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Abstract—The growing popularity of dynamic applications
such as social networks provides a promising way to detect
valuable information in real time. These applications create high-
speed data that can be easily modeled as streaming graph.
Efficient analysis over these data is of great significance. In
this paper, we study the subgraph (isomorphism) search over
streaming graph data that obeys timing order constraints over
the occurrence of edges in the stream. We propose a solution
to efficiently answer subgraph search, introduce optimizations
to greatly reduce the space cost, and design concurrency man-
agement to improve system throughput. Extensive experiments
on real network traffic data and synthetic social streaming data
confirms the efficiency and effectiveness of our solution.

I. INTRODUCTION

A recent development is the proliferation of high through-
put, dynamic graph-structured data in many applications, such
as social media streams and computer network traffic data.
Efficient analysis of such streaming graph data is of great
significance for tasks such as detecting anomalous events (e.g.,
in Twitter) and detecting adversarial activities in computer
networks. Various types of queries over streaming graphs have
been investigated, such as subgraph search, path computation,
and triangle counting [1]. Among these, subgraph search is
one of the most fundamental problems, especially subgraph
isomorphism that provides an exact topological structure con-
straint for the search.

In this paper, we study subgraph (isomorphism) search
over streaming graph data that obeys timing order constraints
over the occurrence of edges in the stream. Specifically, in a
query graph, there exist some timing order constraints between
different query edges specifying that one edge in the match is
required to come before (i.e., have a smaller timestamp than)
another one in the match. The timing aspect of streaming data
is important for queries where sequential order between the
query edges is significant. The following examples demon-
strate the usefulness of subgraph (isomorphism) search with
timing order constraints over streaming graph data.

Example 1. Cyber-attack pattern.
Figure 1 demonstrates the pipeline of the information ex-

filtration attack pattern. A victim browses a compromised
website (at time t1), which leads to downloading malware
scripts (at time t2) that establish communication with the
botnet C&C server (at times t3 and t4). The victim registers
itself at the C&C server at time t3 and receives the command

from the C&C server at time t4. Finally, the victim executes
the command to send exfiltrated data back to C&C server
at time t5. Obviously, the time points in the above example
follow a strict timing order t1 < t2 < t3 < t4 < t5. Therefore,
an attack pattern is modelled as a graph pattern (Q) as well as
the timing order constraints over edges of Q. If we can locate
the pattern (based on the subgraph isomorphism semantic)
in the network traffic data, it is possible to identify the
malware C&C Servers. US communications company Verizon
has analyzed 100,000 security incidents from the past decade
that reveal that 90% of the incidents fall into ten attack patterns
[2], which can be described as graph patterns.
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Fig. 1: Query example in Network Traffic (Taken from [1])
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Fig. 2: Credit card fraud in transactions (Taken from [3])

Example 2. Credit-card-fraud pattern.
Figure 2 presents a credit card fraud example over a series

transactions modeled by graph. A criminal tries to illegally
cash out money by conducting a phony deal together with a
merchant and a middleman. He first sets up a credit pay to
the merchant (t1); and when the merchant receives the real
payment from the bank (t2), he will transfer the money to a
middleman (t3) who will further transfer the money back to
the criminal (t4) to finish cashing out the money (Middleman
may have more than one accounts forming transfer path).
Apparently, this pattern where t1 < t2 < t3 < t4 can be easily
modeled as a query graph with timing order constraints.



A. Related Work

Although subgraph search has been extensively studied
in literature [4]–[10], most of these works focus on static
graphs. Ullman [4] proposes a well-known subgraph iso-
morphism algorithm that is based on a state-space search
approach; Cordella et al. [5] propose the VF2 algorithm that
employs several important pruning strategies when searching
for targeted subgraphs. Shang et al. [6] employ filtering and
verification strategy for subgraph isomorphism. They propose
QI-sequence to greatly reduce candidates from data graph
before the verification phrase. Han et al. [7] transfer each query
graph into a tree where they reduce duplicated subqueries to
avoid redundant computation. They also utilize the tree to
retrieve candidates from the data graph for further verification.
Ren and Wang [8] define four vertex relationships over a query
graph to reduce duplicate computation.

The research on continuous query processing over high-
speed streaming graph data is rather scarce. Fan et al. [11]
propose an incremental solution for subgraph isomorphism
based on repeated search over dynamic graph data, which
cannot utilize previously computed results when new data
come from the stream since they do not maintain any partial
result. To avoid the high overhead in building complicated
index, there is some work on approximate solution to subgraph
isomorphism. Chen et al. [12] propose node-neighbor tree
data structure to search multiple graph streams; they relax the
exact match requirement and their solution needs to conduct
significant processing on the graph streams. Also, graph stream
in [12] is a sequence of small data graphs, which is not our
focus. Gao et al. [13] study continuous subgraph search over a
graph stream. They make specific assumption over their query
and their solution cannot guarantee exact answers for subgraph
isomorphism. Song et al. [14] is the first work to impose
timing order constraint in streaming graphs, but the query
semantics is based on graph simulation rather than subgraph
isomorphism. The techniques for the former cannot be applied
to the latter, since the semantics and, therefore, complexities
are different. Furthermore, Song et al. perform post-processing
to handle the timing constraints, i.e., finding all matches by
ignoring the timing order constraints, and then filtering out the
false positives based on the timing order constraints, which
misses query optimization opportunities. Choudhury et al. [1]
consider subgraph (isomorphic) match over streaming graphs,
but this work ignores timing order constraints. They propose
a subgraph join tree (SJ-tree) to maintain some intermediate
results, where the root contains answers for the query while
the other nodes store partial matches. This approach suffers
from large space usage due to maintaining results.

Due to the high speed of streaming graph data and the
system’s high-throughput requirement, a concurrent computing
(i.e., multi-threaded) algorithm is desirable or even required.
It is not trivial to extend a serial single-threaded algorithm to a
concurrent one, as it is necessary to guarantee the consistency
of concurrent execution over streaming graphs.

B. Our Solution and Contributions

Our contributions are three-fold: (1) taking advantage of
“timing order constraints” to reduce the search space, (2)
compressing the space usage of intermediate results by de-
signing a Trie-like data structure (called match-store tree) and
(3) proposing a concurrent computing framework with a fine-
granularity locking strategy. The following is a summary of
our methods and contributions:

Reducing search space. Considering the timing order
constraints, we propose expansion list to avoid wasting time
and space on discardable partial matches. Informally, an
intermediate result (partial match) M is called “discardable”
if M cannot be extended to a complete match of query Q
no matter which edges would come in the future. Obviously,
these should be pruned to improve the query performance. We
define a query class, called timing connected-query (TC-query
for short–see Definition 8) whose expansion list contains no
discardable partial matches. We decompose a non-TC-query
into a set of TC-queries and propose a two-step computing
framework (Section III) .

Compressing space usage. The materialization of inter-
mediate results inevitably increases space cost, which raises
an inherent challenge to handling massive-scale, high-speed
streaming graphs. We propose a trie variant data structure,
called match-store tree, to maintain partial matches, which
reduces both the space cost and the maintenance overhead
without incurring extra data access burden (Section IV).

Improving system throughput. Existing works do not con-
sider concurrent execution of continuous queries over stream-
ing graphs. For a high-speed graph stream, some edges may
come at the same time. A naive solution is to process each edge
one-by-one. In order to improve the throughput of the system,
we propose to compute these edges concurrently. Concurrent
computing may lead to conflicts and inconsistent results, which
turns even more challenging when different partial matches are
compressed together on their common parts. We design a fine-
granularity locking technique to guarantee the consistency of
the results (Section V).

II. PROBLEM DEFINITION

TABLE I: Frequently-used Notations
Notation Definition and Description
G / Gt Streaming graph / Snapshot at time point t
Et / Vt Edge/Vertex set of Gt

Q / V (Q) / E(Q) Continuous query / Query vertex set / Query edge set
εi /σi Query edge / Data edge at time ti
g A subgraph of some snapshot
−→uv The directed edge from vertex u to v
W Time window W
≺ Timing order over query edges
Preq(εi) Prerequisite subquery of query edge εi
Pi TC-subquery
Li(i > 0) Expansion list for TC-subquery Pi

L0 Expansion list for joining matches of all TC-subqueries: {P1, P2,...,Pk}
Lj

i The j-th item in expansion list Li

Ω(q) Matches of subquery q
∆(q) New matches of subquery q
D A decomposition (set of TC-subqueries) of query Q
Ins(σ) Insertion for incoming edge σ
Del(σ) Deletion for expired edge σ
n / nj

i A node in a MS-tree / The j-th node in the MS-tree for Li

TCsub(Q) The set of all TC-subqueries of query Q



Definition 1 (Streaming Graph): A streaming graph G is
a constantly growing sequence of directed edges {σ1, σ2,
...σx} where each σi arrives at a particular time ti (ti < tj
when i < j). ti is also referred to as the timestamp of σi. Each
edge σi has two labelled vertices and two edges are connected
if and only if they share one common endpoint.

For simplicity of presentation, we only consider vertex-
labelled graphs and ignore edge labels, although handling the
more general case is not more complicated. For example, since
vertex labels and edge labels are from two different label sets,
we can introduce an imaginary vertex to represent an edge of
interest and assign the edge label to the new imaginary vertex.

An example of a streaming graph G is shown in Figure 3.
Note that edge σ1 has two endpoints e7 and f8, where ‘e’ and
‘f ’ are vertex labels and the superscripts are vertex IDs that
we introduce to distinguish two vertices with the same label.

In this paper, we use the time-based sliding window model,
where a sliding window W defines a timespan with fixed
duration |W |. If the current time is ti, the time window W
defines the timespan (ti − |W |, ti]. Obviously, all edges that
occur in this time window form a consecutive block over the
edge sequence and as time window W slides, some edges may
expire and some new edges may arrive.
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Fig. 4: Graph stream under time window W of size 9
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Definition 2 (A Snapshot of a Streaming Graph):
Given a streaming graph G and a time window W at current
time point t, the current snapshot of G is a graph Gt =
(Vt,Et) where Et is the set of edges that occur in W and Vt

is the set of vertices adjacent to edges in Et, namely:

Et = {σi|ti ∈ (t− |W |, t]},Vt = {u|−→uv ∈ Et ∨ −→vu ∈ Et}
The snapshots of graph stream G at time points t = 8, 9, 10

for |W | = 9 are given in Figure 4. Note that at timestamp

t = 10, edge σ1 expires since the time point of σ1 is 1 and
the timespan of time window W is (1, 10]. The expired edges
are denoted with dotted edges in Figure 4c while newly added
edges are in red.

Definition 3 (Query Graph): A query graph is a four-
tuple Q = (V (Q), E(Q), L, ≺), where V (Q) is a set of
vertices in Q, E(Q) is a set of directed edges, L is a function
that assigns a label for each vertex in V (Q), and ≺ is a strict
partial order relation over E(Q), called the timing order. For
εi, εj ∈ E(Q), εi ≺ εj means that in a match g for Q where
σi matches εi and σj matches εj (σi, σj ∈ g), timestamp of
σi should be less than that of σj .
An example of query graph Q is presented in Figure 5. Any
subgraph in the result must conform to the constraints on both
structure and timing orders. For example, in query Q, ε1 ≺ ε2
(ε1, ε2 ∈ E(Q)) means that edges matching ε1 should arrive
before edges matching ε2 in subgraph matches of Q over the
snapshot (see Definition 4) in the current time window.

Definition 4 (Time-Constrained Match): For a query Q
and a subgraph g in current snapshot, g is a time-constrained
match of Q if only if there exists a bijective function F from
V (Q) to V (g) such that the following conditions hold:

1) Structure Constraint (Isomorphism)
• ∀u ∈ V (Q), L(u) = L(F (u)).
• −→uv ∈ E(Q)⇔ −−−−−−→F (u)F (v) ∈ E(g).

2) Timing Order Constraint
For any two edges (

−−−→
ui1ui2), (

−−−−→
uj1uj2) ∈ E(Q):

(
−−−→
ui1ui2) ≺ (

−−−−→
uj1uj2)⇒

−−−−−−−−−→
F (ui1)F (ui2) ≺

−−−−−−−−−→
F (uj1)F (uj2)

Hence, the problem in this paper is to find all time-
constrained matches of given query Q over each snapshot
of graph stream G with window W . For simplicity, when
the context is clear, we always use “match” to mean “time-
constrained match”.

For example, the subgraph g induced by edges σ1, σ3, σ4,
σ5, σ7 and σ8 in Figure 4a (highlighted by bold line) is not
only isomorphic to query Q but also conforms to the timing
order constraints defined in Figure 5b. Thus, g is a match of
query Q over stream G at time point t = 8. At time point
t = 10, with the deletion of edge σ1, g expires.

Theorem 1: Subgraph isomorphism can be reduced to the
proposed problem in polynomial time and therefore, the pro-
posed problem is NP-hard.

III. A BASELINE METHOD

We propose a baseline solution that utilizes the timing order
in reducing the search space. We first define and evaluate a
class of queries (timing-connected query) in Section III-A; we
then discuss how to answer an arbitrary query in Section III-B.

A. Timing-Connected Query

1) Intuition: A naive solution to executing a query Q
with timing order is to run a classical subgraph isomorphism
algorithm (such as QuickSI [6], TurboISO [7], BoostISO [8])
on each snapshot Gi (i = 1, ...,∞) to first check the structure



constraint followed by a check of the timing order constraint
among the matches. Obviously, this is quite expensive. A
better approach is to identify the subgraph ∆(Gi) of Gi that
is affected by the updated edge (insertion/deletion) and then
conduct subgraph isomorphism algorithm over ∆(Gi) instead
of the whole snapshot Gi. While, if the query diameter is d,
then ∆(Gi) is the subgraph induced by all vertices that is d-
hop reachable to/from the adjacent vertices of the updated edge
[11]. Hence, the size of ∆(Gi) could be huge if query diameter
is large which results in the inefficiency of the computation.

However, an incoming/expired edge causes only a minor
change between two consecutive snapshots Gi and Gi−1; thus,
it is wasteful to re-run the subgraph isomorphism algorithm
from scratch on each snapshot. Therefore, we maintain partial
matches of subqueries in the previous snapshots. Specifically,
we only need to check whether there exist some partial
matches (in the previous snapshots) that can join with an
incoming edge σ to form new matches of query Q in the new
snapshot Gi. Similarly, we can delete all (partial) matches
containing the expired edges at the new timestamp. For
example, consider the query graph Q in Figure 5. Assume that
an incoming edge σ matches ε1 at time point ti. If we save
all partial matches for subquery Q\{ε1}, i.e., the subquery
induced by edges {ε2, ε3, ε4, ε5, ε6}, at the previous time
point ti−1 (i.e., Gi−1), we only need to join σ with these
partial matches to find new subgraph matches of query Q.

Although materializing partial matches can accelerate con-
tinuous subgraph query, it is inevitable to introduce much
maintenance overhead. For example, in SJ-tree [1], each new
coming edge σ requires updating the partial matches. In this
section, we propose pruning discardable edges (see Definition
5) by considering the timing order in the query graph.

Definition 5 (Discardable Edge): For a streaming graph
G and a query graph Q, an incoming edge σ is called a
discardable edge if σ cannot be included in a complete match
of Q, no matter what edges arrive in the future.

To better understand discardable edge, recall the streaming
graph G in Figure 3. At time t6, an incoming edge σ6 (only
matching ε1) is added to the current time window. Consider the
timing order constraints of query Q in Figure 5, which requires
that edges matching ε3 should come before ones matching
ε1. However, there is no edge matching ε3 before t6 in G.
Therefore, it is impossible to generate a complete match (of
Q) consisting of edge σ6 (matching ε1) no matter which edges
come in the future. Thus, σ6 is a discardable edge that can be
filtered out safely. We design an effective solution to determine
if an incoming edge σ is discardable. Before presenting our
approach, we introduce an important definition.

Definition 6 (Prerequisite Edge/Prerequisite Subquery):
Given an edge ε in query graph Q, a set of prerequisite edges
of ε (denoted as Preq(ε)) are defined as follows:

Preq(ε) = {ε′|ε′ ≺ ε} ∪ {ε}
where ‘≺’ denotes the timing order constraint as in Definition
3. The subquery of Q induced by edges in Preq(ε) is called
a prerequisite subquery of ε in query Q.

Consider two edges ε1 and ε4 in query Q in Figure 5.
Prerequisite subqueries Preq(ε1) and Preq(ε4) are both illus-
trated in Figure 6. The following lemma states the necessary
and sufficient condition to determine whether an edge σ in
streaming graph G is discardable(All proofs of lemmas and
theorems are presented in the full version of this paper [15]).
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Fig. 6: Example of prerequisite subquery

Lemma 1: An incoming edge σ at time ti is NOT discard-
able if and only if, at the current snapshot Gi, there exists at
least one query edge ε (∈ Q) such that (1) the prerequisite
subquery Preq(ε) has at least one match g (subgraph of
Gi) containing σ; and (2) σ matches ε in the match relation
between g and Preq(ε). Otherwise, σ is discardable.

Lemma 1 can be used to verify whether or not an incom-
ing edge σ is discardable. The straightforward way requires
checking subgraph isomorphism between Preq(ε) and Gi

in each snapshot, which is quite expensive. First, Preq(ε)
may not be connected, even though query Q is connected.
For example, Preq(ε1) is disconnected. Computing subgraph
isomorphism for disconnected queries will cause a Cartesian
product among candidate intermediate results leading to lots of
computation and huge space cost. Second, some different pre-
requisite subqueries may share common substructures, leading
to common computation for different prerequisite subqueries.
It is inefficient to compute subgraph isomorphism from scratch
for each incoming edge.

For certain types of queries that we call timing-connected
query (Definition 8), it is easy to determine if an edge σ in
streaming graph G is discardable. Therefore, we first focus on
these queries for which we design an efficient query evaluation
algorithm. We discuss non-TC-queries in Section III-B.

We introduce the following concepts that will be used
when illustrating our algorithm. Consider a query Q and two
subqueries: Q1, Q2, assume that g1 (g2) is a time-constrained
match of Q1 (Q2) in the current snapshot. Let F1 and F2

denote the matching functions (Definition 4) from V (Q1) and
V (Q2) to V (g1) and V (g2), respectively. We say that g1 is
compatible with g2 (denoted as g1 ∼ g2) W.R.T Q1 and Q2 if
and only if g1 ∪ g2 is a time-constrained match of Q1 ∪ Q2

on bijective match function F1 ∪ F2. Furthermore, let Ω(Q1)
and Ω(Q2) denote the set of matches of Q1 and Q2 in current
snapshot, respectively. We define a new join operation over

Ω(Q1) and Ω(Q2), denoted as Ω(Q1)
T
on Ω(Q2), as follows:

Ω(Q1)
T
on Ω(Q2) = {g1 ∪ g2|g1 ∈ Ω(Q1) ∼ g2 ∈ Ω(Q2)}

Note that when g1 ∼ g2 and Q1 ∩ Q2 6= ∅, F1 and F2 will
never map the same query vertex to different data vertices
since we require F1 ∪ F2 to be a bijective function.



2) TC-query:
Definition 7 (Prefix-connected Sequence): Given a query

Q of k edges, a prefix-connected sequence of Q is a permuta-
tion of all edges in Q: {ε1, ε2...,εk} such that ∀j ∈ [1, k], the
subquery induced by the first j edges in {ε1} ∪ ... ∪ {εj} is
always weakly connected.

Definition 8 (Timing-connected Query): A query Q is
called a timing-connected query (TC-query for short) if there
exists a prefix-connected sequence {ε1, ε2...,εk} of Q such that
∀j ∈ [1, k − 1], εj ≺ εj+1. In this case, we call the sequence
{ε1,...,εk} the timing sequence of TC-query Q.

Recall the running example Q in Figure 5, which is not a
TC-query. However, the subquery induced by edges {ε6, ε5,
ε4} is a TC-query, since ε6 ≺ ε5 ≺ ε4 and {ε6}, {ε6, ε5} and
{ε6, ε5, ε4} are all connected.

Given a TC-query Q with timing sequence {ε1,...,εk},
the prerequisite subquery Preq(εj) is exactly the subquery
induced by the first j edges in {ε1, ε2,...,εj} (j ∈ [1, k]).
Preq(εj+1) = Preq(εj) ∪ {ej+1} and Ω(Preq(εj+1)) =

Ω(Preq(εj))
T
on Ω(εj+1), where Ω(Preq(εj+1)) denotes

matches for prerequisite subquery Preq(εj+1), Ω(εj+1) de-
notes the matching edges for εj+1.

3) TC-query Evaluation: We propose an effective data
structure, called expansion list, to evaluate a TC-query Q.
An expansion list for TC-query (1) can efficiently determine
whether or not an incoming edge is discardable, and (2)
can be efficiently maintained (which guarantees the efficient
maintenance of the answers for TC-query Q).

Definition 9 (Expansion List): Given a TC-query Q with
timing sequence {ε1, ε2,...,εk}, an expansion list L =
{L1,L2,...,Lk} over Q is defined as follows:

1) Each item Li corresponds to
⋃i

j=1(εj), i.e., Preq(εi).
2) Each item Li records Ω(

⋃i
j=1(εj)), i.e., a set of partial

matches (in the current snapshot) of prerequisite sub-
query Preq(εi) (i ∈ [1, k]). We also use Ω(Li) to denote
the set of partial matches in Li.

Note that each item Lj corresponds to a distinct subquery
Preq(εj) and we may use the corresponding subquery to
denote an item when the context is clear.

The shaded nodes in Figure 7 illustrate the prerequisite
subqueries for a TC-query with timing sequence {ε6, ε5, ε4}.
Since each node corresponds to a subquery Preq(εi), we also
record the matches of Preq(εi), as shown in Figure 7. The last
item stores matches of the TC-query in the current snapshot.

Maintaining the expansion list requires updating (partial)
matches associated with each item in the expansion list. An
incoming edge may result in insertion of new (partial) matches
into the expansion list while an expired edge may lead to
deletion of partial matches containing the expired one. We
will discuss these two cases separately.

Case 1: New edge arrival. For an incoming edge σ,
Theorem 2 tells us which (partial) matches associated with
the expansion list should be updated.

Theorem 2: Given a TC-query Q with the timing sequence
{ε1, ε2 ,..., εk} and the corresponding expansion list L = {L1,
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Fig. 7: A TC-query {ε6, ε5, ε4} and timing expansion list

L2,...,Lk}. If an incoming edge σ matches query edge εi in
the current time window, then only the (partial) matches of Li

(Preq(εi)) should be updated in the current snapshot.
1) If i = 1, σ should be inserted into L1 as a new match

of Preq(ε1) since Preq(ε1) = {ε1}.
2) If i 6= 1 ∧ Ω(Li−1)

T
on {σ} 6= ∅, then Ω(Li−1)

T
on {σ}

should be inserted into Li as new matches of Preq(εi),
where Ω(Li−1) is the set of partial matches in Li−1.

Hence, for a TC-query Q = {ε1, ε2...,εk} and the corre-
sponding expansion list L = {L1,L2,...,Lk}, the maintenance
of L for an incoming edge σ can be done as follows:

1) if σ matches no query edge, discard σ;
2) if σ matches ε1, then add σ into L1;

3) if σ matches εi (i > 1), then compute Ω(Li−1)
T
on {σ}.

If the join result is not empty, add all resulting (partial)
matches (of Preq(εi)) into Li.

Theorem 3: Given a TC-query Q = {ε1, ε2...,εk} and
the corresponding expansion list L = {L1,L2,...,Lk}, for
an incoming edge σ that matches εi, the time to determine
whether σ is discardable (to be filtered) or not is O(|Li−1|),
which is linear to the number of partial matches in Li−1.

The above process is codified in Lines 1-10 of Algorithm
1. Note that an incoming edge σ may match multiple query
edges; the above process is repeated for each matching edge
ε. New matches that are inserted into the last item of the
expansion list are exactly the new matches of TC-query Q.

Case 2: Edge expiry. When an edge σ expires, we can
remove all expired partial matches (containing σ) in expansion
list L by scanning L1 to Lj where Lj is the rightmost item
in L which contains expired partial matches.

B. Answering non-TC-queries

We decompose a non-TC-query Q into a set of subqueries
D = {Q1, Q2,...Qk}, where each Qi is a TC-subquery, Q =⋃k

i=1(Qk) and there is no common query edge between any
two TC-subqueries. We call D as a TC decomposition of
Q. The example query Q is decomposed into {Q1, Q2, Q3},
as shown in Figure 8. Since each TC-subquery Qi can be
efficiently evaluated as described in the previous section, we
focus on how to join those matches of Qi (i = 1, ..., k) into
matches of Q in the stream scenario.

For the sake of presentation, we assume that the decomposi-
tion of query Q is given; decomposition is further discussed in



Algorithm 1: INSERT(σ)
Input: σ: incoming edge to be inserted
Input: Li = {L1

i , L2
i ,...,L|Q

i|
i }: the expansion list for Qi

Input: L0 = {L1
0, L2

0,...,Lk
0}: the expansion list over

{Q1,Q2,...,Qk}
1 for each query edge ε that σ matches do
2 Assume that ε is the j-th edge in TC-subquery Qi.
3 if j == 1 then
4 Insert σ into Lj

i

5 else
6 Let ∆(ε) = {σ}
7 READ(Lj−1

i ) // Read partial matches in Lj−1
i

8 ∆(Lj
i ) = ∆(ε)

T
on Ω(Lj−1

i )
9 if ∆(Lj

i ) 6= ∅ then
10 INSERT(∆(Lj

i ), Lj
i ) // Insert ∆(Lj

i ) into Lj
i

11 if j = |Li| AND ∆(Lj
i ) 6= ∅ then

12 if i = 1 then
13 Let ∆(Li

0) = ∆(Lj
i )

14 else
15 READ(Li−1

0 ) // Read partial matches in Li−1
0

16 ∆(Li
0) = ∆(Lj

i )
T
on Ω(Li−1

0 )
17 INSERT(∆(Li

0), Li
0) // Insert ∆(Li

0) into Li
0

18 while i < k AND ∆(Li
0) 6= ∅ do

19 READ(L|Li+1|
i+1 ) // Read Ω(Qi+1)

20 ∆(Li+1
0 ) = ∆(Li

0)
T
on Ω(L

|Li+1|
i+1 )

21 INSERT(∆(Li+1
0 ), Li+1

0 ) // Insert ∆(Li+1
0 )

into Li+1
0

22 i+ +
23 if ∆(Lk

0) 6= ∅ then
24 Report ∆(Lk

0) as new matches of Q

Section VI-B. We use Li = {L1
1, L2

i ,...,L|E(Qi)|
i } to denote the

corresponding expansion list for each TC-subquery Qi. Recall
the definition of prefix-connected sequence (Definition 7). We
can find a permutation of D whose prefix sequence always
constitutes a weakly connected subquery of Q as follows:
we first randomly extract a TC-subquery Q1 from D; and
then we extract a second TC-subquery Q2 who have common
vertex with Q1 (Since Q is weakly connected, we can always
find such Q2); repeatedly, we can always extract another
TC-subquery from D who have common vertex with some
previously extracted TC-subquery and finally form a prefix-
connected permutation of D. Without loss of generality, we
assume that {Q1, Q2,...,Qk} is a prefix-connected permutation
of D where the subquery induced by {Q1, Q2,..., Qi} is
always weakly connected (1 ≤ i ≤ k). Actually, the prefix-
connected permutation corresponds to a join order, based on
which, we can obtain Ω(Q) by joining matches of each Qi.
Different join orders lead to different intermediate result sizes,
resulting in different performance.We do not discuss join order
selection in this paper due to space constraints; this is a well-
understood problem. We include our approach to the problem
in the full paper [15]. For this paper, we assume that the prefix-
connected sequence D = {Q1, Q2,...,Qk} is given.

For example, Figure 8 illustrates a decomposition of query
Q (Q1, Q2, Q3). We obtain the matches of Q as Ω(Q) =

Ω(Q1)
T
on Ω(Q2)...

T
on Ω(Qk). Like TC-query, we can also

materialize some intermediate join results to speed up online
processing. According to the prefix-connected sequence over
Q, we can define the expansion list, denoted as L0 for
the entire query Q (similar to TC-query). For example, the
corresponding expansion list L0 = {L1

0, L2
0, L3

0} (for query
Q) is given in Figure 8. Each item Li

0 records the intermediate
join results Ω(

⋃i
x=1Q

x).
Assume that an incoming edge σ contributes to new matches

of TC-subquery Qi (denoted as ∆(L
|Li|
i )) . If i > 1, we let

∆(Li
0) = ∆(L

|Li|
i )

T
on Ω(Li−1

0 ) (Line 16 in Algorithm 1). If
∆(Li

0) 6= ∅ , we insert ∆(Li
0) into Li

0 as new matches of Li
0

. Then, ∆(Li
0)

T
on Ω(Qi+1) may not be empty and the join

results (if any) are new partial matches that should be stored
in Li+1

0 (
⋃i+1

x=1(Qx)). Thus, we need to further perform ∆(Li
0)

T
on Ω(L

|Li+1|
i+1 ) to get new partial matches (denoted as ∆(Li+1

0 ))
and insert them into Li+1

0 as new matches of
⋃i+1

x=1(Qx) .
We repeat the above process until no new partial matches are
created or the new partial matches are exactly answers of the
entire query Q (Lines 18-22). Note that when partial matches
of different subqueries are joined, we verify both structure and
timing order constraints.

When an edge σ expires where σ matches ε ∈ Qi, we
discard all partial matches containing σ in expansion list Li

as illustrated previously. If there are expired matches for Qi

(i.e., matches of Qi that contain σ), then we also scan Li
0 to

Lk
0 to delete partial matches containing σ.
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Fig. 8: An TC decomposition of query Q

IV. MATCH-STORE TREE

We propose a tree data structure, called match-store tree
(MS-tree, for short), to reduce the space cost of storing partial
matches in an expansion list. Each tree corresponds to an
expansion list. Let’s formally define MS-tree to present how
the corresponding partial matches are stored and then illustrate
how to access partial matches in MS-tree for the computation.



A. Match-Store Tree

Consider an expansion list L = {L1, L2,...,Lk} over timing
sequence {ε1, ε2,...,εk} where Li stores all partial matches
of {ε1, ε2,...,εi}. For a match g of Li (1 ≤ i ≤ k), g can
be naturally presented in a sequential form: {σ1, σ2,..,σi}
where g =

⋃i
j=1(σj) and each σi′ (1 ≤ i′ ≤ i) is a match

of εi′ . Furthermore, g′ = g \ {σi} = {σ1, σ2,..,σi−1}, as a
match of {ε1, ε2,...,εi−1}, must be stored in Li−1. Recursively,
there must be g′′ = g′ \ {σi−1} in Li−2. For example, see the
expansion list in Figure 7. For partial match {σ1, σ3, σ4} in
item {ε6, ε5, ε4}, there are matches {σ1, σ3} and {σ1} in items
{ε6, ε5} and {ε6} of the expansion list, respectively. These
three partial matches share a prefix sequence. Therefore, we
propose a trie variant data structure to store the partial matches
in the expansion list.

L1
1:

L2
1:

L3
1:

{ε6}

{ε6, ε5}

{ε6, ε5, ε4}

σ1 =
−−−→
e7 f 8

n1
1

σ3 =
−−−→
c4e7

n2
1

σ4 =
−−−→
d5c4

n3
1

σ9 =
−−−→
d6c4

n4
1

ROOT

Fig. 9: MS-tree of expansion list L1 = {L1
1, L2

1, L3
1}

Definition 10 (Match-Store Tree): Given a TC-query Q
with timing sequence {ε1,ε2,...,εk} and the corresponding
expansion list L = {L1,L2,...,Lk}, the Match-Store tree (MS-
tree) M of L is a trie variant built over all partial matches
in L that are in sequential form. Each node n of depth i
(1 ≤ i ≤ k) in a MS-tree denotes a match of εi and all nodes
along the path from the root to node n together constitute a
match of {ε1,ε2,...,εi}. Also, for each node n of a MS-tree, n
records its parent node. Nodes of the same depth are linked
together in a doubly linked list.

For example, see the MS-tree for the expansion list for
subquery Q1 with the timing sequence {ε6, ε5, ε4} in Figure
9. The three matches ({σ1} for node {ε6}, {σ1, σ3} for node
{ε6, ε5} and {σ1, σ3, σ4} for node {ε6, ε5, ε4 }) are stored
only in a path (σ1 → σ3 → σ4) in the MS-tree. Furthermore,
partial match {σ1, σ3, σ9} shares the same prefix path (σ1
→ σ3) with {σ1, σ3, σ4}. Thus, MS-tree greatly reduces the
space cost for storing all matches by compressing the prefix.

B. MS-Tree Accessibility

Given an expansion list L = {L1,L2,...,Lk} over timing
sequence {ε1,ε2,...,εk} and an MS-tree M that stores all partial
matches in L, there are three operations that M needs to
provide for computation: (1) reading all matches for some
item Li, i.e., Ω(Li); (2) inserting a new match into some item
Li; (3) deleting expired partial matches (i.e.,partial matches
containing expired edge). These three basic operations can be
seamlessly applied to the MS-tree of expansion list L0 over
the decomposition of a non-TC-query.

Reading matches of Li: In a MS-tree, each i-length
path starting from the root indicates a match of Li, i.e.,
{ε1,ε2,...,εi}. We can obtain all matches of Li by enumerating

all nodes of depth i in M with the corresponding doubly linked
list, and then for each node of depth i, we can easily backtrack
the i-length paths to get the match of Li. Apparently, the time
for reading partial matches in Li is O(|Li|) where |Li| denotes
the number of partial matches in Li.

Inserting a new match of Li: For a new match of
{ε1,ε2,...,εi}: g = {σ1, σ2,...,σi} where each σj matches εj ,
we need to insert a path {root→ σ1 → σ2...→ σi} into MS-
tree. According to the insertion over expansion list, g must be

obtained by {σ1,σ2,...,σi−1}
T
on {σi} and there must already

be a path {root→ σ1 → σ2...→ σi−1} in MS-tree. Thus, we
can just add σi as a child of node σi−1 to finish inserting g.
For example, to insert a new match {σ1, σ3, σ9} of {ε6, ε5,
ε4}, we only need to expand the path {root→ σ1 → σ3} by
adding σ9 as a child of σ3 (see Figure 9). Note that, we can

easily record node σi−1 when we find that {σ1,σ2,...,σi−1}
T
on

{σi} is not ∅, thus inserting a match of Li cost O(1) time. We
can see that our insertion strategy does not need to wastefully
access the whole path {root → σ1 → σ2...→ σi−1} as the
usual insertion of trie.

Deleting expired partial matches: When an edge σ ex-
pires, we need to delete all partial matches containing σ.
Nodes corresponding to expired partial matches in MS-tree are
called expired nodes and we need to remove all expired nodes.
Assuming that σ matches εi, nodes containing σ are exactly of
depth i in M . These nodes, together with all their descendants,
are exactly the set of expired nodes in M according to the
Definition of MS-tree. We first remove all expired nodes of
depth i (i.e., nodes which contain σ) from the corresponding
doubly linked list, we further remove their children of depth
i+ 1 from M . Recursively, we can remove all expired nodes
from MS-tree. Consider the MS-tree in Figure 9. When edge
σ1 (matching ε6 in TC-query {ε6, ε5, ε4}) expires, we delete
node σ1 in the first level of MS-tree, after which we further
delete its descendant nodes σ3, σ4 and σ9 successively. When
an edge expired, the time cost for the deletion update is linear
to the number of the corresponding expired partial matches.

Although MS-tree is similar to trie, there are important
differences between them. Due to space limits, we illustrate
the difference in Section IV-C of the full paper [15].

V. CONCURRENCY MANAGEMENT

To achieve high performance, the proposed algorithms can
(and should) be executed in a multi-thread way. Since multiple
threads access the common data structure (i.e., expansion lists)
concurrently, there is a need for concurrency management.
Concurrent computing over MS-tree is challenging since many
different partial matches share the same branches (prefixes).
We propose a fine-grained locking strategy to improve the
throughput of our solution with consistency guarantee. We first
introduce the locking strategy over the expansion list without
MS-tree in Sections V-A and V-B then illustrate how to apply
the locking strategy over MS-tree in Section V-C.



A. Intuition

Consider the example query Q in Figure 5, which is
decomposed into three TC-subqueries Q1, Q2 and Q3 (see
Figure 8). Figure 8 demonstrates expansion list Li of each TC-
subquery Qi and the expansion list L0 for the entire query Q.
Assume that there are three incoming edges {σ11, σ12, σ13}
(see Figure 10) at consecutive time points. A conservative
solution for inserting these three edges is to process each
edge sequentially to avoid conflicts. However, as the following
analysis shows, processing them in parallel does not lead to
conflicts or wrong results. For convenience, insertion of an
incoming edge σi is denoted as Ins(σi) while deletion of an
expired edge σj is denoted as Del(σj).

Figure 10 illustrates the steps of handling each incoming
edge based on the discussion in Section III. When σ11 is
inserted (denoted as Ins(σ11)), σ11 matches query edge ε6
and since ε6 is the first edge in TC-subquery Q1, we only
need to insert match {σ11} into Ω(ε6) as the first item L1

1 of
expansion list L1 (i.e., operation INSERT(L1

1)). Similarly, han-
dling Ins(σ12) where σ12 matches ε3 requires one operation:
INSERT(L1

2) (inserting {σ12} into Ω(ε3)). For Ins(σ13) where
σ13 matches ε2, we first insert σ13 into L1

3 (INSERT(L1
3)) as a

new match of Q3 (see Figure 8) and then we need to join {σ13}
with Ω(Q1 ∪Q2) (READ(L2

0)) and insert join results into L3
0

(INSERT(L3
0)). Note that we consider the worst case in our

analysis, namely, we always assume that the join result is not
empty. Thus, to insert σ13, we access the following expansion
list items: INSERT(L1

3), READ(L2
0) and INSERT(L3

0).
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Fig. 10: Example of conflicts

Figure 10 shows that there is no common item to be ac-
cessed between Ins(σ11), Ins(σ12) and Ins(σ13). Therefore,
these incoming edges can be processed concurrently.

Let us consider an incoming edge σ14 that matches {ε4},
which is the last edge in the timing sequence of TC-subquery
Q1. According to Algorithm 1, we need to read Ω({ε6, ε5})
and join Ω({ε6, ε5}) with {σ14}. Since ε4 is the last edge

in Q1, if Ω({ε6, ε5})
T
on {σ14} 6= ∅, the join results are

new matches of Q1, and will be inserted into L1
0. As dis-

cussed in Section III-B, we need to join these new matches
of Q1 with Ω(Q2) resulting in new matches of Q1 ∪ Q2,
which will be inserted into L2

0. Finally, new matches of
Q1 ∪Q2 will be further joined with Ω(Q3), after which new
matches of Q1 ∪ Q2 ∪ Q3 will be inserted into L3

0. Thus,

the series of operations to be conducted for Ins(σ14) are as
follows: READ(L2

1), INSERT(L3
1), READ(L2

2), INSERT(L2
0),

READ(L1
3), INSERT(L3

0). Obviously, Ins(σ14) may conflict
with Ins(σ13) since both of them will conduct INSERT(L3

0) as
indicated in Figure 10. Thus, the concurrent execution requires
a locking mechanism to guarantee the consistency.

Definition 11 (Streaming Consistency): Given a stream-
ing graph G with time window W and a query Q, the
streaming consistency requires that at each time point, answers
of Q are the same as the answers formed by executing
insertion/deletion in chronological order of edges.

Streaming consistency is different from serializability, since
the latter only requires the output of the concurrent execution
to be equivalent to some serial order of transaction execution,
while streaming consistency specifies that the order must
follow the timestamp order in G. For example, a concurrent
execution that executes Ins(σ14) followed by Ins(σ13) would
be serializable but would violate streaming consistency.

B. Locking Mechanism and Schedule

We propose a locking mechanism to allow concurrent
execution of the query execution algorithm while guaranteeing
streaming consistency. The two main operations in streaming
graphs, insertion of an incoming edge σ (i.e., Ins(σ)) and
deletion of an expired edge σ′ (i.e., Del(σ′)), are modeled
as transactions. Each transaction has a timestamp that is
exactly the time when the corresponding operation happens.
As discussed above, each edge insertion and deletion consists
of elementary operations over items of the expansion lists,
such as reading partial matches and inserting new partial
matches. As analyzed in Section V-A, concurrent execution of
these operations may lead to conflicts that need to be guarded.

A naive solution is to lock all the expansion list items that
may be accessed before launching the corresponding transac-
tion. Obviously, this approach will degrade the system’s degree
of concurrency (DOC). For example, Ins(σ13) and Ins(σ14)
conflict with each other only at items L1

3, L2
0 and L3

0. The
first three elementary operations of Ins(σ13) and Ins(σ14)
can execute concurrently without causing any inconsistency.
Therefore, a finer-granularity locking strategy is desirable that
allows higher DOC while guaranteeing streaming consistency.
For example, in Figure 10, INSERT(L2

0) in Ins(σ13) should
be processed before the same operation in Ins(σ14); other-
wise, it will lead to inconsistency.

We execute each edge operation (inserting an incoming
edge or deleting an expired edge) by an independent thread
that is treated as a transaction, and there is a single main
thread to launch each transaction. Items in expansion lists are
regarded as “resources” over which threads conduct READ-
/INSERT/DELETE operations. Locks are associated with in-
dividual items in the expansion lists. An elementary operation
(such as INSERT(L1

3) in Ins(σ13)) accesses an item if and
only if it has the corresponding lock over the item. The lock
is released when the computation over Lj is finished. Note
that deadlocks do not occur since each transaction (thread)
only locks at most one item (i.e., “resource”) at a time.



Main Thread. Main thread is responsible for launching
threads. Before launching a thread T , the main thread dis-
patches all lock requests of T to the lock wait-lists of the
corresponding items. Specifically, a lock request is a triple
〈tID, locktype, Lj〉 indicating that thread tID requests a
lock with type locktype (shared – S, exclusive – X) over
the corresponding item Lj . For each item Lj in expansion
lists, we introduce a thread-safe wait-list consisting of all
pending locks over Lj sorted according to the timestamps of
transactions in the chronological order.

Since there is a single main thread, the lock request dispatch
as well as thread launch is conducted in a serial way. Hence,
when a lock request of a thread is appended to wait-list of
an item Lj , then those lock requests of previous threads for
Lj must have been in the wait-list since previous threads
have been launched, which guarantees that lock requests in
each wait-list are sorted in chronological order. Although
thread launch is conducted in a serial way, once launched,
all transaction threads are executed concurrently.

Transaction Thread execution. Concurrently processing
insertion/deletion follows the same steps as the sequential
counterparts except for applying (releasing) locks before (af-
ter) reading (READ) or writing (INSERT/DELETE) expansion
list items. Thus, in the remainder, we focus on discussing
the lock and unlock processes. Note that, in this part, we
assume that we materialize the partial matches (Ω(·)) using
the naive representation (like Figure 7) without MS-tree. The
locking strategy over MS-tree is more challenging that will be
discussed in Sections V-C.

Consider a thread T that is going to access (READ/IN-
SERT/ DELETE) an item Lj . T can successfully obtain the
corresponding lock of Lj if and only if the following two
conditions hold: (1) the lock request of T is currently at the
head of the wait-list of Lj , and (2) the current lock status of
Lj is compatible with that of the request, namely, either Lj is
free or the lock over Lj and the lock that T applies are both
shared locks. Otherwise, thread T will wait until it is woken
up by the thread that just finishes computation on Lj .

Once T successfully locks item Lj , the corresponding lock
request is immediately removed from the wait-list of Lj and T
will conduct its computation over Lj . When the computation
is finished, thread T will release the lock and then wake up
the thread (if any) whose lock request over Lj is currently at
the head of the wait-list. Finally, thread T will continue its
remaining computations.

Theorem 4: The global schedule generated by the pro-
posed locking mechanism is streaming consistent.

C. Concurrent Access over MS-tree

Consider an expansion list {L1, L2,...,Lk} whose partial
matches are stored in MS-tree M . Each partial match of Li

(1 ≤ i ≤ k) exactly corresponds to a distinct node of depth i
in M . Thus, locking Li is equivalent to locking over all nodes
of depth i in M . Partial matches are not stored independently
in MS-tree, which may cause inconsistency when concurrent
accesses occur. For example, consider the MS-tree in Figure

9. Assuming that a thread T1 is reading partial matches of {ε6,
ε5}, T1 will backtrack from node n2

1 (i.e., σ3) to read n1
1 (i.e.,

σ1). Since T1 only locks L2
1, if another thread T2 is deleting

n1
1 at the same time, T2 and T1 will conflict. Therefore, we

need to modify the deletion access strategy over the MS-tree
to guarantee streaming consistency as follows.

Consider two threads T1 and T2 that are launched at time
t1 and time t2 (t1 < t2), respectively. Assuming that T1
is currently accessing partial matches of Ld1 in M while
T2 is accessing partial matches of Ld2 , let’s discuss when
inconsistency can happen. There are three types of accesses
that each Ti can perform and there are three cases for node
depths d1 and d2 (d1 < d2, d1 = d2 and d1 > d2). Thus, there
are total 3 × 3 × 3 = 27 different cases to consider, but the
following theorem tells us that only two of these cases will
cause inconsistency in concurrent execution.

Theorem 5: Concurrent executions of T1 and T2 will vi-
olate streaming consistency if and only if one of these two
cases occur:

1) d1 > d2, T1 reads partial matches of Ld1 and T2 deletes
partial matches of Ld2 . When T1 wants to read some
node n during the backtrack to find the corresponding
whole path, T2 has already deleted n, which causes the
inconsistency.

2) d1 > d2, T1 inserts partial match g = {σ1, σ2,...,σd1
}

of Ld1 and T2 deletes partial matches of Ld2 . When T1
wants to add σd1 as a child of σd1−1, T2 has deleted
σd1−1, which causes the inconsistency.

Theorem 5 shows that inconsistency is always due to a
thread T2 deleting expired nodes that a previous thread T1
wants to access without applying locks. However, if we make
T2 wait until previous thread T1 finishes its execution, the
degree of parallelism will certainly decrease. In fact, to avoid
inconsistency, we only need to make sure that the expired
nodes that T2 wants to delete are invisible to threads launched
later than T2 while accessible to threads that are launched
earlier. We achieve this by slightly modifying the deletion
strategy over MS-tree with only negligible extra time cost.
Specifically, consider the thread T2 that deletes partial matches
of Ld2 , when T2 is going to delete expired node nd2

of depth
d2 in M , T2 does not “totally” remove nd2

from M . Instead,
T2 “partially” removes nd2

as follows: (1) T2 removes nd2

from the corresponding doubly linked list, and (2) T2 disables
the link (pointer) from nd2 ’s parent to nd2 while the link from
nd2

to its parent remains.
Theorem 6: Parallel accesses with modified deletion strat-

egy over MS-tree do not result in streaming inconsistency.
Our scheduling strategy over the MS-tree is different from

the traditional tree protocol [16]. The classical tree protocol
only guarantees the conflict equivalence to some serial sched-
ule, and there is no guarantee for streaming consistency that
requires a special serial order.

VI. DECOMPOSITION

We propose a cost model-guided TC decomposition of query
Q based on the intuition that an incoming edge σ should lead



to as few join operations as possible. Cost of join operations
varies in stream scenario and we only focus on the expected
number of join operations to handle an incoming edge. Finding
the most appropriate cost function is a major research issue in
itself and outside the scope of this paper.

A. Cost Model

Assume that Q has |E(Q)| query edges εj (j=1,...,|E(Q)|)
and Q is decomposed into k TC-subqueries Qi (i = 1, ..., k).
For simplicity, we assume that the probability of any incoming
edge σ matches each edge εj in Q is 1/d, where d is the
number of distinct term edge labels (i.e., the label combining
edge label and the connected node labels) in Q. Theorem 7
tells us the expected number of join operation (in worst case)
for an incoming edge.

Theorem 7: Consider an incoming edge σ that matches
one or more edges in query Q. The total expected number
of join operations for Ins(σ) is

N =
1

d
((|E(Q)| − 1) +

k

2
(k − 1))

where k is the number of TC-subqueries in the decomposition
and d is the number of distinct edge labels in Q.

Since |E(Q)| and d are fixed, the total expected number of
join operations (N ) increases with k. Therefore, we prefer to
find a TC decomposition of size as small as possible.

B. Decomposition Method

Given a query Q, to find a TC decomposition of size
as small as possible, we propose the following solution.
We first extract all possible TC-subqueries of Q, denoted
as TCsub(Q). For a TC-subquery Qi of timing sequence
{ε1,...,εk}, according to the definition of TC-query, any prefix
of the timing sequence constitutes a TC-subquery of Qj . Thus,
we can compute TCsub(Q) by dynamic programming:

1) We initialize TCsub(Q) with all single edges of Q since
each single edge of Q is certainly a TC-subquery of Q.

2) With all TC-subqueries of j edges, we can compute all
TC-subqueries of j + 1 edges as follows: for each TC-
subquery Qi = {ε1,...,εj} with j edges, we find all edges
εx such that εj ≺ εx. If εx have common vertex with
some εj′ (j′ ∈ [1, j]), then we add {ε1,...,εj , εx} into
TCsub(Q) as a new TC-subquery of j + 1 edges.

3) Repeat Step 2 until there are no new TC-subqueries.
After computing TCsub(Q), we need to compute a subset

D of TCsub(Q) as a TC decomposition of Q, where the
subset cardinality |D| should be as small as possible. We use
a greedy algorithm to retrieve the desired TC-subqueries from
TCsub(Q). We always choose the TC-subquery of maximum
size from the remaining ones in TCsub(Q) and there should
be no common edges between the newly chosen subquery and
those previously chosen ones.

VII. EXPERIMENTAL EVALUATION

We evaluate our solution against comparable approaches.
All methods are implemented in C++ and run on a CentOS

machine of 128G memory and two Intel(R) Xeon(R) E5-2640
2.6GHz CPU. Codes and query sets are available at [17]. We
also present a case study in the full paper [15].

A. Datasets
We use three datasets in our experiments: real-world net-

work traffic dataset, wiki-talk network dataset and synthetic
social stream benchmark. Due to space limits, we only report
the experimental results over network dataset and social stream
in this paper and that of wiki-talk are presented in the
full paper [15]. The network traffic data is the “CAIDA
Internet Anonymized Traces 2015 Dataset” obtained from
www.caida.org, which contains 445,440,480 communication
records (edges) concerning 2,601,005 different IP addresses
(vertices). The wiki-talk dataset is from the Standford SNAP
library [18] where a directed edge indicates that a user edit
another user’s talk page at a certain time point. This dataset
contains 1,140,149 vertices and 7,833,140 edges. Linked
Stream Benchmark [19] is a synthetic streaming social graph
data on user’s traces and posts information. This dataset
contains 209,549,677 edges and 37,231,144 vertices.

B. Query Generation
We generate query graphs by random walk over the data

graph. For each subgraph g that is retrieved from data graph,
we need to further generate the timing order. In fact, there is
a full timing order between any two edges in g according to
their inherent timestamps in the data graph. Hence, we can
generate a subset of this full timing order to be that of g. We
create a random permutation of g’s edges and then for any
two edges εi, εj ∈ E(g), we set εi ≺ εj if and only if (1)
εi is before εj in the permutation and (2) the timestamp of εi
in g is less than that of εj . The average selectivities of these
queries are reported in Figure 25 of the full paper [15].

We generate 300 queries over each dataset in our experi-
ments. For each dataset, we set six different query sizes: 6,
9, 12, 15, 18, 21. For each query size, we generate 10 query
graphs by random walks over data graph. For each query graph
g, we create 5 different timing orders over g where one is set
as full order, one is set as ∅ and the other three are created by
random permutations as illustrated previously.

C. Comparative Evaluation
Since none of the existing works support concurrent execu-

tion, all codes (including ours) are run as a single thread; the
evaluation of concurrency management is in Section VII-D.
Our method, denoted as Timing, is compared with a number
of related works. SJ-tree [1] is the closest work to ours.
Since it does not handle the timing order constraints, we
verify answers from SJ-tree posteriorly with the timing order
constraints. IncMat [11] conducts static subgraph isomorphism
algorithm when update happens over streaming graph. We
apply three different state-of-the-art static subgraph isomor-
phism algorithms to IncMat, including QuickSI [6], TurboISO
[7], BoostISO

1 [8]. These methods are conducted over the
1We implement the BoostISO by applying the speed-up strategy in [8] over

TurboISO, which is the state-of-the-art algorithm.



affected area (see [11]) window by window. To evaluate the
effectiveness of MS-tree, we also compare our approach with
a counterpart without MS-trees (called Timing-IND) where
every partial match is stored independently.

There are 5 different window sizes in our experiments: 10K,
20K, 30K, 40K and 50K where each unit of the window size
is the average time span between two consecutive arrivals of
data edges in the dataset (i.e., the ratio of the total time span
of whole dataset to the total number of data edges).

We evaluate the systems by varying window size |W | and
query size |E(Q)|. In Section VII-G of the full paper [15],
we also compare our methods with comparative ones when
varying the decomposition size k. The reported throughput
(The number of edges handled per second) and space under a
given group settings are obtained by averaging those from the
corresponding generated queries.
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Fig. 11: Throughput over Different Window Size
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Fig. 12: Throughput over Different Query Size

1) Time Efficiency Comparison: Figures 11-12 show that
our method is clearly faster than other approaches over differ-
ent window sizes and query sizes, respectively. The reason for
the superior performance of our method lies in two aspects.
First, our method can filter out lots of discardable partial
matches based on the timing order constraint. Second is the
efficiency of MS-tree maintenance algorithms. For example,
the deletion algorithm is linear to the total number of expired
partial matches; while in SJ-tree, all partial matches need to be
enumerated to find the expired ones. SJ-tree needs to maintain
lots of discardable partial matches that can be filtered out by
our approach. Furthermore, SJ-tree needs post-processing for
the timing order constraint, which also increases running time.
Finally, since Timing-IND does not use MS-tree to optimize
the space and maintenance cost, it is not as good as Timing,
as shown in our experiments.

2) Space Efficiency Comparison: We compare the systems
with respect to their space costs. Since the streaming data in

the time window changes dynamically, we use the average
space cost in each time window as the metric of comparison,
as shown in Figures 13-14. We can see that both Timing-
IND and Timing have much lower space cost than comparative
approaches. Our method is more efficient on space than SJ-
tree because SJ-tree does not reduce the discardable partial
matches, which wastes space. Our method only maintains
partial matches without graph structure in the time window.
However, QuickSI, TurboISO and BoostISO need to maintain
the graph structure (adjacent list) in each window to conduct
search. Also, these comparative methods can not reduce dis-
cardable edges that will never exist in any partial match, which
results in wasting space.
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Fig. 13: Space over Different Window Size
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Fig. 14: Space over Different Query Size

D. Concurrency Evaluation

We evaluate the performance of our concurrency technique
in this section by varying the number of threads running in
parallel. We use Timing-N to differentiate different settings
of parallel threads (N ). We also implement, for comparison,
a locking mechanism that requires a thread to obtain all locks
before it is allowed to proceed (called All-locks-N ). We
present the speedup over single thread execution in Figures
15-16. We can see that our locking strategy outperforms All-
locks-N . As the number of threads grows, the speedup of
our locking mechanism improves, while the speedup of All-
locks-N remains almost the same. Figure 16 also shows that
speedup of our solution improves as the query size gets larger.
In fact, the larger the query size, the more items tend to be in
the corresponding expansion lists, which further reduces the
possibility of contention.

E. Decomposition and Join Order

We evaluate the effectiveness of our decomposition strategy
and selection of the join order. We implement three alternative



solutions: to evaluate the decomposition strategy, we design
an alternative that randomly retrieves a decomposition from
TCsub(Q) for a given query Q (denoted as Timing-RD);
to evaluate the join order selection, we design a second
alternative that randomly chooses a prefix-connected sequence
(join order) over a given decomposition D = {P1, P2, ...,
Pk} (denoted as Timing-RJ), and a third that applies random
decomposition and uses random prefix-connected sequence
(denoted as Timing-RDJ). In the evaluation, we fix the
window size to 30, 000. Figure 17 shows that our solution
outperforms the alternatives. The main reason is that the
decomposition and join order strategy reduces the partial
matches we need to maintain, which further helps reduce the
time cost for computation over those partial matches.
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Fig. 15: Speedup over Different Window Size
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Fig. 16: Speedup over Different Query Size
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Fig. 17: Evaluating Optimizations

VIII. CONCLUSIONS

The proliferation of high throughput, dynamic graph-
structured data raises challenges for traditional graph data
management techniques. This work studies subgraph isomor-
phism issues with the timing order constraint over high-
speed streaming graphs. We propose an expansion list to
efficiently answer subgraph search and propose MS-tree to

greatly reduce the space cost. More importantly, we design
effectively concurrency management in our computation to
improve system’s throughput. To the best of our knowledge,
this is the first work that studies concurrency management on
subgraph matching over streaming graphs. Finally, we evaluate
our solution on both real and synthetic benchmark datasets.
Extensive experimental results confirm the superiority of our
approach compared with the state-of-the-arts subgraph match
algorithms on streaming graphs.
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