[4 R ™M, rename(Ry, A1, N1) = rename(R D~y ey Ry, A1, N1).
Trename[5] rename(Ry, A1, N1) W, rename(Rz, A2, N2)

= rename(rename(R, DNy a1, Np—ag R>, A1, N1), Az, Na).

Transformation rules for deriveAttr

TderiveAttr[1]~
TderiveAttr[2]~

L C{N}UATTR(R),N € L.
TderiveAttr[3]~
TderiveAttr[4]~

TderiveAttr[B] .

w1 (deriveAttr (R, L1, N, [)) = 71(R). L C ATTR(R), N ¢ ATTR(R).
wr(deriveAttr(R, L1, N, f)) = nr(derive Attr(m,_(nyur, (R), L1, N, f)),

op(derive Attr(R, L, N, f)) = deriveAttr(crpNHf(L) (R),L,N, f).

R ™, derive Attr(Ry, L1, N1, f1) = derive Attr(R Mo~ s (zy) Ry, Ly, Ny, f1),
ATTR(R)N ATTR(R:) = ¢, N, ¢ ATTR(R).

derive Attr(R1, L1, N1, fi) W, derive Atir(Rz, L2, Na, f2)

= deriUeAttr(deriveAttr(Rl MPN1<—f1(L1),N2<—f2(L2) RQ, L1 s Nl, fl)7 L27 N27 f2),
ATTR(Rz) = ¢, N1 ¢ ATTR(R2), No ¢ ATTR(R1), N1 # Na, No ¢ Ls.

Table 2. Transformation Rules for pad, rename and deriveAttr

in AURORA is based on MEAs which provide operators
specially designed for handling data from heterogeneous
sources.

[15] and [4] present intelligent mediation techniques that
detect and resolve semantic heterogeneities automatically
by reasoning about semantics in a knowledge base or ontol-
ogy. In AURORA, such tasks are performed by a mediator
author using MATs. Once established, intelligent mediation
techniques can replace mediator authors. The AURORA
approach is a practical alternative. AURORA investigates a
host of issues in mediator view expression and query pro-
cessing that are essential even when heterogeneities are de-
tected and resolved automatically.

[5] identifies domain mappings for resolving domain
and schema mismatches. Resolutions for individual mis-
matches are demonstrated using an object-oriented database
programming language. [5] does not provide a mediation
methodology, nor does it explore query optimization tech-
niques in presence of the new language constructs. [6]
provides a comprehensive classification of mismatches and
conflicts. Resolutions for individual conflicts are given.
New language constructs are proposed but query rewriting
and optimization methods for these constructs are not given.
[4] uses ontology to detect and resolve mismatches due to
different units of measure. It is not clear how [4] handles
other types of schematic mismatches.

Disco [17] extends ODMG ODL for mediation and in-

tends to use Volcano for query optimization. It introduces a
logical operator submit and gives rules for exchanging re-
lational operators with it. The cost model used is unclear.
[3, 10] describe approaches that collect/establish statistics
to build mediator query cost models. AURORA-RH con-
centrates on single-source query modification techniques to
leverage the source query optimization capability; a medi-
ator query cost model is not necessary. However, mediator
query cost model is an interesting research topic.

8. Conclusion and Future Work

We have described AURORA, a project that develops
techniques for building efficient and scalable mediation.
Our contributions are as follows. First, we have pro-
posed a novel plug-and-play mediation model (Figure 1)
which is a divide-and-conquer approach to building inte-
grated access to heterogeneous sources. This model en-
ables us to reduce the general mediator query processing
issue into two smaller problems: that in homogenization
mediators and that in integration mediators. AURORA de-
velops specialized mediation enabling algebras (MEAs) for
each sub-problem. Second, we have described a complete
suite of techniques used by a specific AURORA mediator,
AURORA-RH, including (1) a homogenization methodol-
ogy supported by MAT-RH; (2) a MEA, MEA-RH; and (3)
query modification and optimization algorithms based on

MEA-RH.

Currently we are implementing AURORA-RH. The ma-
jor implementation issue is the design of an interactive user
interface of MAT-RH. To use MAT-RH, the mediator au-
thor needs to access knowledge about the source and target
schemas, the mismatches, and the resolutions. A friendly
user interface should clearly present this information and
guide the mediator author through a correct and complete
homogenization. In particular, this interface should help the
user to: (1) follow the homogenization methodology (Sec-
tion 5.2); (2) correctly use the AURORA-RH transforma-
tions, such as RF Lmat and ATT Rmat; (3) define domain
structural/value functions with appropriate signatures and
valid implementations; and (4) browse the source and tar-
get schema, and current transformations and mappings cap-
tured in the view definition repository.

Our ultimate goal is to build a collection of media-
tors, AURORA-RI, AURORA-OH, and AURORA-OI (Fig-
ure 2 (b)). These mediators will be of similar forms as
AURORA-RH but require different mediation methodolo-
gies and MEAs. Different query rewriting algorithm and
transformation rules must be developed in similar fashion
as in AURORA-RH. We are also designing an infrastructure
where all AURORA mediators communicate and cooperate
with one another via ORBs.

References

[1] M. J. Carey et al. Towards Heterogeneous Multimedia In-
formation Systems: the Garlic Approach. In Fifth Int. Work-
shop on Research Issues in Data Engineering — Distributed
Object Management (RIDE-DOM'95), pages 124—131, Tai
Pei, Taiwan, Mar. 1995.

[2] U. Dayal and H.-Y. Hwang. View definition and general-
ization for database integration in a multidatabase system.
IEEE Trans. on Software Engineering, SE-10(6):628-645,
Nov. 1984.

[3] W.Du,R.Krishnamurthy, and M. Shan. Query Optimization
in a Heterogeneous DBMS. In Proc. 18th Int'l Conf. on Very
Large Data Bases, pages 277-291,1992.

[4] C.H. Goh, M. E. Madnick, and M. D. Siegel. Ontologies,
Context, and Mediation: Representing and Reasoning about
Semantic Conflicts in Heterogeneous and Autonomous Sys-
tems. Working Paper 3848, MIT Sloan School of Manage-
ment, 1995.

[5] W.Kent. Solving Domain Mismatch and Schema Mismatch
Problems with an Object-Oriented Database Programming
Language. In Proc. 17th Int'l Conf. on Very Large Data
bases,pages 147-160,1991.

[6] W. Kim et al. On Resolving Schematic Heterogeneity in
Multidatabase Systems. Distributed and Parallel Databases,
1(3):251-279, 1993.

[7] R.Krishnamurthy, W. Litwin, and W. Kent. Language Fea-
tures for Interoperability of Databases with Schematic Dis-
crepancies. In Proc. ACM SIGMOD Int'l. Conf. on Manage-
ment of Data, pages 40—49, 1991.

(8]

(9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

A. Levy, A. Rajaraman, and J. Ordille. Querying Heteroge-
neous Information Sources Using Source Descriptions. In
VLDB 96, Bombay, India, Sept. 1996.

L.Liu, C. Pu,and Y. Lee. An Adaptive Approach to Query
Mediation Across Heterogeneous Information Sources. In
Int. Conf. on Cooperative Information Systems (CooplS),
pages 144—156, June 1996.

H.J.Lu,B.C.Ooi, and C.H. Goh. On Global Multidatabase
Query Optimization. ACM SIGMOD Record, 21(4):6-11,
Dec. 1992.

W. Meng et al. Construction of Relational Front-end for
Object-Oriented Database Systems. In Proc. 9th Int'l. Conf.
on Data Engineering,pages 476-483,1993.

P. Missier and M. Rusinkiewicz. Extending a multidatabase
manipulation language to resolve schema and data conflicts.
In IFIP TC-2 Working Conference on Data Semantics (DS-
6), Stone Mountain, Georgia, May 1995.

A. Motro. Superviews: Virtual Integration of Multiple
Databases. [EEE Trans. on Software Engineering, SE-
13(7):785-798, July 1987.

Y. Papakonstantinou, H. Garcia-Molina, and J. Ullman.
MedMaker: A Mediation System Based on Declarative
Specifications. In Proc. 12th Int'l. Conf. on Data Engineer-
ing, 1996.

X. Qian and T. F. Lunt. Semantic Interoperation: A Query
Mediation Approach. Technical Report SRI-CSL-94-02,
Computer Science Laboratory, SRI International, Apr. 1994.
V. S. Subrahmanian et al. HERMES: Heterogeneous Rea-
soning and Mediator System. Unpublished document, Uni-
versity of Maryland.

A.Tomasic, L. Raschid, and P. Valduriez. Scaling Heteroge-
neous Databases and the Design of Disco. In Proceedings of
the International Conference on Distributed Computer Sys-
tems, 1996.

L.L. Yan, T. Ozsu, and L. Liu. Towards a Mediator Devel-
opment Environment: The AURORA Approach. Technical
Report TR-96-21, Department of Computing Science, Uni-
versity of Alberta, Aug. 1996.

C. Yu et al. Translation of Object-Oriented Queries to Rela-
tional Queries. In Proc. 11th Int'l. Conf. on Data Engineer-
ing, pages 90-97,1995.

