
An Asynchronous Avoidance-Based Cache Consistency Algorithm
for Client Caching DBMSs

M. Tamer Özsu
GMD-IPSI

Darmstadt, Germany

Kaladhar Voruganti
University of Alberta
Edmonton, Canada

Ronald C. Unrau
Cygnus Solutions
Sunnyvale, USA

Abstract

We present a new client cache consistency al-
gorithm for client caching database management
systems. The algorithm, called Asynchronous
Avoidance-based Cache Consistency (AACC),
provides both good performance as well as a
low abort rate. We present simulation results
that compare AACC with two leading cache con-
sistency algorithms: Adaptive Callback Lock-
ing (ACBL) and Adaptive Optimistic Concur-
rency Control (AOCC). Callback cache consis-
tency (e.g. ACBL) is the most widely imple-
mented algorithm due to its low abort rate and
good performance. AOCC is an optimistic algo-
rithm that has been shown to outperform ACBL
under certain workload and system configura-
tions. Until now one could either have high per-
formance and high abort rate as in AOCC, or rela-
tively lower performance but the low abort rate of
ACBL. Our performance study shows that AACC
outperforms both ACBL and AOCC for important
workloads and system configurations. AACC has
the high performance of AOCC, as well as the ro-
bustness and low abort rate of ACBL.

1 Introduction
Most of the existing object and object-relational DBMSs
are distributed in one form or another. This is motivated by

This research is supported in part by the Natural Sciences and Engi-
neering Research Council (NSERC) of Canada under grant OGP0000951.

The author's permanent address is University of Alberta, Edmonton,
Canada, T6G 2H1; email: ozsu@cs.ualberta.ca.

This work was done when the author was with the University of
Alberta, Department of Computing Science.
Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.
Proceedings of the 24th VLDB Conference
New York, USA, 1998

the inherently distributed nature of the advanced applica-
tions that DBMSs have started to support (e.g, distributed
multimedia applications, electronic commerce, digital li-
braries, medical information systems). In addition to dis-
tribution, these systems exhibit the following characteris-
tics: they are multi-user, requiring scalable solutions; they
require support for both small and large objects (image,
video, audio); and they operate in both batch and interac-
tive modes.

An important problem in distributed object and object-
relational DBMSs is client cache consistency. The prob-
lem exhibits itself in multi-user systems where data are ac-
cessed by and reside in the caches of multiple clients that
are connected to the servers via both local-area networks
(LANs) and/or wide-area networks (WANs). Cache con-
sistency algorithms can be classified as avoidance-based
or detection-based [FLC97]. Avoidance-based algorithms
prevent access to stale cache data within a transaction,
whereas detection-based algorithms allow stale cache data
access but detect and resolve them at commit time. Stale
data refers to data in cache that is out-dated due to concur-
rent committed updates by another client. Adaptive Call-
back Locking (ACBL) is commonly accepted as the lead-
ing avoidance-based cache consistency algorithm [FC94]
and Adaptive Optimistic Concurrency Control (AOCC)
[AGLM95] is the leading detection-based cache consis-
tency algorithm.

AOCC generally outperforms ACBL in environments
where the client cache is sufficiently large to hold the
entire transaction state (data and logs) and the applica-
tion processing is strictly done at the clients [AGLM95].
AOCC achieves this even while encountering a higher abort
rate than ACBL, mainly due to its efficient abort handling
mechanism.

One might conclude that AOCC is a superior cache con-
sistency algorithm since its performance is generally better
than ACBL. However, performance is not the only issue;
the high abort rate of AOCC makes it unsuitable for inter-
active application domains. Furthermore, it is necessary
to evaluate how a high abort rate affects AOCC perfor-
mance in environments where the application processing
is performed not only at the clients but also at the servers
(hybrid architectures) and when the entire transaction state
cannot fit into the client cache. Hybrid architectures, where
queries are sometimes executed at the client by caching the

necessary data, and sometimes executed at the server by
shipping queries to the server, are emerging as the desirable
client-server DBMS architectures [KF96]. In these sys-
tems, abort processing has an impact on the performance
of all the clients. Transaction state cannot fit into the client
cache in the case of large transactions, transactions access-
ing large objects (e.g. multimedia), or when multiple user
processes share the client's cache.

These observations suggest that there is a need for algo-
rithms which provide good performance while maintain-
ing a low abort rate. Although an optimistic algorithm
such as AOCC can outperform ACBL, most commercial
client caching DBMSs continue to use ACBL (or its vari-
ants), because they also have to support applications which
cannot tolerate a high abort rate. Ideally, it is desirable
to use a cache consistency algorithm whose performance
approaches that of the best (avoidance-based or detection-
based) cache consistency algorithm while incurring a low
abort rate.

1.1 Scope
In this paper, we present a new cache consistency al-
gorithm, Asynchronous Avoidance Cache Consistency
(AACC), which exhibits good performance and a low abort
rate. AACC is an avoidance-based algorithm because it
does not access stale cache data and this results in a sig-
nificantly lower abort rate than AOCC. AACC uses a pig-
gyback cache consistency mechanism on private data and
an asynchronous cache consistency mechanism on shared
data. An asynchronous message is explicitly sent by the
client whereas a piggybacked message is sent along with
another message. Hence, the use of non-synchronous
messages allows AACC to consistently outperform ACBL
while ensuring a low abort rate.

The second contribution of this paper is the presenta-
tion of performance results comparing ACBL, AOCC, and
AACC. This performance study reverses the commonly
held belief that asynchronous cache consistency algorithms
do not outperform synchronous cache consistency algo-
rithms such as CBL [WR91]. Moreover, the previous re-
sults indicating that an optimistic high abort algorithm such
as AOCC is superior to ACBL [AGLM95] might lead one
to believe that high abort rates are a necessary evil in or-
der to obtain high performance in client caching systems.
However, we show that a low abort algorithm such as
AACC does outperform AOCC for the most common client
caching workload and system configuration. This perfor-
mance study also helps in clarifying the performance char-
acteristics of ACBL and AOCC. An earlier study shows
that AOCC performs better than ACBL [AGLM95], but
that study does not consider workloads where application
processing is performed at both the client and the server,
nor does it consider cases where the transaction state does
not completely fit in the client cache, nor when the network
experiences delays (similar to those present in WANs). One
would expect the performance of algorithms to be affected
in these situations. Therefore, in this paper we evaluate the
performance of AACC, ACBL and AOCC for these newer
system and workload configurations.

1.2 Paper Organization
In section 2 we briefly present related work describing
other DBMS cache consistency algorithms. Section 2 also
describes ACBL and AOCC. Section 3 contains a detailed
description of the proposed AACC algorithm. Sections 4
and 5 present the experimental setup and results, respec-
tively. Section 6 contains an analysis and discussion of the
performance results. Finally, section 7 contains our conclu-
sions.

2 Background
The DBMS cache consistency algorithms can be classified
as avoidance-based or detection-based. Avoidance-based
and detection-based algorithms can, in turn, be classified
as synchronous, asynchronous or deferred depending upon
when they inform the server that a write operation is per-
formed. In synchronous algorithms, the client sends a
lock escalation message at the time it wants to perform a
write operation and it blocks until the server responds. In
asynchronous algorithms, the client sends a lock escalation
message at the time of its write operation but does not block
waiting for a server response (it optimistically continues).
In deferred algorithms, the client optimistically defers in-
forming the server about its write operation until commit
time. In most of the deferred avoidance-based algorithms,
the server blocks a client transaction at commit time if the
client has updated an object that has been read by other
clients [FLC97]. Figure 1 depicts this classification along
with some of the popular cache consistency algorithms.

ACBL
[FC94]CBL

C2PL [CFLS91] NWL [WR91]

[CFLS91]O2PL

Synchronous Asynchronous Deferred

Based
Avoidance

Based
Detection AOCC [AGLM95]

[CFZ94]
AACC

[This paper]

Figure 1: DBMS Cache Consistency Algorithms

2.1 Known Performance Results
In client caching (or data shipping) systems, inter-
transaction caching of data and locks is generally accepted
as a performance enhancing optimization [FC94]. As well,
for most user workloads, invalidation of remote cache
copies during updates is preferred over propagation of up-
dated values to the remote client sites [FC94]. Furthermore,
the ability to switch between page and object level locks is
generally considered to be better than strictly dealing with
page level locks [CFZ94].

Within the family of avoidance-based algorithms, it has
been shown [FC94] that the synchronous callback locking
(CBL) algorithm, despite its higher messaging overhead,
has similar performance to the optimistic two-phase lock-
ing (O2PL) [CFLS91] class of algorithms while incurring
a much lower abort rate [FC94]. In O2PL, the write lock
escalation message is deferred until commit time, whereas

in CBL, the clients send synchronous lock escalation mes-
sages at the time of the update operation and do not proceed
until they receive a response from the server.

There are many performance studies comparing
avoidance-based and detection-based algorithms [FC94,
AGLM95, WR91]. The general conclusions are that syn-
chronous avoidance-based algorithms, such as CBL, are
superior to synchronous detection-based (e.g. C2PL) and
asynchronous detection-based (e.g. NWL) algorithms. It
has been shown that deferred detection-based algorithms
(e.g. AOCC) can outperform synchronous avoidance-based
algorithms (e.g. ACBL) even while encountering a high
abort rate.

There has also been an attempt at developing a hybrid
temperature-based algorithm [CLH97], where the data con-
tention temperature is maintained for each object. If the
temperature is high then the clients operate on the object in
a pessimistic manner; if the temperature is low, the clients
operate on that object in an optimistic manner. However,
due to the reactive nature of this algorithm, changing user
data access patterns, and dynamic addition and deletion of
clients can lead to high abort rates and low performance.
The performance of this approach [CLH97] with respect to
AOCC and ACBL is not known.

2.2 ACBL
ACBL is a synchronous, avoidance-based cache consis-
tency algorithm [CFZ94]. Clients cache both data and read
locks across transaction boundaries but they need to obtain
write permission from the server before they can proceed
with write operations. ACBL can dynamically acquire ei-
ther page or object level locks, and thus, it is an adaptive
version of the page level CBL algorithm. Clients try to
acquire page level write locks; failing that, they try to ac-
quire object level write locks on shared pages. If the page
is cached at other clients, the server sends callback mes-
sages to other clients asking them to downgrade or relin-
quish their locks. ACBL ensures that transactions never ac-
cess stale data and therefore never have stale cache aborts.
However, in ACBL, one can encounter deadlock related
aborts. We utilize the following 4 scenarios (Figure 2) to
highlight the key points of ACBL. For simplicity, these sce-
narios deal with only two clients, but the discussion is valid
for n clients.

Scenario 1: Assume that page 1 is only cached at
client 1 and it has a read lock on page 1. Client 1 wants
to update object 1 on page 1 and therefore it sends a
message to the server to obtain a write lock for page
1. Client 1 blocks until it gets a response from the
server. Since there is no one else caching page 1, the
server immediately grants the write lock for page 1 to
client 1. Thus, even if a page is not cached elsewhere,
in ACBL, the clients send lock escalation messages to
the server and block until getting a response from the
server.
Scenario 2: Client 1 wants to update object 1 on
page 2 which is also present at client 2 due to inter-
transaction caching; however, it is not being actively
used at client 2. Both clients hold a read lock on the

SCENARIO 1 :

Client 1 Server Client2 Client 1 Server Client 2
AACC AOCC

Client 2ServerClient1
ACBL

updates Obj1

Updates Obj1

Lck. Esc.

Lck. resp.

updates Obj1 u[pdates Obj1

SCENARIO 2:
ACBL

Client 1 Server Client 2
AACC

Client 1 Server Client 2
AOCC

Client 1 Server Client 2
updates Obj1 updates Obj1 updates Obj1

Lck. Escl.
Call back

CB resp.

Async. Lck. Escl.
Call backBlocked

AOCC
Client 1

updates Obj1
Server Client 2 Client 1

updates Obj1 Server Client 2 Client 1 Server Client 2
AACCACBL

read Obj1 read Obj1 read Obj1updates Obj1

Blocked

Call backLck. Escl.

Commit

CB resp.

Call back
Async.Lck. Escl.

Commit 1Commit
Commit 2

Commit

Success

Commit
Failure

Commit

SCENARIO 4:
ACBL

Client 1 Server Client 2 Client 1 Server Client 2 Client 1 Server Client 2
updates Obj1 updates Obj1 updates Obj1read Obj1read Obj1read Obj1

AACC AOCC

CB resp.

Page req. Call back

Commit
Page req. Resp.

Blocked Blocked

Blocked
Page req. Call back

CB resp.

Commit
Page req. Resp.

Page req.

Page req. Resp.

Blocked

CB resp.

BlockedLck. Escl. resp.

Lck. Escl. resp.

commit

commit

Failure
commit

success

Page 1 is cached only at Client 1. Client 1 wants to do a write on Page 1, Object 1.

Page 2 is cached at both Clients 1 & 2. Client 1 wants to update Page 2, Object 1.

Page 3 is cached at Client 2. Client 1 wants to read Object 1 on Page 3 and Client 2 is updating Object 1 on Page 3.

SCENARIO 3: Page 4 is cached at both Clients. Client 1 wants to update Object 1 on Page 4 which client 2 has already read.

Figure 2: Cache Consistency Scenarios
page. Client 1 sends a lock escalation message to the
server and blocks until its gets a reply. The server,
in turn, sends a callback message to client 2. Since
client 2 is not using page 2, it invalidates page 2 from
its cache and sends a callback reply to the server. The
server then sends a response to client 1 granting it an
exclusive lock on page 1. Thus, when a page is cached
at multiple clients, in addition to the round trip mes-
sage between the lock requesting client and the server,
there are round trip callback messages between the
server and all of the other clients where the page is
cached, and the initial lock requesting client blocks
until all of these messages are processed.
Scenario 3: Page 4 is shared by both clients 1 and 2.
Client 1 wants to update object 1 on page 4 and client
2 has already read the object. Client 1 sends a lock es-
calation message to the server which then sends a call-
back message to client 2. Client 2 indicates that it can-
not comply with the request. Client 1 stays blocked
until client 2 commits and releases the page. Thus,
in ACBL, update operations remain blocked until the
appropriate lock is obtained from the server.
Scenario 4: Client 2 holds an exclusive lock on page
3 and is updating object 1. Client 1 wants to read ob-
ject 1 on page 3 and it sends a message to the server
to obtain page 3. The server sends a callback message
to client 2 which responds by indicating that it is up-
dating object 1 on page 3. Client 1 remains blocked
until client 2 commits. Thus, read operations remain
blocked until the appropriate lock is obtained from the
server.

2.3 AOCC

AOCC is a deferred, detection-based cache consistency
algorithm. In AOCC, clients implicitly obtain read per-
missions on cached data, but if they subsequently update
cached data, they defer all of their write notification mes-
sages until commit time. AOCC does not prevent the ac-
cess of stale data by clients. The updates of a committed
transaction result in corresponding invalidations being sent
to the other affected clients. These invalidations are pig-
gybacked on other messages. If the client that receives an
object invalidation has accessed the corresponding object,
then it performs a stale cache abort. Since this is an opti-
mistic algorithm and no locking is involved, clients do not
encounter read/write or write/write blocking and therefore,
deadlocks do not occur in AOCC. However, in addition to
stale cache aborts, AOCC is susceptible to starvation. That
is, a client transaction repeatedly aborts and is not able to
commit.

In AOCC, the server has to perform commit time vali-
dation on every object that has been accessed by a trans-
action. The server checks whether the client accessed the
most recent committed version of the object. This valida-
tion overhead is not present in ACBL since the algorithm
ensures that clients do not access stale data. In AOCC,
the server maintains an invalidation queue for each of the
clients which stores the list of committed updates of other
clients that can potentially have an impact on this client.
The invalidation queue is used by the server while perform-
ing commit time validation.

In AOCC, the clients do not send lock escalation mes-
sages and the server piggybacks invalidation messages to
the affected clients. We now use the same scenarios as be-
fore (Figure 2) to analyze AOCC:

Scenario 1: Client 1 wants to update object 1 on page
1 and it is the only client caching that page. It does
not send any lock escalation messages to the server
for this update; it simply goes ahead and performs its
update on object 1 on page 1. The server is notified
about this update by the client during its commit op-
eration. Thus, in AOCC, there are no explicit lock
escalation messages.
Scenario 2: Client 1 wants to update object 1 on page
2 which is also cached at client 2. Client 1 does not
send any lock escalation message to the server; it goes
ahead and performs its update on the object. Client
1 informs the server about the update during its com-
mit operation. Therefore, the server does not send any
callback messages to client 2, but piggybacks an in-
validation message to client 2.

Scenario 3: Client 1 wants to update object 1 on page
4. This page is cached at both clients 1 and 2, and
the latter has already read object 1 on page 4. Client
1 does not send any lock escalation messages to the
server for the update; it informs the server during its
commit operation. The server then decides whether
client 2 can commit or abort. If client 2 commits be-
fore client 1, then the client 2 transaction commits
(sneaks through), followed by client 1 transaction. If

client 1 commits before client 2, then client 2 transac-
tion aborts.
Scenario 4: Page 3 is cached at client 2 and object 1
on this page has been updated by this client. Client
1 wants to read the same object. Client 1 goes ahead
and gets page 3 from the server, and it accesses object
1. Therefore, readers never block in AOCC. If client 1
commits before client 2, then it successfully commits.
If client 2 commits before client 1 then client 1 aborts.

In ACBL, a read/write conflict always results in the block-
ing of one of the transactions; in AOCC, the reading
transaction can successfully commit (sneak through) if it
reaches the commit point first, and the reading transaction
aborts if the writing transaction commits first. This causes
the blocking rate of ACBL to be higher than the abort rate
of AOCC, but the abort rate of AOCC is higher than the
abort rate of ACBL. In AOCC, when a transaction aborts,
the client simply copies the undo logs that are maintained in
its memory and restarts the transaction. This in turn speeds
up abort processing as, for most non-conflicting objects,
the client does not have to go to the server again to obtain
the necessary pages.

3 Asynchronous Avoidance Cache Consis-
tency

AACC is an asynchronous, avoidance-based cache consis-
tency algorithm. It achieves high performance while retain-
ing a low abort rate. AACC overcomes the fundamental
problems and limitations of AOCC (high abort rate), and
ACBL (high message transmission and message blocking
overhead). AACC accomplishes this by applying a num-
ber of performance enhancement techniques as well as the
adoption of various features of ACBL and AOCC. In this
section, we first describe AACC and then illustrate its op-
eration using the scenarios considered in section 2.

3.1 The AACC Algorithm
In AACC, as in ACBL, the clients implicitly obtain page
level read locks when a page is brought into the client's
cache. Clients retain page level read locks across transac-
tion boundaries, but they relinquish page level write locks
(change them to read locks) at the end of a transaction.
The server and clients both play a role in lock manage-
ment. The server primarily manages locks at page level,
and the clients manage locks at both page and object levels.
The server also manages locks at object level for objects on
pages that are being simultaneously written to by multi-
ple clients. The server performs deadlock processing when
there are lock conflicts. The clients do not block at the time
they perform a write operation; instead a client blocks at
commit time if its updates will make a remote client's cache
contain stale objects. The blocking at commit time makes
AACC an avoidance-based cache consistency algorithm. In
AACC, pages can be locked in private-read, shared-read
and write modes, and objects can be locked in read and
write modes. While satisfying a client's page request, in
addition to returning the page, the server also informs the
client as to whether the page is cached elsewhere (shared-
read lock mode) or whether the receiving client is the only

client caching the particular page (private-read lock mode).
This notion of private and shared lock modes is then used
by the client to decide whether it needs to send a lock es-
calation message in asynchronous manner or in a deferred
manner (via a piggyback message). The algorithm is de-
scribed in detail below.

Data Request: When a client wants to access an ob-
ject whose page is not in its cache, it sends a page
request to the server. When the server receives the re-
quest, it checks to see whether the page is cached at
other clients.

– If the page is not cached anywhere else, it returns
the page to the client in private-read mode.

– If the page is cached at another client in private-
read mode then the page is returned to the re-
questing client in shared-read mode. The server
also informs, via a piggy-back message, the
client holding the page in private-read mode
to change the page lock to shared-read mode.
The inherent message delay may cause situa-
tions where one client has the page in private-
read mode and other clients have the same page
in shared-read mode.

– If the page is cached elsewhere in shared-read
mode, then the server returns the page to the
client in shared-read mode.

– If the page is cached at another client in write
mode, then the server issues a callback message
to the remote client indicating the object and the
page that is being requested.

Upon receiving the callback, the remote
client checks to see whether it is updating
the particular object. If not, it changes the
page lock to shared-read (means the client
is sending object level lock escalation mes-
sages for future object updates on the page)
and returns the object identifiers of the ob-
jects on that page that have been updated.
If it is updating the requested object, it in-
forms the server that it cannot satisfy the re-
quest.

Upon receiving a positive callback response the
server marks off the objects that are updated at
the remote client and sends the page to the re-
questing client. If the server receives a negative
callback response, it blocks the requesting client
until the client that holds the write lock commits.

Updates on Private-Read Locked Page: When a
client is performing an update on a private-read
locked page, the client changes the page lock mode
to write. The client then informs the server about this
update by piggybacking the information on a subse-
quent message. Upon receiving the piggybacked mes-
sage regarding the update and the lock escalation to
the private-read locked page the server does the fol-
lowing:

– If the page is residing at other clients in shared-
read lock mode, then the server sends an invali-
dation message to the affected clients. The inval-
idation message requests the clients to purge the
object and/or page from their caches. The server
also informs the client that has performed the up-
date to change its page lock for the updated page
from write to shared-read if other clients are us-
ing the page but not that object.

– If the page is not residing at other clients or
has been successfully invalidated at other clients,
then the server updates its lock tables to indicate
that the client has a write lock for the page.

Updates on Shared-Read Locked Page: When a
client is performing an update on a shared-read locked
page, the client sends an asynchronous lock escalation
message to the server and continues with its process-
ing. When the server receives this message, it sends
callback messages (indicating both the object and the
page) to the other clients that are caching this page.

– If the client receiving the callback message is not
using the page, it simply invalidates the page,
and informs the server via a piggybacked mes-
sage.

– If the client is using the page but not the ob-
ject, then it invalidates the object and informs
the server via a piggybacked message.

– If the client is using the object, then it sends an
asynchronous callback response indicating that
there is a conflict.

Callback Processing: When the server receives a
callback response indicating that there is a conflict,
it performs deadlock processing, and if there are no
deadlocks, the client that has performed the initial up-
date cannot commit before the client that is reading
the object. Here the server deadlock processing in-
volves a check to see whether clients have updated
objects that have been read by other clients. For ex-
ample, if client 1 has updated an object read by client
2 and client 2 has updated an object read by client
1, then neither one of these clients can commit their
respective transactions. If the server receives piggy-
backed callback page messages from all the relevant
clients indicating that they have invalidated the page,
the server then sends an asynchronous message ask-
ing the initial page updating client to upgrade its page
lock from shared-read to write mode.
Commit Processing: At commit time, the client
sends the logs to the server and it changes write locks
to private-read locks. The client also piggybacks mes-
sages informing the server of updates to private-read
locked pages. At commit time, the server checks to
see whether the particular client can go ahead with its
commit or whether it should remain blocked since it
has updated an object that has been read by another
client. The server also changes the page write locks
held by the committing client to private-read locks in
its lock table. If a client has performed updates to

a private-read locked page, and this is being piggy-
backed on the commit message, then the server checks
to make sure that no other client has that page in its
cache in shared-read mode; and if another client does
have that page, the server sends a callback message
to that client. The server only allows the commit to
proceed after receiving replies to all the pending call-
back messages from the necessary clients. The server
moves logs on to a persistent storage area and it also
activates the other client transactions that are waiting
for this client to commit.

3.2 Scenarios describing AACC
We now analyze AACC using the same set of scenarios
which were utilized to describe ACBL (Figure 2):

Scenario 1: Client 1 wants to update object 1 on page
1 which is cached only at client 1 in private-read lock
mode. The client goes ahead with the update with-
out sending an explicit lock escalation message. The
client informs the server about this update by piggy-
backing the lock escalation message on a subsequent
message to the server. Therefore, unlike ACBL, no
synchronous lock message is sent for updating an ob-
ject residing on a page that is solely present at a sin-
gle client. Therefore, AACC's behavior is similar to
AOCC which helps in reducing message transmission
and message blocking overheads in AACC.
Scenario 2: Client 1 wants to update object 1 on page
2 which is cached at both clients 1 and 2 in shared-
read lock mode. Client 1 sends an asynchronous mes-
sage to the server and continues without blocking. The
server in turn forwards this message to client 2. Client
2 invalidates page 2, but informs the server about
this invalidation by piggybacking the information on a
subsequent message. Therefore, unlike ACBL, the use
of an asynchronous message helps in reducing mes-
sage blocking overhead. Similarly, the absence of ex-
plicit response message from client 2 to the server also
helps in reducing message transmission overhead in
AACC.
Scenario 3: Client 1 updates object 1 on page 4
and client 2 has already read object 1 on page 4.
Page 4 is present at both clients in shared-read lock
mode. Client 1 sends an asynchronous message to
the server indicating its update. The server then for-
wards this message to client 2. Client 2 notices that
there is a conflict and it sends a explicit response to
the server. The server then performs deadlock pro-
cessing and notes that client 1 can only commit after
client 2 has committed in order to prevent stale cache
aborts. Therefore, client 1 can go ahead with its com-
mit if client 2 commits at commit point 1 but client
1 blocks if client 2 commits at commit point 2. As a
result, unlike AOCC, stale cache aborts do not occur
in AACC.
Scenario 4: Client 1 wants to read object 1 on page
3. Page 3 is only present at client 2. Moreover, client
2 holds an exclusive page level lock on page 3 and it
is also updating object 1 on page 3. Upon receiving

the page 3 request from client 1, the server sends a
callback message to client 2. Since client 2 is using
the object, it sends a negative response to the server
and thus client 1 blocks until client 2 does a commit.

4 Experimental Setup
The goals of the performance study are (a) to compare
the performance of AACC with AOCC and ACBL for dif-
ferent workload and system settings and (b) better under-
stand the performance characteristics of ACBL and AOCC.
The baseline setup of this performance study is similar to
many recent client cache consistency performance studies
[CFZ94, AGLM95, Gru97], which were useful in validat-
ing our results.
4.1 Basic System Model
As in the previous performance studies, this study also uses
a page-server client-server architecture which leaves the
disk management responsibilities to the server. The clients
send their object requests to the server and then cache the
pages that are returned by the server. The clients use a
page level data buffer and an object level log buffer. The
server uses a page level buffer and also a modified object
log buffer (MOB). Our notion of the MOB log buffer is the
same as the one used by the previous performance stud-
ies [AGLM95, Gru97]. The two page buffers use an LRU
like (second chance) buffer replacement algorithm, and the
two object buffers implement a FIFO buffer replacement
algorithm. The server returns pages to the clients in re-
sponse to their requests. The clients return object level logs
(redo/undo) to the server. These logs are stored in the mod-
ified object buffer and the server does a redo operation for
installing these updates back onto their respective pages in
the background. The use of a MOB helps the server to re-
duce its installation disk read operation cost for installing
the client object updates [Gru97].

Input work comes to the clients as a stream of object
and page identifiers from a workload generator; it comes
to the server from the clients via the network. A buffer
manager, lock manager, and an object manager have been
modeled at both the clients and the server. The client and
the server CPUs have a high priority and a low priority in-
put queue [CFZ94]. The high priority queues are used for
dealing with system requests such as disk I/O, packaging of
network messages, etc. The low priority queue deals with
the user requests such as lock processing, and application
processing. The high priority queue is managed as FIFO
while the low priority queue is managed using processor
sharing among the requests. The disks have a single FIFO
input queue. We use a fast disk I/O rate (for installation
reads) and a slow disk I/O rate (for normal user read op-
erations). Disks are modeled at the server but not at the
clients. Similar to the previous performance studies, the
LAN network model consists of a FIFO server with a spec-
ified bandwidth. In order to prevent network saturation, we
ran our experiments assuming a 80Mbps network that cor-
responds to a Ethernet with a nominal speed of 100Mbps.
The network cost consists of fixed and variable transmis-
sion costs along with the wire propagation cost. Every
message has a fixed sending and receiving message cost
associated with it. The size of the message determines the

variable cost component of the message.

Table 1: System Parameters
Table 1 lists the costs of the different operations that

are considered in this performance study. These costs are
similar to the ones used in previous performance studies
[CFLS91, CFZ94, AGLM95, Gru97].
4.2 Workload Model
The multi-user OO7 benchmark has been developed to
study the performance of object DBMSs [MDKN94].
However, this benchmark is under-specified for concur-
rency control studies [Car97] because it does not include
the necessary data sharing patterns or transaction length
values for determining the data contention level of the sys-
tem. Since data contention level is an important component
of any cache consistency/concurrency control performance
study, the previous studies have borrowed some of the rele-
vant features of the OO7 benchmark - the notion of a traver-
sal, shared and private regions, small and large databases
(working sets), data clustering (from the ACOB benchmark
[DFMV90]) and the size of atomic objects - and added their
own data sharing patterns [CFZ94, AGLM95] and trans-
action lengths. The data sharing pattern, in turn, dictates
the number of read/write and write/write conflicts. In this
study we examine Private, Sh-Hotcold and the HiCon data
sharing patterns [CFZ94, AGLM95]. These cover a wide
spectrum of data contention levels and are, therefore, useful
in assessing the robustness of the cache consistency algo-
rithms. There is no data contention in the Private work-
load, and the data contention progressively increases in
the Sh-Hotcold and HiCon workloads, respectively. The
database consists of a set of private regions (one for each
client), a common shared region and the other region (left-
over pages). The private region for a client is also consid-
ered as a hot region for the client. In the Private work-
load each client only accesses data from its private region
(80 percent of the time) and the shared region (20 percent
of the time). Moreover, the clients only update the data
in their private regions. In the Sh-Hotcold workload, each
client accesses the data from its private region (80 percent
of the time), the shared region (10 percent of the time) and
from the rest of the database including other clients' private
regions (10 percent of the time). The clients can update ob-
jects in all of the regions. In the HiCon workload, each

client accesses data from the shared region (80 percent of
the time) and from the rest of the database (20 percent of
the time). The clients can update objects in all of the re-
gions. A transaction consists of many operations. Each op-
eration of a transaction accesses many objects from a page.
The page can belong to the client's hot area (area of affin-
ity) or to the cold area. The cluster size determines how
many objects of a page are accessed per operation. The
cluster size being used is similar to the ones used by the
previous performance studies. The cluster write probabil-
ity determines whether any of the objects in an operation
(cluster) will be updated. Upon accessing an object, the
client can perform a read and a write operation on the ob-
ject. There is a CPU instruction cost associated with the
read and write operations. Upon access of an object, the ob-
ject write probability determines whether an update action
will be performed on the particular object. The transaction
think time is the delay between the start of two consecutive
transactions at the clients. The transaction size, transaction
think time, database size, buffer sizes, the client hot region
size, and the object write probabilities chosen in this pa-
per are similar to the previous performance studies. These
values are specified in Tables 1 and 2. When a transaction
aborts, then a decision has to be made as to whether the
aborted transaction accesses the same set of objects as the
original transaction, or whether it should access a differ-
ent set of objects [ACL87, Gru97]. In this paper, we call
this the abort variance of a transaction. An abort variance
of 100 percent means that the restarted transaction is ac-
cessing all new objects. We choose an abort variance of
50 percent since an abort variance of 100 percent favors
ACBL and an abort variance of 0 percent favors AOCC. If
a failed transaction accesses the same set of objects as the
initial transaction, then this favors AOCC because most of
the objects which will be accessed by the aborted transac-
tion would already reside in the client cache.

Table 2: Workload Parameters
4.3 Extensions to the Experiment Setup
The experiment setups of the previous performance studies
do not completely analyze the different aspects of a cache
consistency algorithm. Therefore, the above mentioned ex-
periment setup has been extended as described below:
4.3.1 Small Client Cache
The previous performance studies concentrated on only
large client caches where a client's entire transaction state
fits into the client cache. This is favorable to an optimistic
algorithm because during abort processing almost all of the
relevant objects already reside in the client cache making
abort processing inexpensive. However, the large client

cache assumption is not realistic in situations where (a) the
transaction size is very large, (b) one is dealing with large
multimedia objects such image, video and audio and, (c)
the client station buffer is shared by multiple transactions.
Though the amount of memory present at client stations
is steadily increasing, the application demand usually out-
strips the available memory resources. Therefore, in this
study, we conduct experiments with small client caches. In
order to maintain the data contention level, we kept trans-
action and database sizes constant.
4.3.2 Network Delay Scenario
Since many of the emerging application domains operate
on the Internet, it is important to assess the impact of the
unpredictable network delays that are often found in wide-
area networks, on the three cache consistency algorithms.
Initial message delay, slow delivery and bursty arrival are
the three types of delays examined in a recent WAN per-
formance study [AFT97]. Similar to that study [AFT97],
we simulate network delay by making the message sending
source wait for a specified time before sending the mes-
sage. The message sending source flips a coin to determine
whether a message should be delayed (delay probability).
The actual value of the delay (delay time) is chosen as a
multiple of the expected time to send and receive a mes-
sage. In reality, the delay probability and delay time val-
ues can vary a lot depending on the network traffic, geo-
graphic location, and intermediate node down times. Due
to space limitations, we present the results obtained while
using only one set of network delay parameters. This is
enough to assess certain key aspects of the different cache
consistency algorithms.
4.3.3 Work Allocation Scenario
The previous studies only consider data-shipping cases
where all of the processing is performed at the clients. As
argued earlier, the current trend is to perform some of the
processing at the server and some of the processing at the
clients. Therefore, we consider two work allocation cases:
100 percent processing at the clients and a 50-50 split be-
tween the client and the server respectively. We do not con-
sider query shipping to the server since this raises many
new issues not addressed in this study. Since this is a cache
consistency/concurrency control study, we are more inter-
ested in ensuring that the application work is performed
at both the clients and the server, and less interested in the
type of work that is performed at the server (such as queries
or navigations). We are primarily interested in assessing the
impact of work allocation (at both the client and the server)
on the AOCC abort processing overhead, because a client
abort has an impact on the performance of the other clients.
Therefore, the work performed at the server is modeled in
the same manner as the work performed at the clients. In
the 50 percent client work allocation case, the transaction
uses the Sh-Hotcold data access pattern at the clients and
a Uniform data access pattern at the server. In the uni-
form data access pattern, accessed objects are uniformly
distributed over the database, and client caching is not ex-
pected to be beneficial [CFLS91]. In this workload, the
server has been modified so that it can manipulate objects.
For sake of recovery, the server accesses are strictly read-
only and an object is not accessed both at the client and the
server within the same transaction.

5 Experiments and Results
The performance results reported in this section compare
the performance of ACBL, AOCC and AACC cache con-
sistency algorithms under the following scenarios: (1) Pri-
vate workload with large client caches, (2) Sh-Hotcold
workload with large client caches, (3) Sh-Hotcold work-
load using slow CPU speeds, (4) HiCon workload with
large client caches (5) Sh-Hotcold workload with small
client caches (6) Sh-Hotcold and Uniform workload with
50 percent work allocation at the server and 50 percent
work allocation at the clients and (7) Sh-Hotcold workload
with network delay. Space limitations do not allow us to re-
port results for experiment numbers 3, 5, 6 and 7 for work-
loads other than Sh-Hotcold. All of the experiments use
the cost and workload settings as described in Tables 1 and
2. In cases where the default values have been changed, it
has been explicitly specified. Sh-Hotcold's contention level
falls in between Private and HiCon workloads and most ap-
plications are likely to exhibit this level of data contention
[AGLM95]. Overall system throughput in commits/second
is the primary performance metric in this study. We verified
that the 90 percent confidence intervals for our results (us-
ing batch means) are sufficiently tight. The reported results
represent the steady state performance of the system.

5.1 Private
In Private workload, the clients only perform updates on
their private hot regions and do not perform any updates
on the shared or other client regions. Private workload is
indicative of computer-aided design (CAD) environments
where the users perform updates on their private data, but
also do reads on shared data. Due to the absence of data
contention no aborts occur in this workload. As evident in
Figure 3(a), AOCC and AACC outperform ACBL for all
write probabilities. In ACBL, the clients send lock esca-
lation messages to the server to obtain page level exclu-
sive locks for every page that is updated, and they block
until the server responds. In AOCC, all the write notifica-
tions are deferred until commit time. In AACC, the shared-
private optimization ensures that all update notifications
are sent to the server in a piggy-backed manner. As evi-
dent from Figure 3(b), ACBL sends more messages than
AOCC and AACC. Thus, the message transmission and
the message blocking overhead of ACBL makes its perfor-
mance lower than AOCC and AACC. It is also important
to note that ACBL performance decreases at a faster rate
than AOCC and AACC, because as the write probability
increases, clients send more lock escalation messages to
the server.
5.2 Sh-Hotcold
Sh-Hotcold workload data contention level is indicative of
the data contention level present in most client caching ap-
plications. Therefore, its results are very important. Due
to the presence of data contention, stale cache aborts are
possible in AOCC, and deadlock aborts are possible in
AACC and ACBL. As evident from Figure 3(c), AACC
outperforms both ACBL and AOCC. Figures 3(d) and 3(e)
show the corresponding abort rates and message count re-
spectively for the three algorithms. The lower message
transmission and message blocking overhead of AACC al-

0

200

400

600

800

1000

5 10 15 20

C
om

m
its

/S
ec

Write Probability

3(a) Private Throughput

AOCC
ACBL
AACC

4
6
8

10
12
14
16
18

5 10 15 20

M
es

sa
ge

s/
C

om
m

its

Write Probability

3(b) Private Message Count

160
180
200
220
240
260
280
300

5 10 15 20

C
om

m
its

/S
ec

Write Probability

3(c) Sh-Hot-Cold Throughput

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

0.5

5 10 15 20

Ab
or

ts
/C

om
m

it

Write Probability

3(d) Sh-Hot-Cold Abort Rate

10
15
20
25
30
35
40
45

5 10 15 20

M
es

sa
ge

s/
C

om
m

it

Write Probability

3(e) Sh-Hot-Cold Msg Count

80

100

120

140

160

180

200

5 10 15 20

C
om

m
its

/S
ec

Write Probability

3(f) Sh-HotCold Slow CPU

Figure 3: Private and Sh-Hotcold Results
low it to outperform ACBL. AACC and ACBL outperform
AOCC, and this result seems to contradict a previous per-
formance study [AGLM95] in which it was shown that
AOCC outperforms ACBL for the Sh-Hotcold workload.
However, it is important to note that the CPU speeds used
in this study are faster than the ones used in the previous
study. We used CPU speeds which reflect the current state
of the CPU technology. Currently, CPU technology is im-
proving at a faster rate than disk technology. Therefore, in
order to study the impact of changing CPU speeds, we ran
this experiment with the same slow CPU speeds of 25 MIPs
and 50 MIPs as client and server CPU speeds respectively
(which were used in the previous study [AGLM95]). As
shown in Figure 3(f), AOCC beats ACBL and AACC. It
is interesting to analyze why the change of CPU speeds
causes a change in the relative performance ordering of
the algorithms. First of all, fast CPUs improve the per-
formance of all of the three algorithms in comparison to
the slow CPU speeds. The reduction in transaction execu-
tion time helps in reducing the read/write conflict block-
ing times in AACC and ACBL. That is, since transactions
execute faster, conflicting transactions block for a shorter
time. Since the read/write conflict blocking rate in ACBL
and AACC is higher than the abort rate in AOCC (because
some transactions can sneak through), faster CPU speeds
help ACBL and AACC more than they help AOCC with
its faster abort processing. Fast CPU speeds also help in
reducing the message processing overheads in ACBL and
AACC. Another important point to note is that with fast
networks, fast CPUs and large processor caches, server
disks can become a bottleneck. In general, disk utilization
increases much faster in AOCC than in AACC and ACBL
because, in AOCC, no client blocks due to a read/write con-
flict. When disk utilization reaches the saturation point,
this negatively affects overall performance due to increas-

ing disk waiting times. With slow CPU speeds, the server
disks become less of a bottleneck and this, in turn, reduces
the disk waiting times. Therefore, we are interested in the
relative speeds of CPUs and disks with respect to each other
because this has an impact on the relative performance of
the different cache consistency algorithms. This key result
helps in better understanding the performance characteris-
tics of ACBL and AOCC.

5.3 HiCon
In HiCon workload, the clients access the shared data re-
gion 80 percent of the time and the data region of other
clients 20 percent of the time. This is a skewed data ac-
cess pattern which is not usually present in data-shipping
applications [CFZ94]. It is being examined here to test
the behavior of the different cache consistency algorithms
under extreme data contention situations. As shown in
Figure 4(a), in this workload, even with client and server
CPU speeds of 50 MIPs and 150 MIPs respectively, AOCC
outperforms both AACC and ACBL, and AACC outper-
forms ACBL. However, as shown in Figure 4(b), AOCC
has a higher abort rate (aborts/commits) than ACBL and
AACC. One would expect algorithms with a high abort rate
to perform worse than algorithms with lower abort rates.
As described in section 2.4, the read/write conflict block-
ing rates of AACC and ACBL are higher than the abort
rate of AOCC. That is, for every blocking transaction in
AACC and ACBL, the equivalent situation can lead to ei-
ther an abort or a commit in AOCC. Furthermore, in data-
shipping client-server environments with sufficiently large
client caches, the abort processing actions of a client do
not have a major impact on the performance of the other
clients. This is different than in centralized database sys-
tems, where a transaction's abort processing has an impact
on the performance of other clients. The blocking overhead
due to read/write conflicts dominates the other overheads in

30

40

50

60

70

80

90

5 10 15 20

C
om

m
its

/S
ec

Write Probability

4(a) HiCon Throughput

AOCC
ACBL
AACC

0

0.2

0.4

0.6

0.8

1

5 10 15 20

Ab
or

ts
/C

om
m

it

Write Probability

4(b) HiCon Abort Rate

40

45

50

55

60

65

70

5 10 15 20

C
om

m
its

/S
ec

Write Probability

4(c) Small Client Buffer

0

5

10

15

20

25

30

5 10 15 20

Pe
rc

en
ta

ge
 D

eg
ra

da
tio

n

Write Probability

4(d) No Client Log Buffer

50
52
54
56
58
60
62
64

5 10 15 20

C
om

m
its

/S
ec

Write Probability

4(e) Work Allocation Throughput

10
12
14
16
18
20
22
24
26

5 10 15 20

Pe
rc

en
ta

ge
 D

eg
ra

da
tio

n

Write Probability

4(f) Network Delay Degradation

Figure 4: Hicon and System Variation Results
HiCon workloads and this, in turn, allows AOCC to outper-
form ACBL and AACC.

5.4 Small Client Cache
This experiment utilizes the Sh-Hotcold workload to eval-
uate the effects of small client cache. The client data buffer
space is 25 percent of the transaction size. A small client
data cache degrades the performance of all the algorithms
as the clients send more requests to the server to obtain
the necessary objects. In this experiment one would ex-
pect low abort rate algorithms such as AACC and ACBL
to outperform AOCC because, as the transaction state does
not fit into the client data cache, AOCC abort cost rises
as the clients have to request the server for objects during
abort processing. However, a small client data cache also
has a negative impact on AACC and ACBL as it increases
their read/write conflict blocking times. That is, since the
overall execution time of a transaction increases (due to
small client cache), blocking transactions wait for a longer
time for their respective conflicting transactions to finish.
The server cache and disks become more active since the
client caches experience higher misses. Therefore, as evi-
dent from Figure 4(c), there is not much difference in the
performance between AOCC, AACC and ACBL. However,
we also ran an experiment in which clients did not have an
undo client log buffer. This situation is supposed to rep-
resent situations where the client in-memory log buffer is
not big enough to hold all the necessary undo log records
for a transaction. The conditions of this experiment are
the same as for the slow CPU speeds experiment Figure
3(f). Figure 4(d) plots the degradation in the performance
(with respect to Figure 3(f)) of the three algorithms due to
the lack of an undo client log buffer. One can notice that
this situation negatively impacts AOCC much more than
ACBL and AACC because ACBL and AACC have a very
low abort rate; therefore, they rely much less on the client

log buffer than AOCC. An inadequate client log buffer size
forces AOCC clients to go more times to the server during
abort processing. Hence, a small client data buffer hurts
the performance of all three algorithms, but an inadequate
client log buffer has a more negative impact on AOCC than
on AACC or ACBL.
5.5 50 Percent Server Work Allocation
As evident from Figure 4(e), AACC and ACBL outper-
form AOCC. AOCC's performance degrades more rapidly
as the write probability increases due to an increase in the
number of aborts. Since application work is performed at
both the client and the server, the impact of an abort is not
limited to the aborting client only, but instead, it also af-
fects the performance of all the other clients. The server
CPU utilization increases as more work is performed at the
server, and the server disk utilization also increases since
there is no locality (due to uniform data access) in the data
accesses being performed at the server. This experiment
was run with CPU speeds of 50 MIPs (clients) and 150
MIPs (server) and the number of server disks was increased
from 4 to 6 in order to reduce server CPU and server disk
contention respectively. As already known in centralized
DBMS context, medium to heavily utilized server CPUs
and disks negatively impact the performance of optimistic
algorithms more than they impact the performance of pes-
simistic algorithms [ACL87] because abort processing be-
comes more expensive in these situations. Moreover, it
is generally more realistic to expect the server resources
to be heavily utilized than under-utilized. We are using
this experiment to highlight that a purely optimistic algo-
rithm such as AOCC may not be suitable for the emerging
function-shipping/data-shippingarchitectures. In future we
intend to carry out more experiments in order to further as-
sess the impact of cache consistency algorithms on the hy-
brid architecture performance.

5.6 Network Delay
Figure 4(f) shows the degradation in performance of the
three algorithms for the Sh-Hotcold workload (Figure 3(c))
when a network delay is introduced. Figure 4(f) shows this
degradation as a percentage of the throughput values (Fig-
ure 3(c)). As evident from Figure 4(f), the performance
of all of the three algorithms degrades in comparison to an
environment with no network delay (Figure 3(c)). How-
ever, it is important to note that the performance of ACBL
degrades much more than the performance of AOCC and
AACC because ACBL uses synchronous lock escalation
messages, whereas, AACC and AOCC use asynchronous
and deferred lock escalation messages respectively. In
ACBL, the clients remain blocked until their lock escala-
tion and subsequent callback messages (if necessary) are
processed. Therefore, it is important to minimize the use
of synchronous lock escalation and callback messages in
environments, such as the Internet, with unpredictable net-
work delays.

6 Discussion
Similar to ACBL, AACC is also an avoidance-based
algorithm; therefore, AACC does not encounter stale
cache aborts, but it encounters deadlock related aborts.
Read/write and write/write conflicts can lead to stale cache
aborts, whereas, coincidental sharing across multiple ob-
jects in a conflicting manner is required in order for dead-
lock related aborts to occur. In most workloads, there is a
lower probability for the latter to occur. As shown in our
experiments, the deadlock abort rate of ACBL and AACC
is usually much lower than the stale cache abort rate of
AOCC.

A key strength of AOCC is that it has a much lower mes-
saging overhead than ACBL. This, in turn, allows AOCC
to outperform ACBL. Therefore, one of the key goals of
AACC is to reduce the messaging overhead, which is par-
tially accomplished by using the concept of shared and pri-
vate pages to lower the number of explicit lock escalation
messages. In client caching systems, at a given point in
time, many of the pages that reside in a client's cache could
have been brought in by previous transactions executing at
that client (inter-transaction caching). In these situations,
when the client receives a callback message from the server
for a page that is not used, it is not necessary for the client
to immediately send a callback response to the server. In-
stead, the client can piggyback the page invalidation mes-
sage on a subsequent message to the server. This leads to a
reduction in the number of callback response messages in
comparison to ACBL.

Message blocking overhead is another key factor which
determines the overall performance of the cache consis-
tency algorithms. The decision as to whether to use a
synchronous, asynchronous or a deferred lock escalation
message is a critical one with respect to message blocking
costs. AOCC uses deferred lock escalation messages and
ACBL uses synchronous lock escalation messages. Con-
sequently, in ACBL, the clients which are performing the
update operation must remain blocked until the lock esca-
lation message and the necessary callback messages have
been processed at the server and the clients. This message

SCENARIO 1

Read B

Read A

Client 1 Client 2

Read B
Write A

Read A
Write B

Client 1 Client 2
SCENARIO 2

Read A

Write B
Write A

Read B

Write A

Write B

Client 2
Read A

Write A
Read B

Write B

SCENARIO 3
Client 1 Client 2
Read A

Write A
Write B

Read B

Client 1 Client 2

Read A

Read B

Write B

Write A

Client 1
SCENARIO 6

Client 1 Client 2
SCENARIO 4 SCENARIO 5

Figure 5: Deadlock Scenarios
blocking delay increases in a heavily utilized server and
network. The absence of this message blocking overhead
allows AOCC and AACC to outperform ACBL.

Another important advantage of using asynchronous
lock escalation messages is that it leads to fewer deadlock
related aborts than what occurs with deferred lock escala-
tion messages. Scenarios 1 and 2 of Figure 5 describe the
deadlock aborts that are avoided if one uses asynchronous
lock escalation messages but are possible if one uses de-
ferred lock escalation messages. In scenario 1, an asyn-
chronous lock escalation message prevents client 2 from
reading object B, and this, in turn, prevents a deadlock. In
scenario 2, an asynchronous message prevents client 2 from
reading object B and this again prevents a deadlock. This
is the main reason why the O2PL avoidance-based family
of cache consistency algorithms [FC94] which utilize de-
ferred messages face an increase in the deadlock rate as the
data contention increases. This high deadlock rate has dis-
couraged client caching DBMSs from using O2PL family
of cache consistency algorithms [FC94]. Thus, the usage
of asynchronous messages is not a compromise between
using synchronous and deferred messages, but instead, it
provides AACC with important advantages over ACBL and
O2PL.

In order to further reduce the AACC deadlock abort rate
and make it as low as the ACBL abort rate, the following
two deadlock optimizations are being used in AACC:

Sneak-Through Deadlock Optimization: The no-
tion of sneak-through has been introduced in order to
avoid the type of deadlocks illustrated by scenario 3
in Figure 5. Client 1 has read object A prior to that
object's update by client 2. This scenario is possible
since in AACC update operations never block at the
time of the update even during the presence of con-
flicting read/write operations. The updating transac-
tion only blocks if it reaches the commit point before
the reading transaction. Therefore, client 2's update
of object A will make client 2 block at commit time.
If client 2 updates object B before client 1, then client
1 will normally block. In these situations, the server
realizes that since client 1 is already causing client 2
to block due to its reading of object A, client 1 itself
should not block on object B. Hence, the server averts
a deadlock. The server maintains the information that
client 1 is in sneak-through mode with respect to client
2. This sneak-through optimization helps AACC to
avoid deadlocks, shown in scenario 6, which occur in
ACBL.

Blocking Reversal Deadlock Optimization: When
the server detects a deadlock, it checks to see whether
the deadlock is of the type depicted by scenario 4 in
Figure 5. In this situation the server unblocks client 1
(which was blocking on object A) and instead blocks
client 2 at commit time to avert a deadlock.

As our experiments have shown, the deadlock abort rate in
AACC is very similar to ACBL's. However, AACC still
encounters the deadlock scenario 5 (Figure 5) which is not
encountered by ACBL. Finally, it is also necessary to an-
alyze why AACC outperforms ACBL while in a previous
study the NWL-Notify asynchronous algorithm performed
worse than ACBL [WR91]. AACC is an avoidance-based
algorithm, whereas, NWL-Notify is a detection-based al-
gorithm. Therefore, NWL-Notify encounters stale cache
aborts which do not occur in AACC. In AACC, upon the
update of an object, the server invalidates the remote client
caches; in NWL-Notify, the server propagates updates to
the remote client caches. Invalidation has been shown to
be superior to propagation for most workloads [FC94].

7 Conclusion
In this paper we presented a new cache consistency algo-
rithm, Asynchronous Avoidance-Based Cache Consistency
(AACC) algorithm which provides both good performance
and low abort rate. AACC has low abort rate because it
is avoidance-based; it has good performance because of its
lower message processing and blocking overhead. The pa-
per describes, in detail, the measures that are incorporated
into the algorithm to reduce message, blocking and dead-
lock overhead. The performance study reported in this pa-
per confirms that AACC provides significant performance
gains over ACBL while maintaining a low abort rate and
that it outperforms AOCC for the most common workload
(Sh-Hotcold) and system configurations, while maintain-
ing a low abort rate. These performance results are impor-
tant for a number of reasons. First of all, they improve our
understanding of cache consistency algorithms, in particu-
lar they reverse the commonly held belief due to a previ-
ous study [WR91] that synchronous callback locking algo-
rithms usually outperform asynchronous algorithms. This
has led to the general neglect of asynchronous cache con-
sistency algorithms. In this paper we show that an asyn-
chronous algorithm such as AACC can consistently out-
perform the best synchronous algorithm (ACBL). The sec-
ond result of the performance study is that in wide area
networks synchronous algorithms suffer due to increased
message blocking overhead associated with unpredictable
network delays. This is significant as the use of Internet
widens. The third important result demonstrated by the
performance study is that one does not have to tolerate high
abort rates as a necessary evil to achieve high performance,
as a recent comparison between AOCC and ACBL seems
to suggest [AGLM95]. It is indeed possible to lower abort
rates which makes the algorithm more suitable for inter-
active applications and for the emerging hybrid function-
shipping/data-shipping architectures. In future we plan to
further investigate cache consistency algorithms for hybrid
data-shipping/function-shipping systems.

References
[ACL87] R. Agrawal, M. Carey, and M. Livny. Con-

currency Control Performance Modeling: Al-
ternatives and Implications. ACM TODS, De-
cember 1987.

[AFT97] L. Amsaleg, M. Franklin, and A. Toma-
sic. Dynamic Query Operator Scheduling for
Wide-Area Remote Access. Technical Report
CS-TR-381, University of Maryland Tech Re-
port, 1997.

[AGLM95] A. Adya, R. Gruber, B. Liskov, and U. Ma-
heshwari. Efficient Optimistic Concurrency
Control Using Loosely Synchronized Clocks.
In ACM SIGMOD Conference Proceedings,
1995.

[Car97] M. Carey. Private Communication. 1997.
[CFLS91] M. Carey, M. Franklin, M. Livny, and

E. Shekita. Data Caching Tradeoffs in Client-
Server DBMS Architectures. In ACM SIG-
MOD Conference Proceedings, 1991.

[CFZ94] M. Carey, M. Franklin, and M. Zahari-
oudakis. Fine Grained Sharing in a Page
Server OODBMS. In ACM SIGMOD Con-
ference Proceedings, 1994.

[CLH97] I. Chung, J. Lee, and C. Hwang. A Con-
tention Based Dynamic Consistency Mainte-
nance Scheme For Client Cache. In CIKM
Conference Proceedings, 1997.

[DFMV90] D. DeWitt, P. Futtersack, D. Maier, and
F. Velez. A Study of Three Alternative Server-
Workstation Architectures for OODBMS. In
VLDB Conference Proceedings, 1990.

[FC94] M. Franklin and M. Carey. Client-Server
Caching Revisited. In T. Ozsu, U. Dayal, P.
Valduriez, editor,DistributedObject Manage-
ment. Morgan Kaufmann, 1994.

[FLC97] M. Franklin, M. Livny, and M. Carey. Trans-
actional Client-Server Cache Consistency:
Alternatives and Performance. ACM TODS,
September 1997.

[Gru97] R. Gruber. Optimism vs. Locking: A Study
of Concurrency Control for Client-Server
Object-Oriented Databases. PhD thesis, MIT,
1997.

[KF96] D. Kossmann and M. Franklin. A Study of
Query Execution Strategies For Client-Server
Database Systems. In ACM SIGMOD Confer-
ence Proceedings, 1996.

[MDKN94] M. Carey, D. DeWitt, C. Kant, and
J. Naughton. A Status Report on the OO7
Benchmarking Effort. In OOPSLA Confer-
ence Proceedings, 1994.

[WR91] Y. Wang and L. Rowe. Cache Consistency
and Concurrency Control in a Client/Server
DBMS Architecture. In ACM SIGMOD Con-
ference Proceedings, 1991.

